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Abstract

There are various biometric parameters of the fetus that need to be evaluated to
monitor prenatal diagnosis during pregnancy. Biometric parameters such as head
circumference, abdominal circumference, cortical volume, the volume of the brain,
crown-rump length, femur length, etc. play a very important part in the character-
ization and detection of the development of the fetus. Gestational age is one of the
most effective parameters for monitoring fetal growth and development, as well as
diagnosing any abnormalities, among several quantitative indices. To estimate the
gestational age, birth size, weight, and to monitor prenatal abnormalities, many bio-
metric parameters such as head circumference (HC), abdomen circumference (AC),
and femur length (FL) must be measured. We can extract these parameters from
the segmentation of an MRI scan. However, performing full manual segmentation
is exhaustive and time-consuming. Ultrasound imaging has been shown to be more
efficient than MRI for measuring such biometric characteristics.. Also, in this case,
manual segmentation requires experts’ experience and skills, clinical experience of
the staff which is time-consuming. As a result, we propose a fully autonomous
segmentation method based on U-Net architecture for fetal biometric parameters
such as head circumference (HC), abdomen circumference (AC), and femur length
(FL), which eliminates the need for manual intervention, reduces computational
complexity, and greatly speeds up the segmentation process. U-Net is a convolu-
tional neural network that was created for performing segmentation on biomedical
images. Our goal is to train the network such that it can create high-resolution 2D
and 3D ultrasound images of each segmented fetal area.

Keywords: Biometric Parameters, Gestational Age, U-net, Semantic Segmenta-
tion, Head Circumference, Abdominal Circumference, Femur Length, Deep Neural
Network, Convolution, Autonomous
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Chapter 1

Introduction

1.1 Fetal Development and Segmentation

Process

Fetal development is one of the most crucial factors for monitoring fetal health.
Anomalies in different stages of fetal development can be detected by evaluating
various biosignatures such as fetal head circumference (HC), abdominal circumfer-
ence (AC), femur length (FL), biparietal diameter (BPD), etc. These biometric
parameters can be used to determine gestational age, as well as to facilitate the
process of prenatal diagnosis. Fetal segmentation is the most efficient process for
determining these biometric parameters. By fitting an ellipse, line or rectangle on
the segmented areas, these parameters can be easily measured which can be further
used for monitoring fetal growth. Ultrasound (US) imaging is the best fit to be used
for segmentation procedures as it is affordable, swift in manner and non-invasive,
hence, painless and far better than other imagining technologies like magnetic reso-
nance imaging (MRI) or computed tomography (CT) in terms of detecting anoma-
lies. Despite the benefits of US, there exist some limitations that make it difficult
for interpretation and require the intervention of experts to be overcome. To re-
duce such intervention and to ensure faster operation, an autonomous segmentation
method is needed to be implemented.

Haar-like characteristics, also known as digital picture features, are utilized in ob-
ject recognition to detect edge, rectangle, line, and center-surround features. In
previous studies, for locating the skull of the baby, a random forest classifier was
trained by using those characteristics. In general, randomized Hough transform,
semi-supervised patch-based graphs, multilevel thresholding, texton-based features,
circular shortest paths, boundary fragment models, Haar-Like features, active con-
touring or compound methods, and intensity-based features are some of the methods
for extracting skull features [8]. Later, Hough transform (HT), dynamic program-
ming (DP), and elliptic skull fitting were utilized for additional HC measures [15].

Convolution neural networks (CNNs) have lately acquired prominence due to their
better performance in image processing tasks such as classification, object identi-
fication, registration, computer vision challenges, and semantic segmentation. A
study used fully convolutional networks (FCN) to segregate fetal tissue in 3D ul-
trasound images. They created a two-stage CNN to extract structural information
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[7]. Another study employed multi-task deep neural networks based on Link-Net to
segment fetal ultrasound images [15]. FCN was used in another study [9] to segment
the fetal head from second-trimester ultrasound images.

Finally, due to its skip connection layers, which may be utilized to detect symmetric
structures in an image, U-Net has become useful for biological image segmentation.
It decreases computational complexity by detecting the skull, abdominal boundary,
and femur target for fetal HC, AC, and FL measurements. The encoders and de-
coders in the U-Net architecture are used to extract features from the image and
then cascade those encoded feature maps to extract spatial features [3]. As a result,
it performs well while reducing warping, rand, and pixel mistakes.

1.2 Problem Statement

It is necessary to check the baby’s development and to check for any abnormalities at
the time of pregnancy. Ultrasound examination is a test that employs high-frequency
sound waves to visualize whether or not things are running as they ought to and it
is a commonly used method to monitor pregnant women throughout the Western
world. Parents get a chance to have a glance at the infant by this inspection. Along
with this, another significant diagnostic feature of ultrasound imaging incorporates
crucial information in regards to the baby’s health. [23].

In low-resource countries, access to care during pregnancy and childbirth is a key
barrier to improving maternal and perinatal health outcomes. There is a huge dis-
parity between the developed and developing worlds, with the least developed coun-
tries experiencing higher maternal mortality and pregnancy complications. Among
the illnesses for which obstetric ultrasound is the principal diagnostic modality are
multiple gestation, congenital deformities, fetal development limitation, and ab-
normalities of placental implantation. An ultrasound can offer critical information
regarding pregnancy verification, gestational age, multiple gestation, detection of
inborn defects, placental issues, and monitoring fetal position, growth, and amniotic
fluid disturbances etc. which can be used for diagnostic purposes.

It is vital to check on the fetus’s health on a regular basis during pregnancy. There is
a close link between the fetal brain’s volume and its stage of development. An MRI
scan is performed when a fetus’ abnormality is suspected, and the volume and struc-
tural properties of the brain can be retrieved from the MRI scan’s segmentation.
3D images of the inner parts of the body can be produced by MRIs and magnets
are used for doing so. Any modification or transformation in the tissues caused by
injury can be identified by an MRI scan. Performing segmentation on medical im-
ages using MRI is tough due to ambiguous or nonexistent or overlapping anatomical
structure, artifacts, and noise. [13]. On the contrary, in case of ultrasound imaging,
images of internal organs and structural shapes are produced using high-frequency
sound waves. For examining fetal anatomies, ultrasound exams are preferable as
it is economical, harmless, and capable of producing immediate responses. As a
result, it is extremely important in obstetrics. The fetal volume can now be used as
a biometric parameter to track its development thanks to the emergence of three-
dimensional ultrasonography.
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Segmentation is the process of isolating or distinguishing a region of interest from
its surroundings. It is frequently one of the earliest and most significant phases in
image processing, and it is a common and important phase in the quantitative and
qualitative analysis of medical pictures. Segmentation, which includes designating
the areas in a digital image that relate to the object of interest, is required for the
estimation of fetal volume. However, there is no standard method for determin-
ing fetal volume. To determine fetal measurements, fetal diameters or outlines are
extracted manually using the images found from the current ultrasound scanners
[2]. Generally, specialized or expert radiologists or clinicians execute the process of
manual segmentation. Apart from performing this using a slice-by-slice technique,
it is also achievable for 3D images by bounding the region of interest via annota-
tion [21]. For example, in the case of femur length, radiologists use an interactive
marker device to show the femur ends; nonetheless, these measures are subjective
and unreliable, and most studies depend on the segmentation which is performed
manually. The signal-to-noise ratio of ultrasound images is low because of a prop-
erty of ultrasonic imaging process, making observation and interpretation difficult.
Furthermore, defects such as speckle noise and acoustic shadows, as well as attenua-
tion and low contrast across regions of interest, make ultrasonic image segmentation
extremely challenging and frequently result in weak or missing edges, as well as the
appearance of artificial edges. As a result, manual fetal component measurements
are frequently imprecise and inconsistent. According to several studies, substantial
random mistakes in measurements done via manual process are a key reason for es-
timating fetal weight erroneously, necessitating the reduction of measurement error.
It is thus desirable to have an autonomous process to obtain fetal biometrics that is
resistant to the position and aspect fluctuations seen in the fetal images [2]. Analysis
of ultrasound images provides unique problems, notably for successful segmentation
of discrete objects, due to the poor contrast, speckle noise, and aberrations inher-
ently associated with ultrasound images.

Utilizing the proficiency of experts is one of the mentionable benefits of manual
segmentation procedure whereas being tedious and susceptible to inconsistency re-
garding intra and inter observations are some of its downsides [21]. Performing full
manual segmentation takes 70-80 minutes and is exhaustive, also boring. Further-
more, both intra- and inter-observer ultrasound image quality differ substantially
between institutes and manufacturers. It also relies a lot on how many operators or
diagnosticians there are and how much experience they have. All of these factors
make hand segmentation more variable, affecting quantitative and geometric assess-
ments of ultrasound pictures. Ultrasound segmentation issues have been popular
research subjects in recent years, and they have grown quickly. Autonomous seg-
mentation techniques based on deep learning have lately gained popularity, demon-
strating considerable improvements in picture classification and recognition tests.

In short, manual segmentation places far too much reliance on the staff’s profes-
sional expertise and clinical experience. As a result, the solution is to develop an
automated fetal biometric segmentation approach. Automated fetal segmentation
is a critical first step toward developing a comprehensive neuroimaging analytic
methodology for fetal development research. A reliable segmentation method would
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allow for precise measurement of morphological structures, which might be used for
prenatal development monitoring and characterization, as well as earlier diagnosis
and intervention.

There were numerous flaws in all of the previously published publications. Some
studies focused on femur length rather than density. Some studies used procedures
that did not produce an accurate result while being near, and they also failed to
demonstrate adequate skull shape. Some authors have employed a relatively small
dataset to get more accurate results, but this does not guarantee that precise re-
sults will be obtained on a big dataset. Only two-dimensional images were utilized
in some articles. Furthermore, no other work has revealed the segmentation of three
separate locations in order to estimate femur length, stomach circumference, and
head circumference. As a result, we’ve chosen to present a method based on U-net
that will take both 2D and 3D images and perform autonomous segmentation, pro-
viding us with accurate measurements of head circumference, belly circumference,
and femur length. Additionally, we are interested in measuring the circumference
of the abdomen and the circumference of the skull, developing an autonomous fetal
segmentation method to measure the length of the femur by defining the targeted
femur area via improvement in shape detection, as well as implementing a faster
method to calculate the length of the femur quickly.

To sum up, based on U-Net architecture, we offer a unique and efficient autonomous
technique to perform segmentation on 2D and 3D ultrasound images of fetal head,
abdomen, and femur to delimitate fetal skull, abdomen, and femur target. Follow-
ing segmentation, our method applies elliptical fitting to the extracted skull and
abdomen boundaries, which is then utilized to calculate the fetal head circumfer-
ence and abdominal circumference. In addition, a line fitting technique is used on
the femur to quickly estimate the femur length [3], [10], [2]. Our proposed method
may segment these three fetal areas simultaneously, which is novel because no other
research has done so before.

1.3 Research Objective

The goal of this research is to develop an autonomous method to segment head,
abdomen, and femur of fetus which can further be used for head circumference,
abdominal circumference and femur length estimation and eventually computing
gestational age, newborn’s size, weight, due date and monitoring fetal growth. This
autonomous segmentation can be achieved using U-Net architecture due to its sim-
plicity and being widely used for biomedical image segmentation. The objectives of
this research are:

1. To perform fetal head, abdomen, and femur segmentation.

2. To estimate the head circumference, abdominal circumference, femur length.

3. To compute gestational age, monitor fetal growth.

4. To deeply understand the architecture, advantages of U-Net and procedure of
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accomplishing autonomous segmentation.

5. To evaluate the model.

6. To make future recommendations to improve the model.

1.4 Challenges

It is quite evident that conducting the entire proposed methodology was very difficult
for us. As the world is presently confronting the most provoking time because of the
outbreak of Covid-19 epidemic, it was quite challenging for us to analyze the research
experiments without any hitch. Our first focus was to gather ultrasound images of
pregnant patients from different hospitals. Due to the Covid-19 circumstances, it
was difficult to be physically present in the hospitals to collect patients’ data as
we had to undergo numerous lockdown periods. Many hospitals are reluctant to
share data due to privacy concerns and other legitimate reasons. However, we
attempted to gather datasets from hospitals through virtual correspondence, but
they were not eager to cooperate because of the limitations as well as the Coronavirus
circumstances. Hence, we had to visit the hospitals physically to persuade them.
Finally, we managed to acquire the data of various patients from different hospitals.
Additionally, as it was difficult to assemble physically, we, the team members, had
to communicate virtually to facilitate the collaboration in regards of conducting the
research.

1.5 Thesis Outline

The focus of this research was to perform autonomous segmentation on 2D and
3D ultrasound images using U-Net architecture. After training the model with the
training dataset containing ultrasound images of two types: 2D and 3D, we aimed to
test the process of training using the validation dataset and later using the dataset
kept for testing. Evaluating the performance of the segmentation process was an-
other goal of this research.

In the first chapter, denoted as Chapter 1, an overview regarding fetal development
and segmentation has been included. Next, the problem statement addresses the
concurrent issues or problems of existing methods and the research objective has
been added for clarifying the goals and proposals of this research. Lastly, some
challenges have been mentioned that are faced while conducting the research.

The next chapter (Chapter 2) highlights the previous works that have been done
regarding the autonomous segmentation of fetal and other biomedical images. Ma-
jor findings of such research works have been summarized in this section, and the
shortcomings or inadequacies of previous different approaches have also been dis-
cussed. The factors affecting fetal development, different biometric parameters that
are vital in determining fetal growth, the significance of using ultrasound images
over MRI and a brief overview regarding the necessity of autonomous segmentation
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have also been highlighted.

In the following chapter (Chapter 3), the fundamental assessment of U-Net archi-
tecture and different biometric parameters have been explored. A generalized work-
flow diagram has been added to facilitate the research pipeline. Next, the research
methodology has been introduced in a detailed manner. The research procedure
is explained thoroughly, starting from data collection, then data preprocessing to
train-test split.

In the next chapter (Chapter 4), the implementation and model evaluation proce-
dure has been discussed in detail. A comparative analysis of different performance
metrics and loss functions to evaluate the implementation has also been added.
Next, a detailed explanation has been provided regarding model fitting, training
and evaluating the model using the performance metrics that were discussed earlier.
Using the segmented images, the procedure of circumference, length and gestational
age measurements has also been highlighted.

The next part (Chapter 5) provides a detailed analysis of the results found. Actual
values and values found from our experiment regarding fetal head circumference,
abdomen circumference, femur length and gestational age have been subjected to a
comparative analysis using tables and charts.

Finally, in Chapter 6, the reasons for choosing our proposed model and its limitations
have been described. The paper has been concluded highlighting the plans and
scopes for future research.
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Chapter 2

Literature Review

2.1 Existing Works

This research effort [2] introduces an effective and instinctive approach for fetus’s
femur segmentation from ultrasound pictures and an efficient system for swiftly de-
termining the segmented femur’s length, as femur measurement is one of the most
significant elements of fetal segmentation. [2] presents the automatic morphology-
based femur detection process first, and then the model is used for detecting the
length of femur secondly. The major entropy-based segmentation approach is as
follows: firstly, a median filter is applied to smoothen the contents of the image and
for decreasing the unnecessary noises and after that, it uses entropy based segmen-
tation for detecting possible pixels from the images and later it looks out for narrow
and tall objects and lastly using the morphology and object layout, it chooses the
best possible outcome from this technique. Then there’s the alternate edge-based
segmentation method: this is a segmentation method that only works when the first
method fails to identify anything. It marks down the horizontal boundaries and
in the preprocessing step, these edges get stretched, similar to the main approach
but without the smoothing filter. The object density and the balance ratio of the
images are used to construct the thin and lengthy object selection. The procedure
used here produced possible result alongside comparing to the ground truth images,
and the assessment was followed through distance-based metrics where the measure-
ments is calculated in mm for the Maximum Symmetric Contour Distance (MSD),
Average Symmetric Contour Distance (ASD), and Root Mean Square Symmetric
Contour Distance (RMSD). The authors have implemented Philips HD9 mid-range
ultrasound equipment to capture the images. The results of this paper on automatic
femur segmentation and length measuring are are very well-planned, compatible and
sufficient. This highly methodical and detailed model is written in C, although C++
or Java might be used instead. It also primarily displays femur length rather than
femur density.

A research report [4] illustrates the application of the texton-based supervised
method for the accurate segmentation and measurement of ultrasonography fetal
head (BPD, OFD, HC) and femur to assure time efficiency and cost-effectiveness
over previously done research (FL). It is used to determine the fetus’ gestational
age (GA) by estimating its total weight and proportion and to detect aberrant fe-
tal growth trends. This topic will increase the quality of biometric measurements

7



of fetuses while also reducing time and expense. There are various steps to this
operation. The first is a nonlinear diffusion approach, which is used to minimize
speckle noise. After that, the authors made a presumption that cross-sectional in-
tensity profiles that are made for femur length and fetus skull will be continuously
registered to Gaussian-like curves, and To bring out texton properties specific to ul-
trasonography fetal bone structure, they design a multi-scale and multi-orientation
filter bank. Lastly, a closed head contour for the fetal head is constructed using a
minimal square elliptical fitting method, while a closed femur contour for the fetal
femur is formed by joining the specified femur borders. They gain through extract-
ing features in the texton generation stage which follows, as opposed to the previous
method. This improves feature extraction in the subsequent texton generation stage
and decreases the false-positive ratio of border identification substantially. In the
second stage, these tests provide 32 textons, which are sufficient to build femur and
head primitives. To create comparable primitives, the texton map is a grayscale
image. After the final stage, it can be seen that the total precision of the two ex-
perts for fetal head segmentation are above 97 percent, with a standard deviation
of less than 1%, and all other metrics (accuracy, sensitivity, and specificity) values
are around 99 percent. In the fetal femur, expert 1 exceeds expert 2 in terms of
precision, accuracy, specificity, ASD, RMSD, and their associated standard devia-
tions. Even if it is close, this procedure does not produce an accurate result. This
study used photographs from the United States, which are notoriously difficult to
deal with. This method aims to generate a whole skull structure, but it only shows
parts of the structure at a time, resulting in an incomplete structure. Discrimina-
tions between bone and non-bone features are also difficult to identify in the femur.
These issues can lead to clinical application disagreements.

Another investigation [8] used computer-aided detection (CAD) to determine the
Fetal head circumference in 2D ultrasound pictures. They obtained the HC’s ul-
trasound photos from the Radboud University Medical Center’s Department of Ob-
stetrics database in Nijmegen, the Netherlands. The CAD method has two steps:
first, to detect the embryonic skull, Haar-like features were obtained from ultrasound
pictures and they are used to train a random forest classifier. Second, the Hough
transform, dynamic programming, and an elliptical fit were used to find the HC.
The CAD system was trained on 999 photographs and validated on 335 images from
all trimesters in a separate test set, indicating that it is not valid for additional im-
ages. The average difference between the reference GA and the GA estimated by the
experienced sonographer in the first place, second, and third trimesters examination
was 0.8 2.6, 0.0 4.6, and 1.9 11.0 days, respectively. The average time difference
between the reference GA and the GA of the medical researcher was 1.6 2.7, 2.0 4.8,
and 3.9 13.7 days, respectively. The GA difference between the reference and CAD
systems on average was 0.6 4.3, 0.4 4.7, and 2.5 12.4 days, respectively. To have a
clear image of the fetus’s progress, researchers identified 1334 2D images from 551
pregnant women. This study’s accuracy was significantly greater than in previous
studies.

Following this study, CNN was utilized in research work [13] to acquire a better
understanding of the image of brain segmentation, and U-net was also employed to
get a better understanding of it. From the middle of the mask’s brain region (512
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x 512), all images were automatically cropped to 256 x 256. This ensures that the
brain area appears in every fresh photograph. Following that, each cropped image
is filtered using a small 3 x 3 median filter window. This study used a deep learning
approach to cover 200 fatal brains with over 11,000 2D photos, which was imple-
mented by U-original net’s architecture. Here, Deep U-net was used to automate
2D fetal brain segmentation of MR data, resulting in a clear view of images with
fuzzy areas. Large datasets were not previously employed, but this study places a
greater emphasis on them. In addition to this, a U-Net design based CNN network
is included in this paper. As compared to the original U-Net and its upgrades, in
Automated 2D Fetal Brain Segmentation of MR Images that used a deep U-Net 13,
the proposed approach produced significantly better results. After testing all of the
approaches with a variety of scenarios and obstacles, such as low contrast images,
obscure brain areas, diffuse brain boundaries, overlapping brain and skull bound-
aries, complicated brain structures, and extremely small regions in the bottom and
top slices, this has a great result on average of J= 86.7 percent and D = 92.8 percent
based on 200 cases. Furthermore, this research has focused on the human placenta,
which has a much faster turnaround time. They employed MRI to obtain a clear
segmentation image of the placenta, and it was dependent on network accuracy cri-
teria. For training purposes on Titan X, around 50 trained data sets were used on
the U-net network. This research project included local and worldwide data, which
had not been done before in earlier studies. Still, here is a condensed version of the
dataset, which does not guarantee that it will be accurate.

The first trimester is crucial for determining the fetus’s growth, hence an ultrasound
during this time is also necessary to determine the fetus’ gestational age. A single
3D ultrasound scan to detect and measure several fatal anatomies in a first-trimester
fetal assessment is offered in the research effort [14] to uplift the valuable image of
the fetal. Furthermore, semantic segmentation of the fetus is performed using deep
learning and image processing, which is also employed as a standard orientation
for biometric observation. They used a V7-3 transducer with a voxel resolution of
0.33mm x 0.33mm x 0.33mm and a Philips HD9 ultrasound machine (Bothell, WA
98021, USA) to collect data. Furthermore, a total of 65 datasets were employed to
identify training and test sets (44 among them is training set and 21 is test set). The
study includes physical detachment of the head and abdomen in order to visualize
these times extremely precisely. In addition, a deep learning and image processing
algorithm was used to create a crystal image of the first trimester. To train the
networks and test the technique, the VGG-16 network was employed. In these re-
search areas, however, all FCNs used stochastic gradient descent (SGD) and softmax
loss. It was begun with 10-3 and then gradually decreased to achieve the desired
outcomes. The results demonstrate that it has a 98.9% accuracy rate, which is far
higher than earlier research. The goal of the project was to develop a completely
automated biometry system that would use 3D fetal ultrasound throughout these
crucial early trimesters. This 3D ultrasound will be employed in fetal segmentation
sooner or later, however, there are limitations in global and local data, which will
have an impact on research.

According to the research work [18], we require a prenatal ultrasound, which is one
of the most common examinations during pregnancy that measures the Fetal Head
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circumference and determines the gestational age, monitors the fetus’ growth status,
and infers the newborn’s condition. The dataset we used was the HC18 challenge,
which included 999 three-dimensional ultrasound images and comments. Every 2D
ultrasound photo has a length of 540 x 800 pixels, with pixel lengths ranging from
0.052 to 0.326 mm. One of the challenging aspects of this dataset is that the ul-
trasound images were collected from all three trimesters of pregnancy. There were
165, 693, and 141 prenatal ultrasound photos taken in the first, second, and third
trimesters, respectively. The fetal head circumference is difficult to measure be-
cause the ultrasound image of the skull is hazy and faulty. They employed a deep
learning U net architecture method to segment the fetal skull for fetal HC mea-
surement so that the physician could make an accurate measurement of the fetus’s
head and make a further prognosis. The researchers used a U-Net with Encoders,
Dilated Convolution Modules, Skip Connections, and SE Blocks and encoders in
this scenario. The approach they employed for fetal HC measurement was the fetal
skull border and fetal skull. Due to its remarkable performance in biological image
processing, the network was modified to use U-Net. Then, following the last en-
coder, it added dilated convolution layers and Squeeze-and-Excitation (SE) blocks
for the U-Net skip connections to segment fetal skull boundaries and merge fetal
skulls in 2D ultrasound pictures. The model is built on the HC18 grand challenge
dataset, which includes 2D ultrasound images from several trimesters of pregnancy.
Researchers obtain 2D pictures of prenatal ultrasound images in this experiment.
The length of fetal HC can be estimated using the segmented results. Fetal HC is
important for calculating gestational age and due date, as well as monitoring fetal
growth status during the pregnancy. It is critical to obtain a correct fetal HC mea-
surement. As a result, they outperformed U-Net, with higher Dice scores and more
precise HC measurement estimates. Despite the fragmentary and unclear HC in the
ultrasound images, their model can predict a complete fetal skull border and skull,
as well as point to useful information. In fetal skull segmentation, U-Net can get a
very high Dice score, while the mean absolute difference is lower than in fetal skull
border segmentation. To some extent, this work is reliable and efficient, but there
are some flaws, such as little features that have always been overlooked in this re-
search and do not specify in-depth knowledge of image segmentation. Furthermore,
only global data has been used so far for picture segmentation, which is one of the
key problems because research is limited. Instead of having numerous flaws, this
model is 96 percent correct, implying that it performs better than other networks.
The model also accurately predicts fuzzy images with a 3 mm lower mean difference.

The authors incorporate Gestational age (GA), an explanatory evidence of head
circumference (HC) and biparietal diameter (BD) and those are two measurements
of fetal growth, in their research effort [17]. (BPD). This paper educated and eval-
uated proposed networks using a dataset that was freely available. This data was
collected at the Radboud University Medical Center’s Department of Obstetrics
in Nijmegen, the Netherlands. The actual observation was made for the purpose
of measuring the head circumference, and the dataset was eventually made public
through the Grand Challenge HC18. In this presentation, the BPD and HC are
automatically measured using a deep learning-based approach based on fetal head
segmentation from ultrasound images. The analyzer in this picture analysis ensures
that deep learning techniques are used to produce more efficient algorithms than ex-
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isting conventional algorithms various image segmentation and image enhancement
applications. The pixel classifier and fetal skull detector were both used to seg-
ment this fetal head. Based on the segmentation of the fetal head from ultrasound
pictures, this research [17] proposes a deep learning-based technique for measuring
BPD and HC. The proposed approach in this study solves ultrasound segmentation
concerns such as speckle noise, inherent ultrasound image artifacts, and difficulty
when there is a lack of amniotic fluid in the images. So, they utilized MFP-U-net,
a previously described effective convolutional network architecture for left ventricle
segmentation from echocardiography images.. To segment the fetal head from ultra-
sound images, the researchers used an effective convolutional network architecture
called multi-feature pyramid U-net (MFP-U net), which was previously proposed
for left ventricle segmentation from echocardiography images. The suggested net-
work addresses the U-major net’s flaw, which is that in the segmentation process,
it ignores all semantic strengths. HC18 challenge dataset ultrasound images were
used to train and test the MFP-U-net (fetal head circumference challenge). Several
measures, including Dice similarity coefficient (DSC) and Hausdorff distance (HD),
were used to measure the accuracy of anatomical segmentation that has been re-
quired. Dice similarity coefficient (DSC) and Hausdorff distance (HD) were used for
measuring the data, and the correlation analysis was performed using Pearson’s test.
They both had Bland-Altman and correlation graphs, that assessed how well pre-
dicted and manually driven parameters agreed, with HC having the best consistency
between manual and automatic measurements. The issue is that this experiment
used a short dataset, and there isn’t enough information on how the technique was
carried out. Again, there aren’t enough details concerning the fetal ailment, and the
work they’re doing isn’t well-supported.

2.2 Background Study

2.2.1 U-Net Architecture

Olaf Ronneberger et al. proposed and developed U-NET architecture to process and
perform segmentation on biomedical images. The “U” shaped architecture is sym-
metrical consisting of two major parts. The left one is denoted as the contracting
path or encoder, is used to frame the context of the images by a typical convolution
process. This encoder is basically a combination of convolution and max-pool layers.
Here, each process consists of two successive convolution layers with a kernel size
of 3x3, followed by a max-pooling layer along with ReLu activation functions. As
the convolution process increases the depth of the image, the number of channels
changes in each process. This orientation is repeated multiple times.

Another part of this architecture is denoted as the expansive path which is used
to upsize the image to its original size via transpose convolution up-sampling tech-
nique. The novelty of the u-net is seen in this part. In this part, the feature map
is up-sampled by the convolution process, using a kernel size of 2x2. Then the
up-sampled image is concatenated with the cropped feature maps of the same level
contracting part. The reason for combining the information from previous layers is
to get a more precise prediction. To meet the prediction requirements, the image
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is reshaped by using a convolution of kernel size 1x1. So, this architecture does
not have any dense layers. Hence, images of any dimension can be fed as inputs
to this architecture. Thus, by using the context from a larger overlapping area,
the contextual information is propagated along the u-shaped network allowing the
segmentation of objects. [22]
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Figure 2.1: U-Net Architecture

In figure 2.1, blue boxes represent feature maps consisting of multiple channels.
The number written on the top of the boxes represents the channel numbers. At
the lower edge of each box, the height and width are represented. Each white box
denotes the copied featured maps from the contraction part and different colored
arrows represent various operations as denoted in the picture above.

In figure 2.1, the latter two blue bars in each step denote the usage of two convo-
lution layers in a row. The output tensors produce 9 different outputs where the
first four outputs represent the outputs of downsampling layers and the later 4 refer
to the outputs of upsampling layers and the last output is the final output with
one-dimensional matrix only. Max Pooling Layers’ output tensors produce only 4
outputs overall. Typical convolution layers and max-pooling layers are used in the
contraction path on the left. The size of the image is reduced as the depth is steadily
increased in the contraction part. For example, starting from a width of 128, height
of 128 and depth of 3, it gets reduced to a height of 8, width of 8 and depth of 256.

On the right side, transposed convolutions are used along with the typical convo-
lution process. This path is denoted as the expansion path. The file size steadily
increases in this path, while the depth gradually decreases. For example, starting
at a height of 8, width of 8 and depth of 256 and going up to a height of 128, width
of 128 and depth of 1. Gradual usage of up-sampling helps to achieve precise local-
ization.

For achieving more precise locations, at each step of the expansion path, the feature
maps from the same level contraction paths are concatenated. Therefore, a hori-
zontal arrow from leftward to rightward in each layer was shown in the above figure
which basically denotes the concatenation of them.

After each process of concatenation, two regular convolutions are used consecutively
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to facilitate the process of generating even more precise results. The name U-NET
is thus taken in accordance with the symmetric U-shape of the design.

The overall relationship can be denoted as follows:

Input ⇒ Contraction Path ⇒ Expansion Path ⇒ Output [12]

2.2.2 Why Ultrasound Image?

Ultrasound is one of the most used methods for prenatal diagnosis, and it is fre-
quently used for monitoring pregnant women, making it a very important test
during pregnancy. This approach is considered one of the fundamental imaging
modalities in use since it is rapid, affordable, non-invasive, radiation-free, low-risk,
and real-time [1]. Ultrasound imaging is milder, more dominant, and less expensive
than other imaging technologies like computed tomography (CT) and magnetic res-
onance imaging (MRI). Moreover, despite the fact that MRI is safe and capable of
producing images with superior anatomical definition, medical experts restricted its
usage to women under the age of 20 weeks [15]. It is also said to be ineffective in
terms of screening for general abnormalities. The most common approach for fetal
growth monitoring is 2D ultrasound. However, 3D US has earned notoriety as a
result of its speedy acquisition. Furthermore, the scanning quality of both 2D and
3D US is the same. Nonetheless, finding the ideal 2D viewing plane in a 3D scan
requires talent [1].

2.2.3 Biometric Parameters

Fetal segmentation is the method of separating several portions of the fetus, such as
the fetal brain, abdomen, and femur. These are then used to determine fetal biomet-
rics parameters such as fetal head circumference (HC), biparietal diameter (BPD),
fetal abdomen circumference (AC), femur length (FL), humerus length (HL), and
crown-rump length (CRL). During pregnancy, estimating gestational age (GA), fe-
tal size, baby size, weight, and due date require these parameters. While measuring
the gestational age of a fetus aged between 8 and 12, CRL provides the most exact
result. Following that, HC is the most accurate method for determining GA after
13 weeks [8]. These parts must be identified in order to screen for prenatal disor-
ders. However, because US pictures are operator-dependent, they have a number
of aberrations such as boundary ambiguity, noise, attenuation, low signal-to-noise
ratio, reverberations, motion blurring, acoustic or sound shadows [10]. As a result,
these artifacts lead to erroneous observations and interpretations [10]. As a result,
identifying anatomical structures, discrepancies, and measuring errors becomes more
challenging.

2.2.4 Why Autonomous Segmentation?

The direction of the fetus, the US machine, maternal tissue, specialists’ experience,
and so on are all aspects that contribute to the failure to identify desirable structures.
As a result, for effective biometric parameter measurement, autonomous detection
is required. To eliminate intra-observer variability caused by manually calculating
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biometric measures, an autonomous method is implemented to reduce measurement
time, variability, and the number of steps required. Furthermore, an autonomous
approach can extract the Region of Interest (ROI) with expected and desired results
[2]. As a result, this method can easily and precisely segment and quantify fetal
sections. This strategy quickly improves workflow efficiency.
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Chapter 3

Research Methodology

3.1 System Model

The proposed system’s purpose is to perform fetal segmentation using U-Net ar-
chitecture to determine various fetal biometric parameters. In order to do so, the
model requires designing a process that takes 2D and 3D ultrasound images as in-
puts, systematic extraction of necessary features from those images and performing
segmentation on the images in terms of three major parts of the fetus: head, ab-
domen and femur. After the segmentations have been performed, ellipses, lines or
polynomial curves are fit into the segmented region based on the image type.

The proposed method aims to perform segmentation on the basis of the approxi-
mation of ellipse and bar-like structures to find the geometric profile of the fetal
head and abdomen respectively [4]. U-Net is a dedicated network used to localize
and differentiate the borders via performing classification and segmentation on ev-
ery single pixel. This system will be used to perform segmentation on input images
for estimating the gestational age and evaluating the growth of the fetus using head
circumference (HC), abdominal circumference (AC) and femur length (FL). The
implementation procedure can be divided into two tasks that will be performed in
a sequential manner: the first one is the detection and recognition of edges and the
second one is the process of object fitting. Then, the segmented regions will be used
in determining different biometric measurements such as HC, AC and FL.

This model consists of the following major stages:

Data Pre-processing:

→→ Annotation and Mask Generation: Among the images of the collected
datasets, 2D head datasets were annotated by the experts. The next step is to
generate masks of these images. Again, the rest of the images were not pre-annotated
by the experts. Hence, these images will be annotated manually using annotation
tools.

→→ Resizing: Most of the images are of large pixel values which are not fully
appropriate to be fed to the proposed architecture. Hence, the images will be resized
to smaller pixel values.
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→→ Normalizing: The resized images will be normalized to get a further
improved version of the raw images.

Splitting: After completing all the necessary pre-processing steps, the images will
be split into training, validation and testing data.

Training: The raw images and the corresponding masked images separated for
training will be fed to the to the model for fitting. The model will start learning
the procedure of segmentation.

Segmentation of Testing Data:

The testing data will be fed to the model. Using the U-Net architecture, the testing
images will be segmented in accordance with their respective category. For instance,
data that are used here consist of head, abdomen and femur images of fetuses. After
training the model with annotated images, the model will predict the segmentation
of each of these parts of the fetus in accordance with the category of testing images.

Fitting and Measurement:

After the segmentation is complete, an ellipse or line or polynomial curve will be
fit to the segmented region based on the image type. Head circumference and ab-
domen circumference will be measured by ellipse fitting, on the other hand, femur
length will be measured by line fitting. Eventually, using the length of the femur,
gestational age will be estimated.
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Figure 3.1: The Work Flow of Proposed U-Net Based Fetal Segmentation Model
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3.2 Data Collection

Data must be analyzed to gain a thorough understanding of the field in which we
work, make predictions, and manage operations in a way that adds value. It be-
comes significantly easier for us to make informed decisions when we collect facts
and information. It verifies the issues around the research gap. As a result, data
gathering is an unavoidable aspect of any research project.

It can be difficult to collect annotated data for processing prenatal photographs as
input data. We needed 2D and 3D ultrasound photos of the fetal head, abdomen,
and femur for our study. Finding such a large amount of data was difficult be-
cause most hospitals do not maintain old records. We went to numerous hospitals
and were eventually able to collect our data from three of them. This dataset con-
tains 1334 2D fetal head images of pixel size 700 by 550 ranging from 0.051 to 0.43
mm. In order to make our model learn correctly and predict the accurate result,
we need to feed it with annotated images, thereby, we annotated all the images
from a radiologist. The other dataset from the second hospital contains 711 2D
fetal abdomen images ranging from 0.037 to 0.418 mm and 1040 2D femur images
ranging from 0.0491 to 0.427 mm. Then the remaining dataset contains a total of
316 3D data, amongst which 99 images consist of the fetal head of pixel size 320 by
440 approximately, 103 are of the fetal abdomen with a pixel size of 400 by 600 and
the remaining 114 images are of femur with a pixel size of 320 by 440 approximately.

3.3 Data Pre-processing

The dataset used for processing the segmentation task contains third-trimester im-
ages of the fetal head, femur and abdomen. The most important part before moving
on to feeding the model with data is to pre-process the data appropriately.

3.3.1 Annotation and Masking

Our pre-processing procedure started with generating mask images of the data. 2D
images of the abdomen and femur and 3D images of the head, abdomen and femur
were not annotated and thereby, we had to manually annotate them using an an-
notation tool that generates JSON data including the information of the polygon
or ellipse. Later, we had to generate mask images from the JSON Mask data. We
used the method fillPoly() of OpenCV for achieving this objective.

The 2D head dataset contains annotated data of the raw images. To generate mask
images of the data, we extracted the contours of the annotated images so that the
contours can be used to fit and fill the ellipse. In order to perform ellipse fitting,
we considered the concept of the Hough Transform method and used OpenCV both
for finding contour and fitting ellipse. Figure 3.2 depicts the thorough comparison
between the annotated image and generated mask image from that.
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Figure 3.2: Annotated Image vs. Generated Mask Image

3.3.2 Converting to Grayscale

We have a total of 3401 fetal data (both 2D and 3D) with different pixel sizes.
Among these 3401 images, 2D images have 1 channel representing grayscale images
and 3D data have 3 channels representing colored images. In order to maintain
consistency among all the data, we converted all of them to grayscale images using
the bgr2gray method of OpenCV.

3.3.3 Resizing

As most of the pixels of our data are larger than 500 x 500 pixels which might
over-fit our U-Net model, we have resized the image into 256 x 256 to overcome
this problem. The final dimension of the image data after channel conversion and
resizing becomes 256 x 256 x 1 which will be used for the rest of the segmentation
task procedure. We have used the method transform.resize() of the Scikit image
library for resizing the data.
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Figure 3.3: Raw Image vs. Resized Grayscale Image

3.3.4 Normalization

For the last stage of data augmentation, we created a slightly improved version of
the raw data to ensure a better representation than the previous ones. As the raw
data and masked data are of different data types, the model would fail to train and
predict them for the inconsistency of the data type and will not be able to map the
raw data with their corresponding masked data. Therefore, it is necessary for all
of them to have the same data type. In order to achieve that, we divided all the
training and testing raw data by 255 to normalize them and store them in an array as
a floating-point value. In case of masked data, we normalized them by dividing the
data by their mean value and stored them in an array containing the values 0.0 and
1.0 as a floating-point number where 1 will represent the white-colored highlighted
area and 0.0 will represent the dark background.

3.4 Train-Test Split

We have a total of 3401 fetal data among which 3085 are 2D and the remaining
316 are 3D data. Amongst these 3401 images, we split them into two categories for
training and testing purposes. We reserved 80% images from each of them for train-
ing the model and the remaining 20% images for testing and predicting the result.
Amongst the 80% of the data that we reserved for training the model, we extracted
25% from them for validation purposes in order to ensure that the training and val-
idating data is being mapped properly. We have used the method train test split()
to split validation data from training data. The training dataset would be used
to train our model and evaluation would be done using the test dataset, which is
unseen data for the trained model.
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The model is fitted and the parameters are estimated using the training dataset. By
evaluating the performance of the fitted model, validation dataset indicates whether
the training dataset is causing the problem of model overfitting. So, validation
dataset is employed to optimize the model parameters via tuning. Performance
evaluation of the final model requires the testing dataset. As the testing data were
unseen to the model during the training phase, these testing dataset is capable of
providing an unbiased estimation of the final model.
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Chapter 4

Implementation and Performance
Evaluation

This section highlights the implementation of the proposed model for autonomous
fetal segmentation. Model designing and training the dataset are two major sub-
processes of segmentation. Our proposed U-Net architecture is capable of creating
pixel-wise masks in an autonomous manner for different objects that are present in
an image. This section also demonstrates the result of running the implementation
of the proposed model for fetal head, abdomen and femur image segmentation. The
resulting images after running the model have been added here.

4.1 Model Implementation

As mentioned earlier in the data pre-processing step, the height of the images is 256,
the width is 256 and 1 channel has been used. Initially, we started with 128 units and
a “3 x 3” matrix, then we gradually doubled the number of feature channels in every
down-sampling step like “256 x 3”, “512 x 3”, “1024 x 3” respectively. However,
instead of using 2 convolution layers in every step, we used 3 in order to make our
model a bit complicated according to the condition of our dataset so that our model
becomes capable enough to learn integrating features of the data. Moreover, at
the bottom step, we have used 5 convolution layers instead of 2 as per the above-
mentioned model description for exactly the same reason. Furthermore, we used
a total of 3 upsampling and downsampling steps instead of 4. Now for the down-
sampling layers, we used a “2 x 2” matrix for max-pooling operation and used Batch
Normalization before that in every layer to convert the matrix values to a floating
point number of each batch in order to maintain the consistency throughout every
batch in case the value range goes beyond 0 and 1. This is how downward-sampling
works. Then the expansive path performs up-sampling operation using a “3 x 3”
matrix and every up-sampling layer uses Transpose of Conv2D and a “2 x 2” matrix
before concatenation. The concatenation layers similarly have 3 convolution layers
as down-sampling steps. The number of feature channels gets halved by this process
gradually like “512 x 3”, “256 x 3”, “128 x 3” respectively. As per the architecture
shown below, the image size is reduced in order to decrease the depth size in the
encoder part or the contraction path. We gradually dropped 50% data in every
layer of both up-sampling and down-sampling in order to avoid overfitting. In this
whole modeling process, the ReLu activation function has been used in each layer
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so that the model does not suffer from vanishing gradient problem and the padding
has been kept as “same”. In the final layer,each 128-component feature vector was
mapped using sigmoid activation function so that the output layer produces matrix
containing 0 and 1 only as we have normalized our data previously and lastly “1 x
1” convolution has been achieved. Furthermore, Adam optimizer has been used to
optimize the model. The learning rate was set to 0.0001. The batch size has been
set to 5 with 150 epochs and 15 steps per epoch. The following figure 4.1, visulaizes
the modified and implemented architecture to have a clear overview,

Figure 4.1: Implemented Model Architecture

4.2 Performance Metrics and Loss Function

In order to evaluate our model’s performance, we decided to implement the following
metrics besides accuracy because of its own integrating characteristics dedicated to
giving the best result in case of semantic segmentation tasks since accuracy only
aim to deliver result based on the pixel percentage of the image which is oftentimes
misleading in semantic segmentation because it will only focus on predicting the
negative parts and end up with a large number of false positives instead.

4.2.1 Dice-coefficient (F1 Score)

Dice coefficient is one of the most frequently used performance metrics in the realm
of semantic segmentation for quantifying the performance of the model. It is also
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known as F1 Score or Sorensen-Dice index. This statistical tool is used for mea-
suring the similarity between two sets of data. It measures the similarity between
the mask image and the validated data generated by the autonomous model by a
pixel-wise comparison. It can be calculated by dividing the total size of the two
images from the size of the overlapped area of the two segmentations. Hence, the
formula requires the overlap area and the total number of pixels in both raw and
mask images [19] and the formula goes as follows -

Dice Coefficient =
2× |A ∩B|
|A|+ |B|

Here, in the equation, the numerator part, |A∩B| refers the overlapping area of two
images whereas the denominator part, |A|+ |B| refers to the total number of pixels
in both segmented and ground truth images.

Along with measuring the number of true positives, the false positives found by the
model are penalized by dice-coefficient. This evaluation metric ranges from 0 to 1
and 0 denotes that there is not any overlap and 1 denotes that there is a perfect
overlap. Therefore, the higher the value of dice coefficient, the better the model
performs.

4.2.2 IoU (Intersection-Over-Union)

Intersection-Over-Union or Jaccard Index is another most common semantic seg-
mentation evaluation metric. It is quite similar to the previously mentioned dice
coefficient metric which also measures the overlaps between two pixels. IoU is de-
noted by the overlapped area between the images that is predicted from validation
and the ground truth or mask image divided by the area of union between those
[19]. The formula goes as follows -

IoU =
|A ∩B|
|A ∪B|

Here, from the above equation, it is perceived that the numerator part, |A ∩ B|
represents the overlapping area, whereas, the denominator part, |A ∪ B| represents
the union area, in short, the surrounded segmented and ground truth area.

Similar to dice coefficient, this performance metric again ranges from 0 to 1, 0
indicating no overlap of predicted and ground truth images and 1 indicating a perfect
overlapping of them [19] For multi-class segmentation, as we are trying to achieve
by feeding 3 different classes which are fetal head, abdomen and femur, we need
to use the mean IoU of the image which is measured by averaging the IoU of each
class. In this case also, the larger value of IoU refers to the better performance of
the model.
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4.2.3 Dice Loss

Previously, binary cross entropy has been used as a loss function which calculates
the average per-pixel loss discreetly without having any knowledge of the character-
istics of the near pixels whether they belong to the class that we are looking for or
not. In consequence, binary cross-entropy doesn’t consider its global environment
and monitors the loss at its most minimal. Therefore, evaluating the goodness of
the model by monitoring the loss of the prediction for semantic segmentation using
binary cross-entropy will provide a poor result. In order to avoid such a scenario,
we used dice loss which originates from Dice Coefficient [16]. As discussed earlier,
the dice coefficient measures the overlapping area of the predicted pixel and ground
truth pixel and finds the similarities between them, therefore, the non-overlapped
area is the loss of our model. Moreover, dice coefficient considers pixels of both local
and global scale which is efficient as the loss information is measured correctly. The
formula of dice loss goes as follows,

Dice Loss = 1 - Dice Coefficient

4.3 Model Fitting & Training

While training the data, we have used MSI Radeon RX Armor Graphics Card with
8 GB memory for the most optimized time possible from our u-net model. As
mentioned earlier, we provided augmented data which has a pixel size of 256 x 256
with 1 channel referring to a grayscale image. The validation split which is used
to predict the fit of the model to the expected output is set to 0.25. Epoch, which
refers to training the model using all training data in one cycle including forward
and backward pass together, is arranged to 150 with a step size of 15 and each epoch
is made of 5 batches. We have implemented the model using Keras in 5 workstations
of 31,031,685 total trainable parameters.

4.4 Evaluating the Model

Following the model fitting and training, we had to evaluate the model for our
newly modified U-Net architecture by a comparative demonstration of its perfor-
mance against other image segmentation methods. Image segmentation works on
the pixel level of an image to detect the object from the background by separating
the image into different classes. For instance, image segmentation of femur detects
the pixel density of femur length into one class and the rest of the background into
another class including all other parts of the fetus as one element. Identically, for
head and abdomen circumference, the pixels within the round circle are classified
as one content to understand the shape and boundaries of different fetuses’ HC and
AC. While different shapes and borders are trained in the hidden layers of the pro-
posed U-Net model, it produces a general shape and boundary using the architecture.
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While training the proposed model, 80% of the data is used in the training phase and
20% data is kept for testing purpose. With an enormous number of images, some-
times it’s possible not to have large images in both the test set and the training
dataset and it can lead to overfitting or underfitting. Therefore, we used ‘validation
split’ to understand if our model is training in the right direction by using the vali-
dation set data after every epoch. This U-Net model has used a 25% validation split
to evaluate the training phase to tune or enhance the hyperparameter and configu-
rations from time to time. In addition to the validation split, we gained validation
loss which is the metric to understand the overall appearance of the U-Net archi-
tecture to the validation on the validation phase by calculating the error from each
phase and it is calculated after every single epoch. We received an average of 13%
validation loss throughout the time of validation set usage and it led the model to
understand the femur, abdomen and head circumference in the training phase.

For evaluating the model, measurements that are looked over are accuracy, dice
coefficient, IoU, dice loss and etc. Initializing with accuracy, accuracy is the stan-
dard that explains how the image segmentation model performs among all classes of
equal importance. The result is calculated in percentage to show the accurate pixel
representation and in this model, we have acquired training accuracy = 95% or .95
and validation accuracy = 92% or .92 from our fetal head circumference, Abdomen
and femur length images. The figure below shows the graph of the training and
validation accuracy progress throughout the epoch,

Figure 4.2: Training and Validation Accuracy

Here, Figure 4.2 presents both training accuracy with the blue line and validation
accuracy with the yellow line. Training accuracy begins with 0.800 from epoch 0
and with an increment graph line, it ends at epoch 150 holding a final value of 0.95.
In the training line, it was increasing till 20 epochs and has a decrease till 60 epochs,
after that it has again increased till epoch 150. Moreover, there is a downfall near
90 epochs and still the graph has increased the value more than validation accuracy.
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In the validation accuracy, the graph has started with value 0.775 and including an
increment graph, it has gained a final value of 0.925. The validation accuracy was
quite low at first and it has taken a leap near 40 epochs and kept a similar increment
rate with training accuracy. The graph shows a closer value of Training accuracy
and validation accuracy for difference of 0.025.

Along with accuracy, this model has used dice coefficient to get even more perfect
results among images. As discussed earlier that dice coefficient is a statistical tool
used predominantly for semantic segmentation that checks the similarity between
predicted segmentation and the correlated original value. The value of dice coeffi-
cient also known as dice similarity coefficient is between 0 to 1, 0 is for no similarity
between segmentation and mask and 1 is for the complete overlap between the seg-
mentation and binary mask. From the model of this paper, we have gained training
dice coefficient = 84% or 0.84 and validation dice coefficient = 74% or 0.74 for med-
ical image segmentation of fetal development. Both Training and validation score is
shown in the following graph,

Figure 4.3: Training and Validation Dice Score

Figure 4.3 shows the increasing value of training score with the blue line and vali-
dation score with the yellow line with respect to the increasing value of the training
and validation dice score. The initial value starts from 0.3 for both dice scores
and until 20, both of the values are quite similar with slight differences in val-
ues. After reaching 20 epochs, the dice scores have a little dissimilarity in the
increasing line and when it reaches 40 epochs there is a sudden drop in the val-
idation dice score which comes back to the usual increasing rate later and here
both of the dice scores are 0.65. After 40 epochs the training dice score has a
higher increasing rate than the validation dice score and this gap is more signifi-
cant after 100 epochs. Until 150 epochs the validation dice score reaches 0.74 and
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training dice score reaches 0.84. The graph displays an expected small scale vari-
ance between both dice scores while getting the utmost dice score from the model.

Intersection over Union (IoU) is another procedure used in this model to calculate
the accuracy of the object detector of a specific image. To implement Intersection
over Union, firstly the algorithm needs the ground truth boxes which contain the
manually labeled images of femur length, head circumference and Abdomen and
these are labeled with a python-based application named “label me” for 2D and
3D images. Secondly, it requires the predicted bounding box from the u-net model
of this paper and it’s a square box for femur length and round box for both head
circumference and abdomen. This model of U-net has obtained a training IoU =
72% or 0.72 and validation IoU = 62% or 0.62 for all 3 fields of implementation
and it describes that the similarity between the predicted and obtained images are
properly achieved by the proposed U-net model.

Figure 4.4: Training and Validation IoU

This Figure 4.4 presents the Intersection over Union of both the Training and Vali-
dation phase starting from value 0.1 and epoch is 0. This graph has a resemblance
to the previous dice coefficient and dice loss graph and so training and validation
IoU has almost overlapping lines till 20 epochs and after that has a slight difference
till 40 epochs. As the epochs increase, Both of the IoU values increase, including
some fluctuations in numerous epochs. This graph has counted 150 epochs just like
the previous ones and at the final point the validation IoU has value 0.62 and the
training IoU has value 0.72 indicating likeliness of difference with previous measure-
ment metrics.

From the Dice Coefficient, the model obtains dice loss to get a fast and accurate
convergence of the model for image segmentation. Dice Loss specifically looks for
a data imbalance problem which is a very commonly occurring problem in medical
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image segmentation. It solves the problem between foreground and background by
creating a balance between generating hard examples and easy examples because
easy examples provide less loss function resulting in a less optimal output.

This model for both 2D and 3D image segmentation has shown 0.16 training dice
loss and 0.26 validation loss in both 2D and 3D images of femur length, head and
abdomen circumference. As dice loss is completely related to dice coefficient it will
change if the dice coefficient with more training images.

Figure 4.5: Training and Validation Loss

Figure 4.5 conveys the decreasing training dice loss with the blue line and validation
dice loss in the yellow line. In the beginning, the dice loss was 0.7 for both and it
decreased to 0.35 in the 20 epochs. Just like the dice scores, there are similarities in
decreasing between the lines until 20 epochs and after that, the continuous training
dice loss is fairly lower than the validation dice loss. Finally, the training dice loss is
0.16 and validation dice loss is 0.26 till the last epoch 150. The dice scores decrease
significantly in the first 20 epochs and then it decreases slowly creating a difference
between both training and validation scores by creating a complete opposite graph
of the dice score.

The higher the number of the epoch, the more likely the model has a higher value
in all increment measurement metric graphs. Also, the training line always has
an exceeding value than the validation line and it has a little less fluctuation than
the validation values. All of the metrics have closer values and it indicates that
this is a valid model performing the separation of the object from the background.
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Therefore, it can be said that our model is well trained and validated to show a
segmented version of 2D and 3D fetus medical images of femur, head and abdomen.

4.5 Circumference & Length Measurement

4.5.1 Head & Abdominal Circumference Measurement

Measurement of head circumference determines the likeness of problems or issues
regarding fetal health and regulates the monitoring process. For instance, hydro-
cephalus or water on the brain can be diagnosed by the rapid growth of the head.
Again, excessively slow development of the head could be a sign of a smaller head
than expected, which is denoted by the term microcephaly.

On the other hand, amid pregnancy, abdominal circumference (AC) refers to the
estimation process of measuring the abdomen circumference of the fetus. AC is
another indicator of fetal development which demonstrates whether the growth is
normal in terms of size and weight.

There are some steps that we followed to measure the fetal head and Abdomen
circumference. First, we found the head and abdomen contour, then we detected
the center points using the Hough transform method, then we used ellipse fitting to
detect the long and short axis [24].

a. Finding Contour: FindContours, offered by OpenCV, serves the purpose
of finding contours in images. To ensure proper detection of contours, images ought
to be processed beforehand. We used the .findContour() method of the OpenCV
library to find contours. This helped us detect the borders of the fetal head and
abdomen and localize them easily in an image.

b. Hough Transform Method: Detection of the center point is presumably
the main step in ellipse detection. Determining the midpoint of the line in the im-
age joining two points having tangents parallel to each-other is a generally utilized
strategy. On the off chance that these two points are on the same ellipse, indicates
the midpoint to be the ellipse center. This rule can be utilized as the base of the
HT process. For fitting ellipses and determination of the center point, we utilized a
hough transform method. [24]

c. Ellipse Fitting: After detecting the center, we determined the long and
short axis of the ellipse using that center. We used the .fitEllipse() method of the
OpenCV library to fit the ellipse and get the x,y coordinates along with long and
short axes.

Then we used the values of the long and short axis in the respective formulas to
measure head circumference [24] and abdominal circumference. [5]
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Head Circumference Formula:

h =
(a− b)2

(a+ b)2

HC =π(a+b)(1+
3h

10 +
√
4− 3h

)

Abdominal Circumference Formula:

AC ≈ π
[
3(a+ b)−

√
(3a+ b)(a+ 3b)

]

Index EHC(cm) HC(cm) Error
1 4.3 4.43 0.13
2 6.39 5.681 0.71
3 7.42 6.875 0.55
4 7.61 6.9 0.71
5 6.547 5.981 0.566
6 6.08 6.98 0.9
7 6.93 6.784 0.146
8 5.8 6.28 0.48
9 5.36 6.21 0.85
10 5.182 6.231 1.049

Average: 0.6091

Table 4.1: Estimated Head Circumference Result

In Table 4.1, we listed the estimated and actual values of the first 10 predicted
images of head circumference. We compared our estimated values with the original
one and could see small differences between the values of EHC and HC, that’s why
we got errors. It can be observed from the table that errors vary from image to
image. For example, in the image no. 4, the estimated head circumference is 7.61
cm, and the actual head circumference is 6.9 cm. So we got an error of (7.61- 6.9) =
0.71. However, we got an average error of 0.6091 overall in the context of measuring
head circumference.
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Index EAC(cm) AC(cm) Error
1 17.16 16.56 0.6
2 17.56 18.3 0.74
3 17.23 16.56 0.67
4 16.77 15.91 0.86
5 13.93 14.51 0.58
6 14.23 13.48 0.75
7 13.3 13.95 0.65
8 28.01 29.3 1.29
9 13.23 14.85 1.62
10 15.71 15.37 0.34

Average: 0.776

Table 4.2: Estimated Abdominal Circumference Result

In Table 4.2, we listed the estimated and actual values of the fetal abdomen circum-
ference from the first 10 predicted images of abdominal circumference. Here also we
could see small differences between the values of EAC and AC. We got small errors
in the case of every image. For example, in the image no. 9, the estimated abdomen
circumference is 17.23 cm, and the actual abdomen circumference is 16.56 cm, so
we got an error of (17.23- 16.56) = 0.67. Here, we got an average error of 0.776.

4.5.2 Femur Length Measurement

Femur length, the largest of the long bones, least movable and easiest to image. It is
as accurate as BPD in the prediction of gestational age. Previously, characterizing
the presence of dwarfism required the measurement of the femur length (FL). Now
it is also proven to be one of the greatest estimators of gestational age. To measure
the femur length, [11] we followed the following steps,

a. Finding Contour: Just like the previous one, we used the .findContour()
method from the OpenCV library to get contour points which helped us detect the
borders of the femur length and localize them easily in the image.

b. Line Fitting: After detecting the contour points, we used the .boundin-
gRect() method of OpenCV in order to perform line fitting based on the concept of
Hough Line method and eventually got x, y coordinates along withthe rectangle’s
height and width. The width obtained from the line fitting is the length of the femur.
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Index EFL(cm) FL(cm) Error
1 6.96 6.39 0.57
2 7.2 7.37 0.17
3 3.88 4.1 0.22
4 4.155 4.41 0.14
5 4.8 4.77 0.03
6 1.59 1.68 0.09
7 3.76 4.11 0.35
8 6.52 7.03 0.51
9 6.55 6.8 0.25
10 3.68 3.41 0.27

Average: 0.26

Table 4.3: Estimated Femur Length Result

In Table 4.3, we have shown the estimated and actual values of the fetal femur
lengths which we collected from the first 10 testing images of femur length. Just like
the previous two, after measuring the femur length from the predicted segmented
image and comparing them with the actual value collected from the hospital, we
noticed few errors more or less in every image, because of the differences between
the estimated and actual femur length. For example, in case of image 5, the EFL
is 4.80 and FL is 4.77, so the error is (4.80-4.77) = 0.03. Eventually, We got an
average error of 0.26.

4.6 Gestational Age Measurement

We use gestational age to figure out the duration of pregnancy. Gestational age
is calculated in weeks starting from a woman’s last menstrual cycle to the current
date, indicating the period of time of fetal growth inside the mother’s uterus [6].
Between 14 weeks of pregnancy, femur length (FL) measures can be used to cor-
rectly predict gestational age. In the third trimester, most observers believe the
FL and BPD assessments are equally accurate. Although there is debate about the
accuracy of the FL prior to 26 weeks of pregnancy, FL-based gestational age pre-
diction is the most accurate in the second trimester and least accurate near term [11].

After determining the femur length from the rectangle, we used the formula below
to calculate the gestational age [11], which only requires one parameter, the femur
length,

EGA = 1.863 + 6.280FL - 0.211FL2

Lastly, by using the estimated femur length values from the predicted segmented im-
age by following the previously mentioned formula listed in Table 4.3, we calculated

34



the gestational ages using the formula given above of those first 10 predicted images
in the category of femur length and compared them with their actual gestational
age given by the hospital and listed them in Table 4.4. We can see that in the case
of image 10, EGA is 22.12 and GA is 20.5, so the error is ( 22.12-20.5 = 1.62). Here,
we got an average error of 1.59 overall.

Index EGA(weeks) GA(weeks) Error
1 35.35 33.0 2.35
2 36.14 37.5 1.36
3 23.05 23.2 0.15
4 26.07 24.4 1.67
5 27.14 26.0 1.14
6 11.31 15.0 3.69
7 22.49 23.2 0.71
8 33.84 36.0 2.16
9 33.94 35.0 1.06
10 22.12 20.5 1.62

Average: 1.59

Table 4.4: Estimated Gestational Age Result
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Chapter 5

Results & Discussion

5.1 Training Result Analysis

To have a handful of research, we need to train the data with a suitable model which
will give us some feedback about our research growth. After training our model with
the data and evaluating them with the proper performance metrics, we eventually
came a long way to gain a training accuracy of 0.95, dice coefficient of 0.84, IoU of
0.72, dice loss of 0.16 along with validation accuracy of 0.92, dice coefficient of 0.74,
IoU of 0.62 and dice loss of 0.26. A thorough description and comparison between
them are discussed below.

Figure 5.1: Bar Chart of Training Performance Metrics

From Figure 5.1, we can observe the gradual increase of our training performance
and end with the result of accuracy as 0.95, dice score as 0.84, iou as 0.72 and dice
loss as 0.16. Though the accuracy is higher than dice coefficient and IoU according
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to the graph, however, having a result of 0.84 as a dice-coefficient is quite promising.
On the other hand, IoU also ends with a decent value of 0.72. Overall, the model
loses values nearly around 0.16 which can be considered as a prosperous output.

Figure 5.2: Bar Chart of Validation Performance Metrics

From Figure 5.2, it is quite evident that our model was capable enough to learn
properly as it eventually acquired a validation accuracy of 0.92, dice score of 0.74 ,
iou of 0.62 and dice loss of 0.26. If we compare the validation chart with the training
chart it can be easily observed that our model becomes weaker to learn complicated
features of the data nearly to the end of the epoch and therefore, couldn’t raise its
validation performance at the end, consequently, it couldn’t stand out with their
respective training results. As a result, it ended up with a validation accuracy of
0.92, dice coefficient value of 0.74, IoU of 0.62 and a dice loss of 0.26 whereas the
corresponding training values were 0.95, 0.84, 0.72 and 0.16 respectively. Therefore,
a gap between them became bigger near the end of the epoch, which can be visible
from Figure 5.4.

5.2 Segmented Image Analysis

Previously, we had created ground truth images of their respective annotated im-
ages, pre-processed our data by normalizing and resizing, designed our model in
accordance with our dataset and trained our model by splitting our dataset of 80%
by 20% for both training and testing purpose, validated among the training 80% by
splitting it to 75% and 25%, eventually, fed the training and validation data with
their corresponding mask or ground truth image to our model which facilitates the
training process, thereby, ended up getting a favorable result. After training our
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model, it is required to make our model predict the testing dataset, perform seg-
mentation of them, visualize the predicted image and compare it with their ground
truth which is discussed in the latter part of this section. Before analyzing the re-
sult, it is necessary to mention that, a generated predicted image often segments a
few incorrect areas considering that as a region of interest, however, that is being
discovered as a noise later. These noises, later on, become an obstacle while estimat-
ing circumference & length as the wrong area produces incorrect results from what
we are expecting. Therefore, in order to suppress these noises, we implemented a
simple thresholding after performing prediction on test data. The threshold value
we are considering is 0.5 which represents that pixels which are containing value
equal to or more than 0.5 are the region of interest we are looking for, below that
value are considered as noise in our scenario.

Figure 5.3: Segmented Image of Head Circumference

Figure 5.3 presents the raw image, predicted image and ground truth image of the
fetal head circumference consecutively one after another in a row. The boundaries
of the predicted image are a bit scattered, especially there is a tiny mismatch at the
top right corner and the bottom left corner of the predicted image if we compare it
to their ground truths. These could be because boundaries of head circumferences
vary from image to image yet our model predicted the shape properly. However,
both of the images are 90% similar in oval shape and that is sufficient for detecting a
fetal head circumference. Therefore, considering the reference predicted image as a
standard one is quite beneficial as it produces a slight error-prone and nearly 100%
accurate head circumference value.

Figure 5.4 portrays the raw image, predicted image and ground truth image of
the fetal abdominal circumference sequentially in a row. The ground truth is very
close to a perfect oval shape with a slight extension in the right most corner. It is
evident from Figure 6.4 that the predicted image does have a shape of oval, however,
the boundaries are uneven in comparison with the ground truth image. Predicted
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Figure 5.4: Segmented Image of Abdominal Circumference

image has an increased portion in the topmost left and right corner. Despite having
uneven boundaries, the predicted image is mostly closer to the mask image and
the additional tiny noise can be ignored as the reference predicted images were
used to estimate abdominal circumference which was pretty accurate. Therefore,
this predicted image shows that every abdominal circumference of fetus does not
have a perfect oval shape and it will create different shape depending on the fetus’s
abdominal growth and size.

Figure 5.5: Segmented Image of Femur Length

Here Figure 5.5 displays raw image, predicted image and ground truth image of
the fetal femur length in a row. The ground truth image has a shape of rotated
rectangle which originated from the raw image. The predicted image also manages
to show a rotated rectangular shape but with uneven boundaries unlike a straight
line as per ground truth image. Moreover, it is moderately broader than the ground
truth image and the rightmost part at the end mostly has a circular shape. As
femur size changes very quickly in the fetus last trimester, the shape and size also
vary in every image and it is considered to be the reason for the predicted image
having curving edges at the rightmost portion. Eventually, presuming the reference
predicted fetal femur as satisfactory is good enough as the model conducts closely
an accurate estimation of femur length and lesser error-prone gestational age from
the femur length.
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5.3 Circumference, Length & Gestational Age Re-

sults

We took the first ten images from each category (Fetal head, fetal abdomen and
fetal femur). Then we followed the above-mentioned techniques and formulas to
calculate the head and abdominal circumference, femur length and gestational age.
We compared the estimated and original values and observed the errors, and table
4.1, 4.2, 4.3 and 4.4 prove that our results are quite satisfactory as the errors are
really minor. This shows that our gestational age values are quite accurate too. We
got an average error of 0.6091 in the calculation of head circumference, an average
error of 0.776 in case of abdominal circumference, an average error of 0.26 in femur
length measurement and an average error of 1.59 in gestational age measurement.
As these errors are not large, we can easily avoid them and hopefully use them later
on with real life experiments as our calculations are pretty accurate.
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Chapter 6

Epilogue

6.1 Why U-Net Architecture &Modified Version?

U-net architecture, which originated from CNN, can be explained by making only
a few tweaks to the CNN architecture. The original purpose of creating U-Net
architecture was to perform biomedical image segmentation. The architecture of
the model falls into two core modules which are encoding and decoding networks.
A DNN’s final result was the only significant part in Classification based prob-
lems, however, semantic segmentation facilitates not just pixel-level identification
but also a technique to visualize the distinguishing features which were learned at
every downsampling stage of the encoder onto the pixel space. This is the primary
motivation for using the U-net design.

However, our modified U-Net is designed in such a manner that it is dedicated to
learn complicated and intricate features. Instead of using 2 convolution layers in
each upsampling and downsampling step, we used 3 in order to make our model a
bit complex, thus, increasing the depth of the model. Starting with a unit of 128
instead of 64 will avoid overfitting. As the original U-Net with smaller number of
layers failed to learn deeper and complex characteristics of an image, thus, produc-
ing noise in the predicated image to a great extent and sometimes were even unable
to predict segmented area, therefore, we replaced it with a new version of deeper U-
Net model which is significantly better and predicts even more properly than before.

6.2 Limitations

With our own version of the U-Net model, which is better than the original one,
we managed to achieve a decent result in every performance metric such as having
a training dice score of 0.84, accuracy of 0.95 and iou of 0.72. However, our model
still lacks in few areas that need to be taken care of which can easily be inferred by
observing the gap between training and validation loss, shown in figure 4.5. Though
we managed to minimize the loss in the training phase while still losing 0.16 data,
yet it is a bit unsatisfactory to lose a data of 0.26 in the validation phase. The gap
gets bigger from the latter half of the epoch till its end. In consequence, despite
the fact that our model still learns properly and a rapid improvement is noticed in
the training phase but fails to learn at the same pace in the validation phase, thus
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improving gradually onwards. This signifies that our model falls into the trap of an
overfitting scenario at the end of the validation phase. According to our assump-
tion, the dataset that we are feeding to our model is not large enough in accordance
with the complexity of our model. Therefore, an increment in the dataset might
resolve our problem by reducing the gap between training and validation loss and
give better results than now.

6.3 Future Work

At the end of our research, we were unable to minimize validation loss and thus
ended up with a decent but not the best result for example a validation dice co-
efficient of 0.72. In future, we are aiming to solve the problem that our model is
confronting currently which is the scenario of overfitting and unable to segment data
extensively. Therefore, we are optimistic to improve our model by decreasing the
layers in such a manner that the model performs better with current data instead
of manually increasing the dataset. However, we are also expecting to extend our
research by working with more biometric parameters which could easily solve our
current problem as the dataset itself will get increased significantly and a larger
dataset would require a complicated model to learn intricate features. Therefore, it
is assumed that the gap between training and validation loss will get reduced in our
future addition.

Henceforth, we have focused on segmenting the fetal head, abdomen and femur
along with the computation of head and abdominal circumference, femur length
and gestational age by injecting the value of femur length so far. In the near future,
we want to extend our boundaries in order to work in a diversified manner. We
are expecting to work with even more biometric parameters, for instance, Biparietal
Diameter (BPD), Crown-Rump Length (CRL), Humeral Length (HL) etc. We are
optimistic to segment these additional biometric parameters along with the current
ones and figure out the best methodologies to estimate their dedicated values in
order to compute gestational age more accurately since BPD is one of the standard
biometric parameters which is known to predict gestational age accurately from 14
to 20 weeks. In contrast, CRL is also used to predict the length of an embryo accu-
rately during early pregnancy. Looking more into this case, if we consider working
with more biometric parameters mentioned right above, it is presumed that we can
monitor fetal development explicitly since we could even predict newborn’s size,
weight and due date of labor alongside gestational age. Implementing these features
in our current model could add prosperous value to our research.

6.4 Conclusion

Ultrasound imaging is one of the reliant mediums for measuring and interpreting
head circumference, abdominal circumference, femur length etc. which are some of
the most important biometrics regarding fetal development. It has turned into a
general phenomenon for diagnosing prenatal anomalies. By estimating gestational
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age and monitoring fetal growth using ultrasound imaging, anomalies during the
prenatal phase can be detected for further diagnosis. Fetal segmentation is one of
the major significant steps in the estimation process of gestational age and other
biometric parameters. Due to the presence of various interventional facets, segmen-
tation of fetal parts for prenatal diagnosis using ultrasound images is strenuous [20].
The whole process of segmentation is still dependent on the sonographer. The re-
sults of measurements are influenced by the sonographer’s expertise regarding the
segmentation procedure. Moreover, manual segmentation requires a lot of time. So,
an automated system for ultrasound image segmentation can be a stepping stone in
the field of determining prenatal biometrics. With the advent of artificial intelligence
and neural networking, the automation process can be further modernized. Many
types of research have been performed regarding the automation process of fetal
segmentation but the accuracy, time requirement and procedure can be optimized
further.

In this paper, a fully autonomous fetal segmentation procedure of 2D and 3D ultra-
sound images using U-Net architecture has been proposed. Because of the symmetric
pattern observed in biomedical images, U-net is often utilized for image segmenta-
tion. U-net is capable of leveraging the skip connections and decreasing complexity
in computation efficaciously [18]. The encoders are subject to extracting features
from images and for extracting more semantic features, decoders are used to cas-
cade corresponding feature maps from the encoder part [18]. Our system will take
in 2D and 3D ultrasound images collected from different healthcare organizations
as inputs. These images will be segmented and an ellipse, circle, or line will be fit
to the segmented region based on the images. Different biometric parameters can
be determined by using these shapes. During the testing phase, the performance
of the model will be evaluated via comparison experiments and verification. Thus,
by using this architecture, ultrasound images can be segmented and later can be
used for the identification of different biometrics of fetuses. These biometrics are
the determining factors of fetal health. Any anomalies can be detected by observing
these biometric parameters.

Thus, an autonomous fetal segmentation procedure using U-Net architecture will
facilitate the determination of fetal biometric parameters effectively and in an opti-
mized manner, resulting in the detection of anomalies regarding fetal health. This
will allow the providers to make appropriate clinical decisions accordingly. We hope
that our system will offer a potent solution to various risks during pregnancies and
can be utilized in a variety of clinical settings.
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