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Abstract
Convolutional Neural Networks (CNN)-based automated approaches are vastly utilised to
anticipate and diagnose cancer, saving time and reducing mistakes. Deep Learning (DL)
CNN methods use a variety of probabilistic and statistical methodologies to make com-
puters understand and identify patterns in datasets based on previous experiences. We
proposed an efficient federated learning based model to classify histopathological images
for detecting colorectal cancer while providing high prediction accuracy and maintaining
data privacy. Federated learning solves the problem of retaining privacy while utilizing
vast and heterogeneous private datasets collected from numerous healthcare facilities. As
the amount of patient data obtained for the process of machine learning is significantly
responsible for the success of enhancing the accuracy of the system, the experiment was
performed on a large dataset including cancerous and non-cancerous colorectal tissue im-
ages. FL can also mitigate costs resulting from traditional, centralized machine learning
approaches. We have also applied the XAI method, a model-agnostic approach to acquire
an explicit demonstration of the applied machine learning models. With XAI, we can
visualize the super pixels of our colorectal tissue images through accepting and reject-
ing features. While applying various CNN models such as VGG16 & 19, InceptionV3,
ResNet50, ResNeXt50, and comparing their precision, ResNeXt50 was established with
the highest accuracy of 99.53%. Therefore, we have applied ResNeXt50 on FL that brings
forth the accuracy of 96.045% and F1 Score is 0.96.

Keywords: Federated Learning, XAI, Deep Learning, Colorectal Cancer, Convolutional
Neural Network, Image Classification, ResNeXt50
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Chapter 1

Introduction

1.1 Background
Colorectal cancer being one of the most common malignant neoplasms, in terms of cancer
mortality, it ranked from 2nd to 4th in the globe, based on the region, form of disease, and
gender. It also indicates an upward trajectory in terms of morbidity and mortality. Nu-
merous causes, including biological and epigenetic ones, may have a part in the growth
of such conditions. Depending on where the coloreactal cancer starts, it can be entitled
as either Colon cancer or Rectal Cancer. In our work, we have shaded more light on the
colon cancer which is defined as the abnormal proliferation of tissue also known as polyp
that is adjacent to the intramural area of the colon. The closest part to rectum and anus is
known as the large intestine that holds the most common area for cancer which is called
pelvic colon or sigmoid colon. It is the final part of the digestive system which absorbs
water and salts from excreta. Abnormal growth of tissue is often classified as a tumor, but
when it has the potential to spread and cause harm, it is defined as cancer in Oncology.

Colon cancer is conventionally detected by using certain radiological examinations such
as Colonography that can procure an interior view of colon and these images are examined
by the radiologists to find polyp-like structures using computer tools. Identifying polyps
in a primary stage is pivotal for survival as they might transform into colorectal cancer
at a delayed stage. The overall five-year survival rate of colon cancer is around 68% in
a specific stage. It was estimated by the American Cancer Society (ACS) in 2014 that
136,830 people were diagnosed with colorectal cancer and 50,310 among them died [1].

An invasive polyp detection procedure, Colonoscopy is quite time demanding and expen-
sive that requires high quality bowel preparation and air insufflation during examination.
The results brought by these examinations are constructed by the finding of the radiolo-
gists and endoscopists and can be less accurate which may lead to a missed detection. A
certain judgment of the operator not only determines the risk of the patient getting ex-
posed to cancer but also decides the stage of cancer where the patient should get through
treatment methodology such as chemotherapy or clinical surgery. Hence, it is vital for the
operators to have precise knowledge and expertise to be capable of declaring a patient’s
condition properly. In the early stages of colon cancer, features such as micrometastasis
and polyps are often ignored or misidentified because of their diminutive and sessile ap-
pearance. Missed polyps often result in a late diagnosis of Colorectal cancer, lowering
the survival chances to 10% under the worst scenarios [2]. This is why this technique of
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cancer diagnostics is inefficient and inaccurate.

In recent decades, the use of Computer Aided Diagnostics(CAD) has brought a major
ameriolation in cancer detection techniques which is fabricated by automated data cura-
tion and annotation of video data. Modern classification and diagnosis of colon cancer is a
result of thorough maneuvering of machine learning and deep learning algorithms. Deep
learning is a subsector of Artificial Intelligence which works by extracting useful patterns
and features from specific datasets to determine an accurate result. Steadily, it has become
the most extensively used computational strategy in the field of machine learning, deliv-
ering exceptional results on a variety of complex cognitive tasks through it’s universal
learning approach with scalability and robustness. CNN is the most utilized class of Deep
Neural Networks that has an eminent contribution on the detection and classification of
colon cancer at different levels. Being a layered artificial neural network, CNN can detect
patterns in pixelated images. We conducted our classification task with the decentralized
Federated Learning(FL) synced with appropriate CNN models. FL is an adaptive learn-
ing paradigm that allows several edge systems to work together to train a global model
without relying on a single device’s dataset. When an individual company or client lacks
the necessary or valid data, FL can help improve accuracy of the model. It’s also a viable
option when data consolidation is unwanted or impossible owing to privacy or regulative
issues.
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1.2 Research Problem
Since colon cancer is becoming more common, newer categorization techniques using
various algorithms are being introduced to us on a regular basis. It is challenging to ac-
celerate algorithm enhancement in this province due to a lack of available data indices.
Furthermore, systematizing medical data repositories is difficult since it necessitates a
high level of precision and accuracy in the field [3]. As its phenomena is primarily rec-
ognized via shape feature extraction, segmenting colon from noise in the colonography
image and eliminating structures that look identical from the genuine polyp is rather com-
plex. These issues can be resolved with extensive pre-processing and color normalization
of our training dataset. Macenko’s method [4] is an already existing color normalization
process for quantitative analysis of histopathological images. We are using a pre-existing
dataset that has already been color-normalized using Macenko’s method. This initiative
should be beneficial to reduce noises in our dataset, resulting in a more efficient system
with accurate predictions for our model.

Several studies, including [5], have demonstrated that their models only apply to cases of
colon cancer but not in the cases of rectal cancer. It means the use cases for their system
have very limited flexibility. Considering this, we will be using a dataset that contains both
rectal and colon cancer, known as colorectal cancer tissue images. Moreover, the resulting
model is often unable to explain itself and its extracted features for classification. Due to
the sheer differences in result patterns, researchers cannot utilize this precise system for
other situations such as rectal cancer. Additionally, Polyp detection from photographs is
difficult due to large differences in polyp size, color, texture, and other factors [6]. As
a result, the system may overlook polyp patches. Besides, microscopic polyps are more
difficult to detect than larger ones. Flat or tiny polyps might cause it to be missed up to
22% of the time. The diameter of a little polyp can range from less than a fraction of an
inch to several inches. A possible solution to overcome these issues is the implementation
of XAI in our model, so that we can easily identify the accepting features of our dataset
and training model. As XAl marks the accepting and rejecting features using colored su-
per pixels for classification, we would be able to verify the polyp and micropolyp density
using this method more precisely and assume the approximate amount of polyp present
in a tissue.

Another study, Angermann et.al. suggested using video sequence analysis to train the
system [7]. Although video sequences are not applicable to our approach, the research
demonstrates an issue which is that the lack of public data is detrimental and presents
barriers to obtaining crucial findings. One reason might be that medical data reposito-
ries are heavily regulated. Motivated by this, we are planning to use a federated learning
model, which is primarily focused on the privacy concerns regarding medically induced
datasets. This model has potential to generate good results although not directly accessi-
ble by researchers. Similarly, in another research, author Bae et.al. mentioned that they
had a limited number of polyp samples considering there are many different types of ex-
isting polyps [8]. Hence there is an imbalanced training and the dataset outcome is biased
toward the class label. In the machine learning community this is known as “Class Im-
balance Problem”. For our FL model we are considering using comparatively large scale
clients to avoid this issue.
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Overfitting is a typical supervised neural technique flaw where a system needs to inte-
grate all of the datasets and ends up storing the patterns in the data as well as chaos and
unpredictable oscillations. An overfitting issue is indicated by a high standard deviation
in prediction accuracy. Overfitting can be caused by the model’s training phase or struc-
tural intricacy. On the other side, underfitting happens due to high bias in data. From
recent studies we’ve noticed that overfitting has been a fundamental issue in many cases.
However, to overcome these issues we’ve used a large dataset and some measurement
techniques such as, early stopping, dropout layer etc. early stopping strategy seeks to sus-
pend the model’s training before remembering data clutter and unpredictable oscillations.
Moreover, In a CNN architecture, large weights indicate a heavy dense network. Prevent-
ing prediction error by dropping out network nodes based on probabilities is an easy and
constructive strategy. To minimize the model’s intricacy, different levels of productions
are arbitrarily disregarded during normalization.

A vast database containing the entire range of conceivable anatomical features, diseases,
and input feature formats is required to train an AI-based cancer classifier [9]. Because
healthcare information is very confidential and data like this is hard to procure. Even if
information confidentiality could circumvent such restrictions, it is now widely accepted
that deleting schemas such as a patient’s personal information is frequently insufficient
to protect security. Another reason for the lack of comprehensive information sharing in
medicine is that gathering, and having a strong data set requires much time and resources.
As a result, such datasets may have important commercial value, making them less likely
to be freely shared. Instead, data providers frequently maintain fine-grained control of
the information they acquire. To resolve this issue we’ve applied FL in our research to
solve the challenges of data management and security by collectively learning models
rather than transmitting information. FL allows for collaborative discoveries, such as in
the form of a consensus mechanism, without transferring patient data outside of the in-
stitutions’ borders. Therefore, each collaborating institution’s ML process occurs locally,
with only model features being transmitted.

XAI is a collection of strategies that allow researchers to understand and trust advanced
techniques, findings and output. An AI model’s projected impact and potential flaws are
described using XAI. In AI powered strategic planning, it helps describe model correct-
ness, impartiality, clarity, and results. The goal of XAI is to help people understand how
machine learning and AI work and how they make decisions. The term ”black box” refers
to concepts that are so sophisticated that they have been not comprehensible by individu-
als. To overcome this problem we’ve come up with the application of XAI in our model,
it will recognize the biases in the actions. XAI helps to detect and understand unfairness
concerns so that it can be removed. By using this feature medical image analysis can be
advanced in future and utilization of image processing techniques will be progressive.

All of the research mentioned above employed CNN models to identify polyps for cancer
detection, although it is a really quick method, but this design does not explain why can-
cer occurs. Thus, XAI is highly effective in this regard. Along with identifying the tissue,
it also analyzes why it exists. Moreover, due to confidentiality constraints that surround
medical institutes around the world, image data and photos are sparse. As a result, the
incorporation of FL models would assure both data protection and CNN model efficacy.
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1.3 Research Objective
This research is focused on discussing a decentralized model of a deep learning based
CNN framework for detection and classification of Colorectal Cancer using histopatho-
logical images collected from publicly available medical data repositories. Precious and
timely detection of precancerous growth utilizing machine-driven technologies would as-
sist the patient in receiving suitable treatment in a timely manner, as most cancers are
curable only if caught early. Also the scarcity of relative data is taken into consideration
in our research, resulting in the implementation of a scalable federated learning model.
This decentralized model would ensure the privacy ethics that are mainstream in modern
day medical institutions. This research also proposes effective usage of Explainable Ar-
tificial Intelligence(XAI) to describe the model that will be followed. The followings are
the goal of our paper:

• To understand deep learning and the CNN model in a better way.

• To understand the feasibility of using CNN model in Colorectal Cancer classifica-
tion over a large dataset.

• To classify colorectal cancer affected images from multi-class tissues.

• To try to attain the best possible results by implementing different CNN models.

• To compare different CNN models and their performance over a selected dataset.

• To implement a scalable federated learning prototype model over our selected mod-
els.

• To implement XAI for visualizing the features found in this multiclass classifica-
tion.

• To further improve and add features to the model in future.

• The system should have consistent performance and enhanced patient variation ro-
bustness, as well as the capability to implement credible outputs.
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Chapter 2

Literature Review

AI based research, especially improvements in ML and DL, has resulted in game-changing
advancements in radiography, histology, genomes, and other domains. Contemporary
deep learning models have millions of parameters that must be trained from reasonably
large selected data sets to attain medical reliability whilst maintaining security, fair, and
equitable, along with generalizing effectively to the changing data. Deep learning, partic-
ularly Convolutional Neural Networks, and its application to medical image processing
have been thoroughly investigated in recent years. For example, by using the Kvasir-
SEG dataset, detecting and sectionalizing polyps [1],utilizing pre-processed CT images
to eliminate clutter to improve average precision, and CNN for categorization at different
levels [3], using histological pictures to develop an approach for colon cancer recognition
and categorization using CNN [5], using the most up-to-date region-based CNN tech-
nique to detect polyps in colonoscopy screening images and videos [6] etc. On the other
hand, Federated learning is a training ground that aims to solve the issue of information
governance and security by collaborating on training rather than data transmission. Even
though not all technological concerns have been settled, FL will undoubtedly be a topic
of research in the upcoming years. But many researchers have already addressed some re-
search on this topic. In particular, using mammography characteristics as a classification
approach developing the use of FL for multi-institutional collaboration by holding patients
data privacy [10], developing a breast lesions classification system based on mammogra-
phy features in order to assess FL’s effectiveness in the real world [11], demonstrating a
federalized future for healthcare technology,by pointing out benefits and influence of FL
for clinical implants, as well as highlighting key factors and challenges in implementing
FL for healthcare analytics etc. We will describe some of the study, its technique, objec-
tives, outcome, and constraint in this section of the publication.

Jha et al. conducted robust and large-scale experiments for detecting, finding, and section-
alizing polyps using a popular dataset known as Kvasir-SEG, and showed that different al-
gorithms perform differently on polyps of varying sizes and picture resolutions [1]. They
favored the ColonSegNet model for detecting and localizing polyps, as well as the IoU
and FPS metrics for detection and segmentation techniques. Furthermore, the qualitative
results distinguished the failed cases. According to the qualitative findings, YOLOv4 with
Darknet53 was previously demonstrated to be the best model for recognizing and locat-
ing polyps, however Ponugoti et al. showed that RetinaNet with ResNet101 outperformed
them [12]. Colon SegNet is significantly faster than UNet-ResNet34. It is 4 times faster
in terms of processing colonoscopy frames and 11 times faster in terms of processing
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speed than DeepLabv3 with ResNet101 [13]. Inception Resnet is unambiguously edified
with complete image frames. This may cause a temporal delay, but it provides a conven-
tional colonoscopy detection. Research in the future will be forced to focus more on the
development of improved algorithms for polyp recognition, localization, and deconstruc-
tion tasks, and the quantity of parameters must be addressed when developing models.
Furthermore, difficulties like saturation, reflectance, bubbles, contrast, and others should
be addressed more efficiently while identifying, localizing, and segmenting polyps [14].
With the help of data augmentation, calibration, and other advanced methodologies, this
model can be used not only in clinical settings for endoscopists, but also in scientific
computation sectors with further progress in terms of accuracy, precision, and rate of ac-
celeration.

Godkhindi et al. exploited pre-processed CT images to remove clutter, which enhanced
average precision, as well as CNN for classification at various levels [3]. The colons were
classified as Type 1, Type 2, and Type 3 to assist eliminate secondary noise. The second
group of colon blocks is prone to low sensitivity and specificity, which is why the images
were further processed before the polyp was identified. Following that, KNN (K Nearest
Neighbor) and RF training and testing were undertaken (Random forest). While decon-
structing the colon, the precision levels for CNN, RF, and KNN were 87%, 85%, and 83%,
respectively. For CNN, RF, and KNN, the vulnerability level of polyp detection was 88%,
80%, and 83%, correspondingly. As a result, the research shows that CNN classification
outperformed KNN and RF in both colon segmentation and polyp identification. The use
of a GPU in CNN processing can help to speed up the process. The recommended method
can be used to investigate intracranial tumors, lung cancer, breast cancer, and a variety of
other clinical imaging diagnostics. While most cancers can only be cured if caught early,
accurate detection of precancerous tissue expansion with computerized tools can assist
patients in receiving the proper treatment.

Kwak, M. S. et al. established a methodology in which CNN was employed for colon can-
cer recognition and categorization using histological images [5]. By analyzing histology
images and applying CNN to uncover patterns based on the development of Lymph-Node
Metastasis, this technology may detect and classify the stages of cancer patients. A dataset
was extracted from 600 test subjects and employed in this process after the machine had
been trained. Imperfect photographs were filtered out of the test during pre-processing.
Rectal cancer photographs were also eliminated because the outcome is different from
that of colon cancer. To eliminate any irregularities or corruption in the test photos, Mi-
croenvironmental Feature Extraction was used to improve the procedure.

Shin et al. adopted the latest region-based convolutional CNN technology to find out
polyps in pictures and videos obtained from colonoscopy screenings [6]. Automatically
classifying colon cancer from polyp pictures is difficult due to the difficulty of recognizing
abnormal tissue growth. Colon Polyp images are unfortunately in low supply. Because of
brightness and color difficulties, many Polyps may not be recognized to train their model.
They applied an Inception Resnet transfer learning approach to train their model .To in-
crease the quantity of images of polyps, an augmentation was used to solve the problem
of a Colon polyp shortage. Flipping, rotating, shearing, cropping, zooming in and out,
and other augmentation techniques changed current data to produce new polyp images.
Regional Proposal Network was used to classify polyp regions. It takes input as images
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and shows the number of polyp regions as output. Furthermore, to detect colon polyps
from video frames, an offlearning scheme was introduced to make their model more ef-
ficient. Moreover, they utilized false positive learning techniques to reduce false positive
outcomes. After performing Haar, LBP and offline methods, the F1 scores were 40.8%,
38.5% and 86.9% resepectively. Although the detection system is not good for real time
polyp detection as the model processing time of each frame is time consuming, but as
time is not a constraint, this model can detect polyps efficiently.

Angermann et al. proposed leveraging picture databases to develop an automated ap-
proach for detecting polyps [7]. Detecting polyps in real time can be improved by using
video sequence analysis. A new spatio-temporal coherence module and emulsion of fea-
ture descriptions have been included. Cascade Adaboost learning and active learning
methods were used to create the classifier, which gave it more negative new cases. They
used an image database containing six patches of picture: one positive patch with polyps
and five negative patches with no polyps to train their classifier. The presence of polyps
and a set of Regions of Interest are detected by the Classifier polyp detection function
(RoI). The non-polyps regions of interest (RoIs) are then sent back into the classifier for
an active learning process to achieve the best results. The fundamental issue with the still
footage-based method of video analysis is that it does not take into account the informa-
tion from previous frames while generating the new output. As a result, this procedure
does not produce consistent results. To tackle this, they examined the Region of Interests
of polyps in two prior frames before giving output in their classifier and matched if the
previous frame’s ROIs overlapped with the current frame’s. If the current RoI matches the
previous RoI, the output is kept; if the RoI does not match, the frames are discarded. This
is the method of spatiotemporal coherence. They employed the LBP and Haar methods
in their classifier, with the LBP scoring 20.24 percent F1 and the Haar technique scoring
31.10% F1.They got higher accuracy by using the Haar method in the classifier.

Bae et al. discussed how learning-based detection is difficult to detect polyps because the
data set is imbalanced, and detection gives us a biased result because learning-based clas-
sification requires a large amount of data, and samples without polyps are greater than
polyp samples [8]. As a result, they introduced a data sampling-based boosting frame-
work in this paper in order to detect polyp from an unbalanced data collection. They
employed up/down sampling in their paper and used this sampling approach to construct
a polyp detector. Furthermore, they applied partial least square analysis as a learning
method to strengthen the unique distinction between polyp and non-polyp that have simi-
lar appearances. Additionally, they employed certain complicated datasets to demonstrate
the efficacy of their theory. They also employed a formula for precision (Precision =
TP/(TP+FP)) and recall (Recall = TP/(TP+FN)) while analyzing the results. They indi-
cated that learning-based detection can be utilized to detect, track, and classify complex
objects using this sampling strategy.

Riberio et al. applied CNN to detect acid gastric polyp. This is a novel strategy that
we discovered while reviewing all of the thesis [15]. For polyp identification, they used
the SSDGPNet architecture and SSD for Gastric Polyps. The authors of this article re-
purposed data that had been abandoned by Max-Pooling layers in order to maximize the
precision of the feature maps’ data from the feature pyramid. They concatenated the data
from the pooling layer as an extra feature so that it can aid in the categorization and
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recognition of the polyp. In the meantime, to successfully expand the number of chan-
nels unfolded from the top layer in order to establish an explicit relationship between the
layers. Using improved SSD for gastric polyp, real-time polyp detection is possible at
50 frames per second that improves mAP from 88.5% to 90.4%. The trial also revealed
that SSD-GPNet had a high detection polyp recall of over 10%, especially when detect-
ing tiny polyps. Previously, polyps were detected using elliptical characteristics, texture,
color, and location, but it was time intensive and the method had a high percentage of false
positives, according to this article. As a result, the authors proposed that the polyp can be
detected in real time using SSD architecture. They used 215 patients’ pictures with gas-
tric polyps to conduct the experiment to evaluate the performance of SSD-GPNet. After
collecting the data, they ran the algorithm and acquired a precision of 93.92% in SSD-
GPNet. So they showed in the research that SSD-GPNet can detect more true positive
polyps and is very promising in detecting gastric polyps, but there are certain limitations
to this SSD-GPNet. Because it contains numerous parameters, the time output is slightly
reduced, and the authors of this paper merely concatenated pooling results to expand fea-
ture maps to avoid picture data loss due to Max-Pooling.

Sirinukunwattana et al. recommended a procedure to detect and classify nuclei in H&E
stained histopathology images of colorectal cancer following SC-CNN and NEP associ-
ated with Softmax CNN respectively [16]. In this procedure, SC-CNN reverts the proba-
bility of a picture element existing in the midpoint of the nucleus and detects all nucleus
in an image by discovering their center point, despite their labels for classes. On the other
hand, NEP along with CNN is used to classify the identified nuclei more precisely. For
this paper, a large data set consisting of almost 20,000 explicated nuclei of four different
classes from colorectal cancer images are used. One of the many factors which obstruct
the techniques that are automated for detecting and classifying all cell nuclei is low-grade
picture standard that could arise as a result of a defective fixing. Moreover, low quality
staining while processing the tissues and autofocus omission throughout the computation
of the slide might be the reason as well. Besides, in colorectal cancer the epithelial nuclei
sometimes have asymmetrical chromatin consistency and remain strongly concentrated
concurrently with an unclear lining,so It becomes tough to distinguish a single nucleus.
Another thing which made the classification strenuous was different looking but similar
nuclei both in the same and other samples. For more error-free classification they used
NEP along with softmax CNN which hold all related patch-based divination where the
nuclei was being classified rather than its single patch based correspondence. Also it does
not require the tough part of nuclei segmentation that might be challenging for the reason
stated beyond. This proposed method used small patches regardless of an entire image
which increases training data that is important for all CNN. Again, it helped to confine
small nuclei in images.

Liang et al. presented a method for recognizing colon cancer utilizing histopathological
pictures of colon lesions using Multi-Scale Feature Fusion based CNN (MFF-CNN) based
on shearlet transformation [17]. It is a process for extracting features automatically. The
distinction between this technology and others is that the system fetched histopathology
images as well as extracted secondary features. Shearlet coefficients were used in numer-
ous iterations to extract secondary properties from the source image. This method has an
F1 score of 0.9594 and a 96% accuracy rate. False positive and false negative rates can
be lowered to 2.5% and 5.5%, respectively. Furthermore, this discovery has the potential
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to provide real-time and accurate colon cancer detection.

Micah et al. established the use of federated learning for multi-institutional alliance, al-
lowing machine learning models without any need to share patient information [10]. They
evaluated federated learning to two possible cooperative technique approaches, IIL and
CIIL, and discovered that neither can equal federated learning’s efficacy. Large volumes
of data are required for neural network models for linguistic classification of images.
Obtaining adequate details in the diagnostic imaging sector is a serious difficulty. Coor-
dination across organizations might help to solve this problem, however sending clinical
information to the server site is fraught with regulatory and data control issues, partic-
ularly amongst multinational organizations. By repeatedly pooling locally competent
networks to a central controller, they used FL towards the BraTS dataset to create an
efficient classification algorithm that detects the diversity over several institutes without
revealing any patient information. The analytical findings showed that federated semantic
classification methods, Dice = 0.852 performed similarly to models trained via sharing in-
formation, Dice = 0.862 on intermodal neuroimaging. They used a deep learning model,
CNN framework, U Net, to perform supervised feature extraction. By contrasting FL
to two other collaborative deep learning they demonstrated that IIL performs relatively
poorly to FL and CIIL, and that CIIL is less stable and difficult to evaluate than FL. The
main drawbacks of IIL are decrease in efficiency as the institute grows and the problem
of catastrophic memory, in which accumulated characteristics are lost when retraining
information replaces the old data. With a large range of scores after each cycle, CIIL is
less consistent because of CIIL’s unpredictability. However, Data for training assessment
throughout CIIL and FL learning, DC results for organization 0 suggest that the CIIL
models suffer from some catastrophic memory. Forgetting could be the source of CIIL’s
inconsistency. Moreover, In any of the above learning settings, organizations could be
included or withdrawn after some training. For such instances, the empirical framework
through additional collaborative learning should be a common lineage to the model that
is determined through training from the start with the new batch of collaborators. Any
discrepancies would ultimately be discarded and a new dataset could be established, ac-
cording to the limits identified in this study of the specific collaborative arrangement.
However, even with imbalanced datasets, such as the real BraTS, their FL trials reached
99 percent of the prediction accuracy of a data sharing approach.

Holger et al. did a study to construct a breast lesions classification method using mam-
mography features to analyze FL’s efficiency in the physical world [11]. In a genuine
shared scenario, they studied the application of FL to create diagnostic imaging classifi-
cation techniques. They demonstrated that they can effectively train artificial intelligence
systems in federation despite major variances in datasets among all locations and without
standardizing information. The findings showed that models generated with FL outper-
form trained models only on an institute’s local data by 6.3% on average. Additionally,
when compared to the test results from the other participating sites, the models’ gener-
alization improves by 45.8%. Moreover, they used the Federated Averaging method in
their tests. A softmax cross-entropy loss was used in this study, which is typically used
for inter classifiers. They concentrated on demonstrating how FL functions in a collab-
orative training environment. The FL architecture is written in Tensorflow8 and also to
unify learning setup. On a clinical level, every client divided their information into train,
test and validation sets. Results from all photos from a patient’s condition were averaged
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with each other at close intervals to get a patient model’s predict. In the FL context, they
attained a performance level of 0.68 for model parameters, indicating FL’s capacity to pro-
duce designs equivalent to those learned when data is collected in a centralized system.
They employed 1e-4 starting training data, step-based learning rate depreciation, adam
optimization and model loss tangent for every client. However, they purposefully avoided
using data harmonization procedures to examine the impact of diverse data categories
in this investigation. Besides they left future work for histogram equalization and other
techniques to harmonize non-IID data across several sites, or look into built-in domain
signaling pathways inside the FL architecture. Likewise, in their FL approach, they did
not adequately address issues related to data size variability and category balancing. They
also didn’t try any privacy-preserving strategies to limit the likelihood of model flipping
and data leaks depending on the different classifiers. In spite of these obstacles, they were
able to train mammogram classifiers in a real-world FL context that outperformed locally
trained models without the necessity for centralized datasets.

Nicola et al. visualized a federalised prospect for healthcare technology, and with this
perspective paper, they shared their prevailing opinion in order to provide clarity and de-
scription for the public about the advantages and influence of FL for clinical implants,
along with highlighting important factors and difficulties in implementing FL for health-
care analytics [9]. The distinctive features of FL in medicine also create difficulties, such
as ensuring information when interacting via redundant nodes, developing safe encryp-
tion technology to preclude security breaches, or implementing suitable node scheduling
algorithms to create the correct use of dispersed mobile computing and reduce idle time.
Although this is true that all machine learning-based technologies, mechanisms developed
in a federated method may be able to produce even less skewed conclusions and greater
responsiveness to unusual occurrences because they were probably subjected to a more
full data dispersion. Implementing FL on a worldwide scale would ensure that healthcare
practitioners are of good quality irrespective of surgical site.FL may lessen the barrier
towards becoming an information provider by assuring clients that their data will remain
at their own facility and that data access can be canceled. Moreover, according to their
research hospitals and clinics can maintain total ownership and administration of their
client records, with comprehensive data usage transparency, reducing the danger of third-
party exploitation.The collaborating organizations in a FL procedure with an aggregating
gateway may be entirely unknown to one another. Nevertheless, it has been demonstrated
that the systems may retain knowledge given specific circumstances. As stated by the
author, mitigation strategies such as restricting the resolution of information and intro-
ducing interference as well as guaranteeing proper differential privacy, may be required
and are still being researched. Additional issue is that data heterogeneity may result in a
scenario where the global ideal option is not the best for a single local institute. To further
strengthen security in a FL context, strategies such as differential privacy. Overall, the
community has shown enthusiasm in FL for medical applications and FL methods are a
burgeoning field of studies. Despite these benefits, FL does not address all of the chal-
lenges that come with learning from medical information. Quality of the data, biases, and
standardization are still important considerations in model development.

20



Chapter 3

Methodology

The purpose of our CNN based colon cancer classification model in deep learning is to
detect cancer through analyzing and classifying histological images of human colorec-
tal cancer. The pre-eminent step of our research is to procure a proper and appropriate
dataset containing both cancerous and non cancerous colon tissue images. The following
step is quite significant to acquire an uncorrupted and non biased result where we had to
process the images in the most suitable way. Then our dataset has to be divided into train,
test and validation data. Before feeding the dataset of images into a convolutional neural
network, we have to make sure that all the images are of the same size. Classifying im-
ages is a major step and the machine learning classification task that consists of more than
two classes, or outputs is known as Multiclass classification. The softmax function can
generate a classifier through being tacked into the last layer of a neural network. It creates
an output vector of length K through a probability distribution over K classes. The proba-
bility that the input corresponds to the corresponding class is represented by each element
of the vector. The most likely class is determined by selecting the highest probability
vector’s index. Convolutional Neural Networks (CNNs) perform adroitly on multiclass
classification tasks, especially for images and text, aside from the softmax function. A
CNN collects important features from data, especially those that are not affected by scale,
transformation, or rotation. This allows it to detect images that have been rotated, resized
or shifted off-center, permitting it to perform image multiclass classification jobs with
greater accuracy.
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3.1 Dataset Description
For constructing precise and vigorous Deep Learning models, large medical dataset with
raw images is a major prerequisite. Even though there are many medical image datasets
available, our target dataset must carry various kinds of medical entities, especially can-
cer pathology. Appropriate image datasets for Machine Learning are quite infrequent and
privacy concerns restrict access to these data.

Figure 3.1: Class Description

After exploring plentiful datasets, we have chosen to work with the one of Kather et al.
that contains a set of 0.1 Million non-overlapping histological images of human colon
cancer and healthy tissue [18]. The dataset comprises 9 classes described in figure 3.1.
The images of tissues were gathered from 86 H&E stained tissue slides of human cancer
from FFPE samples from the NCT Biobank and UMM pathology archive. Normal tissue
classes were augmented with tumor free sections from gastrectomy specimens to improve
diversity. Samples of the tissue included CRC primary tumor slides and tumor tissue from
CRC liver metastases.
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Figure 3.2: Tissue Image Samples

The images attached to our dataset are 224x224 pixels at a rate of 0.5 microns per pixel.
Using Macenko’s method, all the images are colour-normalised [4]. The samples of these
tissue contain both salient tumor slides and tissue from CRC liver metastases as exhibited
in figure 3.2. For increasing variability, non-tumorous regions from gastrectomy speci-
mens are supplemented with normal tissue classes.
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3.2 Image Pre-processing and Distribution
As high-resolution photographs have a high number of pixels, they necessitate more pro-
cessing power. Furthermore, the image resolution may differ throughout the training
phase and lead to an inaccurate result. Filtering high-resolution images in a convolution
layer takes longer than filtering a lower-resolution image. The quotidian way of normal-
ising images is to reshape them which is the first step of the whole processing expedition.
In the case of image datasets, dividing all the pixel values by 255 is a cardinal step as
the minimum pixel value is 0 and maximum 255. To bring a reduction in the amount of
parameters at the Conv layer is essential. Shifting the height and width, enabling the hor-
izontal flip will convoy variations in the training data while leading towards a robust and
explicit result. The dataset is splitted into training, testing and validation with the ratio of
7:2:1 to prevent overfitting as displayed in figure 3.3. Random sampling is used for the
split with proper caution to avoid the creation of any imbalance between the training and
testing split. All the models are fetched through keras API and implemented using the
tensorflow library.

Figure 3.3: Image Directories and Distribution in CNN Models

For the implementation of FL, we propose a slightly different distribution structure than
the one of CNN model. As we are focused on privacy, we do not test our models after
each epoch using the validation dataset and the whole dataset is divided into two different
directories, 80% to train directory and 20% to test directory. This is illustrated in fig-
ure 3.4 Images in train directory would be used for the general purpose of training our
local clients. When the whole model is trained, we would use test directory to project a
prediction model based on the confusion matrix. Moreover, to retain simplicity we would
not use any data augmentation for our FL dataset. But resizing into (50×50) pixels would
be the optimal option to feed our dataset into our FL model.
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Figure 3.4: Image Directories and Distribution in FL Model
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3.3 Convolutional Neural Network Architecture
Convolutional neural network is eminently illustrious Deep Learning model motivated by
biological processes that inspired the connectivity pattern between neurons. Being a mul-
tilayer perceptron and shared weight network composition, it is extensively utilised for a
flawless detection of cancer with a strong recognition propensity and formidable predic-
tion accuracy [19].

CNN is constructed of neurons with learnable weights and biases. Having appropriate
qualities for image processing make it easier to build the forward function and deduct the
amount of parameters in the Neural Network. The neurons or perceptions in most neural
networks accept some inputs, apply a dot product operation with weight, and arbitrary
follow it with non-linearity. As an output, it produces a scoring function and a loss func-
tion.

ConvNet is a series of layers arranged with three dimensions: width, height, and depth,
each of which uses a differentiable function to translate one volume of activations to an-
other. From the initial pixel values to the final output, ConvNets alter the actual image
through each layer. The Conv layer, being a series of learnable filters, is not only the
central component of CNN but also it is responsible for the majority of the computational
effort. In terms of picture input, the first layer filters may be used to detect all edges,
while the second layer filter could be used to recognize various geometric shapes. CNN
calculates the dot product between the filter’s values and a specific place in the input vol-
ume by sliding each filter across the width and height of the input volume. Since the filter
slides throughout the entire height and width of input volume, the Conv layer produces
an activation map of 2D array that covers the particular filter responses at each location
as demonstrated in figure 3.5

Figure 3.5: ConvNet

For output operation, depth, stride and padding are the three main factors. Depth and
stride decides the number of parameters and filter movement towards a specific side re-
spectively. Hence a smaller output volume is achieved. As shown in figure 3.6
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Figure 3.6: Output Operation of CNN

Figure 3.7: Activation function and Pooling layer

3.3.1 VGG16 & VGG19
The utilization of VGG16 and VGG19 architecture lies with detecting and recognizing
cancer cells from the images included in our dataset. Here, the 16 represents the layered
weight and. All layers in VGG use the ReLU activation function. One of the advantages
of the VGG16 algorithm is that it uses smaller receptive fields (3×3, 1 stride) compared to
other algorithms. Remarkable criteria of the VGG-16 is that instead of retaining so many
hyper parameters we will use a much simpler network.

VGG19 model provides a 19 layered weighted structure which is its only exception from
VGG-16. Among those three layers, the first two carries 80% of the total channels while
the third has only 20% channels, one for every class. ReLU is used by all the concealed

27



layers in the VGG network. The smaller layers benefit from having a larger number of
weighted layers, thus increasing the performance of and accuracy of the system.

3.3.2 Inception V3
Compared to VGG, Inception Network is computationally adaptive to a greater extent in
terms of the amount of parameters originated by the network and the monetary value of
resources including memory. To enhance the Inception network without losing compu-
tational advantages, the progressive, speedier and deeper network InceptionV3 includes
various methods such as smaller or asymmetric convolutions, dimension and grid size de-
pletion, and parallelized computations as shown in figure 3.8. It is built up with 42 layers
while having a higher accuracy. To propagate label particulars beneath the network, it
utilises Label flattening, Factorized 7×7 convolutions, and Auxiliary Classifier along with
the utilisation of batch normalisation [20]

Figure 3.8: Inception V3

3.3.3 ResNet50
Residual Network is a deep network that is capable of obviating both the gradient di-
minishing and degradation issue by applying the residual mapping technique. The most
frequent variety is 3 layered deep ResNet50 model that comprises 49 convolutional layers
and a sole FC layer sustaining 25.5 million network weights. Its computational complex-
ity is lower than that of VGG, even with enlarged depth. Feedforward neural networks
with detour connectivity can be used to realize the calculation of the output xl displayed
in figure 3.9.
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Figure 3.9: Residual network building block

ResNet ensures the simplicity of regulation and acquires increased accuracy as the net-
work depth rises, resulting in more precise outcomes than the earlier networks.

3.3.4 ResNeXt50
ResNext is a new generation of deep residual network and an intensified variety of the
Inception Network. It unmasks a new dimension in contrast to Resnet50 while follow-
ing the same construction with some modifications. It possesses an architecture that has
a multitudinous branch and is homogeneous with some hyper-parameters settings called
cardinality that enables the rearrangement, split, and integration topology in an untroubled
and constructive way [21]. Moreover, ResNeXt not only controls the resources more ef-
fectively but also escalates the retaining potentiality of the conventional CNN. ResNeXt50
is barely fallible when the cardinality is towering and performs admirably in comparison
to ResNet.

A rudimentary comparison between the ResNeXt architectures is demonstrated in fig-
ure 3.10 from where we can claim that, even though the number of parameter is higher
in ResNet50(25.5 × 106) than ResNeXt50(25.0 × 106), the FLOPs value(floating point
operations/second) is higher in ResNeXt50(4.2× 109).
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Figure 3.10: Comparison between ResNet50 and ResNeXt50 architecture

In a nutshell, the input is split by a network unit, modified into a requisite format and
merged to acquire the result where the same topology is pursued by all the blocks.
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3.4 Federated Learning
Collaborative training towards a decentralized model with privacy-preserving has attracted
the researchers over many years. The advent of federated learning technology enables the
training of a model with the incorporation of a central server while keeping the training
data decentralized in the distributed clients. It is our goal to use FL to uphold the conceal-
ment of user data and bring an expansion in data. Concurrently, it permits the participants
to collaboratively train a global model without sharing one another’s private data as pre-
sented in figure 3.11. The regional data requires to be pre-processed for each contributor,
which incorporates modification, digitalization, and standardisation for transmuting the
original data into a standard arrangement along with distinctive privacy. Images of our
dataset are distributed among different clients by dividing the total Size of Image with the
number of clients [20].Uniformly dividing the dataset, our IID data is generated.

Figure 3.11: Visualization of Our Proposed FL Model

Once the model parameters transmitted by the clients are acquired, the server will reca-
pitulate it according to the formation of the central server, upgrade the parameters of the
current model, and persevere it for the next round of training parameter upload and collec-
tion to the participants before remetting it [22]. The rudimental FL iterative procedure is
followed by the iterative process of our overall model, where we combine a CNN adapted
to cancer tissue data samples and customize the model to form continuous iterations. Our
proposed framework for federated learning is exhibited in figure 3.12.
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Figure 3.12: Proposed Framework for FL

In dispersed Machine Learning, the standard method of accumulating models implies that
all participants have the same amount of training samples. In Federated Learning, mem-
bers often possess uneven amounts of data. The local models are aggregated to solve this
by weighting each local model by the amount of available training samples as depicted in
figure 3.13. As a result, models with a larger number of samples are taken into considera-
tion than those with only a few. This method appears to be uncomplicated but has shown
predominance and efficacy in Federated Learning scenarios.

Figure 3.13: Federated Averaging

Each iteration of this process is known as a federated round, which includes concurrent
training, update aggregation, and parameter distribution. The main parameters to control
the calculating endeavour of FL are:
C = Clients or contributors taking part in an update cycle (in %)
E = Number of local epochs perpetrated by each contributor
B = Minimum batch size used for each local update
β1 and β2 = Hyperparameters

A certain amount of local epochs is run by the clients in the step of regional model opti-
mization, Adam optimizer exploiting [23] the first and second order moments for beating
the local minima:
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wi,t ← wi,t − η

√
1− βn

2

1− βn
1

× mi,n√
vi,n + σ

(3.1)

Decaying averages(mi,n and vi,n where, n = timestep index of the Adam optimizer):

mi,n ← β1mi,n−1 + (1− β1)∇L1(wi,t;bi) (3.2)

vi,n ← β2vi,n−1 + (1− β2)∇2L2(wi,t;bi) (3.3)

For image segmentation problems like tumor segmentation, the number of local epochs E
is usually kept below 2 while the batch size B is increased as much as possible to exploit
all the parallel computations given by the GPU.

The aggregation stage is a significant part influencing the performances of the algorithm
to a great extent is performed across a weighted average.
Si = |Di|= number of samples of each client
ϵ = Memory regulator of previous models to ensure a smooth,infrequent changes in weight

wG,t+1 =
ϵ∑N

j=1 Sj

N∑
i=1

Siwi,t + (1− ϵ)wG,t (3.4)

Explainable Artificial Intelligence
The Explainable AI (XAI) appertain to elucidate the decision making process of machine
learning models while maintaining an elevated prediction proficiency. It produces com-
prehending methods creating an opportunity for the users to count on and contrive the
efflorescing generation of artificially intelligent partners [24]. Even though most machine
learning models are utterly resilient like a black box, XAI is programmed to describe its
purpose, rationale and decision-making process explicitly for a convalescent user experi-
ence like the visualisation in figure 3.14.
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Figure 3.14: An average person can understand the purpose, rationale and decision-
making process through XAI

Among many XAI techniques, Lime or Local Interpretable Model-agnostic Explanations
can simply provide interpretable and local explanation of any black-box model. A proto-
type of the interpretability method of XAI is shown in figure 3.15. Generally, lime follows
four steps including input data permutation by generating samples through super-pixels
of image, predicting the class and calculating the weight of each artificial data point, fit-
ting linear classifier to explain the most significant features. Implementing a pre-trained
CNN model on XAI enables us to discern the prediction accuracy and analyse the model
behaviour while classifying the image.

Figure 3.15: Interpretability of XAI
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3.5 Workflow
The following diagram 3.16 illustrates the work flow of our research. After analyzing the
feasibility of each our theorized models we are planning to implement using our afore-
mentioned dataset. The division of images into different sub-categories and preprocessing
steps are conducted following the diagrams. Then five different CNN models were trained
and based on their trained model and prediction model results we will compile a compar-
ison report shown in Results section. Based on the report, best CNN model which is
ResNeXt50, will be used as primary model of FL implementation as shown in the right
portion of the diagram.

Figure 3.16: Workflow Diagram
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Chapter 4

Implementation

We deployed our theoretical knowledge to the test by implementing a federated learning
architecture utilizing existing CNN models after thoroughly comprehending the whole
architecture of CNN and federated learning as stated in the methodology chapter. To
compare and determine the best model for our federated learning application, we imple-
mented five different CNN models which are VGG16, VGG19, InceptionV3, ResNet50,
and ResNeXt50. The same configuration was used for all of the models. After choosing
the best model for our federated learning application, we implemented it using that spe-
cific model. Extensive discussion of these implementations are discussed in this chapter.

Tensorflow and Keras:
For our implementation, we have used Google’s tensorflow platform. Tensorflow is an
open source platform for machine learning and deep learning applications. Besides, we
have used keras which is a neural network API for computing deep learning and computer
vision models. The models were pre-loaded from the tensorflow library. Layers like flat-
ten, dense, and dropout were manually inserted after the model’s own design before the
output layer, which comprises 9 distinct neurons. As weight, ImageNet was used which
is a large database of hierarchical classification images of over 1000 different classes.
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4.1 CNN Models Implementation
This section explains the CNN models and it’s implementations. It also includes the
features and methods that were used to improve the overall result, reduce error rate and
chances of overfitting in our model.

4.1.1 Image Pre-processing and Augmentation
Although our dataset consists of images of (224×224) pixels, we have resized the images
to (100×100) to balance computational complexity for our application. After success-
fully integrating the train, test and validation images from our dataset into our model. We
used image augmentation techniques to alter our train images. ImageDataGeneretor was
used to apply these augmentation which are image resizing, shifting, vertical and hori-
zontal flipping. The reasoning behind this was to introduce variation for our images. As
a bonus, this method also helped us to reduce overfitting for our models.

4.1.2 Layer Architecture
After the general architecture and construction of layers in each model, we have added
several layers such as flatten, dense and dropout layers. These layers were added be-
fore the final output layer which has 9 output neurons. This is shown in the following
figure 4.1. As each of our models have different layer architecture, we have added ad-
ditional layers to all of them. As our convoluted classification model is processed, the
flatten layer transforms the data into a 1-dimensional linear vector as our output layers do
not recognize 2 or 3 dimensional shapes directly. So the addition of a flatten layer creates
a long linear vector of feature array. Dense layers with 1024 neurons were added after a
flatten layer. Then a dropout layer was added which extracted and dropped unimportant
features from our model. It further reduces the chance of overfitting. As our final layer,
another dense layer was added with 9 output neurons. These represent our 9 different
classes. This is the architecture that was followed in all our CNN model implementations.

Figure 4.1: Layer Architecture for CNN Models
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4.1.3 Earlystop: A Technique To Reduce Overfitting
Earlystop is a concept of keras library. The main use case of this method is to reduce over-
fitting in models. It has the capability to reduce overfitting the model despite not losing
accuracy or effectiveness of that model. It is a cautionary technique that has been used in
image classification in recent years. In our model, we used earlystop with a patience of
10, meaning that if our validation accuracy does not change in 10 successive epochs, the
model will stop training automatically, thus reducing the probability of overfitting.

4.1.4 Prediction Model Generation and Confusion Matrix
Our CNN models generate predictions based on 10392 images which were used from
test directory images that were not used during the training of our model. The images
were taken as list items which represent 9 probable results based on our 9 different output
neurons. The 9 probable results represent the probability of that image belonging to that
particular class. After calculating the highest probability between 9 classes for each list,
we form a prediction list of all test images.

The test images were labeled 0 to 8 to illustrate the confusion matrix. Then a test label
list was created by appending the corresponding labels of each test image. By comparing
prediction list and test label list, confusion is generated to calculate the result. In the con-
fusion matrix, the diagonal values represent the true positive values of each class, whereas
the other values represent faulty predictions.

Explainable AI Integration
A pretrained ResNeXt50 model was loaded to explain our images using the LIME li-
brary. We selected one image from each class of our training directory. All images were
reshaped to 100×100 resolution and kept 1000 artificial data points which will be the same
as the input image. Then we passed the selected images from each training directory to
the LIME explainer function and it marks out different areas of the images. Results of
these implementations can be found in figure 5.5.
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4.2 Federated Learning Implementation
Implementations of the federated learning had been explained in the following section
which would include the process of the data being trained in the local client devices and
the aggregation of the local model in the central server.

4.2.1 Image processing and Resizing
We resized the images of our train and test directory from our existing dataset which
consist of (224×224) pixels to (50×50) pixels to decrease the complications in our com-
putation. The reason behind the application of the train and test directory is because
images of the train directory would be distributed among the end devices/clients for local
training of the data and the images of the test directory would be used for testing purposes
in the global model.

4.2.2 Local devices (Client) Creation
In the architecture of federated learning, the datasets were trained in the local devices,
Afterwards, the end devices would send their trained local models from the dataset to
the central server for aggregation. Therefore, we created 10 local devices for our model
which were denoted as clients, and the clients would train their model based on their own
local datasets.

4.2.3 Distributing Data Among Clients
We distributed data among the end devices through data sharding which is a process of
distribution of smaller datasets known as logical shards/chunks from a larger dataset.
Although, in a real-world application, each client would contain different sizes and vari-
ations of the dataset, in our FL prototype we distributed the shards equally among the
clients in the model, and the size of the shards were determined by the following formula:

Shard Size =
Total Num. of Images

Num. of Clients
(4.1)

Following that, each of the data shards was processed and assigned to the clients through
the process of batching. After the completion of the process, every client acquired their
local datasets and they were ready to train their datasets.

4.2.4 Integration of ResNeXt50 and Its Configuration
As mentioned earlier the local datasets were trained in the local devices. We implemented
the ResNext50 architectural model on each client to train their local data and in the global
model for its testing purposes. We also implemented 3 extra CNN layers which were
the Dense layer, Flatten layer, and Dropout layer. Similar to the CNN implementation
we used ImageNet as it’s the default weight in the model. Adam optimizer (lr=0.00001)
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was used for optimizing the accuracy of ResNeXt50 and also we implemented categorical
cross entropy for calculating its loss function.

Communication Rounds
We ran the communication round 20 times to attain a certain accuracy for our global
model. Communication cycle/round where the clients containing the datasets that we
created earlier would acquire their weight according to the global model’s weight where
each of the 10 clients would start to train each of their local data and produce their own
accuracy of their local model. Afterwards, each of the clients sent their trained model to
the central server, also known as the global model, for aggregation which is an averaging
operation of the FL model. Following the first aggregation, the global model produced a
new weight and in the next round, the clients would set their new weight according to the
newly found global weight. This type of operation was implemented as a weight scaling
factor in our model.

After the completion of the communication cycle, the images of the test directory were
provided in the global model to construct a prediction model. Finally, we generated a
confusion matrix using the prediction model.

40



Chapter 5

Results

Initially, five distinct models were trained over the identical dataset, as indicated in the im-
plementation section. Precautionary measures were enacted to minimize the probability
of overfitting or underfitting. Early-stopping was a significant preventative step. Conse-
quently, our models did not train for static epochs or runtime. Rather, different models
were trained for different epochs. Despite that, Initial results show no visible discrepancy
or infectivity. Considering this, the result of all the models can be evaluated side by side.
After compilation of each model, the following results can be derived from it- Accuracy
Curve, Loss Curve, Scatter and Line model, loss and confusion matrix. Moreover, using
a confusion matrix, we can determine the accuracy, loss, precision and recall value which
can be used to calculate the F1 score of our models. The formula for calculating F1 score
are given below-

Given:

TP = True Positive

TN = True Negative

FP = False Positive

FN = False Negative

Using this we can derive:

Accuracy =
TN + TP

TN + TP + FN + FP
(5.1)

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

F1 Score = 2× Precision×Recall

Precision+Recall
(5.4)

We will explain unique results of each model in this chapter, then create a comparison
graph and chart to distinguish between these models and their effectiveness. Furthermore,
the results of federated learning and XAI will also be explained here.
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5.1 Model Specific Results
We have accumulated thorough information from the results of each model. As ResNeXt50
has scored the highest accuracy among all other models, we would like to utilize it. To-
tal epoch for this model was 39 until early-stopping was called. Over 39 epochs, this
model managed to reach a peak accuracy of 0.9955 meaning 99.55%. The following
figure 5.1 shows the comparison between training and validation accuracy where epochs
are displayed in x-axis and y-axis provides the accuracy value. In addition, it shows the
loss value for training and validation where in x-axis displays the epoch and y-axis corre-
sponds with the loss value.

Figure 5.1: Accuracy and Loss Plotting

Figure 5.2 shows the scatter model for training and validation accuracy and loss over each
epoch. This helps us to illustrate the patterns to explain our results properly.

Figure 5.2: Scatter Plotting For Training and Validation

As well as scatter model figure 5.3 shows the line model for training and validation values
over each epoch.
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Figure 5.3: Line Plotting for Training and Validation

And finally using the prediction model we were able to predict a number of testing data
with results. This helped us to generate a confusion matrix shown in figure 5.4 which can
be used to further generate the accuracy, precision, recall and F1 score. The diagonal val-
ues in the matrix represent the true positive values of each class and other values represent
the incorrect predictions.

Figure 5.4: Confusion Matrix for Prediction Model

After compiling all these reports, we were able to generate the result for our ResNeXt50
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model. Over 39 epochs, our experiment was able to achieve an accuracy = 0.9953, loss
= 0.0262, precision = 0.9955 and recall = 0.9952. Using the formula of F1 score our f1
score is 0.9953.

F1 Score = 2× Precision×Recall

Precision+Recall

= 2× 0.9955× 0.9952

0.9955 + 0.9952

= 2× 0.9907

1.9907
= 0.9953
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5.2 Explainable Artificial Intelligence
We deployed XAI to visualize the patterns used for image classification after we imple-
mented our ResNeXt50 classifier model. The output of our XAI implementation is shown
in the following figure 5.5. Each class has two corresponding images. On the left image,
the black box and the selection pattern is visualized. The super-pixels in the right im-
age are colored green and red, indicating the probability of an image being allocated to a
specific class. The green box in the first example (ADI) indicates super-pixels that imply
to an increased probability of that image being in the ADI class. In the same example,
red-marked super-pixels reduce the likelihood of the image being classified as ADI.

Figure 5.5: XAI Output
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5.3 Comparison Between Models
We prepared a full report of accuracy, loss, and all relevant graphs after each CNN model
was implemented, as indicated in the previous section. The goal was to find the ideal
CNN model for implementing federated learning. Although multiple models can be used
in this case, we used only the overall best model for the most efficient and keeping our
research simple. Furthermore, because each model has a different execution time and
epoch, the comparison between them can be improved. This step was taken on purpose
to reduce overfitting in our models. As a result, depending on the total epoch run, the
ultimate accuracy, loss, and F1 score may be slightly biased.

Figure 5.6 curve shows the validation accuracy and loss of each model that we have im-
plemented over their total epoch. Each different model is labeled in different colors for
differentiation.

Figure 5.6: Accuracy and Loss comparison between models

Following the same formula mentioned above, precision, recall was calculated for each
model. In this following table 5.1 the difference between each model is projected. For
better understanding, figure 5.7 visualizes the comparison using illustrations. To differ-
entiate between results, the chat was altered and scaled relatively. Accuracy, precision,
recall and F1 score all have the same relative scaling where loss function carries a differ-
ent relative scale.

Table 5.1: CNN Model Results
Models Total Epoch Accuracy Loss Precision Recall F1 Score
VGG16 28 0.9868 0.0530 0.9869 0.9865 0.9866
VGG19 40 0.9875 0.0492 0.9880 0.9872 0.9876

Inception v3 57 0.9897 0.0426 0.9897 0.9896 0.9896
ResNet50 28 0.9924 0.0358 0.9924 0.9923 0.9923

ResNeXt50 39 0.9953 0.0262 0.9955 0.9952 0.9953
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Figure 5.7: Visualization of Results in Bar Chart

Considering the results and variables, we can see that ResNeXt50 performs better in all
aspects compared to VGG16, VGG19, Inception, ResNet50. For this very reason, we
decided to use ResNeXt50 for the model that would be used in federated learning.
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5.4 Federated Learning Results
We conferred the best CNN model (ResNeXt50) into our federated learning architecture
after successfully implementing and comparing five different CNN models. Locally each
client was trained first, followed by the training and updating of the returned results to
the global model. This is referred to as a communication round. Our simulation included
a total of 20 communication cycles. This section will discuss and visualize the results
and prediction models created by our federated learning configuration, both locally and
globally.

Global Communication
Figure 5.8 demonstrates how the global model was updated and optimized after each
communication. The accuracy improved while the loss dropped, as we predicted in the
methodology chapter. Although the rate of improvement was slow and inferior to our
other CNN models, with each subsequent communication round, the final results across
20 communication rounds achieved an accuracy of 96.045%, as illustrated in the diagram
below

Figure 5.8: Global Accuracy and Losses in each Communication Round

Local Communication
Locally, each communication round consisted of training for all the clients. For our simu-
lation, we decided to conduct 1 epoch for local communication rounds. After the success-
ful simulation we were able to obtain accuracy, loss and categorical accuracy for all our
clients. The accuracy for each client across 20 conversation cycles is shown in figure 5.9.
Although not immediately apparent, the results show an upward tendency. That means
the accuracy of the client is likely to increase, but not guaranteed.
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Figure 5.9: Local Accuracy For Each Clients

Furthermore, the following figure 5.10 depicts our clients loss and category accuracy
across communication cycles. We can observe that, as predicted, the clients were more
efficient with each subsequent communication round. The categorical accuracy shows an
increasing pattern, while the loss has a decreasing pattern..

Figure 5.10: Local Loss and Categorical Accuracy Comparison of Clients

Prediction Model
After the completion of our federated learning model, we generated a prediction model
to validate our findings. For that, images from the test directory were fed into the model
for prediction. The generated result and prediction was then converted onto a confusion
matrix which is shown in the following illustration 5.11.
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Figure 5.11: Confusion Matrix for Federated Learning Architecture

Using this, we can build a classification results table for our model through analyzing the
outcome. The true positive values of each class are represented by the diagonal values in
the matrix, whereas the other numbers reflect inaccurate predictions. This table 5.4 shows
our model’s accuracy, precision, recall and f1 score for each of our different classes. To
emphasize, this table shows how well our model performs to differentiate each different
class.

Table 5.2: Classification Results for FL Implementation
Precision Recall F1 Score

ADI 1.00 0.98 0.99
BACK 0.99 1.00 1.00
DEB 0.93 0.94 0.94
LYM 0.96 1.00 0.98
MUC 0.93 0.99 0.96
MUS 0.97 0.94 0.95

NORM 1.00 0.92 0.96
STR 0.93 0.90 0.91
TUM 0.95 0.98 0.96

Accuracy 0.96
Macro Average 0.96 0.96 0.96

Weighted Average 0.96 0.96 0.96
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Using the table we can plot the values of precision, recall and f1 accuracy onto a line
diagram to illustrate the performance comparison of all our classes and its performance
based on our model. The following bar chart, figure 5.12 displays this performance result
for each class of our FL implementation.

Figure 5.12: Performance of our FL Model
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Chapter 6

Conclusion and Future Plan

In the sphere of medicine, digital advances in machine learning are approaching an in-
triguing phase. FL is a potential strategy to generate precise, stable, resilient and balanced
algorithms, as all ML methodologies profit tremendously from the capacity to collect data
that resembles the genuine worldwide reach. In our research we have used the distributed
FL in conjunction with suitable CNN architectures to complete our categorization objec-
tive while sustaining the privacy of clients data. However, in our work the amount of
cases in the training dataset for every class label was not balanced. This class imbalance
problem could be solved using oversampling or undersampling techniques. Nevertheless,
such research will have to wait till later. Against all odds, we have achieved a high FL
accuracy of 96.045% and F1 score of 0.96. Moreover, our model was trained on a large
dataset and has gone through image augmentation which prevented the chances of over-
fitting. Furthermore, our model is applicable in real world scenarios, for instance, it is
capable of diagnosing cancer more precisely at an initial phase, reducing the number of
hospitalisations or unwanted death. In spite of all the obstacles, we were able to train our
model in a real world FL context, synchronized with relevant CNN models, demonstrating
the potentiality of FL for developing medically applicable models without the necessity
for consolidated datasets. Besides, the application of XAI has made our model accessi-
ble in time to prevent ”black box” operations. We want to further extend our framework
for federated learning coalescing blockchain, focusing on the adaptability while working
with fluctuating non-IID datasets with the uncertainty of throughput and computation ca-
pability.
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