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Abstract
Predicting financial data is really important for investors Often times investors do
not have a proper tool to properly assess the market and forecast their predictions.
Furthermore, not only investors in modern day civilians are also willing to invest as
well and as there is an abundant amount of data available from the financial sector
it is of utmost significance to find the optimal algorithm in a general case scenario.
This project aims to show a comparison between the results found from some of the
popular neural network algorithms. In this project we have employed the help of
Dense Neural Network [DNN], Recurrent Neural Network [RNN], Long Short Term
Memory unit [LSTM], Convolutional Neural Network [CNN] and a pipeline where
we combined LSTM and CNN. We have kept some of the parameters similar and
compared the results to determine an algorithm in a general case. This would help
people take informed decisions while investing.

Keywords: Stock market; Machine Learning; Finance; Prediction; Dense NN;
RNN; LSTM; CNN;
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Chapter 1

Introduction

1.1 Thoughts behind the Prediction Model
In this era of information and technology where we are surrounded by vast amount of
data. It is paramount to be able to accurately predict events. Reliable and accurate
predictions require appropriate techniques and relevant data. Prediction of financial
data requires real time data to make an informed decision so that the investor
can invest their money. Certain mathematical techniques and Machine Learning
Algorithms can make these predictions more efficient and reliable. It is becoming
more and more important for organizations to keep track of their transactions and
assets. As it will allow them to make future predictions so that proper administrative
decisions can be made to adjust. Sets of information related to the financial health
of a business is known as financial data. Forecasting financial data is typically
performed annually or bi-annually or quarterly. So usually, financial data involves
changes across a certain period of time which means financial data are often involved
in time series analysis.

Furthermore, as in stock market data the preceding price has much influence over
the present one due to economical constraints it would be much beneficial for the
parties connected for it to be predicted. In addition to, as with weather forecasting
people take precautions based on the prediction in the same way people can do the
same with the results that are found from time series stock prediction. As people
can take more informed decisions and in a way increasing the economic growth as a
whole.

1.2 Research objective
Data forecasting or prediction has become an essential process for academic insti-
tutions and business institutions alike. In this fiercely competitive era being able
to simulate the effects of current events and predict future events is crucial to hav-
ing a competitive edge. For businesses this boils down to actively monitoring and
recording transactions and assets and then analyzing them to find more efficient
methods or to spot discrepancies which might cause problems later down the line
[7]. For businesses having proper funds is essential to run smoothly. However, it is
not always possible to have enough capital to cover the amount of investment needed
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for certain projects and endeavors. This is when companies release shares for their
companies. Selling these shares gives companies the funds needed to cover their
costs. On the side of investors, they essentially get to have a claim on a portion of
the assets of the companies whose shares they hold. Investors may sell their shares
back into the market for profit by buying shares when they are low priced and selling
them when they are higher priced. Investors also may wish to buy more shares to
get a larger portion of dividends from the company. Companies on the other hand
have to analyze their stock index history as well as that of their competitors to
ascertain the market environment and make decisions.
Be it investors or companies both need to collect and analyze the relevant stock
indexes and make predictions. These predictions or forecasting can be done using
various mathematical techniques. Depending on the data and its internal distri-
bution some techniques might perform better than the others. Ideally, we would
prefer data which have predictable patterns that can then be identified and quanti-
fied. This would allow us to use simple linear regression and classification to make
accurate predictions. However, real life data is almost always spontaneous and to a
certain extent unpredictable. Various factors may influence prices to fluctuate and
it is not always clear as to what the cause is or to what extent the effects are. So,
we employ different architectures neural networks in some general settings to have
a comparisons between them for some insight.
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Chapter 2

Related Work

In order to have a better forecasting model we must understand the data better.
Thus in the case of stationary data Sun and Xu[8] compared different approaches
for forecasting financial data which started by by classifying the methods into two
groups: Economic analysis-based methods and Data mining-based methods which
aimed to compare methods from both categories in light of forecasting financial
data. They focused on stationary time series and makes use of algorithms from the
two fields. From the economic methods the ARIMA and Advanced VAR (A-VAR)
models are chosen and from the data mining field the BPNN, Co-BPNN and RNN
models are chosen. The results showed that the A-VAR model has lower RMSE
than the ARIMA model with the same order of runtime performance. In the case
of the BPNN model it is similar to the ARIMA model but has a longer runtime.
The Co-BPNN performs better than the previous methods however it is slower than
BPNN by one order of magnitude. The LSTM model performs the best by far while
also having the longest runtime. Yu, Jingming, Shumei [11]and Shuping in their
paper attempted to present a hybrid model which would work well with both sta-
tionary and non-stationary data [2]. They did this by combining the EWT, ABC,
ELM and ARIMA models. They first used the EWT model to decompose and de-
noise the data in order to eliminate the impact of outliers. This makes the data
more suitable to be handled by the ARIMA and the ELM model. Then the data
is passed onto the two models and the output is generated. The ABC algorithm is
used as a swarm intelligence optimizer to handle under-fitted solutions. The Out-
puts are then passed through a weighted sum processor where the results of both the
ARIMA and ELM models are combined.Sai and Sreela[7] have aimed to present a
reliable method to predict the fluctuations in stocks caused by seasonal changes. Sai
and Sreela had structured their architecture into 3 main components. First comes
the pre-processing of data. This involves organizing and sorting the data and then
screening, editing and removing erroneous data. Once that is done the data is then
classified using Random Forest algorithms. For the comparison experiments 3 algo-
rithms that have the best average training and holdout performance were selected.
ID3, C4.5 and CART were chosen for this. Finally, the trend and seasonality for
the models are analyzed.Their results showed that about 30% of the data showed
signs of following seasonal trends and are good places where investors are more
likely to find profits. The remaining 70% being bad stock where even though there
are seasonal variations, they are not easily predictable.Jou-Fan and Chen have de-
veloped a deep learning framework based on convolutional neural networks (CNN)

3



to analyze financial time series data[3].They developed two methods for this, the
Mean Average Mapping(MAM) and the Double Moving Average Mapping(DMAM)
method to transform the time series data into 2D images and also used the Gramian
Angular Field (GAF) algorithm. The results showed significant improvement from
the expected performance which suggests that this approach allows visualization of
patterns and correlations that are not apparent by typical methods. Furthermore,
Duraj Agnieszka and Ludwicka Magdalena are detecting the outliers in the financial
time series using ARIMA [6].The authors stated that it was visible as an effect of
variance grouping, which can indicate necessity to use models that take into account
the heterogeneity of the variance over time. Almuammar have proposed a method
that uses Gated Recurrent Units (GRU) to forecast multivariate time series and
compare it with the simple Multi-Layer Perceptron (MLP) [9]. As GRU models
can retain long-term information and perform well with long-term dependencies.
The author concluded that even though the results suggest that GRU perform bet-
ter than statistical methods they are out performed by MLPs in regards to time
series forecasting.Tiwari, Bharadwaj and Gupta aimed to apply various analysis
techniques and models to compare and contrast between them and determine which
approach is most suited for stock price index forecasting[5].It aimed to find the op-
timum approach to implement the “Buy low, sell high” strategy allowing investors
to buy stocks at low prices and sell them at higher prices.The authors had used
a multi-layered perceptron and feed forward network with both having sequential
models.The FFNN performed the best with the least amount of absolute percentage
error with actual data. With seasonal data the Holt-Winters performed best. The
fixed parameter ARIMA model did best with polynomial trend data.Furthermore,
Zhijie Li1, Yuanxiang Li1, Fei Yu1, Dahai Ge1 aiming to show how AWSVR out-
performs the SVR[1]. The result of the experiment shows that the MSE value of
the data sets of NASDAQ, SP and FTSE is smaller in AWSVR than in SVR. Fang
Wang, Menggang Li b, Yiduo Mei e, and Wenrui Li proposed a method of forecasting
using the historical rise and fall probability distribution curve [10]. They used ADF
(Augmented Dicky-Puller) to check whether the time series is stable. After that the
ARMA model is used which is a combination of AR and MA model. XiangRu Guo,
predicted future cash flow based on historical purchases and redemption data to help
companies to improve its fund management ability while also minimizing liquidity
risks[2].They used ARMA and ADF.Yang yujun, yang yime, Li jianping aimed to
study on financial time series forecasting based on the support vector machine by
conducting experiments with datasets[4].
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Chapter 3

Models

3.1 Time series
Time series is a collection of observations of a particular data point taken at fixed
intervals across a period of time. It follows the movement along the selected points
of data, such as price of stocks, weather indexes over a specific period of time while
this data points being collected at periodic intervals. As there is no fixed set period
of time, it allows the data to be gathered in a way that enables the collector to reach
their set goal. Time series varies from different amount of time sequences ranging
from monthly, trimesters, annual along with weekly, daily, hourly and even biannual
or decennial.

3.1.1 Time series analysis
The process of studying a collection of data points over a specific period of time is
called time series analysis. Time series analysis involves capturing data at constant
intervals over a predetermined length of time instead of collection data randomly or
infrequently. Time series data is different from other types of data because it can
depict how data points change over time. The main variable that distinguishes time
series data from others is the time variable which further adds on to the informa-
tion that is available to further establish the correlation between other features or
variables. A time series can be split into four patterns/components.

In addition, this component expresses a different feature of the evolution of the
time series values. Real life time series data typically consists of a combination of
one or more of these patterns. These patterns are:

Trend:
Being one of the main components of the time series, it represents the value to go
up or down as time progresses. As given a certain amount of time we could see how
the graph progresses.An example of with upwards trend is given below:
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Figure 3.1: Time series upward trend

Seasonality:
Seasonality refers to fluctuations that is constant in a specific time interval

Figure 3.2: Seasonality of data

6



In the below diagram we can see an example of seasonality with trend.

Figure 3.3: Trend Seasonality

Noise: In real life data such smooth data is hardly found. As a result these data
usually has some noise riding over it.

7



Figure 3.4: Noise in time series

Now if we add this to the figure 3.3 it would yield the below diagram.

Figure 3.5: Noise added to trend and seasonality
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Auto correlation:
Auto correlation which means a measurement of a time step is a derivative of a
previous time step. This phenomenon can occur in time series. Below a straight-
forward auto correlation is shown which just calculates the value from its preceding
time step.

Figure 3.6: Auto correlation in time series

The below diagram adds auto correlation to figure 3.4
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Figure 3.7: Auto correlation with noise, trend seasonality

Non stationary data:
Real life data doesn’t always follow a certain pattern. Big events can alter the
traversal line. It might decline or go upwards at points.

Figure 3.8: Non stationary data
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all the examples above are given to have a better understanding of graphs in time
series and to show attributes of it.

3.2 Neural Network
A collection of algorithms used to identify patterns which are roughly based after the
human brain. By using machine perception, it categorizes or groups raw input and
this process is used by the neural networks to analyze sensory data. Neural networks
recognize numerical patterns which are enshrined in vectors. Thus, all real-world
data weather images, sound, text or time series must be converted to it. Warren
S. McCulloch and Walter Pitts conducted a study which tries to comprehend how
complex patterns via linked brain cells or neurons might generate from the human
brain. The comparison of neurons with a binary threshold to Boolean logic was one
of the main ideas. We might use neural networks to cluster and categorize data.

3.2.1 Classification
Labelled dataset is the key component for all the classification task. As any real-life
problem first must be transformed into a dataset for the neural network to learn the
association between labels and data. Supervised learning refers to this process. This
classification ranges from face detection, expression detection, recognizing gestures
in a video, detecting voice or identifying speakers, to categorize email as spam to
finding patterns in time series. In short, it is possible to train a neural network with
a labelled dataset and when the desired outputs correlates to that dataset.

3.2.2 Clustering
Firstly, in contrast with the supervised leaning learning without labels is called
unsupervised learning. Now clustering refers to detecting similarities and as in deep
learning labels aren’t required to detect similarities it is much easier to find data.
Because in the real-world most data are unlabeled.

3.2.3 Neural network elements
Networks composed of several layers are known as “stacked neural networks”. Layers
are made of nodes and these nodes are just location where computing occurs. This
schematic is roughly modelled after neurons that are situated in the human brain.
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Figure 3.9: Neural Network structure

As data flows through the network, a layer of neurons get activated and deactivated.
The first layer takes in the input data processes it and then sends an output to the
following layer. The models configurable weights and biases are then associated with
our input data and output labels.

Figure 3.10: Neural network layers

3.2.4 Deep Neural Network
What differentiates deep neural networks from single hidden layer networks is the
number of layers that the information need to go through during the propagation
along the network. The earliest version of the neural networks were perceptrons
which were shallow since they consisted of one input layer, one output layer and
atmost one hidden layer in between them. A deep neural network must have atleast
four layers including the input and output layers. That is to say they must have
atleast two hidden layers. Each layer in a deep learning neural network analyzes
various types of pattern depending on the input from the layer before it. Since
neurons accumulate and merge the information from the layer before it, the deeper
we go into the network the more complex the features that our nodes can detect.

12



This phenomenon is called feature hierarchy or a rising complexity and abstraction
hierarchy. This means that deep learning networks can handle extremely large non
linear datasets with high dimensionality and billions of parameters.

The vast majority of the data in the world are unlabeled or unsaturated data or
raw media and neural networks have the capability to detect latent patterns within
them. Neural networks as a result are widely used in handling images, video and
text. In case of time series data, the data may be may be structured to highlight
normal behaviour or abnormal behaviour. Deep neural networks do not need hu-
man intervention and can extract features and patterns from data automatically in
the hidden layers unlike other more traditional machine learning algorithms. Deep
learning allows for extracting complex features easily that would otherwise require a
team of specialised data scientists years to achieve. While learning from unlabelled
data the nodes in the hidden layers automatically extract features and associate
them with the input data from which they created their samples. The network con-
stantly tries to minimize the difference between its predictions and that of the input
data.

This process allows deep neural networks to learn about the correlations between
particular aspects. That is to say they associate the distinct patterns in the data
with their labels. The fact that deep learning networks can process large amounts
of unlabelled data and learn from them give it an edge over prior algorithms. The
output layer assigns the likelihood to a certain even or label and is also terminates
the network.
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Figure 3.11: Deep neural network

3.3 Dense Neural Network(DNN)
The architecture of a deep learning model may be thought of as its layers. Different
sorts of layers can be utilized in the models. A layer that is fully connected is referred
to as a dense layer which is usually used in the final stages of the neural network.
In order to establish the relationship between the values of the data the network is
working with, this layer aids in adjusting the dimensionality of the output from the
previous layer.

3.3.1 Dense layer
A dense layer is a layer which is intimately coupled with its previous layer which
implies that the every neuron of its preceding layer is connected to the neurons of
that layer. It is considered to be the most popular layer in artificial neural network.

In a dense layer, each neuron receives input from every neuron in the preceding
layer. The neurons then perform matrix multiplication where the size of the row
vector of the previous layers output is equal to the size of the input column vector
of the neuron.

The structure of a dense neural network is given below
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Figure 3.12: Dense neural network

3.4 Feedforward network
In feedforward networks, supervised learning is used to turn input samples into
outputs. The output is a label which is associated to the input data that was used
to get it. That is to say, raw data is mapped to the extracted features and patterns.
The network classifies data uses a set of parameters that are trained for classifying
the input data.

Furthermore, a feedforward network doesn’t have any concept of temporal order
and the only input it takes into account is the most recent one. Below a basic
feedforward network diagram is given:

15



Figure 3.13: Feedforward NN

3.5 Recurrent Neural Network
Unlike the feedforward network RNN doesn’t only use just the current input sample
but also the previous inputs that has been exposed to them till that time. The
diagram below explains this phenomenon.
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Figure 3.14: Basic Recurrent Neural Network structure

The result a recurrent net reaches at time step t is actually derivative from the
result that it reaches at time step t-1. Thus, recurrent networks has two flows of
inputs one of which is the recent past and the other one is the present which then
merge to influence to its response to incoming data which kind of mimic real life
human interaction.

Recurrent Neural networks have a feedback loop which connects to the previous
output which is where it is different from feedforward networks. That is to say, the
ouputs are fed back into the recurrent layer. This means Recurrent Neural networks
retain information or memory of past iterations. This allows it to perform predic-
tions that Feedforward networks are unable to match. This sequential information is
preserved through multiple time steps affecting each subsequent sample. Sequential
data like time series data have long term dependencies which means related events
maybe seperated by several time steps.

ht = φ(Wxt + Uht−1) (3.1)

ht is the hidden state at time step t which is also a function of the input at the
same time step xt altered by a weight matrix W. Furthermore, it was then added
with the hidden state to hidden state matrix U which is also known as the transition
matrix multiplied by the hidden state of the previous time step ht−1. The amount
of weight that is to be given to the current input as well as the preceding hidden
state is decide by the weight matrices. Finally, the error which is produced will be
sent back via backpropagation and it is used to alter their weighs until the error
can no longer be reduced. The function φ is usually a logistic sigmoid or tanh
function. Each hidden state has traces of all the hidden states before it as long as
the corresponding memory is still available.

Below is given a Recurrent Neural Network data flow:
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Figure 3.15: Recurrent Neural Network internal workings

3.6 Long Short Term Memory units(LSTM)
In the mid-90s, Hochreiter and Schmidhuber presented a variant of the recurrent
neural network model. They called it Long Shot-Term Memory units or LSTMs.
This variation was better at preserving errors that can be backpropagated through
time and layers. LSTMs use a gated cell to store information separately from the
main flow of the network. The gates of this cell determine which information to
retain or remove. These analog gates are implemented by performing element wise
multiplication of the data with sigmoid functions which produce outputs in the range
of 0 to 1. Since the gates are analog they are more suitable than digital gates for
backpropagation because they are differentiable.

The gates operate on the data that is passed onto them just like nodes in a neural
network. They have their own weights and biases that get tuned alongside the nodes
in the main neural network during the learning process. The weights and biases get
tuned each iteration of the backpropagation. The weights get adjusted via gradient
descent based on the backpropagating errors. Over time they learn to select the
appropriate information to store, erase or pass onto the main network.

The diagram below shows data flow through memory cell and the control over
them by the gates:
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Figure 3.16: LSTM

The information enters the cell from the bottom. This information is also given
to each of the three gates of the cell. The information gets passed through a sigmoid
function in all four locations. The gates are represented by the black dots which
then receive the transformed information and after processing it decide how the
information is to be handled, whether the new input should be integrated with the
current cell state or which potion of the current cell state should be erased or how
much the current cell state should affect the output of the main neural network.

Here is another diagram for comparison with a simple recurrent neural network
against a LSTM.
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Figure 3.17: simple recurrent neural network vs LSTM

While transforming the input in LSTM memory cells, the addition and multipli-
cation play different roles. The addition in the middle in both pictures are what
makes LSTM so special. When the backpropagation is very deep, this adjustment
helps to maintain a constant error despite how simple and straightforward it may
seem. The difference lies in the fact that instead of just multiplying the current
state to the incoming data to obtain the new cell state, the new data and old cell
state are summed.

Filtering for input, output and forgetting are done by different sets of weights.
Since when the forget gate is open, the current state of the memory cell is just
multiplied by one and then propagated forward to the next time step, it is modelled
as a linear identity function.

The gates are shown in action in the diagram below, with closed gates represented
by straight lines and open gates represented by blank circles. The forget gates are
the lines and circles that go horizontally along the hidden layer.
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Figure 3.18: Workflow of gates

3.7 Convolutional Neural Network
Typically, CNNs are used to classify images. Images in CNN are represented as a
matrix of pixel values with each pixel ranging from a value of 0 to 255. Images tend
to have one or more channels representing the primary colors. Grayscale pictures
have only one channel where colorful pictures have 3 for RED, GREEN, BLUE. An
image is stored as a matrix of pixel values with shape [image width, image length,
number of channels]. The primary layers responsible for performing the convolutions
are the convolutional layer, the pooling layer and the dense layer.

The Convolutional layer extracts important distinguishing features from subsec-
tions of the image. This is done by filtering the subsections through a feature
matrix. The feature matrix is multiplying with the subsections and the resultant
matrix contains the extracted feature from the image. For example, a layer might
learn to spot shoelaces from pictures of shoes. These features are then associated
with the labels of the images. So, in our example whenever the network detects a
shoelace it will try to associate the image with that of a shoe. An image may have
multiple features extracted from it and we specify that number when we design the
model. For time series data, we can apply the same concept. Time series data can
simply be thought of as a one-dimensional matrix. Here too we can find patterns
that may be extracted by a convolutional layer. Where for images we use a 2D
convolutional layer, for time series we can simply use a 1D convolutional layer.
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Figure 3.19: Convolution layer

A convolutional layer is typically followed by a pooling layer. Here the resultant
matrix is multiplied with a pooling matrix which compresses the feature to consist
of only its important features. This is done by selecting the average or maximum
value from each small subsection of the data matrix. Image data requires 2D Pooling
layers but for time series we can simply apply the same principals using 1D Pooling
layers.

Figure 3.20: Pooling layer

After this comes a flattening layer followed by a dense layer which essentially
converts our 1D time series data into a 3D matrix. Hence we can now apply the
same concepts for our time series data that we typically do with iimages.

Figure 3.21: Full sequence of CNN including the flatten and dense layers
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Chapter 4

Methodologies

4.1 Methodologies
We have seen the overwhelming majority of the time series analysis were done us-
ing statistical models such as ARIMA, SVM. So, We decided to implemented five
different Neural Network models and analyzed their performance comparative to
each other. To ensure fairness we have kept as many variables/parameters constant
throughout the models as possible. The following parameters have been maintained
whenever possible.

Activation functions of hidden layers ReLu
Number of layers of each type 2

Output layer single-unit Dense layer
Output layer activation function None

Model Type Sequential
Optimizer Adam

Loss metric Mean squared error (MSE)
Mean absolute error (MAE)

Number of epochs 100

Table 4.1: Control parameters for our experiment

We tuned our learning rates for the optimizers by first training the model using a
“callback” function that gradually changes the learning rate every epoch. After this
training we plot the learning rate against the loss to determine the most suitable
minima. The learning rate corresponding to this minima is then selected as the
learning rate for that particular model. The model is then retrained using this
learning rate to obtain the fully trained model which is then used to predict/validate
results.

23



Figure 4.1: Learning rate tuning

For this figure above, we would typically choose a 10−5 as the learning rate for our
final model. Training with this parameter would result in the graph that looks like
the figure below.

Figure 4.2: Loss after tuning

4.2 Model Structures
Dense Neural Network (DNN) - Two Dense layers with 10 units each were used as
hidden layers.
Recurrent Neural Network (RNN) - We used a lambda layer to expand our input
data dimensions to adjust for our RNN layers. This is followed by 2 SimpleRNN
layers with 10 units each as hidden layers.
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LSTM - We used a lambda layer to expand our input data dimensions to adjust for
our LSTM layers. This is followed by 2 Bi-directional LSTM layers with 10 units
each as hidden layers.
Convolutional Neural Network (CNN) - We used two 1-D Convolutional layers with
a Maxpooling layer following each one. The convolution layers have 16 filters and
kernel size of 2. The Maxpooling layers have a pooling size of 2. This sequence of
layers is followed by a Flattening layer and a Dense Layer with 10 units.
CNN + LSTM - For this model we used a 1-D Convolutional layer with 64 filters
and kernel size of 3 followed by two LSTM layers with 64 nodes each as hidden
layers.
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Chapter 5

Dataset

5.1 Source of dataset
For our dataset we chose the SP500 index. This is a widely used index which traces
the performance of 500 large companies across the world. The market is matured
and well maintained. We took the dataset from kaggle’s repository for the SP500
index which updated daily.

Figure 5.1: SP500 index
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Figure 5.2: First 5 elements of the dataset
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Figure 5.3: Dataset statistics

5.2 Pre-processing
We took the dataset and normalized it. Following that we divided the data into
batches with a batch size of 32 with each batch containing 30 days of data. The
label of each day was the closing price of the following day. Following that we
split our dataset into training and testing sets keeping the last year as our testing
duration.
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Chapter 6

Result

6.1 Dense Neutral Network

Figure 6.1: Dense neural network learning rate tuning
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Figure 6.2: Dense neural network loss after tuning

Figure 6.3: Dense neural network prediction
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6.2 Recurrent Neural Network

Figure 6.4: Recurrent neural network learning rate tuning

Figure 6.5: Recurrent neural network loss after tuning
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Figure 6.6: Recurrent neural network prediction

6.3 LSTM

Figure 6.7: LSTM neural network learning rate tuning
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Figure 6.8: LSTM neural network loss after tuning

Figure 6.9: LSTM neural network prediction
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6.4 CNN

Figure 6.10: CNN neural network learning rate tuning

Figure 6.11: CNN neural network loss after tuning
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Figure 6.12: CNN neural network prediction

6.5 Pipeline

Figure 6.13: Pipeline neural network learning rate tuning
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Figure 6.14: Pipeline neural network loss after tuning

Figure 6.15: Pipeline neural network prediction
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Neural Networks MSE MAE Time taken per epoch(sec)
DNN 0.000110926 0.008160368 0.35
RNN 0.000127108 0.008575701 3

LSTM 0.001304831 0.029767652 3
CNN 0.004349234 0.060925997 1

Pipeline 0.000233072 0.011257544 1

Table 6.1: MSE and MAE Comparisons of all the models

We can see that for relatively low number of epochs in our case 100 DNN performs
the best with RNN coming in a close second. However, DNN took approximately
350ms per epoch to train whereas RNN took 3 sec on average per epoch. This is
beacuse our dataset was univariate as such our data was fairly uncomplicated and
it is known that models such as RNN, LSTM and CNN wll perform better with
multi-variate data with increasing numbber of features.
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Chapter 7

Conclusion

Nowadays the prediction of financial data is a must which enable most economic
institutions to make informed decisions for the maximum profit. Every algorithm
has a use-case where it performs better than others. Thus, It is important to know
the dataset intimately before selecting the proper algorithm. It also helps to keep in
my mind that some algorithms can predict farther into the future more accurately
than others. Our aim here was to provide a side by side comparison of these models
while keeping their configurations and parameters as close as possible to each other.
Even though such models have been used for time series analysis before, we scarcely
any resources for a direct comparison between their performances for an extensive
list of models. As such we decided to see to it ourselves. For our use-case we were
simply predicting one day into the future and our data was univariate and trained
to only 100 epochs. So, our simplistic DNN model came out on top. Further study
is needed with more complicated data with more features and increasing the range
of number of days ahead to be forecasted.
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