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Abstract

Water is a key necessity for survival and sustenance of all living creatures. In the
past years, the quality of water has been adversely affected by pollutants and other
harmful wastes. This increased water pollution deteriorates water quality, making it
unfit for any type of use most especially compromising the safety of drinking water
for public health. The ecological safety and human health have continuously lowered
due to hazardous pollution factors like chemicals and pathogens. By monitoring the
Water Quality data parameters and forecasting them to get early warning, we can
manage the quality of the water for different water sources. Numerous innovative
technologies are slowly replacing human labor and other state of the art methods
in water quality evaluation.Recently, different machine learning and artificial intel-
ligence techniques have been adopted for water quality modeling which has become
very beneficial in assessment and management of water resources. However, they
suffer many times from high computational complexity, high prediction error and
the blackbox nature in which they remain. Another big challenge faced by policy
makers and other responsible Public Health Authorities is the lack of a relatively
generalizable model for water quality prediction for public consumption with provi-
sion of explanations for understanding the most influential water quality parameters.
This work presents an Explainable Artificial Intelligence method, SHAP (SHapley
Additive exPlanations) to transparently and explainably assess the most important
metrics that these models use in determining water quality based on potability. We
also model a robust generalizable calibrated ensemble machine learning model for
water quality prediction based on water potability and other water quality metrics
from various water quality samples around the world. We then implement Auto-
mated Machine Learning with Stacked Ensembling to compare its results with those
achieved by the Soft Voting Ensemble Model. The simulated results will provide
theoretical support to policy makers and would be of interest to water planners in
terms of assessing or maintaining water quality and improving sustainable pollu-
tion control, water and ecological management plans of water resources as well as
early risk assessment and prevention in water environment in a simple, fast and
cost-effective way which will protect the health of the people.

Keywords: Explainable Artificial Intelligence (XAI); Machine Learning (ML); En-
semble Learning; Water Quality; Public Health; Model Calibration
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Chapter 1

Introduction

1.1 Background

Seventy percent (70%) of the surface of the earth is water and all living creatures on
earth require water to survive [4] [6]. It is an extra ordinarily essential component
of the wellbeing of man and the aquaculture business [9]. However, water is often
times polluted due to rapid urbanization and industrialization[38] [26] every year
deteriorating water quality at an alarming rate as harzadous wastes are discharged
into the water bodies. This results into worrying diseases, heavy economic losses
and increased infant mortality as the children take contaminated water [56] [5].

The World Health Organization (WHO) reported that half of the world population
are going to lack water in 2025 and the United Nations (UN) in its 2018 report
mentioned that without taking necessary action, challenges will only increase by
2050 yet by then the global demand for fresh water is predicted to have increased
by a third. World Vision (as of April 2021) reported that 1 in 10 people which is
equivalent to 785 million people do not have access to clean water yet access to clean
water can prevent 9% of global diseases and atleast 6% of global deaths.

Water quality deterioration adversely impacts health, environment and infrastruc-
ture or development at national, regional and local levels [29] [17]. Another study
according to UN indicated that waterborne diseases cause 1.5 million deaths annu-
ally, which is way greater than a combination of deaths caused by crimes, accidents
and terrorism. Thus surveillance and management of water quality is necessary in
combating the negative effects of water pollution and increasing Water Quality too
especially for developing countries. Policy-makers and managers around the world
have put in place several Water Quality testing and analysis laboratories [41] [32]
and guidelines have been set based on that [30].



1.2 Motivation

It is very painful that high costs are incurred in carrying out hydrochemical tests to
measure a large number of parameters as well as the long delays faced in obtaining
laboratory results [61]. On top of that, the sensors used for testing different water
quality parameters are very expensive yet their results are not precise. Fortunately,
in the past few years, logistic expenses of water sampling have been cut by applying
cost effective methods like Machine Learning and Deep Learning solutions for pre-
dictive modeling of water quality for precise results at various system stages before
water site access under different stages [44] and improvement of water treatment
processes [35]. Researchers have comprehensively deployed predictive models but
the problem with all the existing models is that they still remain in the blackbox
nature.

The alarming consequences of poor water quality raise the need for an alternative
method for surveillance and management of water quality, which is quicker and in-
expensive and obtaining a global water quality dataset with various water quality
metrics to perform water quality modelling. With this motivation, this research
demonstrated the water quality features in machine learning modelling using vari-
ous exploratory data analytic techniques and deployed SHAP to interpret the water
quality predictions of the models by transparently and explainably demonstrating
how these machine learning models determine Water Quality based on water pota-
bility. We then ensembled the best machine learning models and calibrated the final
ensemble model that is robust and generalizable enough to precisely predict water
quality for human consumption.

1.3 Research Scopes (Gaps addressed)

Limited work has been done to explainably explore influential features for Water
Potability using ML and Al techniques. There is also no work identified to focus on
exploring feature Learning and interaction in Water Quality Prediction. Moreover
all the existing statistical methods used are not interpretably sufficient. Based on
the existing literature, no work has been done to explore water quality prediction
in terms of water potability. Lastly, the existing Artificial Intelligence models still
remain in the blackbox nature. They are not transparent enough to provide expla-
nations of why and how they came up with their accurate predictions. And besides,
many other studies used either few or too many parameters which is not efficient
enough in predicting the water quality. Generally, Artificial Intelligence application
in the field of Water Quality Evaluation is still an under researched thematic area yet
its potential in stopping the adverse effects of poor quality water is very enormous.



1.4 Research Objectives

(a) To prove the concept of Safe Water Quality Evaluation using Machine Learn-
ing with a real-world dataset collected for different water resources.

(b)

To improve ML and Al interpretability for Public Health Officers, Policy Mak-

ers and other concerned authorities by using Explainable Al in more trans-
parent and insightful means for decision making in regards to Water Quality

Management.

(c) To derive and comprehensively illustrate the most important features that
require extra attention during Water Quality Evaluation.

()

To create a new robust and relatively generalizable model that is capable of

transparently illustrating feature interaction of the most influential features
leading to a precise Public Health decision for Water Quality Evaluation.

The above core research objectives of this thesis were investigated through two
scientific international conference papers as illustrated in Table 1.1

Table 1.1: Research papers for the Research Objectives

Paper Short Form

Research Contributions

Objective(s) Investigated

PID1- XAI- for - Safe Water

Evaluation

Explainable AT for Safe
Water Evaluation for
Public Health in Urban
Settings

a, b, c

PID2- XAI and EL - for -
Water Quality Prediction

Explainable AT and En-
semble Learning for Wa-
ter Quality Prediction

a, b, c, d

1.5 Research Contributions

1.5.1 Explainable AI for Safe Water Evaluation for Public
Health in Urban Settings (XAI-4-Safe Water Evalua-
tion) | Objectives: a, b, c

We proposed Interpretable Machine Learning Models for predicting water quality
using ten features. We used interpretable approaches to explain the features con-
tributing to the predicted results for Public Health officers or responsible authorities
to understand how the machine learning algorithms came up with the predicted re-
sults. Below is the summary of our contributions in this paper:




1. We analyzed the water quality variables.

2. We modeled and trained various Machine Learning (ML) classifiers to predict
water quality in an effort to determine water potability.

3. We evaluated the performance of the trained classifiers.

4. We proposed and deployed SHapley Additive Explanations (SHAP) to inter-
pret the prediction for easy understanding of how the ML models arrived at
such conclusions and improve transparency and possibilities of adoption of this
technology in Public Health.

1.5.2 Explainable AI and Ensemble Learning for Water Qual-
ity Prediction (XAI-4-Safe Water Evaluation) | Objec-
tives: a, b, c, d

We developed a robust calibrated ensemble learning model for predicting water
quality and tested it on a real dataset for Water Potability [47] with ten features
and about 3276 samples. The proposed Model showed a recall and precision of over
90% with respect to the dataset. The results may warrant translation of the study
outcomes into full-scale Public Health practice by guiding agencies and governments
on management, policy and decision making concerning water resources. Below is
the summary of our contributions.

1. We performed exploratory data analysis on the dataset.

2. We modeled and trained various Machine Learning (ML) classifiers to predict
water quality in an effort to determine water potability.

3. Based on different parameters, we evaluated performance these ML models

and provided explanations for the predictions of the best three models using
Shapley Additive Explanations (SHAP).

4. We then modeled a robust ensemble model that can be utilized for effective
binary classification prediction of Water Potability based on the inputs.

5. And lastly, we calibrated the final model to make it generalizable for water
quality prediction.



1.6 Thesis Organization

The thesis organization is based on research scope Conceptualization and Objectives
as investigated by two scientific research papers coded with Research Paper Short
Formats in Table 1.1. The tabular visualization of the thesis organization can be
studied in Table 1.2.

Table 1.2: Tabular visualization of the Thesis Organization

Background

Motivation

Research Gaps

Research Objectives

Research Contributions

Thesis Organization (Thesis Outline)

Chapter 2: Existing Works | Importance of Water for Public Health

Water Contamination and Pollution

Water Quality Evaluation

Existing Artificial Intelligence Approaches to
Water Quality Analysis and Prediction
Ensemble Learning

Explainable Artificial Intelligence (XAI)
Model Calibration

Chapter 3: Methodology PID1 - XAI - for - Safe | PID2 - XAI and EL

Chapter 1: Introduction

Water Evaluation - for - Water Quality
Prediction
Objective(s): a, b,
c Objective(s): a, b,
c, d
Chapter 4: Results and
Discussion
Chapter 5: Conclusion Major Observations and Lessons Learned

Conclusion derived from the Observations
Future Works derived from the Observations




1.7 Research Orientation

The remaining part of this thesis report has been organized as follows:

Chapter 2 briefly reviews how other researchers used Al-based models to predict,
detect and evaluate water Quality

Chapter 3 discusses the components of our proposed model, its design and imple-
mentation.

Chapter 4 explores results found from different approaches taken towards Water
Quality Evaluation

Chapter 5 synopsizes the whole thesis together with the limitations of the thesis
work and suggests future potential derivative work for further research.



Chapter 2

Existing Works

2.1 Importance of Water for Public Health

From a hygienic view point, water is among the important environmental factors

which are a source of life, a guarantee of health and important for the plant world.
Water is a sacred gift of Mother Nature that ensures the existence of every living

thing on Earth. Water is one of the most abundant substances in nature, oc-

cupying 71% of the earth’s surface, 65% of the human body is water, and is

an integral component of human production activity [33].

Proximity and access to water are essential for human culture and urban heritage,
as well as for health, well-being, and disease prevention. The well-being and safety
of residents, as well as community involvement, are highly associated with water
[54].

Water as a universal solvent mixes with nature through the hydrological cycle, and it
plays many vital roles in human societies and natural ecosystems. Water flows both
through living organisms and in the inorganic environment. Additionally, the users
of water are diverse and interconnected in multiple ways. Due to the complexity
and multiple pathways of water, the essential role of water can be viewed as: a)
clean potable water for drinking and maintaining a good immune system; intake
of adequate amounts of such water is surely required, b) clean water for safe food
production (Clean water is essential for safe food production and maintenance of
hygienic conditions in all the food chain links right from the farm to the customers),
¢) means of keeping hygiene (body washing, indoor and outdoor cleaning) and d)
drug and disinfectant production. Water not only sustains life through its major
role in the prevention process of diseases but has also been recognized to its essence
in alleviating them. It is therefore important that service providers grow their
capabilities for providing good quality water due to the significance of handwashing
and satisfactory water supply in disease prevention. With all the explained facets
of water use, water undoubtedly has a vital role, whether clean in prevention, or
contaminated — representing a potential threat. Thus, special attention should be
paid to its good usage and management so as to conquer disease outbreaks as quickly
as possible.



Water has broad-ranging applications with some being life needs while others are
economical, agricultural or recreational. Water is one of the key substances with
influence on human health. Although it is essential to life, it may be a carrier of
chemical substances which influence water’s properties and assimilability of water-
contained compounds. The assessment of a health risk related to the consumption of
water is an essential, multi-stage process that contributes to any evaluation of health
effects caused by potential exposure of humans to chemical substances. The constant
global growth and the development of industries have increased the water demand.
More economical water management as well as greater attention to water quality,
both locally and globally, are the best ways to counteract the threat of global water
scarcity. Educational efforts should be adopted in raising awareness concerning the
importance and role of water in the environment. It is also necessary to educate the
public about the negative effects of anthropogenic activity and pollution on human
health [65].

2.2 Water Contamination and Pollution

Water is very fundamental to life but could also be fatal. Despite legal regulations
that exist, water can be contaminated with chemical substances posing a serious
health risk[65]. The dynamic nature and easy access of water systems makes them
vulnerable to contamination and waste disposal effects [19]. Good water quality
ensures a longer lifespan of human beings and aquatic creatures. Water species can
tolerate certain limits of pollution but a higher extent can jeopardize their survival.
Natural water bodies like rivers, lakes, and streams exhibit their quality through
various parameters of quality standards [15]. Therefore, predicting those quality
parameters accurately could help in safeguarding the quality and monitoring of the
pollution. It is very essential since these water bodies provide water for drinking,
agriculture and aquaculture. Since water quality has been susceptible to various
pollutants like return flows from agro-industries, industrial waste, domestic waste,
fertilizers and pesticides identified as the biggest contributors to surface water con-
tamination, water quality preservation has become urgent for human and hydrous
ecosystem issues. It is important to note that continuous population increase in-
creases the need for water resources too. Unfortunately, humans discharge a lot of
non-treated waste and contribute to industrial activities which continuously reduce
water quality. The safety of water is also compromised by resultants of natural
processes like inputs from air and conditions of the climate [23].

2.3 Water Quality Evaluation

Water pollution makes the water unfit for human consumption and for industrial,
agricultural purposes as well [57]. Getting water quality to a level needed for public
usage requires that water supplies must be managed properly [13] [6]. Water Quality
is usually calculated using certain parameters attained through lab analysis. Mul-
tivariate statistical methods like Principal Component Analysis and geo-statistical
techniques such as kriging, transitional probability, multivariate interpolation, re-
gression analysis have been used to discover the relationship among the various
parameters for water quality.



Water quality requirements differ based on the suggested purpose of water. As stated
in [25], ‘water that is unsuitable for one purpose may be satisfactory for another
purpose’. These water quality requirements should be in line with the standards
put in place by the concerned government agencies. Generally three standard types
exist that is; in-stream, potable water, and wastewater with each type having its
own criteria using similar measurement approaches.

2.4 Existing Artificial Intelligence (Machine Learn-
ing and Deep Learning) Approaches to Water
Quality Analysis and Prediction

Superior robustness was identified as the leading categorical parameter when nonlin-
ear autoregressive neural networks, deep learning algorithms and LSTM were used
for prediction of Water Quality Index using a dataset with 7 significant parameters.
LSTM was outperformed by the NARNET model in predicting WQI values based
on the R-value and the SVM algorithm achieved better accuracy (97.01%) compared
to K-nearest neighbor and Naive Bayes for Water Quality Classification [20)].

To predict Total Dissolved Solids of aquifers, adaptive fuzzy inference system (AN-
FIS), artificial neural network (ANN) models and support vector machines (SVMs)
were used and Principal Component Analysis was used for determining the most
influential inputs for prediction of Total Dissolved Solids [21]. These models were
trained using moth flam optimization, cat swarm optimization, particle swarm op-
timization, shark algorithm, grey wolf optimization, and gravitational search algo-
rithm. The hybrid ANFIS-MFO improved the Root Mean Square Error accuracy
over the SVM-MFO and ANN-MFO models by 3.8%, and 1.4% respectively. The
ANFIS-MFO further enhanced the Root Mean Square Error by approximately 3%
and 7%, as compared to the ANN-MFO and SVM-MFO. The ANFIS-MFO and
ANFIS-CSO models showed superior performance compared to other models thus
indicating significant implication in their application for other hydrological variables
and water resources in general.

A Neuro-Fuzzy Inference System (WDT-ANFIS) based on augmented wavelet de-
noising technique was proposed. Three techniques or assessment processes were
used for evaluating the models with the first depending on partitioning of the neural
network connection weights in ascertaining the significance of every network input
parameter and the second and third assessment processes ascertaining the most ef-
fectual input to construct the models using individual parameters and a combination
of parameters, respectively. Two scenarios were presented for these processes. Sce-
nario 1 was constructing a prediction model for water quality parameters at every
station, while Scenario 2 was developing a prediction model based on the value of
the same parameter at the previous station (upstream). Both scenarios were ex-
perimented using twelve input parameters. The WDT-ANFIS model significantly
improved the prediction accuracy for all water quality parameters and outperformed
all other models. Furthermore, the performance of Scenario 2 was more adequate



compared to that of Scenario 1, with substantial improvement of 0.5% to 5% for all
parameters at all stations [12].

A model that utilizes principal component regression was proposed for prediction of
water quality. At first, the weighted arithmetic index method was used to calculate
WQI and PCA was applied to the dataset to extract the most dominant parameters.
In the next step, to predict the WQI, regression algorithms were applied to the
Principal Component Analysis output to predict the Water Quality Index (WQI)
and lastly the Gradient Boosting Classifier was used for classification of the water
quality status. The principal component regression method achieved 95% prediction
accuracy while Gradient Boosting Classifier method achieved 100% classification
accuracy [46].

Artificial Neural Network algorithms with early stopping, Ensemble of ANNs and
ANNs Bayesian Regularization were used to predict the Water Quality Index using
16 ground water quality parameters. Comparing performance of the algorithms for
prediction of Water Quality Index (WQI) indicated that the Bayesian regularization
method indicated successful WQI prediction. For the training and testing datasets,
the correlation coefficients between the predicted and observed values of the Water
Quality Index were 0.77 and 0.94 respectively. Sensitivity analysis was deployed to
demonstrate each parameter importance during ANN modeling and Phosphate and
Iron (Fe) were the most dominant in WQI prediction.

Auto Deep Learning was compared with the conventional Deep Learning model in
predicting water quality. The conventional Deep Learning approach gave a slightly
better performance compared to AutoDL for both binary and multiclass water data
but adoption of Auto Deep Learning made finding an appropriate Deep Learning
model easier and gave better performance minus manual intervention [63].

Effectiveness of eight Artificial Intelligence methods in prediction of water quality
in a dry desert environment was studied based on two scenarios and two different
input combinations that is; replacement of the classical computational method with
modeling approach and lack or unavailability of data in critical cases [48]. The mod-
els were evaluated by means of various statistical metrics including mean absolute
error (MAE), root mean square error (RMSE), root relative square error (RRSE),
relative absolute error (RAE) and correlation coefficient (R). The experimental re-
sults showed that TH and TDS were the key influential factors in predicting WQI
in the study area. In the first scenario, the MLR model achieved the highest accu-
racy amongst all models and in the second scenario, the RF model exhibited less
error. The results suggested that Random Forest algorithms could be a robust and
cost-effective model for enhancement of groundwater quality management plans in
such a study area.
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Several supervised Machine Learning—based models were tested in an effort to assess
the Water Quality Index and Water Quality Class based on four parameters that
is; pH, turbidity, temperature and total dissolved solids. From the experiments,
the gradient boosting algorithm performed best with a learning rate of 0.1 and
polynomial regression, with a degree of 2, predicted the Water Quality Index most
efficiently with a Mean Absolute Error of 1.9642 and 2.7273, respectively [6].

A deep learning model that utilizes Long-Short Term Memory (LSTM) algorithm
was proposed for [oT systems. The model was forecasting Water Quality indicators
that is; salinity, temperature, pH, and dissolved oxygen necessary to monitor Water
Quality (WQ) for aquaculture and fisheries. The results obtained after experiment-
ing showed that the proposed model is fit for real-world application. Additionally,
monitoring of the indicators and generation of early warnings from the system could
help farmers in managing water quality [34].

The proposed approach utilized two hidden layer types that is; the LSTM layer
and a fully connected dense layer while the ambient temperature prediction task
was formulated as a time series regression problem. A combination of recurrent
neural networks with improved Dempster/Shafer (D-S) evidence theory in [7] [10]
were applied to improve the accuracy and stability of a conventional RNN model
in prediction of water quality. The RNN was used to handle long-term dependen-
cies in historical time series data while the improved D-S was for synthesizing the
RNN prediction outcome. The proposed model achieved higher accuracy and better
stability compared to other RNN models.

Correlation and dynamic nonlinearity between features of Water Quality as well as
gradient explosion and gradient disappearance caused by the traditional RNN model
training data were discussed in [18]. An LSTM was used to optimize the Recurrent
Neural Network (RNN) and the connection weight and threshold of the hidden
layer. The proposed architecture considered optima parameters such as adjusting
the window size, number of structural layers and number of storage units. From the
experimental results, the LSTM-RNN predicted the pollutant index better than the
conventional RNN model and GM (Grey Model) as evidenced by higher accuracy
and generalization ability of prediction during training.

A hybrid decision tree model [28] and a hybrid model using genetic algorithm, neural
network, fuzzy logic, and wavelet were introduced for prediction of short-term water
quality based on six water quality parameters. The basic models for these two hybrid
models were XGBoost and Random Forest, which introduced complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) as an advanced
technique for data denoising. Based on the analysis, CEEMDAN-XGBoost and
CEEMDAN-RF had a higher prediction stability as compared to other benchmark
models.
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2.5 Ensemble Learning

In the literature, numerous terms for example aggregated, hybrid, integrated and
combined classification, are used while defining ensemble learning thus it differs from
the traditional prediction method where an individual classifier is used in building
the model for prediction on a pre-labelled dataset [50] [3].

Although significant successes have been attained in knowledge discovery, the con-
ventional ML approaches may not achieve satisfactory performances while dealing
with complex data for instance imbalanced, noisy and high-dimensional data be-
cause it is challenging for these methods to capture multiple characteristics as well
as the underlying data structure [24]. Ensemble methods however, are said to mimic
humans by considering a number of opinions before making a key decision.

The aim of Ensemble Learning is to integrate data fusion, data modeling, and data
mining into a combined framework. At first a set of features with diverse transforma-
tions are extracted. On the basis of these features, multiple algorithms are applied to
yield weak predictive results. Lastly, ensemble learning fuses the informative knowl-
edge from the above attained results with various voting mechanisms and combines
the model outputs to achieve better knowledge discovery and predictive performance
with improved feature analysis than that obtained from any constituent algorithm
alone. Additionally, ensembles are often very efficient when the computational cost
of the participating models is low [3]. Tree-based models such as the random forest
are the mainly used base learners in Ensemble Learning models [62], while many
boosting and bagging approaches have been also proposed. The boosting approach
is applicable to high-bias predictions while the bootstrapping method is more suit-
able for high-variance predictions. Ensemble Learning significantly minimizes errors
like the misleading positive and negative predictions [14].

Ensemble approaches are categorized into homogeneous and heterogeneous ensemble
methods. Homogeneous approaches like bagging, rotation forest, boosting etc. apply
the same base learners to a different set of dataset instances while heterogeneous
ensemble approaches generate different base using dissimilar ML methods. These
base learners are combined through integration of their results using statistical or
voting techniques to achieve the final prediction [49]. Due to different natures of
the base learners, heterogeneous ensemble approaches are more diverse compared
to the homogeneous ones. Ensemble Learning techniques can also be classified as
linear where the output of base learner models is combined using a linear function
or nonlinear where a nonlinear technique is applied to combine the decision of base
learners [49].
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Voting

Voting combines the performances of multiple models to make predictions [8] [39] and
serves to enhance predictive performance in classification and regression problems.
Voting is categorized into two types [52]; Hard Voting which involves selection of a
prediction with the highest number of votes. Supposing three classifiers predicted
the output class as (X, X, Y), the majority predicted output class turns out to
be X. Thus X will become the final prediction. On the other hand, Soft Voting
combines probabilities of each model prediction and selects one with the highest
total probability. For instance if some input is given to three models, the prediction
probability for class X = (0.35, 0.45, 0.52) and Y = (0.15, 0.320, 0.37). Therefore,
the average is 0.440 and 0.280 for classes X and Y respectively and the winning class
in this case is visibly class X.

The main benefits of voting are; 1) Voting mitigates the risk of one model making an
inaccurate prediction which makes the estimator more robust. 2) The participating
models will not be affected by misclassifications or large errors from a certain model.

The main drawbacks of voting are; 1) Voting only benefits machine learning models
performing at similar levels. 2) There are situations where an individual model can
perform better than an ensemble. For example, with a strong linear relationship
between the features and target variable in a regression task, a single linear regression
model can undoubtedly outperform a voting estimator made with other regression
models. 3) Voting is more computationally intensive since it uses multiple models
which makes it much costly.

Stacking

Stacking is also another ensemble algorithm used. It learns the best way of combin-
ing each of the models like bagging and boosting in an ensemble to come up with the
best performance on the same dataset[43] [42]. Stacking addresses the question on
when to use or trust each of the models in an ensemble. Unlike bagging, in stacking,
the models are typically different and fit on the same dataset. Unlike boosting, in
stacking, a single model is used to learn how to best combine the predictions from
the contributing models. Stacking is applicable when multiple ML models have skill
on a particular dataset but in different ways. This implies that predictions made
by these models or the prediction errors from the different models are either have a
low correlation or are totally uncorrelated [58].
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H20’s Stacked Ensemble method uses a process called stacking to find an opti-
mal combination of the best prediction algorithms [36] and it supports binary and
multiclass classification as well as regression just like other supervised learning tech-
niques. An ordinary machine learning model only tries to map input towards output
by generating a relationship function. Stacking acts on one level above the ordinary
by learning the relationship between the prediction result of each of the ensemble
models on out-of-sample predictions and the actual value. The main benefit of
stacked ensemble is that it normally produces a more robust predictive performance
compared to the average ensembles or even individual models.

The drawbacks of stacked ensemble include: 1) It brings along a lot of added com-
plexity that is; the final model becomes much harder to explain. Therefore, busi-
nesses may not see the implementation as worth it because it comes with the cost
of interpretability. 2) Added complexity results in added computation time. When
the volume of data on hand grows exponentially, an overly complex model will take
years to run. That does not make much sense to businesses as the costs it produces
are much greater than just implementing a simple model. 3) Stacking together mod-
els is only the most effective while using none or low correlated base models. The
concept behind this is similar to normal average ensembling, an ensemble of diverse
models means more diversity for the stacking model to optimize and reach better
performance.

2.6 Explainable Artificial Intelligence (XAI)

The complexity and convolution of ethical components of critical decision-making
in Public Health and other aspects of water quality monitoring and management
often require proper understanding and explanation to not only the authorities but
also the water users and that is what necessitates interpretable technologies.

Most times, Machine Learning models remain in a black box making it really difficult
to understand how the models come up with the predictions because developers are
oftentimes unaware of what really goes on under the hood after the model has
been given an input [22] [60]. Explainable Artificial Intelligence is what gives lay
humans the ability to comprehend and validate the outcome of Machine Learning
models. It illuminates the abstracted ‘black box’ to allow humans to understand how
the model works [11]. An example is when humans understand the water quality
features that guide the monitoring decisions based on the predictive outcomes and
those that least contribute to the final prediction. Using these insights, humans
can build simpler and more accurate models and Public Health Officers and Policy
Makers can choose better water quality monitoring and management plans [40].
In addition, developers can build better and more accurate ML models. XAI is
what can interpretably prove that the Machine Learning model does not contain
biases and that it is safe for adoption and deployment in an environment with trust
and confidence to humans [51] while providing actionable insights on what to do to
improve the outcome [59].
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2.7 Model Calibration

Performance evaluation of a Machine Learning model is important, but in many
real world applications it is not enough. We often care about the confidence of
the model in its predictions, its error distribution and how probability estimates
are being made. Many classifiers have good overall results but bad probability
estimates. In many real-world applications, we would like the probabilities that
the model outputs (for example class probabilities in classification) to be correct
in some sense (for example to match the actual probabilities of class occurrence)
[53]. Gaining access to probabilities for every possible class instead of considering
the crude labels is used to provide a richer interpretation of the responses, analysis
of the model shortcomings, or presentation of uncertainties to end-users. For this
case, calibration has come into play and intuitively, a model is calibrated if among
the samples that get 0.8 probability estimates, about 80% actually belong to the
positive class. Even good data scientists sometimes forget about calibration and
wrongly treat the model output as real probabilities, which could result in poor
system performance or bad decision making.

Calibration is usually done when dealing with an imbalanced dataset, metrics involv-
ing probability values and works well with boosted trees, Naive Bayes etc. Over the
years, a couple of model calibration techniques have been developed [64]. The most
common ones are Platt scaling [53] and isotonic regression while other techniques
do exist for instance spline calibration [2] and beta calibration.

Calibration matters because: 1) Estimated probabilities allow flexibility which can
help in the simulation of the impact of a particular experiment being done. 2)
Model Modularity as it allows each model or classifier in a complex large Machine
Learning system to focus on estimating its particular probabilities as well as possible
[64]. With stable interpretations, other components of the system will not need to
shift whenever the models change.

It is also important to note that calibration directly modifies the outputs of the
trained models by removing the bias in the predicted probabilities [31]. Although
calibration maintains the monotonicity of these outputs with approximation done
on a specific subset of the whole data, it is entirely possible that it will impact model
accuracy [27]. For example, some values close to the decision boundary might be
transformed in a certain way to yield different classification responses than the ones
before calibration.
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Chapter 3

Methodology

We used the Water Potability Dataset [47] consisting of various metrics of water
quality for 3276 different water bodies. The dataset comprises nine independent
features which include; Turbidity, Organic_carbon, Sulfate, Hardness, Solids (To-
tal dissolved solids-TDS), Chloramines, Conductivity, Trihalomethanes, pH value
with the Output column (dependent feature) being Potability. Table 3.1 shows the
dataset features and their respective recommended ranges as per the World Health
Organization (WHO) guidelines [25].

Table 3.1: Dataset Features

Feature WHO Limits

pH value 6.5 to 8.5 (safe water)

Hardness up to 500 mg/L (safe water)

Total Dissolved Solids (TDS) 500mg/1(desirable) &
1000mg/1(maximum)

<1500 mg/L (fresh water); 1500-5000
mg/L (brackish water); >5000 mg/L
(saline water)

Cloramines Up to 4mg/1 or 4ppm

Sulfate 2700mg/1 (Sea Water) ; 3 to 30mg/1(fresh
water supplies); 1000mg/l(in some geo-
graphical locations)

Organic Carbon (TOC) 2 mg/L (in treated / drinking water);< 4
mg/Lit (in source water which is use for
treatment)

Trihalomethanes up to 80 ppm

Turbidity 5.00 NTU (visible to an average person),
>100 NTU (Muddy water)

Conductivity 400 S/em 5.5 x 10—6 S/m (Ultra-pure

water), 0.005-0.05 S/m (drinking water),
5 S/m (sea water)
Potability 0 (for Not Potable) or 1 (for Potable)
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A description of the definitions, sources, effects, and measurement procedures of the
above dataset features from an ecological viewpoint for all living organisms including
humans is given below:

Turbidity

Turbidity refers to the light emitting properties of water initiated by suspended
material like organic material, silt, clay, etc. in water. It indicates the quantity of
waste release as regards colloidal matter.
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Figure 3.1: Turbidity of water

Turbidity in drinking water is appealingly unacceptable, which makes the water look
unappetizing. Below is a summary of the impact of turbidity:

1. It raises the treatment cost of the water used for various purposes.

2. Suspended materials can damage or clog fish gills, reducing its disease resis-
tance and growth rate. This affects the maturing of egg and larva which in
turn affects the fish catching method efficiency.

3. Particulates can hide harmful microorganisms thus tampering with the process
of disinfection.

4. Since greater turbidity increases the temperature of water in light, the amount
of available food is reduced. Hence, the Dissolved Oxygen (DO) concentration
is decreased.

5. Suspended particles can provide media for adsorption of heavy metals like
chromium, cadmium, and numerous hazardous pollutants for instance poly-
cyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), plus
many pesticides.

A nephelometric turbidimeter is used for measurement of turbidity and its measure-
ment unit is NTU .Groundwater is said to have a very low turbidity rate due to the
filtration process which occurs naturally during water penetration through soil.

Organic_carbon (Total Organic Carbon-TOC)

This refers to the total quantity of carbon in organic compounds in clean water.
Organic Carbon comes from decaying natural organic matter and synthetic sources.
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Sulfate

Sulfate ions are not only found in natural water but also occur in wastewater. In
natural water, high sulfate concentrations are is attributed to leaching of magnesium
sulfate and sodium sulfate deposits. Consumption of high concentrations of sulfate
in drinking water might cause unpleasant tastes or undesirable laxative effects.

Hardness

The term is used to express how mineralized the water is. Dissolved minerals in
water cause difficulties in forming lather with soap. In natural waters, the biggest
portion of hardness is caused by Calcium and magnesium ions which enter as the
water gets into contact with soil and rock. From a general point of view, groundwater
has been found to be harder compared to surface water. Hardness is mainly in two
forms: Temporary hardness can be removed by boiling, and Permanent hardness
can remain even after water boiling.

Hardness is usually determined by titration with Eriochrome Blue Black indicators
and ethylene diamine tetra acidic acid and it is measured in mg/L of CaCO3.

Solids (Total Dissolved Solids-TDS)

Solids in water occur in either its suspension form or solution form. Both solids
can be recognized by use of a glass fiber filter through which a sample of water
is passed. While suspended solids are retained on filter top, the dissolved solids
will go through it with water. With placement of the filtered portion in a dish
and then allowing evaporation, the solids form a residue normally referred to as the
Total Dissolved Solids( TDS). Knowledge of the TDS value helps the operator of a
wastewater treatment plant to approximate roughly the amount of organic matter
and industrial wastes in the wastewater.

Chloramines

Chloramines are one of the key disinfectants that are used in public water systems.

Conductivity

Conductivity is a measure of the electrical current carrying ability of a solution and it
increases with increase in the concentration of ions. It is therefore one of the major
factors considered while determining the suitability of water for firefighting and
irrigation. Conductivity is measured in deciSiemens/m (dS/m) or milliSiemens/m
(mS/m) using the electrometric method and it can be useful in approximating the
value of the water’s TDS value.

Trihalomethanes

Trihalomethanes are toxic compounds formed by the reaction between chlorine and
organics in water. Trihalomethanes are mainly chemicals found in chlorine-treated
water. The concentration of Trihalomethanes in drinking water varies according
to chlorine amounts required for water treatment, temperature of the water being
treated as well as the organic mineral levels in water.
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pH value

pH indicates how acidic or basic the water is. Basic water comprises more hydroxyl
(OH—) ions while acidic water has extra hydrogen ions (H+). pH ranges from 0 to
14, with 7 being neutral as shown in Figure 3.2. Pure water is neutral, with a pH
close to 7.0 at 25°C; rainfall has a pH value of around 5.6. pH is normally measured
using electrometric and colorimetric methods.
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Figure 3.2: Water pH

Low and excessively high pHs can be dangerous for water use. A high pH not
only brings a bitter taste in water but also reduces the efficiency of disinfection
using chlorine whereas water with a low pH corrodes or dissolves metals and other
substances. Also pH is directly proportional to the amount of oxygen in water.
Below are the upshots of pH on other chemicals found in water:

1. Water of lower pH dissolves heavy metals like lead, cadmium, and chromium
more easily.

2. The form of some chemicals in water can be changed by changes in the pH
thus it may affect animals and aquatic plants. For example, while ammonia is
of no harm to fish in acidic or neutral water, it tends to be increasingly more
poisonous to fish as the water pH increases.

Water pollution can also change the water pH which in return damages plants and
animals that live in that water as shown below:
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1. A slight change in pH affects most aquatic animals and plants that had got
used to life in the water of a particular pH.

2. High or very low pH water is lethal; a pH above 10 or below 4 kills most
fish, and a limited number of animals can live in water with a pH above 11 or
below 3. Also low pH water can irritate fish and aquatic insect gills, reduce
the number of hatched eggs for the fish, and damage membranes.

3. Low pH is extremely dangerous to amphibians because of their skin sensitivity
to contaminants. Some scientific research has found that the low pH values
brought by acid rain has contributed to the current reduction in the population
of amphibians globally.

Potability

Potability shows the safety of water for consumption by humans.

3.1 XAI- for- Safe Water Evaluation

3.1.1 Summary

This paper is proposing an Explainable Artificial Intelligence (XAI) approach to
water quality prediction. It will help in maintaining water quality or safety within
urban centers, improving water management and pollution control and also im-
mensely help ecological management organizations of many areas. In this paper,
ambiguity of Machine Learning (ML) model predictions is achieved by utilization of
feature importance.

3.1.2 Data Preparation and Processing

pH and Trihalomethanes are imputed since they have less than 20% missing values.
For the Sulfate feature, as it has more than 20% missing values, some univariate
analysis was done on it such that if it is found important, then it too will be imputed
or else entirely dropped. The imputation part will happen by setting numeric im-
putation to true during data setup. Firstly, some univariate analysis on the Sulfate
column and the distribution of values for this column is found since values are found
to be missing from random indices. From Figure 3.4, the distribution of Sulfate is a
little different when the Potability is 0 and when it is 1. So, probably Sulphate has
some influence on the Potability, so it will be kept and imputed too.
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Figure 3.4: Sulfate Values Distribution
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For feature analysis, data points which were above 95 percentile and below 5 per-
centile were removed as shown in sample Figure 3.4 . During data set up, outliers
were also removed.

Next was looking at how the features influence each other. There does not seem to be
any linear relationship between the features as the plots are kind of circular. It can
thus be said that there is no multicollinearity but to be 100% sure, the correlation
between them was found.

The maximum correlation is 17% (negative) between Sulfate and Solids, it means
only 17% variance in the Solids can be explained by Sulfate and vice versa. It seems
that there is no multicollinearity, as for it to be present, the correlation should be
higher than 80-85% (positive or negative).

3.1.3 Model selection and Description

In this work, 14 classification models were trained say; Extra Trees Classifier, Ran-
dom Forest Classifier, Light Gradient Boosting Machine, Quadratic Discriminant
Analysis, Gradient Boosting Classifier, Naive Bayes, Logistic Regression, Dummy
Classifier, Ada Boost Classifier, Decision Tree Classifier, K Neighbors Classifier, Lin-
ear Discriminant Classifier and SVM-Linear Kernel. We then compared them based
on various parameters that included Accuracy, AUC ROC score, Recall, Precision,
F1 Score, Kappa, MCC and TT (Sec).

Random Forest Classifier

It is a decision trees-based classifier for predicting qualitative responses by dividing
the predictor space into different and non-overlapping regions for the same prediction
to be made for every observation in that region (majority group) during classification
which can be regarded as Bayes classifier. Predictor space is partitioned iteratively
based on the highest reduction of some measure of classification error by recursive
binary splitting often using the Gini Index,

k
G= " Pmk(1=pms) (3.1)
k=1

where p_mk is the quantity of training observations belonging to the k' class in
the m*" region. Over fitting data during learning is addressed by bootstrap driven
bagging where the model is trained on the individual bootstrapped training sets to
get B classification functions by;

f @), o P () (3-2)
To average the predictions of all models for the final result as;
B
1 *
foag () = 5 > F* () (33)
b=1

Observation prediction is done by recording the class prediction by every B tree and
summating the predictions with the most frequent class among the B predictions as
a majority vote. As extension of bagged trees, random forest aims at model variance
reduction by choosing a random sample of the m predictors as split candidates from
the full set of p predictors at each split which is given by; m= VP thus reducing the
total variance of averaged models with a slight increase in bias when decorelating
the trees.
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Extra Trees Classifier

This is an ensemble machine learning model that generates several decision trees
which are unpruned from the training dataset to enhance prediction. It is convenient
at predicting decision trees with regression and classification using majority voting.

Decision Tree Classifier

This Model is generally used for classification problems with both categorical and
continuous dependent variables. It has faster training time compared to neural
network Models. It is a distribution-free or non-parametric Model, independent of
probability dissemination assumptions and can resolve high dimensional data with
better accuracy, plus it yields optimal results if deployed with SMOTE.

3.1.4 Model Performance Analysis

To analyze the performance of the trained models, we plotted the AUC ROC Curve,
Confusion Matrix, Decision Boundary and Learning Curve.

3.1.5 ML Model Interpretability and Explainability/ Model
Interpretation

We interpreted the tree-based models we had trained and selected. For explainabil-
ity, we utilized an Explainable Artificial Intelligence technique known as SHapley
Additive exPlanations (SHAP) . SHAP values show the impact of each feature whose
comparative possession yield interpretation of predictions based on baseline values.

SHapley Additive exPlanations (SHAP)

In 2017, Lundberg and Lee published a game theoretical approach that explains ML
model outputs by connecting optimal credit portions with related extensions and
created an Al framework for SHAP. This average marginal contribution of a feature
value out of all possible associations explains the Shapley values, unified measures
of feature importance derived from,;

el = 3 EHEIEEE D (s u i) - u(s) (3.4)
SN{I} ’

where the marginal contribution of the feature [v (S U4) — v (S)] is computed out
of all the subsets S to get the feature Shapley value ¢, such that model estimates of
all subsets with or without the feature are calculated and added to get the Shapley
value as Additive exPlanations of that feature [45]. The plot based on the SHAP
values is composed of all training data dots. Descending order is used to reflect
the variable feature importance. The level of association effect is illustrated by the
horizontal location impact for lower or high predictions. Red color shows high while
blue shows low observational correlation of the variables. Local interpretation was
also done to explain why the model predicted that particular output as evidenced
in the sample SHAP Force Plot. Features that shoot the prediction higher (towards
the right side) are displayed in red, while those that push it lower are in blue.
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3.2 XAI- and- EL- for - Water Quality Prediction

3.2.1 Proposed Approach

An overview of the steps we have taken in training our models is summarized in
a diagram in Figure 3.5 using an appropriate open global water quality dataset
obtained from Kaggle.

Water Potability
Dataset

Data Cleaning &
Preprocessing
ML Model Model — SHAP

Training comparison Explainability
Hyperparameter ’A J \’ .

Tuning ‘ Soft Voting Model Calibration

Ensemble
Ensemble Model
H20 Stacked Comparison
L Ensemble )

Figure 3.5: High Level Diagram for the Proposed Water Quality Prediction Ap-
proach

3.2.2 Data Preparation and Preprocessing

At first, we handled the missing values. We found out that the features pH, sulfate
and Trihalomethanes had missing values as shown in Figure 3.6. The methods for
handling the missing values usually differ depending on the dataset used and the
nature of the problem at hand. Our task is to determine water quality based on
potability which is a very sensitive matter. Filling in the missing values with certain
predicted values can be a very risky decision. For example, if the pH value was
originally 0 (zero), that automatically means such water should not be consumed by
people. If for some reason, this value has been treated as a missing value and then
we go ahead to predict values for it, we would be very wrong. For this reason, we
avoided predicting missing values and boldly removed instances with missing values.
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Figure 3.6: Dataset Features with Missing Values

Anomaly Potability
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Figure 3.7: Anomaly Plot for the Dataset

Using the pycaret open source library, we then performed anomaly detection to iden-
tify the outliers in the dataset as shown in Figure 3.8. The safest way of handling
outliers for water safety prediction was removing them since there should not be
outliers in the dataset related to life. Over 110 anomalies were observed by eval-
uating the various dates which reflected the recorded cases that were juggled for
water potability. This gave an insight of the potential existence of more instances of
juggled cases of undrinkable water as drinkable. On performing datatype verifica-
tion of the variables, it was observed that all features were numerical and the target
variable was imbalanced.
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Feature distribution by Potability class and Approved limit
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Figure 3.8: Outlier Distribution

Next was looking at how the features influence each other, so we visualized the
correlation of all features using a heatmap function of Seaborn. There exists no
linear relationship between the features that explain the target variable “potability”
as evidenced by the correlation matrix in Figure 3.9. The maximum correlation is
15% (-) for Solids and Sulfates which implies that only 15% variance of Solids can
be explained by Sulfates and vice-versa. It can therefore be said that there is no
multicollinearity (as for it to be present, the correlation should have been higher
than 80-85% (4 or -). The input variables are assumed to be independent implying
that we cannot reduce the dimension.

26



-10

ph . 0.08 -0.08 0.03 001 002 004 000 -0.04

Hardness RG] 0.05 -0.03 0.09 0.02 000 -0.01 -0.01
Solids [ 0.05 0.07 0.15 001 001 001 002
Chloramines [EUNIKEREIRICEEN N 002 -0.02 001 002 0.00

iy 0.01 -0.09 -0.15 002 meilm -0.01 003 -0.03 -0.01

- 0.8

moLlieayisal 0.02 -0.02 001 -0.02 -0.0] eilil 0.02 000 0.01

WGENGEEE AL 0.04 000 001 -0.01 0.03 0.02 mele -0.01 -0.03

s 0.00 -0.01 -0.01 002 -0.03 000 -0.01 el -0.02

L=
=
=

guiteniGitatam -0 04 -0.01 002 000 001 001 -0.03 -0.02

ph

Hardness
Solids
Chloramines
Sulfate
Conductivity
Turbidity

Organic carbon
Trihalomethanes

Figure 3.9: Correlation Matrix

When we applied principle Component Analysis (PCA) to check the explained vari-
ance as indicated in Figure 3.10, we observed it would require atleast seven (7)
dimensions to explain 90% of the variations. Therefore, dimensionality reduction in
this case does not make any change.
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Figure 3.10: PCA Plot
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We analyzed the univariate distribution of every predictor variable to better under-
stand the data. Each variable has mostly a normal distribution (the feature means
look quite similar with very less difference). Since the graphs are pretty normal,
there is no need for normalization. Based on the approved limit in Figure 3.11,
we can clearly see the difference in the water classification. For instance; distri-
bution of non-potable water is higher compared to potable water on conductivity,
Trihalomethanes and Turbidity. However, pH value, Chloramines, Sulfate, Organic
carbon presence does not show significant difference. We hope the hypothetical test-
ing can help us here.

Feature distribution by Potability class and Approved limit
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Features and p value based on t-Test
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Figure 3.12: Features and p-value based on T-test

From the Hypothesis Testing in Figure 3.12 above, we can see that the features
Solids and Organic Carbon have significant differences in potable and not-potable
water. Other features share similarities between the two classes.

3.2.3 Checking Feature Importance

It is important to note that poor water quality can cause different diseases. There-
fore, knowing which features are important when judging water quality will help
in making public health decisions. We checked the feature importance of the vari-
ous water quality metrics based on partial dependencies, mean decrease in impurity
and feature permutation. The impurity-based feature importance ranks the most
important feature. What basically happens is that at every split (based on the cor-
responding feature in each tree), the sum of the decrease in impurity is calculated.
Therefore, the Mean Decrease Gini will be an average of all the tree values. This
value increases as the feature becomes important for the model to classify well.

3.2.4 Model Creation

The new clean training dataset was used to train multiple classification algorithms
for example Decision Trees, Light gradient Boosting Machine (LGBM), CatBoost,
Naive Bayes, Random Forest, Extra Trees, Linear Discriminant Analysis, Gradient
Boosting classifier and the Logistic Regression models. Model comparison was per-
formed and explainability done for a few outstanding tree-based classifiers. Then
the best models that is; LGBM, CatBoost and Random Forests were ensembled
to form a robust water quality prediction model which was trained on the same
dataset to assess its binary classification performance before calibration for model
generalizability.
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3.2.5 Ensemble Modeling

A soft voting technique was used to ensemble the 3 best models that is; CatBoost,
LGBM and Random Forest.

LGBM

CatBoost

Soft Voting ——»|  Final Output

Training

Data

Random Forest

Testing
Data

Figure 3.13: Block diagram of Ensemble Learning

Light Gradient Boosting Algorithm (LGBM)

LGBM utilizes decision trees and boosting [16] with a faster training speed and
improved efficiency. The algorithm builds on the gradient boosting algorithm by
entailing automatic selection of features and boosting larger gradient examples.
LGBM uses histogram-based algorithms which lowers memory usage and applies a
more reliable growth strategy known as the best-first which helps greatly in cutting
computational costs. It also consists of different model parameters for instance the
number of leaves, max depth and boosting type [55] which require tuning. Unfortu-
nately, leaf orientation results into overfitting and LGBM prevents this by inclusion
of a maximum depth limit to the top of the leaf.
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Categorical Boosting (CatBoost)

CatBoost utilizes the gradient descent framework [1] to predict categorical features.
During model training, several decision trees are consequently constructed to cre-
ate consecutive trees with relatively lesser loss which in turn constructs a strong
learner. The differences between CatBoost and other GBDT algorithms are as fol-
lows: Firstly, CatBoost involves combination of categorical features into one by the
Feature combinations [37]. Secondly, CatBoost handles categorical features in the
training process as opposed to preprocessing and trains the entire dataset. It also
uses target statistics to minimize information loss. For regression tasks, CatBoost
utilizes the average label value of the dataset in calculating the prior. Thirdly,
CatBoost is a fast scorer since it considers decision trees as base predictors [37].
On the other hand, CatBoost algorithm is limited to categorical thus ineffective
when it comes to classification data.

H20 AI with StackedEnsemble was also applied which yielded a better accuracy.
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Figure 3.14: An example scheme of stacking ensemble learning
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Chapter 4

Results and Recommendations

4.1 XAI- for - Safe Water Evaluation

From Table 4.1 below, Random Forest Classifier achieved the best accuracy, Extra
Trees Classifier exhibited a high precision and a great AUC while Decision Trees
Classifier achieved the best recall.

Table 4.1: Results Table

Model Accuracy| AUC | Recall | Precision| F1 Kappa| MCC | TT
(Sec)
Random Forest 0.6786 0.6592| 0.2938| 0.6524 0.4035| 0.2252| 0.2594| 1.4210
Quadratic Discrimi- | 0.675 0.6748| 0.2988| 0.6395 0.4057| 0.2203| 0.2516| 0.0250
nant Analysis
Extra Trees 0.674 0.6744| 0.2519]| 0.6652 0.3628| 0.2009| 0.2443| 1.2990
Light Gradient | 0.6474 0.6524| 0.3630| 0.5370 0.4323| 0.1910{ 0.1987| 0.1600
Boosting Machine
Gradient Boosting 0.6469 0.6230| 0.1877| 0.5808 0.2824| 0.1235| 0.1587| 0.6740
K Neighbors 0.6363 0.6136| 0.3642| 0.5167 0.4261| 0.1719| 0.1780| 0.2150
Logistic Regression 0.6281 0.4814| 0.0000| 0.0000 0.0000{ 0.0000| 0.0000| 0.0280
Ridge Classifier 0.6281 0.0000| 0.0000| 0.0000 0.0000{ 0.0000| 0.0000| 0.0200
Linear Discriminant | 0.6281 0.4814| 0.0000| 0.0000 0.0000{ 0.0000| 0.0000| 0.0290
Analysis
Dummy Classifier 0.6281 0.5000| 0.0000| 0.0000 0.0000{ 0.0000| 0.0000| 0.0100
Naive Bayes 0.6277 0.5700| 0.1333] 0.5090 0.2090| 0.0632| 0.0895| 0.0140
Ada Boost Classifier | 0.6111 0.5361| 0.1716| 0.4426 0.2460| 0.0490| 0.0594| 0.2460
SVM - Linear Kernel | 0.5867 0.0000{ 0.2025] 0.4113 0.2579| 0.0195| 0.0267| 0.0230
Decision Tree 0.5804 0.5537| 0.4494| 0.4395 0.4428| 0.1071| 0.1077| 0.0380

4.1.1 Model Performance Analysis

Figure 4.1, Figure 4.2 and Figure 4.3 are the confusion matrices for Random For-
est, Extra Trees and Decision Trees classifiers respectively. Extra Trees Classifier
turned out to be a pretty better classifier for our dataset followed by Random Forest
considering the relatively larger number of true negative values.
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Figure 4.1: Random Forest Confusion Matrix

ExtraTreesClassifier Confusion Matrix
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Figure 4.2: Extra Trees Confusion Matrix
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DecisionTreeClassifier Confusion Matrix

True Class

Predicted Class

Figure 4.3: Decision Trees Confusion Matrix
Figure 4.4, Figure 4.5 and Figure 4.6 are the ROC curves for Random Forest, Extra
Trees and Decision Trees classifiers respectively, showing a trade-off between the

“potable” and “not potable” classes of water quality being measured. Random
Forest and Extra Trees exhibit a better performance here.

ROC Curves for RandomForestClassifier
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Figure 4.4: Random Forest ROC Curve
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ROC Curves for ExtraTreesClassifier
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Figure 4.5: Extra Trees ROC Curve
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Figure 4.6: Decision Trees ROC Curve

Figure 4.7, Figure 4.8 and Figure 4.9 are the Decision Boundary plots for Random
Forest, Extra Trees and Decision Trees Classifiers respectively plotted on scatter
plots using the feature importance scores given by the models.
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Figure 4.8: Extra Trees Decision Boundary



Feature Two

Figure 4.10, Figure 4.11 and Figure 4.12 are Learning Curves for Random Forest,
Extra Trees and Decision Trees Classifiers respectively, indicating how the models
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Feature One

Figure 4.9: Decision Trees Decision Boundary

were able to learn the dataset.
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Figure 4.10: Random Forest Learning Curve
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Figure 4.12: Decision Trees Learning Curve

4.1.2 Interpretation by SHAP

As a first step, we viewed the feature importance to gain insight into the model.
SHAP Feature Importance uses Shapley values to analyze the predictions of the
models in predicting water quality and is measured as the mean absolute Shapley

39



For Random Forest in Figure 4.13 and Decision Trees Classifier Figure 4.15, PH
and Hardness are seen to be equally the most important features while Extra Trees
Classifier in Figure 4.14 indicates that pH is the most important of all.
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Figure 4.13: Random Forest Feature Importance Plot

Feature Importance Plot

ph -
Sulfate *
Hardness ®
Solids ®

Chloramines *

Features

Conductivity .
Trihalomethanes *
Organic_carbon A

Turbidity .

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Variable Importance

Figure 4.14: Extra Trees SHAP Feature Importance Plot
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Figure 4.15: Decision Trees Feature Importance Plot
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Figure 4.16: Random Forest SHAP Summary Plot
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Figure 4.16, Figure 4.17 and Figure 4.18 are SHAP summary plots for the Random
Forest Classifier, Extra Trees Classifier and Decision Trees Classifier respectively.
The position of the feature on the y-axis is determined by its Shapley value on the
x-axis. We can see that Sulfate is the most important feature for Random Forest
and Extra Trees while Decision Trees judges Chloramines as the most influential
feature of all.
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Figure 4.17: Extra Trees SHAP Summary Plot
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Figure 4.18: Decision Trees SHAP Summary Plot
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A SHAP Force Plot is used to visualize how features contribute to the individual
prediction; it is simply used for row-wise SHAP analysis. It takes in a single row
or instance and shows in a rank order how each of the features contributed to
the prediction. The wider the block, the more the contribution of that feature.
Still; “Red” and “Blue” colors show the positive (4) and negative (-) predictions
respectively. Variables that push the model towards a higher value appear on the
left in “Red” whereas those that push the model to a lower value appear on the right
in “Blue”. The actual value of the variable is shown alongside the variable name.
From the plot in Figure 4.19, we observe the prediction probability value of 0.31.
The base value of 0.2717 would be the predicted value if no feature of the current
instance was known.
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Figure 4.19: Random Forest SHAP Force Plot
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Figure 4.21: Decision Trees SHAP Force Plot

4.2 XAI- and- EL- for- Water Quality Prediction

4.2.1 Feature Importance

We assessed the feature importance to water quality prediction in the perspective
of the best classifiers for easy understanding during interpretation. From Figure
4.22, it was observed that the pH feature has a large partial dependence at values
between 6 and 8.5. For Hardness, the value of partial dependence rapidly increases
around 210. In Figure 4.23 and Figure 4.24, pH and Sulfate features were judged
to be important features. The power of collective intelligence allows for a more
accurate deduction that pH is a very important predictor of water quality since we
have compared results from various approaches assessing feature importance.
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Figure 4.22: Partial View of Feature Importance with Partial Dependencies
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Figure 4.24: Feature Importance based on Feature Permutation
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From the analysis we did earlier, the dataset features are really independent thus
reduction of features through feature extraction is not the best option. Although
Feature Importance has pointed to the most influential features, it is very possible
that each of the features contributes significantly to the quality of water and presence
of even a less quantity of any of the variables would affect the potability of water.

4.2.2 Model Creation and Comparison

In this research work, we predicted the water potability class using classification
algorithms. The models were trained and their performance evaluated as shown in
Table 4.2. The results yielded by these algorithms were evaluated using the following
measures:

1. Recall

Recall or sensitivity is used to refer to the proportion of the total positive
actual values that were correctly predicted. It is obtained from the formula;

TP
RGC(ZZZ = m—m (41)

2. Accuracy

refers to the proportion of the accurate number of model predictions out of all
data points. It is obtained from the formula in the Equation below.

TP+ TN
TP+TN+ FP+ FN

(4.2)

Accuracy =

3. Precision

Precision is used to refer to how many of the total predicted positive values
were actually positive. Precision is calculated using the formula;

TP
PTGCY:S’iOTl = m—w (43)

4. F1-Score

Since recall and precision can not address accuracy aspects individually, we
obtained their F'1 score in order to address both aspects and reflect the overall
accuracy measure in a better way. F1 score ranges between 0 and 1 and a
higher F1 score value achieves a better accuracy.

B 2x TP
 2%«TP+FP+ FN

F1 (4.4)

Where TP stands for True Positives, TN stands for True Negatives, FP stands for
False Positives and FN stands for False Negatives.
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In that setting, CatBoost, Light Gradient Boosting Machine (LGBM) and Random
Forest gave the best accuracy scores of 0.6864, 0.6602 and 0.6423 respectively .

Table 4.2: Model Comparison

Model Accuracy| AUC | Recall | Prec. | F1 Kappa| MCC| TT
(Sec)

Decision Trees 0.5988 0.5759] 0.2949 | 0.4782| 0.4756| 0.1517 | 0.1529| 0.047

Light Gradient | 0.6423 0.6463| 0.4120 | 0.5497| 0.4667| 0.2067 | 0.2138| 0.190
Boosting Ma-

chine

CatBoost 0.6864 0.6857| 0.3770 | 0.6609| 0.4749| 0.2772 | 0.3009| 4.958
Naive Bayes 0.6205 0.6106| 0.3009 | 0.5057| 0.3752| 0.1297 | 0.1384| 0.033
Random Forest 0.6602 0.6586| 0.4782 | 0.6191] 0.3971| 0.2016 | 0.2288| 0.844
Extra Trees 0.6310 0.6055| 0.2949 | 0.5294| 0.3751| 0.1460 | 0.1584| 0.516
Gradient Boost- | 0.6378 0.6263| 0.2716 | 0.5386| 0.3582| 0.1498 | 0.1640| 0.361
ing

Linear Discrimi- | 0.6205 0.5709| 0.1798 | 0.5239] 0.2645| 0.0846 | 0.1085| 0.021
nant Analysis

Logistic Regres- | 0.6175 0.4985| 0.0038 | 0.0667| 0.0073| 0.0032 | 0.0087| 0.863

sion

The hyperparameters of the estimators were tuned to output a score grid with
cross validation scores by fold of the best selected model based on the optimization
parameter. The performance is shown in Table 4.3.

Table 4.3: Performance Evaluation using tuned parameters

Fold | Accuracy | AUC | Recall | Precision| F1 Kappa| MCC
0 0.6418 0.6657 | 0.3333 | 0.5484 0.4146 | 0.1781 | 0.1896
1 0.6194 0.5781 | 0.2941 | 0.5000 0.3704 | 0.1232 | 0.1321
2 0.5896 0.6226 | 0.1373 | 0.3889 0.2029 | 0.0054 | 0.0067
3 0.5746 0.4759 | 0.1765 | 0.3750 0.2400 | - -

0.0047 | 0.0054
4 0.6194 0.6283 | 0.2115 | 0.5238 0.3014 | 0.1006 | 0.1201
5 0.5597 0.5210 | 0.2500 | 0.3939 0.3059 | 0.0065 | 0.0069
6 0.6466 0.5903 | 0.3922 | 0.5556 0.4598 | 0.2086 | 0.2156
7 0.6165 0.5527 | 0.1765 | 0.5000 0.2609 | 0.0760 | 0.0948
8 0.5714 0.5544 | 0.0980 | 0.3125 0.1493 | - -

0.0415 | 0.0540
9 0.6541 0.6786 | 0.4706 | 0.5581 0.5106 | 0.2462 | 0.2483
Mean | 0.6093 0.5868 | 0.2540 | 0.4656 0.3216 | 0.0898 | 0.0955
Std 0.0319 0.0605 | 0.1121 | 0.0848 0.1098 | 0.0938 | 0.0984
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4.2.3 Model Interpretation by SHAP

We deployed SHAP to interpret water quality predictions of the trained models.
Unlike other Explainable Artificial Intelligence (XAI) techniques, SHAP gives the
final explainability after considering feature interaction during Machine Learning.
Therefore, its feature importance outputs are likely to be way much more accurate
sine it does not only consider the weight and contribution of the features but instead
the weights and interaction of the weights during explainability. The technique uses
SHAP values to show the impact of each of the dataset features whose proportional
possession yields the model prediction interpretation depending on baseline values.
Figure 4.26, Figure 4.27 and Figure 4.28 are SHAP summary plots which combine
feature importance with feature impacts. Every point on the Summary Plot is a
Shapley value per feature instance. On the y-axis are the features while on the
x-axis are the Shapley values for every instance. Feature value is denoted by the
color of the dots (Blue: low value, red: Higher value). Features are well-organized
depending on their importance during the interaction. We observed that Sulfate was
the most vital feature for LGBM while CatBoost and Random Forest indicated that
pH is the most important of all. Therefore, from the summary plots, the top three
influential variables in determining water potability are Sulfate, pH and Hardness.
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Figure 4.26: SHAP explanation for effects of data points (features) on Water Quality
Prediction using LGBM
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Figure 4.27: SHAP explanation for effects of data points (features) on Water Quality
Prediction using CatBoost

Figure 4.28: SHAP explanation for effects of data points (features) on Water Quality
Prediction using Random Forest
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4.2.4 Ensemble Modeling

We plotted the ROC curve in Figure 4.31 of the Soft Voting Classifier that predicted
water quality in comparison to other algorithms. H20 Al gave 80% accuracy with
the StackedEnsemble model as shown in Table 4.4. however, it required too much
computation time.
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Figure 4.29: Confusion Matrix for the Soft Voting Classifier

Table 4.4: Stacked Ensemble Model Classification Report

Metric Precision | Recall | F1-Score | Support
Not-potable (0) 0.820 0.850 | 0.840 581
Potable (1) 0.760 0.720 0.740 383
Accuracy 0.800 964
Macro Average 0.790 0.790 0.790 964
Weighted Average | 0.800 0.800 0.800 964
Accuracy Score: 0.800
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Figure 4.30: Decision Boundary for the Soft Voting Classifier

True Positive Rate

ROC Curves for VotingClassifier

1.0
0.8
0.6
0.4
ROC of class 0, AUC = 0.69
0.2 ROC of class 1, AUC = 0.69
© micro-average ROC curve, AUC = 0.72
* macro-average ROC curve, AUC = 0.69
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4.31: ROC Curves for the Soft Voting Classifier
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4.2.5 Final Model Calibration

Since water resources differ and are located in different locations across the world,
it is necessary to calibrate our models to account for all the differences that could
be affecting the parameter values or quantities. Model calibration allows building
generalizable models after ensembling tree-based models and makes the model ro-
bust enough to handle vast amounts of data. On comparing performance of the
individual models with the Ensemble model, the Soft Voting Classifier had the best
performance. Therefore, the soft voting model is selected as the final model for
performing calibration. Model calibration was done by calibrating probability of
the estimators using isotonic or logistic regression, since we were not working with
Support Vector Machines (SVMs) but rather tree-based models. Comparison of the
confusion matrices before calibration in Figure 4.29 and after calibration in Figure
4.32 shows a reduction in False Negatives and False Positives and the accuracy score
of the model completed until calibration was 98.8%. The final calibrated Soft Voting
model trained the estimator on the entire dataset including the holdout set. The
summary of results for the final calibrated model is presented in Table 4.5.

Table 4.5: Calibrated Model Classification Report

Metric Precision | Recall | F1-Score | Support
Not-potable (0) | 0.980 1.000 0.990 339
Potable (1) 1.000 0.970 0.985 235
Accuracy Score: 0.988

CalibratedClassifierCV Confusion Matrix

True Class

Predicted Class

Figure 4.32: Confusion Matrix for the Calibrated Model
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Chapter 5

Conclusion and Future Works

Investments made by governments and agencies for improved water supply can pro-
duce an economic benefit due to a decrease in adverse health effects as well as health
care costs incurred while undertaking the interventions. In this study, we proposed
a robust generalizable model that is well suited for water quality prediction after
training and testing various ML predictive models on a Kaggle stationed dataset. In
order to understand how these models were using the data to achieve this, Shapley
Additive Explanations (SHAP), an Explainable Al technique was deployed to ex-
plore feature importance for water quality prediction. We observed that certain fea-
tures, such as pH, Hardness and Sulfate looked to be good indicators for predicting
water potability. Conventional Ensemble Learning and AutoML Ensembling were
exploited for Water Quality analysis. The accuracy of Stacked Ensemble model sur-
passed that of the SoftVoting Ensemble for binary class water data. Although the
Stacked Ensemble Model eased the task of finding the appropriate Machine Learn-
ing model and proved better efficiency without manual intervention, the Calibrated
Soft Voting Ensemble model outperformed it for the same water data. By predicting
the potability of water based on these parameters and receiving early warnings, the
model can assist Public Health officers, policy makers and other responsible author-
ities to manage water quality, thus the proposed model can be adapted for analysis
of different water quality samples from various sources and may accordingly be ap-
plied to other scenarios. We believe the obtained results and gained insights shall
immensely guide us on advocating for the development of a Standardized Water
Quality Evaluation and Management Framework for trustable and reliable Water
Quality Evaluation, Surveillance and Management for Public Health. It will hope-
fully detect water of poor quality before it is released for human use and as well
send alerts to the responsible authorities, decrease poor quality water consumption
by people thus curbing worrying diseases like typhoid and diarrhea. Generally, this
will guide agencies and governments on management, policy and decision making
concerning water resources for maintenance of water quality, establishment of new
water treatment procedures and improved water management and pollution control.

The proposed framework could help concerned authorities in establishing or enforc-
ing policies to manage water pollution. Scores in the range 0 to 100 for example, are
given according to the pollution level of the homestead, farm, factory, organization/
company etc. Depending on the pollution level, a penalty is given to those polluting
the water using different factors. For instance; the tax can be incremented with
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a certain percentage, bank loan raised, deduction from the salary for government
workers and government incentives or benefits can be withdrawn in cases of extreme
water pollution.

In future, data collection and data annotation can be done to obtain a large catch-
ment dataset for real world implementation and further enhancement of the pre-
diction accuracy and analysis of the retrained models. This will help immensely in
developing better public health solutions for water quality management for wellbeing
of the people and aquatic nature. Water quality required depends on the purpose of
water in consideration and the parameter quantities may differ based on the water
collection source. Therefore, we recommend that individualized datasets are col-
lected to improve water quality prediction. Because the considered parameters are
measured in different units, standardization can potentially help in case larger differ-
ences between the ranges of the features are realized. Further research could include
investigation on real factors that influence water potability (geographical and soci-
ological trends). The geographical studies will indicate what is in the geographical
area that makes water non-potable while the sociological trends can show how wa-
ter is impacted by ecosystems and commonalities in the local communities. We are
proposing integration of the findings from this work in an IoT-based online monitor-
ing system utilizing sensors of the vital parameters. The proposed model however,
may need extra investigations with other relevant datasets to have its general per-
formance characteristics validated. In addition, future researchers would consider
assessing the model to ensure if it is well calibrated and assess the calibration to
check if there was any flaw in the calibration and possibly develop measures to ad-
just the calibration. We also recommend further research about practices related to
water quality to determine where there are no patterns and features contributing to
the increasing quality as well as experimentation with other Explainable Artificial
Intelligence (XAI) methods. Lastly, we suggest that future researchers experiment
with model calibration techniques for effective comparative analysis.
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