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Abstract
The internet of things is one of today’s most revolutionary technologies. Because
of its pervasiveness, increasing network connection capacity, and diversity of linked
items, the internet of things (IoT) is adaptable and versatile. The most common
problem impeding IoT growth is insufficient security measures. The threat of data
breaches is always there since smart gadgets gather and transmit sensitive informa-
tion that, if disclosed, might have severe consequences. Modern advances in Artificial
Intelligence are providing new Machine Learning and Deep Learning approaches to
address more complex issues with greater model performance. This predictive capac-
ity, however, comes at the cost of growing complexity, which can make these models
hard to understand and interpret. Though these models give highly precise results,
an explanation is required in order to comprehend and accept the model’s decisions.
Here comes XAI which emphasizes a variety of ways for breaking the black-box
nature of Machine Learning and Deep Learning models as well as delivering human-
level explanations.In this article, to identify and classify IoT network attacks, we
have analyzed six machine learning and deep learning approaches: Decision Tree,
Random Forest, AdaBoost, XGBoost, ANN, and MLP. Accuracy, Precision, Recall,
F1-Score, and Confusion Matrix are some of the metrics we have used to evaluate
our models. We have achieved fairly impressive results (above 96%) in binary clas-
sification for all the techniques. When all of the classifiers were analyzed, Decision
Tree and Random Forest outperformed all others (above 99%) for both binary and
multiclass classification. Adaboost and ANN, on the other hand, perform badly for
multiclass classification. We have also applied Undersampling, Oversampling, and
SMOTE techniques on a dataset to reduce data skewness and to evaluate multiple
ML and DL algorithms.We have used LIME, SHAP, and ELI5 approaches to inter-
pret and explain our models. The feasibility of the techniques suggested in this work
is demonstrated in the IoT/IIoT dataset of TON_IoT datasets, which incorporate
data obtained from telemetry datasets of IoT and IIoT sensors.

Keywords: Machine Learning; Prediction; Decision tree; Random Forest; XG-
Boost; Adaboost; XAI; Model.
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Chapter 1

Introduction

1.1 Introduction
The Internet of Things (IoT), a new innovation in communication technology, has
significantly outperformed traditional environmental sensors. IoT technologies have
the ability to gather, quantify, and grasp data about the environment, enabling
modernizations that improve living standards. This enables smart cities to be real-
ized by simplifying new forms of communication between things and humans. [20]
The Internet of Things has progressed from a theoretical concept to a key issue for
many people’s lives and enterprises in recent years. When companies connect IoT
devices to an existing network infrastructure, they are looking for new ways to man-
age and use the collected data. According to [23], Juniper Research’s most current
prediction, the amount of IoT devices would reach 46 billion by 2021, with 31 billion
new IoT devices deployed globally by the end of 2021. There is a diverse range of
usage of IoT technology in the modern world. Everything from a watch to a TV to a
refrigerator to a fan to a light bulb has become smart lately. The Internet of Things
has been broadly used in fields such as healthcare, agriculture, transportation and
storage, wearables, smart home applications, electricity [26]. Its goals include the
linking of low-value devices via Wireless Sensor Networks. This concept is modified
by Cyber-Physical Systems (CPS), which drives automated commercial structures
closer to Cyber-Physical Production Systems (CPPS) and the fourth commercial
revolution is one of its pillars. Through the usage of CPPS, Industry 4.0 aspires
for autonomous navigation, real-time monitoring, participatory production, reduce
errors and persistent virtual interconnection. IoT systems are intricate and contain
a number of interconnected components. As a result, maintaining the security re-
quirement in an IoT system with a huge area of attack is difficult. Solutions must
adopt a holistic approach to satisfy the security need. IoT devices, on the other
hand, are typically used in an unattended setting. As a result, an intruder could
gain physical access to these IoT devices. Wireless networks are commonly used to
link IoT devices, which allow an attacker to eavesdrop on a communication channel
and gain access to sensitive information. This Internet of Things (IoT) system is
also a cyber-physical system, but it has some resource constraints. Due to limited
computing, communication, and power resources, as well as reliable interaction with
a physical domain, notably the behavior of a physical environment in unusual and
unanticipated modes, sophisticated security structures are necessary. In addition,
the IoT environment introduces additional attack vectors. The interdependent and
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linked surroundings of the IoT create such attack surfaces. As a result, security in
IoT systems is at a larger risk than in conventional computer systems. So regular
solutions could be inadequate for such structures [26]. There are some inherent
characteristics of IoT systems such as diversity, abundant data production, inter
dependency between devices, critical architectures, constraints of resources, power
supply, and time delay, etc which make them extremely difficult to protect. IoT
systems are diverse in terms of application areas, communication protocols, and
hardware platforms. Consequently, building common system protection for het-
erogeneous devices is difficult, particularly in the industrial domain. IoT-enabled
gadgets may perform a wide range of duties since they can connect to a wider net-
work. These devices deal with a large amount of data and handle data in vast
quantities and share it with one another. Furthermore, since IoT devices are tiny
and diverse, many forms of cyber attacks may occur extremely quickly. The inter-
action between devices is increasing day by day. As a result, their interdependence
is also growing. The target system itself may not be directly hacked, but attackers
can simply modify the behavior of other interdependent devices or the adjacent en-
vironment to attain the hackers’ aims. Again Some lightweight IoT devices lack a
memory management unit (MMU). Many sophisticated encryption and authentica-
tion methods are used on such devices, occupying too much processing power and
causing a significant delay, which impairs the regular functioning of these devices
and decreases performance, particularly for real-time IoT devices. As a result, it is
simple for attackers to infiltrate these devices by exploiting memory vulnerabilities.
The typical high-end security protection solution cannot function correctly in a sys-
tem with limited resources and diverse components [10][26]. However, this raises a
new set of issues: how to keep all of that data safe. It can have severe consequences
if an IoT connection is not effectively protected. In order to protect connected IoT
devices from sophisticated network attacks, different machine learning (ML) tech-
niques are applied. Deep learning (DL), a cutting-edge ML approach, in particular,
offers a one-of-a-kind capability for automatic feature extraction from wide-ranging,
high speed network data produced by linked diverse IoT devices. The fact that deep
learning is fueled by huge amounts of data is a significant benefit and a vital factor
in understanding why it is gaining popularity. The “Big Data Era” of technology
will open up a range of new prospects for deep learning innovation. Additionally, to
comprehend the results and output created from machine learning algorithms by the
average human users, XAI or Explainable Artificial Intelligence, a set of methods
and processes is used here. In AI-powered decision making, it’s used to assess model
correctness, fairness, transparency, and results. In XAI, more explainable models
are produced and a high level of learning performance is maintained at the same
time. The presence of attacks in the IoT environment can be determined by ML
algorithms and those results from ML algorithms can be easily represented by using
XAI.

1.2 Research Problem
IoT has already emerged as a serious security issue worldwide. The Internet of
Things is gradually becoming a security concern. As we can see, Baby monitors,
webcams, thermostats, smart fridges, assault weapons, and even medicine infusion
pumps have all been hacked. With so many nodes that are being added and that
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are already added to the internet and networks, criminals will get a variety of attack
pathways and choices to continue their evil actions, especially because most of those
contain security vulnerabilities [1]. To develop an efficient IoT device, a wide range
of skills are needed. data acquired by an IoT sensor must pass via a variety of
custom-developed systems whereas conventional sensors may store data locally or
transport it using a relatively simple standard protocol such as Modbus. The sensor
must interact with a mobile app or a custom hub, which involves the purchase
of a separate device or the employment of a mobile app developer. A backend
developer is required to upload the hub or mobile app to a cloud backend server
and administer it there. A corporation must accumulate and evaluate backend data
in order to develop a useful IoT solution [2]. Various technologies such as Z-Wave,
ZigBee, Bluetooth, Wi-Fi, and Bluetooth Low Energy (BTLE), are competing to
be the dominant means of connection between hubs and devices [7]. When a high
number of devices must be linked, this causes significant problems; dense connection
demands the deployment of extra hardware and software. The following information
was revealed in the newest research report given by the State of IoT Security:
An IoT security code of practice is supported by 96% of enterprises and 90% of
consumers.
Regardless of the way that 54% of users have a normal of 4 IoT gadgets, only 14%
of clients feel they are instructed about IoT gadget security.
65% percent of customers are anxious about a hacker watching their IoT device, and
60% are concerned about their sensitive data being compromised. [9].

1.3 Research Objectives
The research goals that we want to accomplish are:
1. To assess the threats in IoT security.
2. To identify the attacks on the network layer.
3. To classify the attacks based on the use of IoT.
4. To explain and interpret different models
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Chapter 2

Related Works

2.1 Literature Review

2.1.1 Internet of Things (IoT)
The Internet of Things (IoT) is one of the most important innovations in everyday
life, and it will acquire popularity as more organizations understand the demand
of linked gadgets in maintaining global competitiveness. Another aspect where IoT
may be useful is the ability to monitor infrastructure activities. Sensors might be
used to track activities or modifications in structural buildings, bridges, as well as
other infrastructure, for example. This has a number of benefits, including cost
reductions, time efficiency, and modifications to workflow, standard of living.

2.1.2 Related Works
Deep learning is a strong approach for detecting botnet attacks. However, for ef-
ficient performance, it requires a huge amount of network data. Working with
high-dimensional data is also difficult. Implementing those techniques, however, is
exceedingly challenging due to the memory limitations of IoT devices. A recent work
[15] proposes a hybrid Deep Learning model called LAE-BLSTM which can detect
IoT botnet attacks in networks and combines LAE and deep BLSTM algorithms.
Feature dimensionality is compressed and reduced using a single hidden-layer long
short-term memory autoencoder (LAE). This methodology lessens the dimension-
ality of huge scope IoT network traffic information and makes a low-dimensional
component portrayal at the secret layer without compromising significant network
data. Deep BLSTM is used to classify network traffic samples as well. To sepa-
rate botnet malicious traffic from typical traffic in IoT networks, this methodology
assesses the drawn-out interdependent changes in the low-dimensional list of capa-
bilities given by LAE. Along with that, the Bot-IoT data set is being utilized to
do extensive tests to see how well LAE-BLSTM performs in binary and multiclass
classification. Detecting anomalies from multidimensional data for smart industrial
applications is a difficult task in the Industrial Internet of Things.
The research [17] proposes an intelligent anomaly detection technique based on Vari-
ational Long Short-Term Memory (VLSTM). A compression network and an esti-
mating network are the key components of the proposed VLSTM model where the
compression network converts the multidimensional raw data into a low-dimensional
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hidden variable and a lightweight estimate network is subsequently constructed to
give classifications for anomaly detection. To learn the low-dimensional feature rep-
resentation while minimizing substantial loss of critical information, a variational
reparameterization approach is applied in collaboration with the LSTM encoder-
decoder neural network. Variational Bayes is used to produce the hidden variable,
which is then optimized with 3 loss functions. Based on the evaluation outcomes,
the suggested VLSTM model could considerably increase the extraction of features,
minimize the false detections rate and improve accuracy rate, indicating the appli-
cability of our technique in detecting anomalies for Industrial Big Data. The [17]
model considered nine attacks for this research. To evaluate their work, they used
an available dataset UNSW-NB15.
The research [26] proposes an intrusion detection system for detecting DDoS botnet
attacks on IoT devices using deep learning. The idea of an intrusion detection sys-
tem (IDS) using Deep Learning was created to identify anomalies by studying traffic
patterns on various IoT devices utilizing security checks. For IoT networks, Deep
Neural Network (DNN) is capable of detecting IoT botnet attacks which is really
adaptable. The proposed approach can be utilized to assist IoT devices in adapt-
ing to their dynamic ad hoc environments. Following that, this model is assessed
and tested for accuracy and deployment readiness using a number of approaches
such as AUC-ROC, kappa statistics, and so on. While establishing a real network
environment, a BoT-IoT data set generated by a group from the UNSW Canberra
Cyber Range Lab is used. Malware, which exploits the computer system, is used in
a number of attacks on the network. In cyber physical networking, artificial intelli-
gence can be used to identify and adjust for such threats. This sort of preventative
model also relies on the application, such as smart farming. To safeguard malware
architecture from destruction, secured encoding necessitates a strong safety net.
According to [16], they proposed a deep learning model designed for network traffic
monitoring of numerous Iot solutions, in which the model analyzes the data and
sends an assessment back to that of the network connection, which carries security
protocols if necessary. During the research, they tested their method on two inde-
pendent sets of data. The findings show that the model is quite effective at detecting
possible threads, with an accuracy of over 99 percent even when the number of as-
sessed networking features is limited. In this proposed model, the built RNN-LSTM
classification model with the NAdam optimization method has been used to increase
network security for Android.
The study [13] focuses on network anomalies, and it includes an ML-based anomaly
detector as well as efficient techniques for making detection tools more resilient. The
server computers, where sensitive data is housed, are a likely target for a rogue user.
Finally, the attacker could tamper with critical measures that the operator uses to
manage or monitor infrastructure units. By developing an optimization technique
aided by stacking generalization techniques to evaluate the outliers, the focus of this
paper [13] is to enhance the identification success of intrusion detection systems and
networks operating in a drastic environment. Anomaly detection algorithms differ,
resulting in various outcomes on the same data. As a result, providing a viable
method for a specific domain is a difficult undertaking. To improve model perfor-
mance, the stacked generalization strategy is used. Because of the requirement for
heterogeneity, international quality assurance of feature designations and descrip-
tions, as well as attack varieties, is required. In their research work [18], they show
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the significance of dataset heterogeneity for useful IoT intrusion detection as well
as how it enhances the improvement rate of detection using machine learning. In
a multi-experiment concept, they demonstrate that a wide collection of statistical
methods and studied elements are essential for IoT network intrusion datasets to be
marketable. They classified this as a gap in current academic research on intelligent
IoT network intrusion detection, and they believe that the lack of standardization
will stymie industry acceptance of integrated smart IoT intrusion detection. They
also emphasize the importance of standardizing feature descriptions and vulnera-
bility classifications for the actual implementation of IoT datasets in operational
situations. They provide a descriptive numerical detail of the ToN IoT dataset, a
content research, and a classification to other relevant specialized IoT datasets by
evaluating the ToN IoT dataset.
This study [24] focuses on a hybrid deep learning model for creating a unique secu-
rity architecture and attack detection method for the efficient detection of malicious
devices. The Convolution Neural Network (CNN) technique is used to extract the
high-level feature representation of data before classifying it with the Long Short
Term Memory (LSTM) Model. Existing research on utilizing DL to detect assaults
only considered a small number of attacks. Also, there is a limitation of properly
trained data models. This model was tested using a standard dataset from the
Stratosphere lab, released in 2020. The dataset was created by using twenty in-
fected Raspberry Pis along with three harmless IoT devices. The observed study’s
detection accuracy is 96 percent.
This study [19] presents a deep learning-based architecture for threat detection in an
IoT environment that is SDN-enabled. For effective threat identification, cutting-
edge Cuda-Deep neural networks, Closed Recurrent Unit (CuDNNGRU), and Cuda-
Bidirectional Long Short Term Memory (CuBLSTM) classifiers are employed. To
demonstrate the fairness of the results, a 10-time cross-validation is used. Our hy-
brid model is trained using the most recent publicly accessible CICIDS2018 dataset.
The suggested technique achieves 99.87 percent accuracy and 99.96 percent recov-
ery. Furthermore, the proposed hybrid model is compared to CudaGated Recurrent
Unit, Long Short Term Memory (CuGRULSTM), CudaDeep Neural Network, Long
Short Term Memory (Cu DNNLSTM), and existing reference classifiers. In terms
of accuracy, F1 score, accuracy, speed efficiency, and the other assessment criteria,
the suggested technique provides outstanding results.
This article [14] focuses on the threats, security needs, issues, and attack vectors
that are important to IoT networks. The goal of this article is to offer an overview
of SDN and also a comprehensive evaluation of centralized and decentralized SDN-
based IoT deployment techniques. In order to provide a full picture of SDSec(Soft-
ware Defined Security) technologies, we chose to explore Software-Defined Network-
ing(SDN)-based security solutions for IoT. Furthermore, reviewing this literature,
significant problems that are major obstacles to integrating all IoT collaborators on
a unified system are highlighted, as well as a few outcomes focusing on a security
solution which is network-based, for the IoT vision. This study [18] begins logi-
cally by outlining a basic IoT architecture, then moves on to describe IoT network
protocols and the security problems associated with this at different levels of IoT
networks. This study looked at market gaps and concentrated on security solutions
based on network, for IoT products. SDN’s numerous characteristics, including ex-
pandability, programmability, global transparency, and management, can enable it
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to overcome traditional network restrictions. IoT deployment models based on SDN
are discussed. It also highlighted available commercial tools and offered IoT models
which are SDSec (Software Defined Security) based. To combat hyperglycemia, a
gap analysis was conducted.
This research [22] uses Explainable Artificial Intelligence to enhance the accuracy
and human understanding of the proposed model by describing the detection model’s
technique for predicting assaults and expressing the variables or attributes that
impact the corresponding prediction by implementing the Xgboost classifier on a
dataset called IoT Intrusion Dataset, in which binary and multi-class classification,
both are supported to build an IoT attack detection model and utilize XAI tools
such as Shap, Lime, and ELI5 to authenticate the performance of the model by
analyzing the model’s characteristics by depicting each feature’s contribution and
behavior for each prediction in order to have a detailed knowledge of the effectiveness
of the model in identifying IoT attacks.
The study [25] assesses the detection accuracy of two feature sets (NetFlow and
CICFlowMeter) through three significant datasets named CSE-CIC-IDS2018, BoT-
IoT, and ToN-IoT, finding that the NetFlow feature set outperforms other feature
sets in improving the accuracy of machine learning models in detecting various net-
work assaults. SHapley Additive exPlanations (SHAP), an explainable AI technique,
has also been used to explain and comprehend ML model categorization decisions
increasing complexity of learning models. The effect of each feature on the final ML
prediction has been determined using the Shapley values of two common feature
sets across various datasets. There are various factors that contribute to the large
gap between research and production, including the restricted capacity to evaluate
ML models comprehensively and a lack of knowledge of internal ML processes. This
paper bridges the gap by exploring the generalization ability of a similar feature set
to multiple network settings as well as attack scenarios.

2.2 Background

2.2.1 Decision Tree
A tree-like model in which each terminal node reflects a high-level characteristic
The leaves are the label classes, whereas the branches are the outputs. It mostly
employs supervised learning for classification and regression, with the goal of map-
ping characteristics and values to the desired conclusion. It is a tree-like structure
with root, internal nodes, leaf nodes, and edges. It primarily consists of two types
of nodes: decision nodes and leaf nodes. It continues based on the decision made on
the decision node. Any decision has an effect on the leaf nodes. Some fundamental
terms for this method include ‘entropy’, ‘Gini Index’, ‘information gain’, and so on.
Figure 2.1 represents the structure of decision tree.
In information theory, entropy is a metric that describes the impurity of a set of
samples. The entropy S related to this n-wise categorization is defined as if the
target characteristic takes on n alternative values [4].

E(S) =
n∑

k=1

−Pklog(Pk) (2.1)
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Here E is the entropy and Pk is the probability of S belonging to a class k.
The formula of Gini Index is-

G = 1−
n∑

k=1

P 2
k (2.2)

Figure 2.1: Decision Tree

2.2.2 Random Forest (RF)
Random forest is a predictive data mining problem and data augmentation that uses
decision trees in a very randomized way. Random forest is also a type of classifier
that uses a set of data [8]. Every branch is developed in conjunction with a binomial
distribution, and they are all distinct and identically dispersed. Each tree in the
ensemble submits a vote about the most common type of vector input. Random
forest variety can indeed be produced through sampling an attribute, from a raw
data, or simply changing certain decision tree parameters dynamically. The variety
of factors to choose in each node, which seems consistent across all branches, and
the forest’s total number of trees are two random forest characteristics that may be
tweaked. The Random Forest classifier is made up of a lot of decision trees that
work together as a group. Each decision tree in the Random Forest classifier selects
a feature at random. Allowing decision trees to select data with replacement and
data characteristics at random reduces correlation amongst decision trees, resulting
in higher classification performance. Individual decision trees are used to get the
mean of the forecasts or to calculate the majority vote of the classes to arrive at
the final classification. Implementing this model for our topic, the procedures are
as follows [11]-
1. From the random M feature, pick the m feature. No more than M with the
integer m.
2. On the basis of the separation measure, calculate the optimal split point for the
k tree and divide the current node into the child node and the amount of M features
of this node will be reduced.
3. If the maximum tree depth l is not reached or the separation matrix does not hit
its limit, steps 1 and 2 should be repeated.
4. For each tree in the forest, repeat steps 1 through 3.
5. Cast our vote on the forest’s production.
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2.2.3 Adaboost
One of the most effective boosting algorithms on the market is AdaBoost [3]. It has
a lot of practical experiences along with a solid theoretical base. AdaBoost’s training
and generalization errors are examined in order to determine whether AdaBoost can
successfully increase the efficiency of a poor learning system. Multiclass AdaBoost,
on the other hand, is presented as a binary-class AdaBoost extension. There’s also
a discussion of the AdaBoost approach and its uses. There is a discussion of some
intriguing possibilities that should be pursued further. Discovering a more precise
weak learning condition in a multiclass issue and deducing a tighter generalization
error constraint are two of the directions in Boosting theory. Stopping conditions,
boosting anti-noise capability, and increasing accuracy by increasing the diversity
of the fundamental classifiers are all good challenges for AdaBoost to look at fur-
ther. AdaBoost is a common approach for building a powerful classifier using a
linear combination of member classifiers. During the training process, the member
classifiers are chosen to reduce mistakes in each iteration step. AdaBoost provides
a straightforward and practical method for generating ensemble classifiers. The en-
semble’s performance is determined by the diversity of the member classifiers as well
as the performance of each individual classifier. The existing AdaBoost algorithms,
on the other hand, are designed to solve error minimization problems. To calculate
the sample weights:

wi =
1

N
(2.3)

Where i = 1,2,...n and N is total data points.
Performance of the stump:

(α) =
1

2
loge

1− TotalError

TotalError
(2.4)

Update Weights: New Sample Weight = Old Sample Weight * e±α
Here α is Performance of the stump Our research contributes to the method of
creating diverse ensemble classifiers that are optimized.

2.2.4 XGBoost
[6] eXtreme Gradient Boosting is abbreviated as XGboost. Tree boosting is a pop-
ular and successful machine learning technique. Data scientists use XGBoost, a
scalable end-to-end tree boosting algorithm, to produce cutting-edge results on a
number of machine learning tasks. To minimize a normalized optimum solution, or
the regression tree functions, XGBoost integrates a symmetric loss function given
the disparity between the anticipated and targeted outcomes with a regularization
term for computational cost. It’s a convenient and effective open-source version of
the gradient boosted trees technique. Gradient boosting is a supervised machine
learning system that involves the estimates of a handful of discrete, weaker models
to make predictions an input variables accurately. XGBoost scales to billions of
examples while using a fraction of the resources used by existing systems. [5] Fried-
man’s (2001) gradient boosting paradigm is applied in an optimized and efficient
manner (Friedman et al., 2000). It includes a tree learning approach as well as a fast
linear model solver. It provides regression, classification, and ranking, to name some
few optimization methods. It’s designed to be expandable, allowing users to quickly
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specify their own goals. After installing libraries, xgboost, margrittr, Matrix, there
are 3 easy steps to implement this model:
Step 1: Using the xgb.DMatrix() method, construct a Matrix for the train and test
datasets.
Step 2: Configure the parameters for params and the watchlist.
Step 3: Create a model with the xgb.train() method.

2.2.5 Multilayer Perceptron
[4] MLP(multi layer perceptron) is a class of “feedforward artificial neural network”.
An input layer takes the information, an output layer gives a judgement or projection
about the information, and an unbounded number of hidden layers in between act as
the MLP’s connected to the digital engine, with many neurons stacked together. In
MLP, there is an input layer that receives signals, for making decision prediction or
decision about the input there is an output layer. Moreover, to serve as MLP’s true
computational engine, an arbitrary number of hidden layers are there in between the
input layer and output layer, with many neurons stacked together. While neurons in
a Perceptron must have a threshold-enforcing activation function, such as ReLU or
sigmoid, neurons in a Multilayer Perceptron can have any activation function they
want. It’s a learning algorithm that’s supervised. It trains a function f ( . ) : R m
→ R o by training on a dataset, where ‘m’ is the number of input dimensions and
‘o’ is the number of output dimensions. Back-propagation with feed-forward, the
most frequent neural classifier in pattern categorization is the multilayer perceptron
(MLP). MLP is the accepted practice for any back propagation supervised pattern
identification procedure.
The hyperplane equation:

H : wT (x) + b = 0 (2.5)
Here, b is the hyperplane equation’s intercept and bias term.

2.2.6 ANN

Figure 2.2: ANN

ANN, a machine learning algorithm works on the notion of a human neuron. They
are widely used for learning capacitance and adaptability to different settings. ANN
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requires a large multidimensional dataset to reduce the chance of extrapolation
and can work on nonlinear and non-physical data. Neurons in our brain receive
input as impulses. Two measures that reflect neuron activity are the average peak
generation rate in repeated runs and the peak rate generated throughout time.
Adaptive synaptic weights connect the neurons of the previous layer. Knowledge is
frequently stored in the form of a series of weighted connections. From the input
nodes to the hidden nodes, and subsequently from those nodes to the output nodes,
information flows. The output unit with input connection weights that are almost
identical to the input pattern is the winner. The issue inputs and outputs will have
the same number of neurons as the input and output layers. The learning process is
split into two parts: the first is identifying the hidden layer neuron, and the second
is learning how to use it [27].

2.2.7 LIME
Lime (LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLAINATIONS) is
being used to try to understand the advanced IoT detection and prevention ma-
chine learning model since it can explain all sorts of models that have a prediction
probability. Lime, as an ideal version integrator, offers both Model Agnostic and
Local Model Interpretability, where Model Agnostic means it can be applied to any
machine learning model and Local Model Interpretability means it may interpret
the prediction of a single instance or present detection. In our IoT attack detection
model, some strategies are used to illustrate the explanation of individual predic-
tions when using the Lime Algorithm. To design a local linear model, bogus data is
first created surrounding the observation (known as perturbed data). By generating
predictions on perturbed data, the prediction function is then utilized to train the
local linear model, indicated as (g) in the equation 2.6. The characteristics are then
dispersed by changing continuous variables to discrete variables in order to make
the format more human-friendly. The euclidean distance is then calculated by cor-
relating every data point in the perturbed data to the original data point, which
estimates the distance between the data point and the original observation. The eu-
clidean 20 distance is expressed in equation 2.6 by L ( f, p, πx ) to show whether the
distance is less or bigger with 0 and 1 because it is converted to the value between
0 and 1, showing either it is closest to or exactly the same as the observation. Lime
generates a local linear model utilizing all input data and the weights from the clas-
sification model to interpret the local behavior through observation. Lime is used to
interpret the data into a human-understandable manner using three label features:
Label, Category, and Sub-category. To make the model more comprehensible to the
user, Lime explains it as follows, as taken from the paper [26],

ξ(x) = argming∈G L(f, g, πx ) + Ω(g) (2.6)

We have applied the LIME approach on the examples identified using learning mod-
els. We ran various tests using supervised learning approaches such as Random
Forest, Decision Tree, and XGBoost with varied sizes of selected features in order
to examine the local explanations given for the outputs of these models.
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2.2.8 SHAP
The SHAP (short for SHapely Additive explanation) is a framework of XAI. In
SHAP, the variability of the prediction is split among the obtainable variables, which
allows each explanatory variable’s contribution to each point of prediction to be
evaluated, whatever the prime model is. SHAP outputs Shapely values, which
represent model predictions as linear combinations of binary variables that specify
if each covariate is integrated in the model or not. Likewise, the SHAP algorithm
makes an approximation of each prediction f(x) with g(x’), a linear function of the
binary variables z’{0,1} M and φi∈R, defined as:

g(z′) = φ0 +
M∑
i=1

φiz
′
i, (2.7)

Here, M determines how many explanatory variables are present.
The desirable properties of this additive feature method are- accuracy, missingness
and consistency. In this paper [21], these properties are obtained in SHAP attribut-
ing each variable xi with an effect , φi (Shaply value), defined as:

φi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)− fx(z
′|i)] (2.8)

Here, f is the models, x are the variable and x’ are the selected variables. The term

[fx(z
′)− fx(z

′|i)]

indicates the divergence of Shaply value from their mean for each single prediction:
the contribution of their ith variable.

2.2.9 ELI5
ELI5 stands for the phrase, ’Explain Like I’m 5’. It is used to verify and explain
machine learning classifier predictions.. The main use of ELI5 is to debug algorithms.
It supports the machine learning frameworks and packages are listed below:
scikit-learn: Users may now print decision trees as SVG or text, see feature im-
portances, and explain decision tree and tree-based ensemble forecasts using ELI5.
keras: describe divination of image classifiers through Grad-CAM visualizations.
XGBoost: Explains divination of XGBClassifier, XGBRegressor and xgboost.Booster
and display feature importances and
LightGBM: Explains predictions of LGBMClassifier and LGBMRegressor and dis-
play feature importance.
CatBoost: CatBoostClassifier and CatBoostRegressor feature importances are dis-
played.
Lighting: Weights and predictions of lightning classifiers and regressors are ex-
plained.
sklearn-crfsuite: We can examine the weights of sklearn crfsuite.CRF models with
ELI5. ELI5 also executes many algorithms to inspect black-box models. There are
primarily two approaches to examine a classification or regression model:
(1) Examine model parameters to see how the model works on a larger scale.
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(2) Examine a model’s individual prognosis and try to understand why it makes the
decisions it does.
ELI5 provides the eli5.show weights() method for (1) and the eli5.show prediction()
function for (2).
To start with, we need a dataset and a problem. In our paper, we will be using the
ToN IoT dataset.

2.2.10 SKLearn
Scikit-learn is a powerful and adaptable Python machine learning toolbox. It has a
lot of advanced machine learning and statistical analysis features. The Sklearn li-
brary is more concerned with data modeling. Sklearn provides some popular groups
of Supervised Learning algorithms and classifiers, which we have implemented in
our work. For Decision Trees supervised learning method we have imported De-
cisionTreeClassifier from the SKlearn library. For using another machine learning
supervised learning technique, Random Forest, we have imported RandomForest-
Classifier. AdaBoost classifier is also imported from the Sklearn library. To convert
the data into machine readable form, we have encoded the dataset by importing La-
belEncoder from Sklearn. Sklearn’s ‘train test split’ was used to divide the dataset
into subsets that limit the possibility of bias in the evaluation and validation pro-
cesses. Sklearn supports importing the Standard Scaler, which standardizes a feature
by eliminating the mean and scaling it to unit variance. Also, we have used Robust
Scaler and MinMaxScaler from the Sklearn library for scaling the dataset. Sklearn
library has helped for all these preprocessing in different classifiers in the dataset.
For summarizing the performance of the classifiers, we have used the Sklearn Con-
fusion Matrix technique. The Classification Report from the Sklearn library is used
to measure the quality of prediction from the classification algorithms. The Scikit-
Learn Metrics module has been imported to calculate accuracy of the model.
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Chapter 3

Methodology

3.1 Methodology

Figure 3.1: The flow chart of the proposed model

Figure 3.1 is the workflow of our proposed model.
Three essential phases required for attack detection and classification are:
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1. Data Preprocessing : This step focuses on structuring the input data such that
network attack detection can be handled quickly.
2. Training Data: This stage is concerned with the training of input using algorithms
of ML.
3. Testing Data: This step is focused on testing data utilizing the previously con-
structed DT.
4. Result: This step shows the prediction result of identification and classification
from the trained model.
5. Explain Result: This stage explains the result using XAI.
The input data is forwarded via the preprocessing step, where ML techniques are
applied to distinguish between normal and attack data.
After that, the preprocessed data is separated into two categories, one for train-
ing and creating classifiers, and another for evaluating the classifiers’ and models’
efficiency in differentiating between normal and attack data.

3.1.1 Overview of the Dataset
Over a period of time, multiple datasets have been generated to detect IOT attacks.
The TON-IoT dataset comprises 161043 threat and 300,000 normal observations
and includes threats such as DoS, DDoS, backdoors, injection, scanning, password,
Man-in-the-Middle(MitM), ransomware, assaults, and XSS. Because of its different
attack scenarios, telemetry data, label and heterogeneity of IoT data sources, and
IoT scenarios on a sample test case, the ToN IOT Dataset was used to test our
method.
Telemetry data from IIoT/IoT devices, Operating System logs and network traffic
from an IoT network, were all acquired out of a genuine medium-scale network
approximation and it was built at UNSW Canberra’s Cyber Range and IoT Labs.
The proposed Telemetry data dataset for IIoT/IoT services, as well as its properties,
are the subject of this study. The ToN-IoT repository contains ToN-IoT datasets.
Furthermore, a label feature was used to label the proposed datasets (which shows
whether or not a dataset has been labeled).
There are seven (7) IoT and IIoT sensors in total (e.g. weather, temperature, and
Modbus sensors), as well as two cellphones and a smart TV, were used to collect
telemetry data, which was collected in log and CSV files. Datasets that have been
processed are referred to as ’processed datasets’ and ’Train Test datasets.’ The
’Processed datasets’ folder provides a CSV version of the processed and filtered
datasets, together with their regular features and labels.To analyze the accurateness
of network security apps and machine learning technologies, sampling of datasets
are utilized as train-test datasets in CSV format in the ’Train Test datasets’ folder.
Every IoT device has its own ”Train Test IoT device name.csv” CSV file. Each
IIoT device has its own Train-Test dataset: refrigerator, GPS tracker, motion light,
garage door, Modbus, thermostat, and weather. Figure 3.2 is the ToN IoT Dataset
for IoT Fridge sample.

3.1.2 Data preprocessing
The very first approach to improving the training process for models is to analyze
the data.It is a method of processing raw data for usage by machine learning mod-
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Figure 3.2: ToN IoT Dataset(IoT_Fridge) sample

els.There are several techniques and steps for data preprocessing. To lower the data
storage and eliminate redundancy, duplicate samples,missing can be deleted. Pre-
processing was applied to handle missing values. In ToN IoT dataset, most of the
data are preprocessed. But there were some null values in the Thermostat and the
Garage Door dataset. The null values of the “Date” and “Time” features in the
IoT Thermostat Dataset and and “date”, “time”, “door-state” and “sphone_signal”
features of the Garage Door dataset have been dropped. To split the dataset, 70%
of it has been utilized for training and 30% for testing. For binary classification,
the ”label” feature is considered the target or dependent variable, whereas all other
characteristics except ‘type’ are considered independent variables. But in multiclass
classification, the “type” feature is considered as target or dependent and other
features except “label” are considered as independent variables.

3.1.3 Feature Scaling
Feature scaling is an important step in ML and DL models. Scaling changes all
of the values of the features to the same scale. Some models are quite sensitive to
diverse types of data. It also allows models to do computations more quickly. Scaling
allows us to provide the equal weight to each feature value, ensuring that no feature
value is prioritized because it has a higher value. For feature scaling in our models,
we used Min Max Normalization and Robust Scaling. Min Max Normalization is a
method that converts numbers in the [0.0,1.0] range.

Xnew =
X −Xmin

Xmax −Xmin

(3.1)

Robust Scaling is a very efficient technique if we have outliers in our data.It scales
the data according to the interquartile range(IQR) .

Xnew =
X −Xmedian

IQR
(3.2)
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3.1.4 Feature selection
The characteristics for these scenarios were retrieved depending on the modeled
IoT/IIoT services’ embedded sensors. The following is a breakdown of the extracted
IoT/IIoT scenarios and features.

Figure 3.3: Number of Attacks on Different IoT Devices

The IoT fridge monitors the thermal condition and changes it as needed to keep it
within a specified threshold. Table 3.1 displays and explains the characteristics of
the IoT fridge dataset. A probabilistic input allows a remotely actuated garage door
to open or close. Table 3.2 shows the characteristics of garage door sensors. The
GPS characteristics in Table 3.3 explain how GPS records the position coordinates
of an item remotely, such as latitude and longitude. The Modbus service replicates
the capabilities of Modbus devices used in several industrial uses by connecting
them over serial lines. A Modbus device that sends a request is referred to as a
Master Modbus device, whereas a Modbus device that receives a request is referred
to as a Slave Modbus device. Table 3.4 provides further information about it. The
clever motion sensor activates or deactivates the light depending on a pseudo-random
signal, as described in Table 3.5. A smart thermostat may regulate a heating/cooling
system to control the temperature of a physical system. As shown in Table 3.6, the
current temperature and thermostat status are the most important elements of a
smart thermostat sensor. Humidity, air pressure, and temperature are measured by
a weather monitoring system. In Table 3.7, further specifics are given.

3.1.5 Attacks
Denial of Service (DoS)

It’s a very well-flooding attack in which an attacker makes a series of malicious
attempts to prevent a genuine user from accessing resources. The IIoT dataset
includes distributed denial-of-service (DDoS) and denial-of-service (DoS) assaults.
DDoS attacks are typically carried out by hots or botnets, which are massive groups
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IoT Fridge activity
ID Feature Type Description
1 date Date IoT telemetry data recording date
2 time Time IoT telemetry data recording time
3 fridge_tem-

perature
Number Thermal reading from a network-

connected fridge sensor
4 temp_condi-

tion
String Temperature circumstances of a

network-connected fridge sensor,
whether the temperature is excessive
or lower based on a specified threshold

5 label Number 0 to represent normal and a 1 to repre-
sent attack

6 type String Categories different types of attacks
and normal data

Table 3.1: Feature Type and Description of IoT Fridge

IoT Garage_Door activity
ID Feature Type Description
1 date Date IoT telemetry data recording date
2 time Time IoT telemetry data recording time
3 door_state Boolean When a door sensor is connected to

the network, it determines whether the
door is open or not

4 sphone_sig-
nal

Boolean When a phone receives a door signal,
the signal is either true or false.

5 label Number 0 to represent normal and a 1 to repre-
sent attack

6 type String Categories different types of attacks
and normal data

Table 3.2: Feature Type and Description of IoT Garage_Door

of infected machines. This attack includes flooding lloT devices with a large amount
of nodes in order to deplete their resources (e.g., CPU and memory).

Ransomware

This is a sophisticated sort of malware that encrypts a system or service to deny a
legitimate user access and then attempts to sell the encrypted message, which allows
the user to re-enter the system. An IoT ransomware is identical to a traditional
ransomware, except it prevents IoT devices from being accessed. IIoT devices and
apps are vulnerable to IoT ransomware because they frequently perform mission-
critical functions to which denying access or locking down these applications might
result in catastrophic effects, such as financial losses to enterprises [12].
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IoT GPS_Tracker activity
ID Feature Type Description
1 date Date IoT telemetry data recording date
2 time Time IoT telemetry data recording time
3 latitude Number The network-connected GPS tracker

sensor’s latitude value.
4 longitude Number longitude value of network-connected

GPS tracker sensor.
5 label Number 0 to represent normal and a 1 to repre-

sent attack
6 type String Categories different types of attacks

and normal data

Table 3.3: Feature Type and Description of IoT GPS_Tracker

IoT Modbus activity
ID Feature Type Description
1 date Date IoT telemetry data recording date
2 time Time IoT telemetry data recording time
3 FC1_Read_In-

put_Register
Number An input register function which

helps in identification
4 FC2_Read_Dis-

crete_Value
Number A function identifier for accessing

an input discrete value.
5 FC3_Read_Hold-

ing_Register
Number Reading a holding register with

Modbus function code
6 FC4_Read_Coil Number Reading a coil using Modbus func-

tion code.
7 label Number 0 to represent normal and a 1 to rep-

resent attack.
8 type String categories different types of attacks

and normal data.

Table 3.4: Feature Type and Description of IoT Modbus

IoT Motion_Light activity
ID Feature Type Description
1 date Date IoT telemetry data recording date
2 time Time IoT telemetry data recording time
3 motion_sta-

tus
Number This can be on or off.

4 light_status Boolean This can be on or off.
5 label Number 0 to represent normal and a 1 to repre-

sent attack.
6 type String categories different types of attacks and

normal data.

Table 3.5: Feature Type and Description of IoT Motion_Light
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IoT Thermostat activity
ID Feature Type Description
1 date Date IoT telemetry data recording date
2 time Time IoT telemetry data recording time
3 current_tem-

perature
Number Thermal reading from a network-

connected thermostat sensor.
4 thermo-

stat_status
Boolean This can be on or off.

5 label Number 0 to represent normal and a 1 to repre-
sent attack

6 type String Categories different types of attacks
and normal data

Table 3.6: Feature Type and Description of IoT Thermostat

IoT Weather activity
ID Feature Type Description
1 date Date IoT telemetry data recording date
2 time Time IoT telemetry data recording time
3 temperature Number A network-connected weather sensor’s

thermal readout
4 pressure Number Pressure measurements from a

network-connected weather sensor
5 humidity Number Humidity readings from a network-

connected weather sensor.
6 label Number 0 to represent normal and a 1 to repre-

sent attack
7 type String Categories different types of attacks

and normal data

Table 3.7: Feature Type and Description of IoT Weather
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Backdoor

It’s a passive assault in which a backdoor malware allows an attacker to get unau-
thorized remote access to infected IIoT devices. The attacker employs the backdoor
to take control of affected IIoT devices and integrates them into botnets in order to
launch DDoS attacks [30].

Injection Attack

This attack attempts to run malicious code or introduce harmful data into IIoT
apps on a regular basis. Furthermore, the injection attack may disrupt regular
operations by altering the telemetry data and controlling the instructions of the
IIoT system. Two shell scripts were created to inject input data into web programs
such as (DVWA and the vulnerable public PHP), as well as Security Shepherd VMs
and IoT websites [12].

Cross Site Scripting (XSS)

In IIoT applications, it frequently tries to execute malicious commands on a Web
server In IIoT applications, a web server is attacked by the frequent attempt to exe-
cute the malicious command of the attacker. An attacker can employ XSS to inject
arbitrary Web scripts from a remote location, as in malicious HTTP or JavaScript
instructions. This attack may endanger data and verification mechanisms between
a remote Web server and IIoT devices. [12].

Password Cracking Attack

When an attacker attempts to access the account of IIoT devices using password
cracking strategies like brute force and dictionary assaults. As a result, the attacker
may be able to bypass identity management and access IIoT devices [12].
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Chapter 4

Implementation

4.1 Implementation
Performance Measures
Evaluation metrics are used to analyze and interpret a model’s performance. This
also indicates how well or poorly the models are performing. Furthermore, Evalua-
tion metrics are essential for comparing different models. There are several metrics
for measuring performance. Some of the measures we use to evaluate our models
include accuracy, precision, recall, and F1-Score, as well as the Confusion Matrix.
Accuracy
Accuracy is the ratio of correct predictions out of the total number of predictions.It
represents a model’s overall efficacy as the proportion of all normal and attack data
that are accurately categorized.

Accuracy =
(TP + TN)

TP + TN + FP + FN
(4.1)

Precision
It is defined as the proportion of accurately predicted positive data to total an-
ticipated positive data, including True Positive and False Positive values It is a
proportional quantity of accurately anticipated to total anticipated positive data,
including True Positive and False Positive values. It represents a model’s overall
efficacy as out of all attack scenarios how many are accurate.

Precision =
TP

TP + FP
(4.2)

Recall
Recall is defined as the ratio of correctly predicted positive data to total anticipated
True Positive and False Negative values. The ratio of accurately predicted positive
data to total expected True Positive and False Negative values is known as recall.If
any models detects False Negative values, it affects the recall metrics

Recall =
TP

TP + FN
(4.3)

F1-Score
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It establishes a balance between precision and recall.It determines the harmonic
mean between those two’s

F − Score = 2 ∗ Recall ∗ Precision

Recall + Precision
(4.4)

Confusion Matrix

Figure 4.1: Confusion Matrix of Decision Tree Binary Classification of Fridge

Figure 4.2: Confusion Matrix of Decision Tree Binary Classification of Garage Door

The Confusion Matrix represents the relationship between expected and actual
value. It is a summary from which correct and incorrect predictions may be clearly
understood. It is a N X N matrix where N is the number of classes in the target
variable. For Binary classification it is a 2 X 2 matrix and for multiclass classifica-
tion it depends on the “Type” label for our dataset. Here Figure 4.1, 4.2, 4.3, 4.4
are the confusion matrices after applying the Decision Tree and XGBoost algorithm
on the IoT_Fridge dataset and IoT_Garage Door dataset.
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Figure 4.3: Confusion Matrix of Decision Tree Multiclass classification of Fridge

Figure 4.4: Confusion Matrix of XGBoost Multiclass classification of Garage Door
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Chapter 5

Result

5.1 Result

Table 5.1: A Summary of Evaluation Metrics of Imbalanced Dataset

Evaluation metrics are used to analyze and interpret a model’s performance. This
also indicates how well or poorly the models are performing. Furthermore, Evalua-
tion metrics are essential for comparing different models. There are several metrics
for measuring performance. Some of the measures we use to evaluate our models in-
clude accuracy, precision, recall, and F1-Score, as well as the Confusion Matrix. The
Confusion Matrix represents the relationship between expected and actual value. It
is a summary from which correct and incorrect predictions can be clearly understood.
The performance of the imbalanced dataset is described in Table 5.1 and the bal-
anced IoT Fridge dataset’s performance is presented in Table 5.2. For the perfor-
mance measurements, the weighted average is calculated for each model’s result. In
case of Imbalanced Dataset, Decision Tree and Random Forest have outperformed
each other in terms of accuracy, precision, recall, and f1 score for binary and multi-
class classification. The XGBoost classifier has achieved a score of more than 98%
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Table 5.2: A Summary of Evaluation Metrics of Balanced IoT_Fridge Dataset

for binary classification and more than 99% for multiclass classification. MLP has
performed well in both classifications, and its performance has improved once the
data is scaled. Though Adaboost and ANN have achieved a score of more than
96% for binary classification across all datasets, their score for multiclass classifi-
cation has decreased. Adaboost has obtained the lowest score of 77% in multiclass
classification for the Modbus dataset, while it is above 85% for the other datasets.
Furthermore, ANN has the lowest accuracy of 16.78% and the lowest f1 score of
27%. Overall, Decision Tree, Random Forest, XGBoost and MLP have performed
really well for most of the datasets. On the contrary, the accuracy of Adaboost and
ANN have decreased for multiclass classification.
Figure 3.3 shows that the dataset is imbalanced and the majority of the data is
normal. As a result, approaches like undersampling, oversampling, and SMOTE
(Synthetic Minority Oversampling Technique) are applied to balance the dataset
and analyze the performance for both binary and multiclass classification. In case
of the balanced dataset, Decision Tree and Random Forest have achieved greater
than 99% accuracy for all data balancing approaches, with a higher f1 score than the
imbalanced dataset. However, Adaboost’s performance in binary classification has
dropped to nearly 94% when compared to the binary classification of the balanced
dataset. XGBoost and MLP have performed well for all the methods. Adaboost
has failed to classify four of the classes using undersampling, oversampling, and the
SMOTE technique, with a weighted average f1 score of 0.69. ANN could not classify
five of the classes and scored for accuracy the lowest of technique, 40%, 35% and
41% for undersampling, oversampling and SMOTE respectively.

5.1.1 XAI Result Analysis
LIME

Figure 5.3 and Figure 5.4 show the LIME explanations of the predictions for two
input instances using Decision Tree and XGBoost classifier on the Modbus dataset
and GPS Tracker dataset respectively. We can see from these two figures that each
of these explanations is divided into three parts: prediction probabilities for all
possible outputs, the bar charts for all outputs which represent the weights and
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Figure 5.3: LIME explanation of Decision Tree on Modbus dataset

Figure 5.4: LIME explanation of XGBoost on GPS Tracker dataset
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contribution of each feature in the prediction and a feature value table.
According to Figure 5.3, the Decision Tree classifier has accurately predicted the
output for a particular input data where the prediction probability of the “back-
door” is 1.00 and 0.00 for others. From the feature value table, we can observe that
features with Maroon color support ‘backdoor’ as a prediction outcome whereas fea-
tures with Blue support for the outcome of ‘not backdoor’. Therefore, the backdoor
is predicted as an output for the features ‘FC3_Read_Holding_Register_n’ and
‘FC4_Read_Coiln’. These two features have a positive impact on the prediction
since the feature value of ‘FC4_Read_Coiln’ is less than or equal to -0.50 and the
feature value of ‘FC3_Read_Holding_Register_n’ is larger than -0.50. The ‘date’,
‘time’, ‘FC_Read_Input_Register_n’ and ‘FC2_Read_Discrete_Value_n’ have a
negative impact on predicting the output as a ‘backdoor’.
From Figure 5.4, we can see that for an input instance the XGBoost classifier could
not predict the output correctly. It has predicted the output as “ddos” but the
actual output would be “normal”. The prediction probability is 0.85 for ‘ddos’, 0.14
for ‘normal’ and 0.00 for other possible outputs. From the feature value table, we
can observe that ‘time’, ‘date’ and ‘latitude’ are the features that have a positive
impact on the predicted output and for these features’ contribution this prediction
is made. The feature ‘longitude’ has a negative impact on the prediction, whereas it
has a positive impact for ‘normal’ output since it has a feature value of 0.31 which
is in the range of 0<longitude<=0.47.

SHAP

Figure 5.5: Feature importance calculated by SHAP value of Fridge dataset

Figure 5.5 shows the average impact of each feature on the prediction of the IoT
Fridge dataset using the Decision Tree model. This summary plot gives a global
explanation of this model. The names of the features are displayed on the Y-axis
in descending order of contribution, from highest (time) to lowest (fridge_temper-
ature). The X-axis represents the absolute means of SHAP values. In this figure,
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various colors symbolize various classes. There are seven different classes in this
figure. We can see from the figure that the ‘time’ feature contributes the most to
all classes. Moreover, the ‘time’ and ‘date’ features have a significant impact on all
classes. Whereas other classes have ignored this feature, ‘temp_condition’ has a mi-
nor influence on ‘normal’, ‘ddos’, and ‘ransomware’. The ‘fridge_temperature’ has
the least influence and almost all the classes have completely ignored this feature.

Figure 5.6: SHAP Summary Plot for Fridge dataset using Decision Tree

Figure 5.6 shows summary plot of SHAP for the Fridge dataset using Decision Tree.
The dots in the plot are the data points of the IoT Fridge dataset. The color
represents feature value, with red being high and blue representing low. On the Y-
axis, the names of the features are given in descending order of contribution, from
highest (date) to lowest (temp_condition). The X-axis shows SHAP values which
shows whether the feature contribution has a positive impact or negative. As there
are seven different classes in this dataset, there can be a total of seven possible
outcomes. For each possible outcome, there is an array of SHAP values. So for this
plot, we have used shap values for a possible outcome.
From this figure, we can see that the ‘date’ is the most important feature, whereas
‘temp_condition’ is the least important. The feature ‘date’ has high feature value
which has a positive impact on the outcome. We can also observe that, as the feature
value of ‘time’ is increasing, the positive impact on the prediction is also increasing.
Though the feature ‘temp_condition’ has no effect on model prediction, there are
two extreme cases where a high value has a negative impact and another high value
has a positive impact on the model output.
The summary plot of SHAP for the Fridge dataset using MLP is shown in Figure
5.7. The data points from the IoT Fridge dataset are represented by the dots in
the figure. The names of the characteristics are shown on the Y-axis in descending
order of contribution, from highest (sphone_signal) to lowest (door_state). The
X-axis displays SHAP values, which indicate whether the feature contribution has
a positive or negative influence.
According to this figure, the ‘sphone_signal’ property is the most significant, while
the ’door state’ feature is the least important. The feature ‘sphone_signal’ has a
low feature value, which has a favorable influence on the outcome. We can also see
that when the feature value of ‘door state’ increases, so does its positive influence
on prediction.
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Figure 5.7: SHAP Summary Plot for Fridge dataset using MLP

ELI5

Figure 5.8: Feature importance of Fridge dataset using ELI5

In Figure 5.8, we have used the show_weights() method of ELI5 to show the feature
importance in descending order for the prediction of the Random Forest model on
the IoT Fridge dataset. We can use this to find out how this model works on a
global scale. According to the figure, the feature ‘date’ has the highest approximate
weight of 0.4929, while the feature ‘fridge-temperature’ has the lowest importance
with an approximate weight of 0.0090. We can also observe that the ‘date’ and
‘time’ features are in Green color but the ‘temp-condition’ and ‘fridge_temperature’
features are not. The Green color represents the most significant feature with a
positive contribution whereas Red represents the least significant feature with a
negative impact. Because there are no Red features in this table and the feature
weights are all positive, we can conclude that all of the features have a contribution
to the model prediction.
In Figure 5.9, we have used the show_prediction() method of ELI5 for a single
instance. This allows us to see how each feature contributes to the prediction of
a certain input sample. The Random Forest model has accurately predicted the
output for an input sample of the IoT fridge dataset. We have observed the top four
targets for this prediction. The green color represents the most significant features
of that prediction, while the red color represents the least important. According to
this figure, the prediction probability of ‘ddos’ is 0.810, whereas the likelihood of
‘normal’ is 0.190. Other targets have a 0% chance of being predicted. The ‘date’ and
‘time’ are the two most important features with the contribution of (+0.557) and
(+0.200) respectively for this particular prediction. The actual values of ‘date’ and
‘time’ are (-0.125) and (0.928) respectively. However, with the target class ‘normal’,
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Figure 5.9: ELI5 explanation of a prediction using Random Forest in Fridge dataset

a completely opposite scenario can be observed. These ‘time’ and ‘date’ features
contribute the least to the target ‘normal’. Similarly, the feature ‘date’ contributes
the least to the ‘backdoor’ attack, while ‘time’ contributes the least to the ‘injection’
attack.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion and Future Work
The expansion of the IoT sector increases the number of potential threats that may
have an influence on the effectiveness, gadget safety, and especially our confidential-
ity. As a result, keeping IoT systems secure has become a big challenge nowadays.
Because of the unique structure of the number of co networks and design, the Oper-
ating system presents new security issues that go far beyond traditional information
protection. Consequently, to put up with this factor, we created a brief summary of
the identification and classification of different IoT network threats using machine
learning and deep learning algorithms. All algorithms performed well (above 96
percent) in binary classification for the unbalanced dataset. When all of the clas-
sifiers were compared, Decision Tree and Random Forest outperformed the others
(by more than 99 percent) in both binary and multiclass classification. We have ap-
plied undersampling, oversampling, and SMOTE techniques on the Fridge dataset
and evaluated the result for different classifiers. Moreover, approaches like LIME,
SHAP, and ELI5 are used to interpret and understand the models. However, For
the device constraints, we could not use real-time data for our experiment. In the
future, we will try to use real-time data for testing the classifiers.
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