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Abstract

Bangladesh is a fast-developing country, and the number of roads increasing with it
is immense. With the ever-growing amount of road comes the age-old problem of
a pothole. This paper represents a model of deep learning-based, real-time pothole
detection for finding and avoiding road accidents. Any types of image processing-
based detection, in this case, pothole detection, are done through various steps. For
example, collecting data sets is one of the most crucial steps to create any recognition
system. Labeling an image means pinpointing the subject which we will be trying to
find. Training the algorithm through those images to detect the subjects is critical
in detecting potholes. In this research paper, to detect potholes from real-time
videos, firstly, we collected data sets containing more than 600 images of potholes.
After that, we labeled those images through labeling software. Then in chapter-1 we
used those images to train the model (MobileNet, Inception-v3) which was detecting
potholes from still photos given to it. Next, we used YOLOv) to detect potholes
from real-time feeds. In this proposed system, by using the real-time feed, potholes
will be detected. Moreover, this will help the masses to detect potholes on roads to
avoid accidents, and it will also help people related to the road works to find the
potholes for further road maintenance.

Keywords: Road, Pothole, Deep-learning, Image processing, Real-Time, MobileNet,
Inception- v3, YOLOVS.
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Chapter 1

Introduction

1.1 Overview

Potholes have been a significant cause of road accidents and vehicle damage. Re-
cently, as vehicular traffic and pollution levels have increased, the roads have be-
come increasingly congested. Almost every city in the world has large and small
potholes in the street. Pothole detection by hand is a time-consuming and labor-
intensive task. A variety of techniques, including vibration-based approaches, 3D
reconstruction-based approaches, and vision-based methods, have been employed to
detect potholes. Each of these strategies, however, has its own set of limitations [1].
This is why this research aims to see if the present algorithms for detecting potholes
can be used to assist drivers or autonomous vehicles to detect potholes [2]. A pot-
hole is a depression in the pavement surface that is bowl-shaped and has a minimum
plan dimension of 150mm. A two-dimensional image-based methodology has been
confined to pothole identification and is therefore incapable of determining the mag-
nitude of potholes for assessment. To circumvent the limitations of the preceding
method, video-based algorithms for detecting potholes and calculating the overall
number of potholes across a sequence of frames have been developed [3]. Numer-
ous factors influence pothole patching decisions, including traffic volume, the time
remaining until scheduled rehabilitation or overlay, staff availability, equipment, ma-
terials, and the traveling public’s tolerance. Material, labor, and equipment costs
all affect the total cost-effectiveness of the patching procedure. The key to future
reconstruction decision-making is the evaluation of damage based on gathered data
[4]. Both internal and external factors cause potholes. Internal factors include the
deterioration and responsiveness or durability of the pavement material to climate
change factors such as heavy rainfall and heat. External factors include a lack of
quality control and construction management. Advanced digital inspection trucks
acquire pavement photos and video data in contemporary practice, but technicians
manually analyze the damage estimation. As a result, it is a time-consuming and
costly endeavor. Since it depends on the worker’s precision and experience, it is fre-
quently more subjective than objective. In addition, existing applications typically
require complex equipment that is somewhat costly and requires specialized main-
tenance [5]. Keeping accordance with the development of Bangladesh, the number
of the road is increasing rapidly. Moreover, in Bangladesh, road communication is
crucial. Therefore, it has had remarkable growth in the road transportation sector
during the last two decades. The total length of roads in the Bangladesh is around



271,000 kilometers (km), including approximately 21,000 kilometers of major high-
ways [6]. While the number of roadways continues to expand, so does the number of
automobiles on the road. Additionally, climate conditions, excessive road use, cars
that exceed the road’s statutory weight limit, and spontaneous construction work
are all significant contributors to road damage in this country. Thus, this proposed
system will detect potholes on the road and assist the general public in avoiding
accidents while also assisting authorities in locating and fixing them.

1.2 Research Problem

A pothole’s detection system is designed to warn drivers of uneven roads and pot-
holes on their track. We study the various ways that the system’s goals can be
achieved.

The methods we have chosen in these projects are justified. And then, we give de-
tails of how the various subsystems work. You can give the problem statement as
follows. Access points responsible for storing potholes information in the vicinity,
taking feedback from vehicles, updating the information in the depot, and transmit-
ting information to other vehicles. The entire scenario works like this. During the
deployment of the access point, we use some initial potholes data. Then it continues
to broadcast the data. Finally, the customer-equipped vehicle captures that data.
Nevertheless, due to environment or fatigue, new potholes can always be formed.
This means that the customer device also acts as a sensor and finds the newly formed
potholes on the road. If it discovers any new potholes, it gives the feedback data of
the new Access Pothole. Access points updates this information to its data storage
and adds it to the data transmitted [7].

In most developing countries, poorly maintained roads are a fact of life. Therefore,
a well-managed road network is a must for every country’s well-being and devel-
opment. A practical road surface monitoring system must therefore be created.
Automated detection of potholes is our system focus. The aim is to develop an
image processing system for detecting road potholes uploaded to the server, notify
all users, and update the information when required [8].

The significant challenges in the road transport sector are potholes, not good qual-
ity, and low funding for road maintenance. The handling capacity of road vehicles
is also low, but the vehicle density is increasing on the road. As a result, roads de-
teriorate, and transport costs increase. This resulted in road accidents. The other
reason for jams and accidents is the poor road conditions [9)].

The main problem facing developing countries is road maintenance. Due to poor
maintenance and maintenance of the roads, potholes have been created. According
to an automatic survey, potholes are one of the main reasons for road accidents.
Moreover, when the vehicle’s speed slows down, there are high chances of a collision
with the vehicle. We, therefore, believe that sharing information is an essential ele-
ment to prevent potholes and reduce accidents [10].

Potholes can damage different parts of the vehicle. Tires are affected by the pothole
strikes and are susceptible to damages such as bulging sidewalls, tread splits, and
flats. A pothole’s harsh, sharp edges push the tire beyond its limit, splits, stretches,
or shrinks the rubber. Even if you do not have a flat tire after hitting a pothole, you
should check the wheel for damage to the safety or other problems. Hit a sufficient
pothole, and the force can buckle and perhaps crack the wheel, leading to a range



of costly problems to solve. Sudden jolts on the road can damage the suspension,
knock it out and cause poor steering performance. The tire’s walls may contact the
road if you drive into a deep pothole, causing severe exhaust damage [11].
Although it is possible to get over small pieces of debris without any consequences
quickly, large sumps and holes can cause severe damage to your car and cause you
to lose control [12].

1.3 Research Objectives

Our aim in this research paper is to build a Pothole Detection System using image
processing. However, this system for pothole detection is designed to collect road
images with an optical instrument modified in the vehicle and detect a pothole using
the algorithm from the date it collects.

1. Build an image dataset to train our algorithm for detecting potholes so that
the detecting instrument can collect data from the road and give a result
instantly.

2. Build a system for detecting potholes in real-time from real-time videos or
feeds.

3. To avoid accidents on the road by detecting potholes.

1.4 Research Orientation

1. We collected all our datasets and videos from different online sources since we
could not go out due to Covid-19.

2. We have used many pre-trained layers in the trained model for transfer learning
implementation, and we have manipulated the model for better accuracy.

3. We implemented two methods which are Inception-v3 and MobileNet to detect
potholes in images. After implementing MobileNet and Inception-v3 we get
the model accuracy of MobileNet is 95% and 93% Inception-v3.

4. We applied YOLOvVH to detect potholes in real time video feed to avoid road
accidents.



Chapter 2

Literature Review

There are many reasons in the world for a road accident. Such as Distracted driv-
ing, over speeding, Inexperience, using a phone during driving, Overtaking tendency.
However, bad road condition is also a notable cause of an accident. Lack of main-
tenance, heavy vehicle, flood, or rain can damage the road. Texture changes, crack,
and the pothole on road surface causes road damage.

To avoid such accidents, a technological approach can be used to detect potholes.
That process basically indicates pothole and notify the driver before the vehicle ap-
proach towards that. Various methods are there to show potholes. Among these are
vibration-based methods, 3D laser scanner methods, 2D image-based approaches,
image-based integrated processing, and GPR datasets for mechanized pothole de-
tection.

Camera observation and vibration detection are the most common technologies used
by mobile devices to monitor road conditions. Vision-based systems utilize smart
phones installed in a vehicle to collect shots of the road surface and automatically
analyze the surface data included in the images using picture analysis techniques.
For instance, the Road surface Distress Detection Method [13] detects road dam-
age in film footage via an automated data processing procedure. However, in this
scenario, the system is just capable of deciding the position and estimated amount
of suspected crack or distress characteristics inside video image frames. Addition-
ally, it is unable of providing structural dimensions (crack width/depth/height) or
classifying the damage or distress features. Maeda et al. [14] and Ochoa-Ruiz et
al. [15] built extensive image data sets which are used for the precise detection of
potholes in roads by using deep-learning methods. But there is no publicly available
standard road damage dataset.

Hence there is no standard for detecting road damage. Although data augmenta-
tion is suitable for training generic object detectors, its performance can be limited
by the poor image quality. The most often utilized sensors in vibration systems
are accelerometers and gyroscopes, thus they are susceptible to vibrations induced
by road irregularities, such as potholes and dips. Numerous strategies, classified
into three groups, have been applied: (1) target level based methods, (2) intelligent
timeshare , and (3) machine learning, in conjunction with feature-based engineering.
Requiring proper road network is challenging because of numerous reasons, includ-
ing inclement weather, unexpected traffic volumes, and unpredictable wear and tear.
Due to the unpredictable nature of[4] [16] [17]. Although modern digital inspection
trucks record road pictures and video data, professionals manually analyze damage



estimations. As a result, it is a lengthy and costly process. It is frequently more
subjective than objective because it is dependent on the precision and experience of
the workers.

Numerous users have developed a successful post-processing approach for utilizing
clustering data, significantly increasing the percentage of analysis and identification
and decreasing the rate of wrongful convictions [18].

An anomaly is found if its amplitude or other signal characteristics (like root mean
square (RMS) and crest factor) are above a certain level. Nericell [19] proposed a
system for identifying potholes and bumps using two vehicle speed detectors. Arti-
ficial readjustment is performed in order to bring the misplaced rangefinder up to
the same standard with the vehicle coordination system for street damage detec-
tion. At high speeds, a spike that exceeds the specified limit (or the detection of a
change point) is labeled as a potential irregularity. At the same time, the detector
searches for an ongoing dip of az produced by the tires entering the pothole at a low
speed. Over multiple observations, the sensor maintained a low error rate (5-10%)
but a significant falsified rate (20-30%). Mednis et al. [20] suggested that while the
car was temporarily free-falling during entry or leave, all multiple velocity profile
were near zero-g. They compare the G-ZERO algorithm to three minimum level
approaches for detecting potholes: Z-THRESH, Z-DIFF, and STDEW (Z). TERM
is a road monitoring system that employs dynamic thresholds and crowdsourcing
techniques [21]. This algorithm detects a potential bump when the X- (lateral) and
Z-axes (vertical) acceleration values are more than the set limit, and a speed bump
when the Y- (longitudinal) and Z-axes acceleration values are greater than the stated
limit. If more than five data samples indicate the same location as a prospective
abnormality (bump in the road or potholes), the location is tagged on the map as
a true irregularity. Even though the methods are simple to detect, the results are
encouraging, with 90 percent of bumps and 85 percent of potholes detected success-
fully, owing largely to the use of crowdsourced data. Despite the excellent results,
the false alarm rate of the method has not been disclosed.

DTW is a method approach for determining the correlation between different datasets
that may be period and space-dependent [19]. But in this case, due to the limited
availability of the stated algorithms and data sets, it isn’t easy to compare the ac-
curacy and performance of alternative techniques when it comes to the performance
of the linked algorithms. Singh et al. [22] said, DTW was utilized to detect and
classify road irregularities based on sensor data. Reference templates for potholes
and bumps were created manually using sensor readings and kept in a template
database. The detection was accomplished by determining the degree of similarity
between the input data and the reference templates. Potholes and bumps were de-
tected at an 88.7 percent and 88.9 percent rate, respectively.

Road inspection techniques based on machine learning have been widely imple-
mented and installed in cars traversing long distances across the city of Boston.
Pothole Patrol [20] used portable methods to gather information (accelerometer,
GPS). To eliminate one or more non-pothole event types, a variety of filters (speed,
high-pass, z-peak, xz, and speed vs. z-ratio) were used to its pothole detecting
algorithm. Each filter’s specific characteristics are used to optimize the system’s
detection accuracy, which itself is compatible with the fundamental concept of ma-
chine learning. By clustering the findings by location, the algorithm attained a final
pothole detection accuracy of 92.4 percent in the labeling data. In comparison to



this Pothole Patrol (p2) system, the majority of machine-learning approaches for
road inspection typically employ the following processing steps. To begin, functions
from diverse aspects are retrieved from data set using a variety of different ways.
The classification of these features enables the identification of road problems and
the differentiation of various types of defects [21]. But due to both technical re-
strictions and human timing constraints, a human operator activating the system
during the test drive is prone to many errors. Perttunen et al. [23] removed time
and frequency domain features with the fast Fourier transformation (FFT) and used
selection algorithm for selecting optimum set of features. Because speed character-
istics have an impact, Perttunen et al. fitted a line to each of the data features
to remove linear speed dependency. Seraj et al. [24] did investigate time and fre-
quency domains al well as took account of characteristics resulting from wavelet
transformation through using the stationary wavelet transformation (DWT). The
support vector machine (SVM) was used as the classifying model for Perttunen et
al. [23] and Seraj et al. [24]. But, for a smooth road, the detector must have a low
percentage of false negatives. Because most roads are smooth, even a tiny portion
of smooth roads being flagged as road abnormalities will result in an unreasonable
amount of false positives. The analysis and assessment of different classifications
were carried out by Silva et al. [25], Varona et al. [26], and Basavaraju et al. [27].
Using the concepts from the field of computer vision, Varona et al. extended and
reduced the sequence of various signals to add to the data sets. Basavaraju et al [27]
analyzed the distinction between the use of characteristics on all y-axis axis and the
use of data on a particular axis. Li et al. [28] were already using the Wavelet process
to detect potholes, and they provided a new method for calculating the diameter of
potholes.

In comparison to limiting methods and the DWT, machine learning method is a
more complex and comprehensive method that may extract more meaningful in-
formation from the data. While machine learning techniques have developed and
generate excellent outcomes, this strategy is still based on thresholds; in other words,
the process of determining appropriate benchmarks is employed to transmit knowl-
edge from humans to machines. However, studies have repeatedly neglected the
fact that the majority of original data is generated by flatter stretches, which may
be removed using simple thresholds. Additionally, the majority of research utilized
machine-learning classification methods directly, without the need of any filters.
The energy and data consumption increase — as the client uploaded redundant data
— and the server load for the classification of machine learning increased. Another
drawback is that the pavement condition was not considered while identifying pot-
holes. A model is trained on a dataset of a certain type of road (such as a road)
cannot be used to another type of road, as potholes vary in frequency, shape, and
dimension.



Chapter 3

Work Plan

The proposed system utilizes an optical instrument to capture road images. To do
so, the model needs the creation of a process that takes image data in an optical
device as an input, processes input data in a systematic manner, and generates
the desired result. The model (Figure-3.1) of detecting potholes is created with

Collect Image Image Image Labelling
Dataset Resizing segmentation image dataset
Training
Desired result Detection of Inp_ut real time
pothole video feed

algorithm with
Figure 3.1: Flowchart for detection of pothole.

labelled image
using deep
learning

the help of a dataset that is applied in an algorithmic way with image processing
techniques. Image labeling is the process of recognizing and highlighting various
aspects of an image. In image labeling, when creating metadata, it’s helpful to
automate the process. A known deep learning method will be used to make the
algorithm understand how to recognize potholes. To label the images, first upload
all of the raw images to the system. After that, image labeling software is installed to
annotate such photos using specific techniques according to the customized criteria.
Video data is a common asset that is used every day, whether it is a live stream in
security camera or dash-cam, live video broadcasts are quite simple to access, and
we only have to merge some efficient amount of code for live video access with our
pothole detection.



Chapter 4

Pothole Detection using
MobileNet & Inception-v3

4.1 Methodology

The purpose of the proposed pothole detection model (Figure-4.) is to identify
pothole using Inception-v3 and MobileNet. In order to do so, the model requires
planning a process that takes information from image data set as an input, efficiently
process input data, and deliver predictions of two folds; “pothole” or “plain road”.
The purpose of this study was to determine the occurrence of potholes. As a result,
it was an issue of binary classification.

Convert Training .
Label . . Implementation .
Start Dataset Images Images Normalize using of Transfer Binary
| Collection [ 9 ™ into [ thepata || Deep [ Learnin ™| classification
arrays Learning 9

>

Plain

Road Pothole

Figure 4.1: flowchart for methodology

The pothole detection process method consists of three major steps-

1. Image pre-processing: The study began with the collecting of data and la-
beling of pothole and non-pothole incidences. This period is concerned with
organizing the input data which is the whole dataset of images so that the
method (Pothole detection) can easily process it.

2. Training Images: This period is concerned with converting the image dataset
into arrays, normalizing the dataset, training using deep learning methods
(Inception-v3, MobileNet), implementing of transfer learning and binary clas-
sification to provide prediction

3. Testing: this stage is concerned with taking random images to test to see if
there is any pothole in that particular image.



After normalizing the data, we have split the 100% dataset into three parts that are
one part (70%) is for training, one part (15%) for testing and other part (15%) for
validation.

4.2 Model Description

4.2.1 MobileNet

Convolutional neural networks are constructed utilizing depthwise separable convo-
lutions with MobileNet’s simplified architecture. It is a compact framework that is
well-suited for mobile and embedded vision applications.

As seen in Figure 4.2, MobileNet’s structure is based on depth-separable filters [29].

F15: Layer

Input Depthwise Separable Convolution 1024
Cc1: DWw2: PW2:
320112x112 32@112x112 64@112x112 Output
Classes
PW3: PW13: PW14:
128@56x56 1024@7x7 1024@7x7
|
|
|
|
|
|
|
|
|
|
|
i
| - .
] Depthwise Depthwise Global  Full
. Depthwise Pointwise P P A C .
Convolution Convolution C uti Separable Separable verage Connections
onvolution Convolution Convolution Pooling

Figure 4.2: Architecture of MobileNet

1. Depthwise Seperable Convolution: Using depthwise separable convolu-
tions, a type of factorized convolution, the MobileNet model may be broken
down into depthwise and invertible convolutions (1 x 1), the latter of which is
a sort of pointwise convolution. Depthwise convolution is used in MobileNet,
each input channel has a single filter applied. Following that, the depth-wise
convolution outputs are combined using an 1 x 1 convolution in the pointwise
convolution. Standard convolution classifies and combines data in a single
step to produce new outcomes. The filtering layer and the combining layer
are separated by depthwise separable convolution. The duration and size of
the model are greatly reduced as a result of computation. Conventional con-
volution’s factoring is shown in Figure-4.3, 4(a) into a depthwise convolution
4(b) and a 1x1 pointwise convolution 4(c). A conventional convolutional layer
accepts as input a Dp x Dp x M. F feature map and generates a Dp xDp XN
where G is a map of attributes Dy denotes the geographical length and width
of a square input feature map, M denotes the input’s channel count (input
depth), DG denotes the spatial width and height of a square output feature
map, and N denotes the number of output channels (output depth).

The fundamental convolutional layer is specified by the convolution kernel’s
size, K. D x Dy x M x N where Dy is the geometric dimension of the kernel,
which is presumed to be square, and M and N are the previously given unit



values for the input and output, accordingly. The following is the extracted
feature pattern for standard convolution, considering phase one and buffering:

Giotn =Y KijmnFp+i—11+j—1m (4.1)

The computing cost of standard convolutions is as follows:

Dy.Dy.M.N.Dg.Dy (4.2)

where the processing cost is cumulative in nature and related to the number
of input, the number of output , the kernel size Dy x Dy, and the feature
map size Drp x Dp. MobileNet models handle each of these topics and their
interactions. To begin, it uses depth - wise separable convolution operation to
decouple the number of output from the kernel size. The standard convolu-
tion process filters and merges data using convolutional kernels. By adopting
depth-wise factorized convolutions, the screening and pairing stages can be
divided into two processes.

Distinguishable convolutions for huge cost savings. Distinct and separate
depthwise convolutions are built of two layers: depthwise and pointwise con-
volutions. For each input channel, we use depth-wise convolutions to apply a
single filter (input depth). Convolution in the order of the points, a standard
1x1 combination, which will then be applied to build a linear model of the
depth - wise separable layer’s output. Non-linearities in the batch norm and
ReLU are used in MobileNet at both layers:

Crotm=Y KijmF+i—-11+j-1m (4.3)

Where K is the size of the depthwise convolutional kernel D, x Dy x M where
the my;, filter in K is implemented to the my, channel in F to generate the myy,
channel of the final feature map’s processed output K. Convolution by depth
incurs a computational cost of:

Dy.Dy.M.Dy. Dy (4.4)

Convolution by depth is more efficient than convolution by width. Rather
than mixing or filtering the input channels, it introduces completely new char-
acteristics. To implement these new characteristics, an additional function is
required that computes a linear combination of the depth-wise result of eleven
convolutions. Convolution that is depthwise separable is a concept that refers
to the result of merging depthwise and 11 (pointwise) convolution. This con-
cept was introduced for the first time in the text of [30]. Cost of depth wise
separable convolutions:
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Dy.Dy.M.Dy.Dp + M.N.Dg.Dy (4.5)

This is the sum of the 1x1 pointwise and depthwise convolutions. By describ-
ing convolution as a two-step filtering and combining operation, we obtain a
computation reduction of:

MobileNet employs 3x3 When compared to conventional convolutions, depth-wise
separable convolutions demand as low as 8 to 9 times as much computation as
conventional convolutions. For example, the addition of spatial factorization. [31]
[30], saves little additional time because depthwise convolutions consume relatively
little compute.
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{2) Standard Convolution Filters
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(2) 1#1 Convolutional Filters called Pointwize Convolution in the context
Of depth wise Separable Convolution

Figure 4.3: The standard convolutional filters in (a) are replaced by two layers:
depthwise convolution in (b) and pointwise convolution in (c¢) to build a depthwise
separable filter [32].

4.2.2 Inception-v3

Inception-v3 is a more advanced variant of the inception-vl and inception-v2 ar-
chitectures developed by GoogleNet. It was designed to be more efficient than
prior incarnations of the architecture. It was named the first runner-up for picture
classification in the 2015 ILSVRS (ImageNet Large Scale Visual Recognition Com-
petition) due to its 42-layer architecture’s decreased error rate [33]. Inception-v3 is
pre-trained with over a million images from the ImageNet collection. As a result, it
is capable of classifying photos into 1,000 object categories, such as pencils, vehicles,
persons, and animals [34]. As a result, this architecture has developed the ability
to recognize a wide variety of objects in images. The structure of the Inception-v3
network is constructed step-by-step. A brief discussion of this is given below:

1. Factorized Convolutions: In this case, the convolution size is quite small
in comparison to older systems. And this contributes to the model’s faster

12



training.

2. Smaller Sized Convolutions: In this case, the convolution size is quite

small in comparison to older systems. And this contributes to the model’s

faster training. Figure-4.4 below shows that a compact-network is used in
place of the 5 x 5 convolutions.

7 7] RN ! '.
\ | | NN | \
—Z [ | .
WA N . '.
v | | N | |

Figure 4.4: compact-network replacing the 5 x 5 convolutions [30].

3. Asymmetric Convolution: Firstly, a 3 x 3 convolution could be substituted
for a 1 x 3 convolution, followed by a 3 x 1 convolution. If we substitute a 2 x 2
convolution for a 3 x 3 convolution, the number of convolutions rises somewhat
[35]. Figure-4.5 below, it is specified as the main Inception CNN model [36].
Also Figure-4.6 showing the Inception modules with enlarged outputs from

the filter bank [30].

Filter Concat

-

55 3x3 1x1
} t t
1x1
1x1 il Pool T
Base

Figure 4.5: Main Inception CNN model showed in [36].

13



Filter Concat

A

. B
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1x3 3x1
8X8 1x1
abxil 1x1 Pool 1x1

Figure 4.6: Components of inception with increased filter bank outputs [30].

4. Auxiliary Classifier: Auxiliary classifiers are miniature CNNs that are
added across segments while the model is being trained. Typically, aside from
the primary network damage, there is also an accidental loss. While GoogleNet
made use of auxiliary classifiers to create a denser network, Inception-v3 makes
use of them as a regularizer [35]. Figure-4.7 below shows the auxiliary classifier
atop the previous 17x17 layer.

1x1x1024
8x8x1280 f Fully connected
A 5x5x128

f 1x1 Convolution

Inception EXEXI68

A

5x5 Average pooling wit stride 3

17x17x768

Figure 4.7: Auxiliary classifier atop the previous17x17 layer [30].

5. Grid Size Reduction: Pooling activities are frequently employed to lower
the size of the grid. However, in order to overcome the constraints imposed by
computational cost, a more efficient structure is recommended in Figure-4.8:
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Filter Concat

A

17x17x640

BX3
stride 2 1
? [ concat ]
17x17x320 17x17x320
33 SX3
stride 1 stride 2 f f
? f POOI conv T pool
stride 2
il il 35x35x320
t A

Base

Figure 4.8: While reducing grid size, this Inception module also expands filter banks
[30].

All these above concepts are combined to create the final architecture.

4.3 Data Preliminary Analysis

4.3.1 Collecting Dataset

This is a collection of 680 images of roads that have been labeled with potholes. The
dataset is available in a variety of formats for use with a variety of popular deep
learning models. This dataset will be used for instructional purposes and research.

4.3.2 Labeling Image

The process of image labeling entails identifying and marking various details within
an image. This process can detect details in images automatically by utilizing on-
device and cloud-based technology.

In computer vision, the most often used type of image labeling is bounding boxes.
Bounding boxes are rectangle boxes used to specify an object’s location. The x
and y axis coordinates in the top-left corner of the rectangle and the x and y axis
coordinates in the bottom-right corner can be used to determine them. When it
comes to locating and detecting objects, the use of bounding boxes is widespread.
Bounding boxes are commonly expressed by two coordinates (x1, y1) and (x2, y2),
or by a single vector (x1, y1) and the width (w) and height (h) of the bounding box.

4.3.3 Converting Images into Arrays

NumPy is Python’s most popular and commonly used package for image data pro-
cessing. NumPy uses the as array() method to transform PIL images to NumPy
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arrays. Additionally, the np.array function yields the identical output. The class of
an image is returned by the type function. The Image from array() function can be
used to reverse the process. Numpy.ndarray image data can be saved as a PNG or
JPEG file later using this function.

Print(data) returns the pixel value from the NumPy array image. We've Utilized
Matplotlib, OpenCV, and the Keras API to load and display an image. The re-
trieved images were then transformed to and from the NumPy array and NumPy
libraries were utilized to perform basic image manipulation and save it to our local
system. In the Keras API and OpenCV, images are read as arrays.

4.3.4 Normalizing the data

We reshape and resize the images of the whole dataset into one particular size for
our ease of usage.

4.3.5 Training using deep learning (MobileNet, Inception-
V3)

We imported necessary DL libraries and downloaded pre-trained weights and printed
out the model of MobileNet Inception V3. First, we used MobileNet then we went
for Inception-v3.

4.3.6 Implementation of transfer learning

For implementing transfer learning, we have taken base input and output. We have
many pre-trained layers in the trained model and for base input we have taken the
very first layer from the pre-trained model and for base output we have taken the
fourth last layer from the pre-trained model. We have manipulated the model for
better accuracy. The model we called actually maximum layers of them are pre-
trained. So, we don’t want to train them again as that would take much time. The
main benefit of transfer learning is that it decreases the training time.

4.3.7 Binary classification (pothole/normal)

The binary classification indicates whether or not there is a pothole on the road. To
begin, we’ll create a library. We added some enhancements where image numbers
are multiplied by this method, which results in multiple forms for a single image
and also creates new memory for load images. After that, we implement batch size,
loading 20 images at a time. We have included a link to our training data set.
We resize the target size to produce a higher-quality output. In conclusion, we use
Epochs because they consistently produce valid results. We made use of Adam’s
optimizer. For the loss function, binary cross entropy is being used. These are the
primary techniques for determining accuracy. Then we ran and obtained 30 distinct
epochs. Each epoch produces unique results that demonstrate our accuracy and our
valid accuracy.
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4.3.8 Train and test

For training and testing, we used two models which were Inception-v3 and Mo-

bileNet. We split the data set into 3 parts, 70% of data is used for training, 15% for
testing, and 15% for validation.

4.4 Result Analysis

Here in Figure-4.9, 4.10 Gives us the F1 score of MobileNet and Inception-v3 re-
spectively:

Classification Report of mobilenet_v2
precision recall fl-score support

normal 100 0587 09% 36
potholes 097 100 059 34

accuracy 0.99 7a
macro avg 099 093 07859 70
weightedavg 099 099 099 70

Figure 4.9: F1 score of mobilenet.

Classification Report of inception_v3
pracision recall fl-score support

normal bgy 087 047 36
potholes 097 0987 097 34

accuracy 0.97 70
macro avg 097 097 097 70
weightad avg 087 087 097 70

Figure 4.10: F1 score of inception-v3.
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Here in Figure-4.11, 4.12 Gives us the confusion matrix of MobileNet and Inception-
v3 respectively:

£

Confusion Matrix of mobilenet_v2

Tue label

Predicted label

—Llo

Figure 4.11: Confusion Matrix of MobileNet

Tue label

Predicted label

Figure 4.12: Confusion Matrix of Inception-v3.

After running both MobileNet and Inception-v3 on our data set we got results for
model accuracy and loss. Here, Figure-4.13 and Figure-4.15 show the accuracy and
the loss of the model respectively. And Figure-4.14 and Figure-4.16 is showing the
accuracy and loss of the model for our data set respectively.
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Figure 4.13: Accuracy graph of MobileNet model on the given data set.
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Figure 4.14: Loss graph of MobileNet model on the given data set.
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Figure 4.15: Accuracy Graph of Inception-v3 model on the given data set.
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Figure 4.16: Loss Graph of Inception-v3 model on the given data set.
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The output results of our model are given below:

Model Peak Accuracy | Loss
MobileNet 95% 5%
Inception-v3 93% ™%

Table 4.1: Output Results of MobileNet and Inception-v3
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Chapter 5

Detecting Potholes using YOLOvV5

In this chapter we will describe the process through which we detected potholes
from real-time video feeds via YOLOVb.

5.1 Methodology

The purpose of the proposed pothole detection model is to identify pothole using
YOLO V5. To do so, the model requires planning a process that takes information
from image data set as an input, efficiently process input data, and detects potholes.
This study focused on identifying pothole event.

Dataset | Training Implementation b ing f
Start : Label Images mage using deep of transfer elec_t‘ljng rom
collection augmentation learning learning video

Figure 5.1: flowchart for methodology.

The pothole detection process method consists of three major steps-

1. The majority of the first stage of the project’s development was spent gathering
and classifying data on pothole and non-pothole occurrences. This period
is responsible for organizing the input data, which is the whole dataset of
photographs, so that the method (Pothole detection) can handle it fast and
efficiently.

2. Transfer learning and binary classification to provide prediction are the pri-
mary concerns of this period, which also includes converting the image dataset
into arrays, normalizing the dataset, training with deep learning methods
(YOLO V5), implementing transfer learning and binary classification to pro-
vide prediction.

3. The testing phase is focused with taking a live feed in order to determine
whether or not there is a pothole on the road.
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5.2 Model Description

5.2.1 YOLOv5

The object detection method YOLO, which stands for ” You Only Look Once,” sep-
arates images into a grid structure. Each grid cell is in charge of detecting items
within itself. Because of its speed and precision, YOLO is one of the most well-
known object recognition algorithms. Glenn Jocher introduced YOLOvV5 utilizing
the Pytorch framework shortly after the release of YOLOv4. On GitHub, you can
find the open-source code [37]. It performed exceptionally well on two official ob-
ject detection datasets: Pascal VOC (visual object classes) and Microsoft COCO
(generic components in context), thanks to continuous improvements. Figure 4 de-
picts the YOLOvV5 network architecture. YOLOvV5 was chosen as our initial learner
for three reasons.

Firstly, YOLOvV5 incorporated CSPNet into Darknet, forming CSPDarknet as its
backbone. CSPNet incorporates gradient shifts into the feature space, hence de-
creasing the model’s parameters and FLOPS (floating-point operations per second),
while maintaining inference speed and accuracy.

Secondly, the YOLOvV5 utilized PANet. PANet uses a novel FPN structure with
enhanced path propagation. Adaptive feature pooling allows relevant information
from each feature level to directly flow into the next subnetwork. PANet increases
the utilization of trustworthy localization signals in lower levels.

Thirdly, YOLO has the capability to handle the detection of tiny, medium and large
objects [38].

The YOLO network is comprised of three essential parts:

Backbone: CSPDarknet Neck: PANet Head: Yolo Layer

BottleNeckCSP
Conv3x3 S2

Concat

\J

l BottleNeckCSP

BottleNeckCSP

Conv3x3 S2

SPP I BottleNeckCSP ] [ BottleNeckCSP
e P D e )
cSspP Cross Stage Partial Network Convolutional Layer
SPP Spatial Pyramid Pooling Concatenate Function

Figure 5.2: Parts of YOLOV5.
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1. Backbone: A convolutional neural network capable of combining and pro-
ducing visual features at multiple levels of resolution. Both YOLOv4 and
YOLOV5 generate image characteristics using the CSP Bottleneck. The CSP
eliminates redundant gradient concerns in other larger ConvNet backbones,
resulting in fewer parameters and FLOPS for tasks of comparable priority.
DenseNet forms the basis of the CSP models. Using DenseNet, CNN can alle-
viate the problem of vanishing gradients, improve feature expansion, stimulate
network recurrence, and reduce the quantity of network weights [39].

\nput

Figure 5.3: Growth rate of k = 4 for 5-layer thick block All previous feature maps
are used as input for each layer [40].

This is how the DenseNet worked in CSPResNext50 and CSPDarknet53: It
changed how it worked with the feature map of a base layer. The DenseNet
was changed so that one copy of the map was sent through a dense block and
another directly to the next step. The CSPResNext50 and CSPDarknet53 are
meant to help DenseNet processing speed up and improve learning by giving
users an unaltered version of the feature space [39].

Commelaei- ~~ 2 Dense Layer2 Partial Dense Block Dense Layer k

1 ' ~ r
voconv [ . conv
N ’ N ’

concat >
A

.~ -~~~ -
Q
o
3
<

(b) Cross Stage Partial DenseNet

Figure 5.4: Cross Stage Partial DenseNet (CSPDenseNet)[41].

2. Neck: A collection of layers that combine and mix visual characteristics prior
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to submitting them to estimation. YOLOv4 and YOLOv5 provide feature
aggregation via the PA-NET neck.

repeated blocks repeated blocks

P7 P7

Pa O_>O_> Ps

(a) FPN (b) PANet () NAS.FPH () BFEPN

Figure 5.5: On top of the FPN, (b) PANet adds a bottom-up bottom-up pathway; (c)
NAS-FPN applies the same block again to find an irregular feature network topology;
Finally, (d) is our BiFPN with improved precision and performance trade-offs[42].

In the CSP backbone, each of the P_i entries represents a feature layer. A
rendering of Google Brain’s EfficientDet object identification architecture can
be seen above. This may be an area of further exploration for YOLOv4 and
YOLOv5 with different implementations here, as BiFPN was found to be the
best option by the authors of EfficientDet [39].

3. Head: This function consumes neck features and performs box and class
prediction operations [39)].

5.3 Data Preliminary Analysis

5.3.1 Collecting Dataset

This is a set of 680 images of roads with potholes that have been labeled. The dataset
is available in a number of forms and can be used with a number of different deep
learning models. This dataset will be used for educational and research purposes.

Figure 5.6: Pothole Dataset
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5.3.2 Image Augmentation

The term ”image augmentation” refers to the process of changing existing pho-
tographs in order to provide additional data for the model training process. Simply
put, it is a technique for artificially expanding the dataset available for training a
deep learning model.

This strategy was also used in our research to increase the amount of photos in
our dataset. Initially, the collection had approximately 400 photos. The number
increased to 680 after augmentation.

5.3.3 Labeling Image

Bounding boxes are the most widespread technique of image labeling in object recog-
nition. Bounding boxes are rectangular boxes used to indicate the location of an
object. Those coordinates can be found by looking at the top-left corner of the
rectangle, as well as the bottom-right corner, using the x, and y axes, respectively.
Bounding boxes are frequently used to locate and detect objects.

Figure 5.7: Labeling Pothole from dataset.

5.3.4 Converting Images into Arrays

Here we followed the same procedure as chapter-1 to convert the Images. In the
figure below shows the graphical representations of instances in the data set.
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Figure 5.8: Visualization of instances in the data set.

5.3.5 Normalizing the Data

For convenience of use, we restructure and resize the entire dataset’s images into a
single size which is 640.

5.3.6 Training Using Deep learning (YOLOvV5)

We imported pre-existing repository from github and installed requirements for
YOLOv5.Next we imported utils library from YOLOvV5 to initiate notebook. Then
we used YOLOvV5 model to train and test our dataset.

5.3.7 Implementation Details

We implemented YOLOv5 on Pytorch. We collected video containing potholes and
upload it to the notebook. From data, we changed a file named “COCQO128.yaml”
which has pre trained models to detect, we deleted all the other pre trained model
and added pothole class only which means it will only detect potholes. Then we
inserted the folder’s directory path which has training data to the COCO128.yaml
file and renamed the file to “custom data.yaml”. We set the image dimension to
640. The batch was 32 and the epoch was 300. The file we were taking information
was from “custom data.yaml”. Then we started the training on the video that was
uploaded at the first place. We got a video as an output in which we could see the
potholes being detected in the resulted video.

5.3.8 Train and Test

We used YOLOV5 for training and testing purposes. We divided the data set into
two parts: 80% for training and 20% for testing.
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Figure 5.9: Trained dataset.

5.4 Result Analysis

Here figure-5.10 demonstrates the visual depiction of Precision, Recall, and mAP
values of our dataset after running YOLOvVb5.

train/box_loss train/obj_loss train/cls_loss metrics/precision metrics/recall
0.12 0.06 = 0.8
—_—
4= 0.04 0.6
0.10
0.05 0.02 0.6
0.08 0.4
0.00 —— 0.4
0.04
0.06
-0.02 02 0.2
0.04 0.03 ~0.04
0.0 0.0
0 100 0 100 0 100 0 100 0 100
val/box_loss val/obj_loss val/cls_loss metrics/mAP_0.5 metrics/mAP_0.5:0.95
0.11 0.0300
0.04 0.6 0.25
0.10
0.0275
. 0.20
0.9 0.0250 o 0.4
0.08 ’ 0.00 co— ’ 0.15
0.0225
0.07 002 02 0.10
0.06 0.0200 0.05
—0.04
0.05 0.0175 0.0 0.00
0 100 0 100 0 100 0 100 0 100

Figure 5.10: Trained dataset.
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Below are figure-5.11, 5.12, 5.13, 5.14 which represents the F1 graph, the confusion
matrix visual representation, precision and recall graph respectively.
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Figure 5.11: F1 Graph.
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Figure 5.12: F1 Confusion Matrix.
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Figure 5.13: P Curve.
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After this we used the YOLOV5 to detect potholes from live feeds. Below are some
visual representations figure-32 of the results we found through the process.

pothole 0.77

B pothole 0.80 -

v i pothole 0.79 . pothole 0.83
pothole 0.69 Ty "

Figure 5.15: Output results from live feed.
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Chapter 6

Conclusion & Future Scope

6.1 Conclusion

Potholes will always be there as long as there will be roads. So creating new ways to
avoid accidents and other problems created by those will always be in development.
As mentioned in this paper, there are various methods to detect potholes from the
road surface. But, this paper focuses on a deep learning-based real-time detection
system which will find potholes from given input of video feeds. And to conduct
this research we used 3 models which are Inception-V3, MobileNet and YOLOv5.
In this system, the algorithm was trained with a large number of photos of potholes
to increase the accuracy. When the full implementation is done, this system can be
used by people, in general, to spot and avoid potholes on the road. Moreover, people
related to road constructions, development, and maintenance will find potholes from
the ever-growing length of roads in this country. They will also be able to repair
them at a faster pace.

6.2 Future Scope

In our research paper we used available online resources to collect our data set
because of Covid-19 situation. When everything will be normal again we will create
our own data set by taking pictures of the roads of Bangladesh. On the other hand
sometimes potholes can’t be detected because of camera angle of that vehicle. In
future we will try to overcome this issues and will make this proposed system much
more precise.
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