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Abstract

The COVID-19 pandemic has significantly affected day to day lifestyle all over the
planet by disequilibrating social order. It moreover added anxiety about the ca-
pability of the world’s democracies to cope with the vital and crucial emergencies.
We should urgently restore a necessary methodology to fathom the emergency and
rigorously depict a course forward. The Division of Public Health authorities have
recommended everyone to uphold social distancing with a view to diminishing the
number of physical encounters. To keep a record of social distancing from an over-
head standpoint, we established a computer vision deep learning framework. Our
schemed system utilized the object recognition paradigm to spot and identify people
in video sequences or frames.
In our research, we assess the classification performance of two distinct multilayer
neural network models named YOLO using OpenCV and TensorFlow which are used
in the implementation process of an automatic recognition system. Amongst these
using SSD, CUDA, and CUDNN we achieved a success rate in the classification.
Neural networks were trained on a dataset where we used COCO dataset methods.
At a time when neural networks are increasingly being utilized for a spectrum of
uses, it is essential to select the proper model for the classification process that
can attain the ultimate accuracy with the least amount of training duration. The
demonstration created by us allows the insertion of images and the creation of their
datasets, this allows the user to train a model using their chosen parameters. The
models can then be saved and used in other systems. Moreover, to prevent future
crucial situations and by keeping in the head about COVID affected situations on
various global aspects this work will become an integral part of contributing to the
term “Social Distancing” by implementing this sustainably and with one of the best
results outcomes in our proposed image processing based human detection and social
distancing measurements with monitoring via fine tuned deep learning and computer
vision. Because coronavirus sickness has had such a negative influence on the world
economy, this research tries to reduce the further impacts while minimizing resource
loss. Also, create a very accurate detection mechanism to aid in the tracking of
social distancing. In these types of serious situations, adequate actions must be
taken and help to assist further research and work as an example for future works
on this segment.

Keywords: Human detection, Social distancing, YOLO algorithm, Image process-
ing, Deep learning, TensorFlow, Computer vision, MobileNet SSD
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Chapter 1

Introduction

1.1 Thoughts behind the Model

In 2022, researchers did research on various complex segments and technology has
reached an unbelievable era since its invention. It will rise more on future days
but still we are facing a devastating pandemic named COVID-19 from last portion
of 2019, this virus showed, still we are not capable to prevent pandemic but this
makes us realize more to think about before and after precautions into ongoing and
future problems that might arise on this world [57]. As always technology always
preserves the biggest role when in any situation arises. The word “Social Distance”
is the greatest notion for regulating efforts to stop COVID-19 from spreading. The
primary purpose is to reduce affected rates and maintain social distance. To control
the spread of this disease, persons should stay at least 1-meter (m) apart, according
to WHO (World Health Organization) guidelines [57]. And in this field here comes
technology with implementation and research on various innovative methods of so-
cial distancing on various segments as well. Because of coronavirus, sickness has
had such a negative influence on the world economy, this research tries to reduce
the impacts of the disease while minimizing resource loss. Secondly, to create a
highly precise technique for spotting individuals that will assist in the observation
of social distancing. It is imperative that adequate action be taken in this critical
scenario. Real-time human distancing is a challenge in Computer Vision (CV) that
involves detecting, localizing, and classifying many objects in a real-time stream of
frames as quickly and accurately as feasible.

In this figure, it states how the object detection places both classification and lo-
calization together. Again, when both these perform detecting multiple objects per
image and also calculating the FPS. It is difficult to keep track of social distance in
real-time circumstances. There are two methods to do it: manually and automat-
ically. The manual method necessitates a large number of physical eyes to ensure
that everyone is carefully adhering to social distancing rules. This is a difficult task
because one cannot keep their eyes open 24 hours a day, seven days a week for
constant monitoring. Many real eyes are replaced by CCTV cameras in automated
surveillance systems[18], [33], [57]. CCTV cameras record video, which is inspected
by an automated surveillance system. When any suspicious event occurs, the system
marks the human with high risk and low risk. Security staff can take appropriate
action in light of this information. As a result, the automated monitoring system
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Figure 1.1: Overview of the tasks regarding real-time object recognition. Applying
real-time object recognition applications to low-cost Edge AI platforms is a challeng-
ing task. An adequate inference time is needed to obtain the classification real-time
[61]

has overcome numerous of the manual monitoring method’s drawbacks.

1.2 Motivation

Coronavirus, in short, COVID-19 disease has established its foothold across the
entire planet. It is most commonly transmitted through direct physical contact.
It is necessary to install appropriate crowd monitoring and management systems
in public places as a precautionary measure to reduce the likelihood of unexpected
outbreaks and to improve healthcare delivery. By implementing measures of social
distancing at an earlier stage, it is possible to significantly cut down on the number
of new infections. This idea served as the impetus for the proposal made in this
research paper, which outlines a real-time crowd monitoring and management system
for the classification of social distance. So, in future if this type of disease arises, we
would be ready to defend the mass gathering in crowded places so that people can
be safe and sound.

1.3 Research Objective

Distancing one person from another in a social circle has shown to be an effective
strategy for preventing the transmission of viruses like the COVID-19 (World Health
Organization 2009). Around the world, government officials advise folks to change
their habits and keep a safe distance from each other [58].
Because of this pandemic several governments are looking for technological answers.
Asia has utilized a variety of technologies to combat COVID-19. The most often
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utilized technology is phone location tracking, which saves COVID-19 positive indi-
vidual’s data and monitors their proximity to healthy people. Both Germany and
Italy are utilizing anonymized location data. Similarly, South Korea released an app
called Corona 100 m that tracks sick persons and alerts healthy people within 100 m
of them. An app created in India lets users keep a safe distance from someone who
has tested corona positive. In addition, India, South Korea, and Singapore are using
CCTV footage to hunt down COVID-19 sufferers. China uses AI-powered thermal
cameras to spot hot persons amid crowds [62]. A number of other researchers, in-
cluding Xin use wireless signals to detect persons by analyzing phase inconsistencies
and waveform alterations. As a result, it is not viable without the use of several
receiving antennas. High-level feature correlations may be discovered with the use
of AI, computer vision, and machine learning. Some researchers have attempted to
anticipate the disease trend of certain regions using a mix of visual and geo-location
cellular information, developing crowd counting and density estimate methods in
public places or determining the distance of persons from prominent bevy. How-
ever, these kinds of studies are hampered by issues like a scarcity of skilled workers
or the high costs of setting up and maintaining infrastructures. It is now possi-
ble for computers to analyze and interpret visual data from digital images, thanks
to recent advances in Computer Vision, Deep Learning, and Pattern Recognition.
These abilities may be used to empower, motivate, and undertake social distanc-
ing observation and measures. Cameras equipped with ‘smart’ technology, such as
Computer Vision, may observe persons and determine whether or not they meet
social distance norms. As a result, these gadgets require incredibly precise human
detection algorithms. People detection in picture sequences is one of the most sig-
nificant sub-branches of object detection and computer vision [46].

There are several advanced approaches that can help in object detection. Prior
to classification, region proposal approaches were utilized by Convolutional Neural
Networks (CNN) to create scores and then generated the bounding boxes around
the object of interest for visualization and statistical analysis, as seen in the fol-
lowing examples: Despite the fact that these approaches are efficient, they need
a substantial amount of training time. YOLO explores a regression-based method
to dimensionally divide the bounding boxes and interpret their class probabilities
because all these CNN-based algorithms need classification [44]. This is a state-of-
the-art object detector designed for use in real-time applications. A single neural
network is used to process the whole image. This algorithm creates bounding boxes
and probabilities for each location in a picture by dividing it into little parts. The
bounding boxes are weighted by projected probability [75]. In spite of this method
still the accuracy of small object detection remains. For this, we tried to propose
an efficient method of social distance measurement.

Newer deep learning algorithms have improved upon the earlier ones in many ways,
making it easier to train computers to recognize patterns. This is how the De-
formable Parts Model (DPM) works in conventional object detection methods, where
the classifier runs on a slice of the picture in a sliding window approach. Bounding
boxes for region suggestions are used by R-CNN, Fast R-CNN and Faster R-CNN
to train the classifiers. These algorithms, notably Faster R-CNN, have high per-
formance and accuracy [62]. Numerical computations may be performed using the
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free and open-source TensorFlow library. Developed and maintained by Google un-
der the Apache 2.0 license, it is available as open source. As long as anyone using
Python, they’ll be able to access the C++ API using the API. Because it was de-
signed for both research and industrial use, Tensor Flow differs from other Deep
Learning numerical libraries such as Theano in this regard. Single CPU systems,
GPUs, and big distributed systems with hundreds of units may all benefit from this
technology. However, the revealed model can distinguish 80 distinct elements in im-
ages and videos, as well as being significantly faster and more accurate than Single
Shot Detection (SSD) [62].

Previously there was a lot of work and research done on this segment and many
researchers used YOLO prior versions and other frameworks but like YOLOv5 no
other model is this lightweight and adequately accurate in terms of result using
dataset too. In addition, we used COCO dataset as a pre-trained model and rather
than other methods, COCO dataset method plays a vital role in the consumption
of less time which motivates us to use this more.

Another core task we want to achieve is a better graphical interface and mobility
of use from our end so we used CUDA and CUDNN in TensorFlow which is one of
the best GPU accelerated frameworks and creates a virtual environment if there is
a lack of GPU and works like charm.

It is the most recent and most advanced version of the YOLO object detection series,
and it has raised the standard for object detection models, outperforming Efficient-
Det and previous YOLO versions thanks to the continued efforts of 58 open-source
contributors. For the sparse prediction object detector, the head can be one-stage
(YOLO, SSD) or two-stage (Faster R-CNN). Recent object detectors have layers too
(Neck) that collect maps with features and are between the backbone and the top of
the head. TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow Saved
Model, GraphDef, Lite, Edge TPU, and TensorFlow.js can all be used to convert
PyTorch(.pt) models. COCO is a big dataset for detecting, segmenting, and cap-
tioning objects. 330K photographs, 1+ million object instances, 75+ classifications
of objects, 90+ item classifications, 5 captions for each image, and 250,000 People
with pertinent aspects are just a few of the attributes [73].

About our second core model, TensorFlow is the more updated edition of Google’s
neural network-based system developed and launched by GOOGLE too. It is much
more than a framework for fine-tuned computer vision intelligence. TensorFlow
is a deep learning open-source software model created by Google. By teaching
a computer to spot patterns on its own and/or make the best decisions feasible.
This model was chosen because it successfully supports multi-dimensional arrays
in mathematical expressions, deep neural networks, and machine-learning ideas are
well-supported, the same code can be performed on both a GPU and a CPU, and it
has exceptionally big data sets and machine maneuvered. All of these circumstances
make it visible that YOLO and TensorFlow these two selected models we used are
one of the best and depending on the factors which are time, lightweight, open-
source access, use availability, accurate results, pre-train dataset ability, and most
importantly contribute on the segment social distancing we choose these two model
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for best outcome indeed. Various research initiatives have been done to develop as
stated previously, a stronger competitive advantage in a mechanism to track physi-
cal distance is required, this thesis focuses on specific contexts to fill a research gap
and to assist with social distance monitoring responsibilities, a real-world unit dis-
tance mapping approach has been used. Moreover, this work can help in the future
to prevent a similar type of devastating pandemic situation where social distancing
and implementation is a must.

The purpose of this study was to quantify and monitor the amount of social sepa-
ration during the epidemic. For their own welfare and the environmental benefits,
individuals will be encouraged by this research to preserve social distance from each
other. Our system’s main objective is to detect and decide whether or not someone
is a member of the institution, anybody who violates the right amount of space while
retaining social distance. It’s likely that he or she will be monitored and instructed
on the need to keep social distance if that’s the situation. Also, keep an eye out for
any rule violations and encourage him or her to participate in more social activities.

1.4 Problem Statement

After the COVID outbreak in this world, the world has been affected in various
ways including economic factors. Millions of people died worldwide and this disease
was uncontrollable and devastating for so long. This motivates a lot of researchers
to work on this matter to prevent or take precautions as well. The word ’social
distancing’ started playing a vital role for implementing various systems in all as-
pects including technology specifically in computer vision and deep learning too.
But previously there were not many efficient methods to detect and prevent social
distancing detection. However, no one has yet focused on low-light situations too.
Aside from that, no real-world unit distance mapping solution has been developed.
So, in densely populated countries it is hard to detect and maintain social distancing
manually so it’s tough to prevent pandemic situations too. Moreover, previous mod-
els used to implement physical detection are not that accurate and heavyweight too
and are more time-consuming than our selected models YOLOv5 and TensorFlow.

In terms of computer vision and deep learning, there were many obligations includ-
ing lack of datasets, support issue of pre-trained datasets, and lack of GUI using
graphical framework and environment successfully. For which we use CUDA and
cuDNN NVIDIA-based graphical framework and module to create a virtual envi-
ronment like GPU does use CPU and work flawlessly.

Our proposed paper is intended to identify those in the crowd including in low-light
scenarios who are failing to maintain social distance. A three-stage approach for
monitoring social distances and producing zone-based infection risk assessments in-
cludes people identification, tracking, and inter-distance calculation. This model can
be used from CCTV footage or any other sources in all supported formats because
of the system’s real-time capability.

YOLOv5 is the most recent addition to the YOLO series. This works as the ace for
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most of the developers to overcome previous problems and bindings that occurred by
models or frameworks used to implement object detection. YOLOv5’s running speed
has been substantially increased, with the fastest speed reaching 140 frames per sec-
ond. Meanwhile, YOLOv5 is compact, with a weight file that is roughly 90 percent
lower than YOLOv4, allowing it to be deployed to embedded devices. YOLOv5 has
a greater accuracy rate and a stronger capacity to distinguish small objects than
YOLOv4. The YOLO model is a target detection system that is both standardized
and real-time. It’s the most sophisticated real-time object detecting system avail-
able. After RCNN, faster-RCNN, and SSD, it is another milestone target detection
algorithm and unfortunately, all the previously used algorithms frameworks don’t
succeed much like yolo before which is one of our core reasons to pick YOLOv5. In
addition, Darknet is a CUDA-based open-source neural network toolkit constructed
in C. For normal usage problems, YOLO’s real-time object detection technology
in unifying target area prediction with target classification assessment in a single
neural network model, moreover speed issue is addressable. By turning the detec-
tion mechanism into a regression issue, YOLO simplifies complex numerical steps
at ease. This again makes us choose to avoid previous complex issues.

As a result, predicting incorrect background object information is difficult. More-
over, for the threshold limit sometimes this model still needs to improve but then
again it is one of the tops in the current Technology World. And motivate us to
work with these two by implementing Computer Vision too with our hard-working
contribution to this segment. And the remaining bindings we faced in YOLOv5 can
be overcome using TensorFlow. Its robust graphical interface and best numerical
calculation ability on various dimensions make us to choose this as another core
model of our work and YOLOv5 and TensorFlow both help us to prevent previous
restrictions on computer vision by other models and will make our work more vital
and step in object detection implementation.

Maintaining Social Distancing is one of the most important and successful tactics
for containing the pandemic. Governments are enacting regulations limiting the
minimum interpersonal distance between persons in order to comply with this con-
straint. People who want to practice social distance should keep at least 1.5 meters
apart, work from home, avoid gatherings, and travel as little as possible, according
to government guidance [50]. Separating humans in space, on the other hand, is in-
credibly difficult. Different people require the same important sites, such as stores,
employment, and health care facilities [50]. COVID-19 has had a significant nega-
tive impact on a wide range of human activities. While pharmacological remedies
are being researched and used, individual inhabitants and their adherence to public
health recommendations bear some of the responsibility for decreasing the virus’s
impact. However, encouraging people to follow these rules has proven difficult [41].
At the beginning of COVID, the government adopted restrictive measures including
shutdown. But when the number of deaths and confirmed cases started to peak the
measures were eased and regular activities were partially restored at the beginning
of June. Even the authorities have no control over the implementation of social
distancing rules as people are frequently breaching the recommended healthcare
guidelines in daylight. Violators are going unpunished due to a lack of appropriate
surveillance. Even they are committing the same things again and again. People
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flocked to various places without following social distancing guidelines. Authority
has warned of punishment if anyone does not wear a mask and maintain recom-
mended healthcare. But none maintained social distancing guidelines and also there
was no one to monitor strictly. Heavy transit corridors, aviation corridors, personal
property, construction zones, and gas plants are all critical or hazardous sites that
require visual monitoring [35]. In Bangladesh, social separation is close to impos-
sible according to Dr. ANM Nuruzzaman, a physician who previously worked as a
director in the Directorate General of Health Service. Social distance is a method of
preventing the spread of infectious disease. However, in a densely populated country
like Bangladesh, social distancing is difficult to implement in many areas. Take, for
example, the slums of Dhaka and Chittagong, which are home to millions of people.
They live in such close quarters that enforcing social distance would be impossible
[41]. Even after the pandemic is controlled, there will remain economic incentives
for temporal distancing. Social distancing will be a fact of life to come. So, it needs
to be done as smartly as possible and efficiently [38].

From this scenario, we decided to implement a social distancing analyzer that will
be initially detecting humans in real time and after detecting it will measure the
distance between them to detect people maintaining social distancing and people
who are not maintaining social distancing. We have implemented two such models
for this purpose. One is the TensorFlow model, which is based on MobileNet SSD
dataset and COCO dataset. Another is the YOLOv5 model which is based on the
COCO dataset and YOLO weights which is a pre-trained dataset. Our biggest
challenge which we faced while implementing the TensorFlow model was that this
model requires very high-end libraries and this model was itself a big size data.
While installing the TensorFlow API object detection it required huge time and also
it consumed immense RAM of the device which later on affected the performance of
the device. Again, for the GPU support which is not mandatory for TensorFlow but
in presence of the GPU supports the system to make it reliable. When TensorFlow
object detection API will run, it will attempt to register on GPU devices, otherwise
it will fail and TensorFlow object detection API will run over the device’s CPU.
These GPU prerequisites are NVIDIA GPU, CUDA Toolkit v11.2 and CuDNN
8.1.0 which are very big data in size and also for high end configured devices. This
system might not be compatible with normal configured devices. Also, these are not
the updated system which is for the updated system consumes more data and also
not reliable for all devices. Also, TensorFlow model installation and testing requires
more time and consumes more RAM than any other model. On the other hand, we
also faced problems while implementing the YOLOv5 model which was using the
precise YOLO weights or pretrained models. Installation and configuration of the
model and the libraries was easier than that of the TensorFlow model. Determining
the distance between the pedestrian points was also challenging in YOLOv5 using
the other equations until the Euclidean equation was applied. Finally, determining
the human detection and measuring the distance was precisely completed and we
again faced difficulties in gathering the input video from which we generated the
data of 15,456 on each of the models.
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Chapter 2

Literature Review

Since the start of COVID-19, many courses of technical actions have been taken
by numerous countries to put an end to the spread of the virus. A lot of tech-
nologies are manifested to be effective in helping people or authorities to abide by
the social distance norms and regulations. Viola and Jones [1] proposed a typi-
cal solution for object identification in 2001. For feature extraction, they utilized
Haar features, and in order to classify them, they utilized cascade classifiers utilizing
the AdaBoost learning algorithms. This strategy is fifteen times quicker than the
traditional regular techniques. By putting visual attributes and motions together,
Fu-Chun Hsu recommended a crossover procedure to identify the head and shoul-
ders. The researchers found that the HOOF descriptor is a superior decision for
dividing moving articles in video sequences and thus, can actually oversee jumbled
and impeded circumstances [9]. In order to prevent the escalation of COVID-19,
another study preferred an active surveillance framework by alerting people in a
targeted area. This system made a two-fold improvement. In the first place, to
identify SD contraventions and after that send non-intrusive audio-visual cues they
presented a real-time system which is based on vision that employs state-of-the-art
deep-learning methods. Secondly, by constructing a unique critical social frequency
rate, they display that if the frequency of the passerby is kept below this rate, the
odds of SD contraventions can be kept near nil. The suggested approach is also
legitimate: neither any personal information is collected nor any person is targeted
in this case, and at the same time no human administrator was present at the time
of procedure. Real-world datasets were used to test this system [36].

In deep learning models in case of object detection, Convolutional Neural Networks
are commonly utilized. CNN, a deep learning method which pulls a photo as input,
sets biases and weights that are learnable to multiple levels of the photo, allowing
those to be distinguished from one another. The progression of a Convolutional Neu-
ral Network is that it could be executed with less complexity and poor-quality entry
data upon an embedded system [21]. A variety of deep learning models for object
recognition, namely R-CNN, YOLO and SSD are used on countless implementations.
With a view to evaluating the motions in video scenes, these models are capable of
producing successful results. Different researchers, for example Xin, utilize wireless
signals to distinguish people by detecting phase variations and then make changes in
detection in amplitude waveforms. This, however, is not conveniently incorporated
in all public areas as it necessitates numerous receiving antennas [27].
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In order to discover persons a mechanical solution by applying video box frames was
proposed by Ebrahim et al. A gaussian mixture along with background subtraction
was used by the author with a deep learning detector [28]. A deep learning (CNN)
algorithm was introduced by another author for person detection in another method.
With a view to identifying people with high precision and minimal processing they
exercised a blend of machine learning and deep learning technologies. Unluckily,
the mentioned approach encountered issues with real-time detection due to its slow
pace [23]. In an inactive gathering for a number of people who remain at one place
for a prolonged time, researchers proposed a method in approach. A SVM was used
for identifying patches being essential mass. Text features were used to get these
patches [11].

Lately Advanced strategies have proven to be effective in solving object detect-
ing challenges. R-CNN [32], CNN and Faster R-CNN [8] applied region proposal
methodologies for getting the object count ahead of category, then for vision and
numerical analysis, produced boxes surrounding the target [12]. In spite of the fact
that these strategies are impressive, they require a longer training time need [12].
Because these CNN-based algorithms use classification, YOLO proposes a method
based on regression for separating the enclosed boxes dimensionally and analyzing
class chances [16]. For all part to consider as object in this manner, this devel-
oped architecture separates the image into numerous pieces that represent enclosed
frames, coupled upon class likelihood marks. This method delivers tremendous in-
creases in regards of pace meantime sacrificing efficiency. This detector module has
strong generalization abilities, allowing it to display a complete image [51].

To distinguish persons from background, another suggested scheme engages the
YOLOv3 including the DeepSort technique for locating recognized public through
enclosed frames plus assigned ID number. With respect to FPS, mAP and loss val-
ues defined by localization and object categorization, the results are confronted to
those of other models such as for example SSD and faster R-CNN [45].

In this paper, to accurately identify human the author offers deep learning focused
object detection model that is used in conjunction along a thermal image social
distancing classification technique. For the sake of recognizing, at the same time
tracking people at home and outside environments, an innovative deep learning de-
tection technique is formed using the YOLOv2. This method is used for the creation
of a comprehensive AI system for tracking people, social distancing categorization,
and monitoring body heat by using images of thermal camera [49].

The basic review and differentiation of object detection methods is presented in a
study, which incorporates two classes of object detectors formed on time, accurate-
ness and parameter values with varied input image sizes. Fast R-CNN, R-CNN and
Faster R-CNN are covered in two level detectors, while SSD, YOLO v1, v2, v3 in
one level detectors. The results of the comparison reveal that YOLOv3 tiny im-
proves object detection speed as well as maintains accuracy. Object recognition and
localization can also be extended from static images to a movie including a dynamic
stream of images [34].

9



A research paper indicates a system that may be used to observe public venues
such as ATMs, malls, and hospitals for any kind of breach of social distancing. For
the sake of measuring distance between persons in the frame, the simulated model
employs deep learning methods with the OpenCV library, as well as a YOLO model
trained on the COCO dataset to recognize people in the frame [64].

An improved social distance monitoring system was proposed. For people detection,
tracking, and Euclidean measurement, they employed the YOLO method. The sys-
tem investigates whether or not social distance standards are being followed. If
people abide by the rules, they will be bound in a green anchor box in the frame,
while those who do not, will be bound in a red anchor box, and a laser beam will
be emitted on that person, along with a siren buzzing to alert them. If the system
discovers a crowd (more than a certain number of people), it will issue a warning to
maintain social distance. It will send an alert SMS to authorized persons after the
fifth announcement, asking them to intercede in order to tackle this crucial problem
[79].

For recognizing social separating, the research portrays a strategy utilizing deep
learning on how to survey the distance between individuals with a view to dimin-
ishing the impact of the COVID plague. The detecting instrument was made by
breaking down a video feed to caution individuals to stay away from another. Based
on the YOLOv3 technique the open-source object detection pre-trained model was
utilized to distinguish passer-by by utilizing the video outline from the camera as
input [40]. A model for a task associate was proposed in another research in view
of a deep learning neural network. Here, for perceiving a portion of the constituent
pieces of a vehicle YOLOv5 is utilized. After trying YOLOv5s and then YOLOv5m,
it was very clearly resolved that for this kind of identification issue, YOLOv5s can
be more than adequate [60].

A real-time surveillance framework was proposed by a group of authors that would
extract a video stream as an input and not only assess if individuals seen in the
video are wearing a face mask. But also, this exploration screens people for social
distance detection. By utilizing YOLOv5, the proposed procedure takes input data
from a CCTV feed and distinguishes people in the edge, while DBSCAN is utilized
to detect the proximities among the noticed individuals, these found appearances
are then arranged utilizing Stacked ResNet-50 to decide if the individual is wearing
a mask or not [65].

This project represents a technique for the detection of social distancing in work-
places or other encased spaces. This paper proposes a Deep Neural Network (DNN)
model based on YOLOv5 for making the method of monitoring and checking so-
cial distancing in an indoor environment via object detection. They perceive office
objects of familiar measurements and employ bounding frame boxes in indoor cir-
cumstances to regulate social distance continuously. The enclosed boxes of persons
and special things will be given by the Object detector [69].

Author put forward a sidewalk disturbance recognizable model that can success-
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fully identify various sorts of Pavement upsets under various circumstances. They
upgraded the YOLOv5 model and acquainted attention mechanisms so that it can
improve the strength of the model. The model works better at object detection in
contrast with any other method [74].

Latest findings have shown that a person’s face, as well as their walking style, can
be used to identify them through video surveillance cameras. Nevertheless, the tech-
nique for distinguishing a person in a congested circle is challenging to escalate [7].

In an approach, A method was developed with a low-resolution camera for finding
people on foot using background reduction and real-time classification of foreground
silhouettes. In a different technique [39], the moving object is retrieved using GPU-
based GMM (Gaussian Mixture Model) background subtraction. Then, two com-
plementary features for moving object classification, one is region-based description
that is Histogram of Oriented Gradient (HOG), and the another one is contour-
based description which is Fourier Descriptor (FD) are extracted. Then the two of
these descriptors will be integrated victoriously into SVM, allowing for enhanced
execution [10].

Using TensorFlow, Roth constructed a strong social distance detector for pinning
down humans and proctoring social distance [48]. The author created a novel
appearance-based object detection system based on artificial intelligence technol-
ogy and used TensorFlow for implementation. Basically, to portray an object’s
visual appearance as a loosely structured collection of local context regions linked
by discrete key traits, or fragments is the fundamental objective. This technique is
compelling at detecting several objects [29].

The motive of this research was to look into modern open source-based technolo-
gies for object detection in sports, specifically football players. An SSD along with
the MobileNet-model was trained and tested using TensorFlow’s API [25]. With
a dataset comprising images gathered from video footage of two football matches,
the model was tested as a) pre-trained and b) with fine- tuning. Another suggested
method focuses on integrating and optimizing human identifying algorithms in real-
world applications on embedded platforms like Nano, NVIDIA Jetson TX, as well as
automatic weighing up of current person detecting models in the matter of not only
perfection but also execution, and datasets which are applicable for distinguishing
along with marking people inside the building. In order to train and assess, deep
learning models operate on datasets that are general purpose such as COCO, PAS-
CAL VOC and ILSVRC [63].

In this research, a system was established for pointing out an object using Mo-
bileNet for SSD. They integrate MobileNet and SSD frameworks to create a deep
learning-based technique that is both swift and captivating. Using SSD detector
and MobileNet, a high-accuracy object identification approach was pulled off, ac-
celerating the performance speed up to 14 fps, thus making this suitable for any
cameras which only work at 6 fps [54].
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Chapter 3

Research Methodology

The proposed Image Processing Based Human Detection and Social Distancing Mea-
surements with Monitoring via Fine-Tuned Deep Learning and Computer Vision is
intended to identify those in the crowd who are failing to maintain social distance.
People detection, tracking, and inter-distance calculation are all part of a three stage
approach for the purpose of monitoring social distances and performing zone-based
infection risk assessments. Due to the system’s real-time capability, it can be used
with a wide range of CCTV security cameras, from VGA to Full-HD [47].

For our first model we chose YOLOv5. Based on YOLOv4, YOLOv5 is the most
current version of the recent YOLO development. With the YOLOv5 method, the
system is trying to find people who are breaking health rules by socially separating
themselves from others, and then tell them to stay away from other people intending
to stop the extension of the COVID-19 virus. The processing speed of YOLOv5’s
has increased dramatically, reaching 140 frames per second at it’s fastest. Even
though it’s 90 percent smaller than the previous version, it’s still very compact [70].

YOLOv5 comes with a built-in dataset that has been pre-formation with the COCO
(Common Objects in Context) dataset. This COCO is basically a dataset that helps
people recognize, segment, and label objects. In this dataset, there are more than
200,000 images that have been labeled with 80 different types of things, including
the human class. So, YOLOv5 can be used to detect social distance in situations
where the main system first finds people. It doesn’t matter which dataset you use
because the COCO dataset is the default one for YOLOv5 [70].

Furthermore, The YOLOv5s advanced algorithm was used because the data loader
is used to send each batch of training data through the data loader and to im-
prove the data at the same time. It can perform three types of data improvements:
color space correction, scaling and mosaic enhancement. To separate all input im-
ages, this model employs the S x S grid system. Object detection falls under the
purview of each grid. Grid cells currently predict the boundary boxes of the de-
tected object. These five key characteristics are present in each box: coordinates,
object width and height, as well as the box’s confidence score. Furthermore, when
compared to YOLOv3, YOLOv5 is faster and more accurate. Another advantage
of using YOLOv5 for object detection is its faster processing time than YOLOv3
[76]. CSPResNext50, CSPDarknet53, and EfficientNet-B3 served as the model’s
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Figure 3.1: Structures of YOLOv5s [31], [73]

backbone for the YOLOv5 object detector. Both the CSPResNext50 and the CSP-
Darknet53 make use of DenseNet. The mosaic data augmentation, which tiles four
images together, improved the accuracy of finding smaller objects in YOLOv5. The
YOLOv5 was trained on the video using pre-trained YOLOv5 weights and a scale
factor of 0.00392 with a spatial size of 416 × 416. The algorithm detects people in
videos and uses four coordinates to pinpoint their location [78]. As part of YOLOv5,
new data enrichment methods, including SAT, mosaic training, and multi-channel
feature replacement of FPN fusion with PANet, have been introduced [53], [67].

Figure 3.2: Human detection workflow using YOLOv5

YOLOv5 has been implemented using the Matplotlib, Torch, Torch vision, cv2 li-
brary, which are more user-friendly for developers. YOLOv5’s end employs the same
Mosaic data enhancement method as its output end. Arithmetic progression with a
small target is used in the usual project training. Typically, less ambitious than the
medium and large objectives. Our set of data also contains a load of small targets,
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but the distribution of these targets is uneven, which makes it more difficult to ana-
lyze [55]. Random scaling and splicing add loads of small targets which then makes
the network stronger, and there are many other advantages, such as a rich data set,
random scaling, and random distribution. In order to reduce the number of GPUs,
some may argue that random scaling and standard data enhancement can be used
as well. As a result, the size of the mini-batch does not have to be prohibitively
large, as the author anticipates that many people will only be able to use a GPU.
As a result, a GPU will produce better results [55].

Figure 3.3: YOLOv5 Performance

In this figure, we see YOLOv5s require very small space or storage. Whereas,
YOLOv4, YOLOv5x and the other variants of YOLOv5 are taking more storage
space in the performance graph.

The mAP and speed of the YOLOv5 series models are shown in Figure 3.4. The
mAP and processing time increase as the weight increases. For mAP, YOLOv5x has
the best results, at 86.55 percent, which is 3.9 percent higher than the lowest. On
the other hand, the YOLOv5s takes the shortest time to process an image on GPU,
19.14 ms, which is over half the time of the YOLOv5x. Another calculation shows
that the FPS of YOLOv5s is 52, which is sufficient for real-time processing.

In contrast, the mAP of the YOLOv5x and YOLOv5l are nearly identical, with
the YOLOv5l being faster as figure 3.4 is representing . The same thing happens
with YOLOv5s and YOLOv5m. It is more practical to use the speedier option with
comparable correctness [66].

The figure 3.5 depicts the identification of those individuals who failed to maintain
an appropriate social distance. The first step was to mark the people in danger with
red points, and then to identify them using image processing. The people who are
maintaining minimum threshold are at low risk and yellow point defines them.
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Figure 3.4: YOLOv5 Performance [66]

Figure 3.5: Identifying through image processing

For our second model here, we have used TensorFlow, which is more than just a
machine intelligence framework. TensorFlow is an open-source model which is de-
veloped by Google for machine learning and deep learning. There are legions of
powerful algorithms grouped under these two headings, all aiming to solve the same
problem: teaching a computer to recognize patterns on its own and/or to make
the best decisions possible. We chose to work with this model because of it can
effectively handles multi-dimensional arrays in mathematical expressions, here deep
neural networks and machine-learning concepts are well-supported, the same code
can be run on both a GPU and a CPU and it has extremely large data sets and
machine scalability.

Using a unified dataflow graph, TensorFlow depicts how an algorithm works as well
as how it performs. A combination of large dataflow systems and record-low pa-
rameter servers serves as inspiration for our work. Traditional dataflow systems,
on the other hand, only allow graph apogee to depict functional computations on
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Figure 3.6: Generalized methodology for image classification TensorFlow framework

rigid data. Vertices in TensorFlow can depict computations that update or change
their state. Using Tensors which are basically multi-dimensional arrays, Tensor-
Flow makes it possible to communicate between distributed sub-computing nodes.
Programmers could indeed experiment with various parallelization strategies using
TensorFlow’s single programming model, such as offloading computation to servers
that hold common state. Contrary to popular belief, large-scale learning does not
necessitate asynchronous replication. Synchronous replication has yielded promising
results for our coordination protocols [14].

Figure 3.7: A schematic TensorFlow dataflow graph for a training pipeline, contain-
ing subgraphs for reading input data, training, checkpointing state and preprocessing
[32]

Multiple sub-graphs with shared variables and queues are depicted in the figure
above, which is representative of a typical training application. An input batch
queue and model parameters are the foundation of the main training subgraph.
The training subgraph is used to update the model based on multiple batches of
input data in order to implement data-parallel training. Preprocessing transforms
individual input records while the I/O subgraph deciphers records from a categorized
file system to fill the queue (image decoding and referring random distortions). A
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fault-tolerant checkpointing subgraph of TensorFlow’s flexibility comes from partial
and concurrent execution. With mutable state and queues, advanced experimenta-
tion with a wide range of model architectures is available to users without modifying
the TensorFlow runtime’s internals [13].

Figure 3.8: TensorFlow sample graph [26]

In Figure 3.8, an operation is represented as a node with zero or more inputs/outputs.
The edges (or paths) of the graph permit data to flow from node to node. A tensor
is a multidimensional array that represents edge-flowing values. Due to the dynami-
cally sized data arrays, virtually any type of data flow graph is possible to construct.
TensorBoard possesses unique capabilities for displaying machine learning models
and evaluating model performance using desired metrics [26].

When training large models, mutable state is critical because it allows for in-place
parameter updates and fast propagation to parallel training steps. A parameter
server’s functionality is mimicked by dataflow with mutable state, but with more
flexibility because arbitrary dataflow subgraphs can be executed on the machines
hosting the common or shared model parameters. Because of this, the users can try
out new optimization algorithms, consistency schemes and parallelization strategies
[14].

As a result of its portability and performance, TensorFlow’s core library was writ-
ten in C++ for compatibility with a wide range of operating systems and CPU
architectures. It’s also compatible with NVIDIA’s Kepler, Pascal, and Maxwell’s
microarchitectural microarchitectures. It is possible to run TensorFlow on a variety
of different architectures because our open-source implementation of TensorFlow
has been made possible by contributions from outsiders [14]. Over 200 standard
operations are supported by the runtime, including array manipulation, mathemat-
ical, state management and control flow operations. Tensor, a C++ template-based
parallel code generator, is used to implement many of the operation kernels, but
we also make extensive use of cuDNN libraries to implement kernels that allow for
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more efficient specialization [13]. Adding quantization support for mobile devices
and high-throughput datacenter applications, as well as, to accelerate quantized
computation, using the gemmlowp low-precision matrix multiplication library has
been a major focus of TensorFlow research work this year [13].

Figure 3.9: The layered TensorFlow architecture[32]

For the installation of this model, we have used some steps. First installed the
TensorFlow PIP package. Then we had to verify our installation and installation
of CUDA Toolkit, CUDNN was done. It is more efficient and convenient to use
the Object detection API for training models and improving performance NVIDIA
GPU, CUDA Toolkit v11.2 cuDNN 8.1.0 had to be met in order for TensorFlow to
run on our GPU. There had to be an environment set up. Then we tried it out on a
new terminal to make sure everything was working. The TensorFlow installation is
now complete. After that, it’s time to set up the TensorFlow Object Detection API
on your system. There was a download of TensorFlow Model Garden. Model and
training parameters are configured with Protobuf in the TensorFlow Object Detec-
tion API. The Protobuf library must be downloaded and compiled prior to utilizing
the framework. For the new values of the environment variables to take effect, we
had to start a new terminal. In addition, the COCO API was installed. The Object
Detection API can be installed by downloading and installing the object detection
software. From within TensorFlow models/research, run the following commands.
It appears that our installation is working as expected.

As of figure 3.10, TensorFlow by default maps nearly all of the GPU memory of all
GPUs visible to the process (subject to CUDA VISIBLE DEVICES). This is done to
make better use of the devices relatively precious GPU memory resources by reduc-
ing memory fragmentation. We have used the tf command to restrict TensorFlow
to a specific set of GPUs.

The TensorFlow Model Garden and Google’s Special Interest Group on Machine
Learning Models (SIGMODELS) have teamed up to create exemplary implementa-
tions of well-known machine learning models in public spaces (TFMG). In order to
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Figure 3.10: Use of CPUs and GPUs in different stages of TensorFlow

address the issue of machine learning code reproducibility, the Model Garden serves
as a repository of Exemplary Machine Learning Models. TensorFlow Model Garden,
TensorFlow Hub Torchvision, and some models advertised on Kaggle are some of
the early attempts to develop exemplar collections in the machine learning commu-
nity [37]. Pre-trained models and datasets from across the TensorFlow ecosystem
can be found in this repository. Computer vision datasets, models and common
image transformations can be found in Torchvision (integrated into Pytorch). User-
created trained models can be uploaded to Kaggle and shared with the community
for re-use. It is a repository of machine learning models and datasets built with
TensorFlow’ s high-level API. This is similar to these efforts [65].

In spite of the fact that TensorFlow can be installed and utilized without Anaconda,
we choose this for the reason of the ease with which it allows us to manage packages
and set up new virtual machines. Before the version 20.3, pip incorporated or in-
stalled a package and all dependent Python packages without checking for conflicts.
It would install a package and any dependencies, despite the ongoing situation. A
different version of NumPy library is required to install a different package than
TensorFlow via pip, an existing installation of TensorFlow could become inoper-
able. When the package appears to be working, the results can vary. Because of
this, the conda package manager has historically been distinguished from pip. There
are many ways to share custom conda packages, including Anaconda Cloud, PyPI,
and other repositories. Python 2.7 and Python 3.7 are included in Anaconda2 and
Anaconda3, respectively. It is possible, however, to create new environments using
conda-packaged versions of Python. We had to open a new terminal window and
type the command to install Anaconda. An Anaconda virtualization environment
became necessary in the later stages [17].
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Chapter 4

Data and Preliminary Analysis

We have described in total a three step approach that incorporates the human detec-
tion, tracking and their inter distance measurements as a whole for social distance
monitoring and zone based infection risk assessments. This system can be racially
balanced and deployed to different models of security surveillance CCTV cameras
with any form of resolution from VGA to HD approaching real time.

4.1 Human Detection and Social Distancing Mea-

surements

The social distance measurements can be utilized using numerous models. The
model’s can be used for detecting humans in the particular frame, along with their
unique localisation bounding centroids at different frames. Human detection is seg-
mented mainly in three sections. It includes an input module as well as other
processes such as expansion, a foundation for feature extraction, and a target for
forecasting object classes and their positions on the output [42]. TensorFlow object
detection API makes three predictions for each distant position for an image at dif-
ferent calibrations, the problem of not being able to detect the low resolution objects
will be removed effectively. Objectness, boundary box regressor and classification
scores are computed for each prediction [68]. The object detection API for Tensor-
Flow is a free and open source framework. The object identification infrastructure
can be easily developed, trained, and located thanks to the use of TensorFlow. In
this API model there is already included pre-trained libraries that are known as
Model Zoo. These pre-trained libraries are trained on various datasets like, COCO
dataset and Open Images dataset.

We have implemented the YOLOv5 model using OpenCV, Computer vision and
Deep learning. To detect items, YOLO uses deep learning to merge the identified
object’s parts into one neural network. Images are divided into S x S pieces or
grids using the YOLO method’s technology [71]. The grid cell is able to detect the
object if the object’s center lies within one of its cells. Each grid cell predicts the
pedestrian locations. Model assurance and accuracy in the object’s container are
both represented by this value. The value of the pedestrians are calculated using
the Euclidean distance equation. Based on the YOLO development, YOLOv5 is the
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most recent. YOLOv5 has been improved to great extent with the fastest speed
of hitting 140 FPS. YOLOv5 is so compact compared to YOLOv3 and YOLOv4
that it can be also implemented on any embedded system. In terms of accuracy, it
outperforms the competition and has a significantly greater capacity for detecting
little items from frames [71]. First, we have to determine the source through which
we will be giving the input to our system. Then we will establish the connection
with python script through opt which is the directory where we install our unbun-
dled packages. Then in the procedure comes model selection. We have to upload
the model for using the dataset in the form of weights. Then generalizing the data
as what data should be imputed we have to set the input in the dataset. Then it
requires augmentation of each class and is agnostic for determining the true coordi-
nates. Then after determining the people in every frame/image using a file writer,
we will be able to determine the pedestrian points of people.

Figure 4.1: The flowchart of the working procedure of YOLOv5 model
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In the figure 4.1, we can see the working procedure of the YOLOv5 model in a form
of flowchart. The model starts with measuring the perspectives and with positive
results it takes the image frame, otherwise it inputs the video directly. After taking
the image frame it takes coordinate points and then starts image processing. After
that the model starts calculating the distance between the pedestrian points and if
the distance between the points are too close it will show High Risk and if it is not
too close it will calculate the threshold value and then it will determine whether it
is high or low. If yes it will show Low Risk otherwise it will show a green pedestrian
point that indicates a safe zone. Finally, all the outputs will loop around the same
process until the video or stream comes to an end. This model will also determine
the distance of the pedestrian using the Euclidean distance equation to measure any
human distance using two points. Euclidean distance is defined as the measure-
ment of distance between two locations in Euclidean space in order to determine the
relationship between angles and distances. The Euclidean distance is the most com-
monly utilized distance between two points x and y in d-dimensional space. Making
two-dimensional calculations at the coordinates of (x1,y1) and (x2,y2). Finally, each
and every frame will be synced together to make an AVI file using a video writer.

For the implementation of our second model we have used both the TensorFlow
model and SSD Mobilenet using Deep learning and Computer vision. TensorFlow
model is a powerful and configurable machine learning system with a lot of capabil-
ity. Through this paper we aim to provide the fundamental framework for human
detection and measuring distances among them using the TensorFlow model. Open
source numerical computation and large-scale machine learning libraries, such as
TensorFlow, are the major focus of this project. It is a collection of models and
algorithms that integrate machine learning and deep learning techniques. Using
TensorFlow, developers may create a graph of computation [15]. Nodes in the net-
work represent mathematical terms, whereas connections in the network represent
data. Due to this, the developer may need to invest more effort into designing the
application’s logic as a whole rather than worrying about details like how to connect
the output of one function to its input in another action [29]. Therefore, in order
to apply the TensorFlow model for recognizing humans in the frames, we must first
load the model from a file into a TensorFlow graph and then describe the output
that we require. The graph that stores the model must be passed through for each
and every frame or image in order to produce the desired outcome. Additionally,
filtering out weak predictions or objects we don’t wish to find is an important part
of the process [48]. The first phase in this model’s detection of people in the frame
is model selection. The COCO API dataset is used to train all of the TensorFlow
object detection model zoo’s models for model selection. This dataset has 120,000
photos with a total of 880,000 identified items. The step will be creating a situa-
tion which will be the entity responsible for the execution of the operations defined
in the graph. This model all require the installation of CUDA Toolkit v11.2 and
cuDNN 8.1.0 that will provide high tuned implementations for standard routines
which include normalization, activation layers and forward and backward convolu-
tion. cuDNN is CUDA’s One of the most powerful GPU-accelerated neural network
libraries in the world, used by both researchers and framework developers. There are
many other devices which have low level GPU performance which might not carry
out the desired framework that this high end GPU accelerator can. cuDNN accel-
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erates Chainer, Keras, MATLAB, MxNet, PyTorch and TensorFlow. TensorFlow
object detection API is also needed to train, create, and deploy the object detection
models. We also need a TensorFlow model garden to aim at demonstrating the
effective practices of modeling so that it is efficient for us as it provides TensorFlow
users a centralized place to find examples for models and reusing libraries. Protobuf
compilation is used again in this TensorFlow object detection API to construct mod-
eling and training libraries. It is one of the general forms of storing data that can
be transported later efficiently, as it compacts the data and enforces the structure
on data. It is used to generate the graph between the pedestrians.

The next process that is starting of every frame that will require processing. The
model’s desired inputs and our desired model outputs will be included in this sec-
tion. This will basically do the work of passing every frame or image through the
model. Now, after calling the function on each frame we will initialize the predic-
tions and detections and return all the transformed points that will detect humans
in the image. Again, we have to also set the human coordinations, images and also
the distance threshold, where we will use variables for simulating the formula for
measuring the distance between the centroids which are known as pedestrian points.
Now, for determining the distance first we have to generate the center for the pedes-
trian. We have used the midpoint equation to find the center of the pedestrian,

C̈(X, Y ) =

(
Xmin+Xmax

2
,
Y min+ Y max

2

)
(4.1)

From the equation,these values or outcomes will be generated for each of xmin
and xmax, height and width, and ymin and ymax to determine the area of focus
for this pedestrian. Now, when we are done identifying the pedestrian points, we
need to measure the distance between the pedestrian points so that we can identify
whether the people are at safe distance or not, are they maintaining social distance
or not.This mathematical formula for determining the separation in physical dis-
tance between any two objects in a frame,

d (c1,c2)=
√

(Xmax−Xmin)2 + (Y max− Y min)2
.

(4.2)

Through this equation now we will identify the distance and label people regarding
the identification of Low Risk and High Risk. After generating the label we have
to generate the output as an AVI file. Finally, this output will be also generated in
a CSV file which will show the Frame ID, Date and Time, Total People, People at
Low risk and People at High Risk.
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4.2 Model Dataset Pre-Trained Libraries

4.2.1 Anaconda in Python

In the past decade, Python has become one of the most popular programming lan-
guages for scientific research. Its open-source nature and large online community
are among the factors that have made it so popular. Many fields, including data
analytics, artificial intelligence, and scientific research, have seen improved produc-
tivity as a result of Python’s use. Python’s use in the field of data science is gaining
more and more traction. Python was deemed to be the most popular programming
language among those that were surveyed for Anaconda’s 2021 State of Data Sci-
ence study. 63 percent claimed they use Python either frequently or always, making
it the most popular language overall. A toolset for researchers and scientists is
provided by Anaconda, a free and open-source software package. Anaconda pro-
vides access to a variety of Python/R environments with a single package install.
Code development is made much easier using these platforms or apps, commonly
referred to as integrated development environments (IDEs). They provide a similar
function to word processors like Microsoft Word, Google Docs, and Pages, but in
reality, they are much more. One may use IDEs for a wide range of tasks such as
code-reviewing, data-visualization, data-inspection and variable storage. They can
also be used for collaborative projects. The programming language is the same re-
gardless of the IDE’s presentation and peculiarities. This means that changing the
IDE in Anaconda does not have a major impact on your Python code. The most
difficult part of getting started with Python is getting head around the syntax. It
is easy to transfer coding skills from one IDE to another. One IDE is not inherently
superior to another, each has its own benefits and downsides in [17]. A distinct
Python version is required for each type of application. Because of a reliance that
is available in prior versions but has changed in current ones, the program must
execute on a certain version of the language. When it comes to separating apps,
virtual environments are perfect. We can quickly and simply move between the two
programs by using a virtual environment. The Python community has contributed
a large number of prebuilt functions, which you may use by downloading the toolkit.
Libraries containing these functionalities may be simply acquired using Anaconda.
Python may be installed and used in a variety of ways, but Anaconda’s graphical
user interface (GUI) is straightforward, well-supported, and contains the most sig-
nificant libraries and IDEs as part of the installation. Keeping all of these libraries
up-to-date is made much easier with Anaconda. This means that instead of having
to install many IDEs, libraries, and functions for Python individually, Anaconda can
accomplish it all [17]. When it comes to Python data science and machine learning,
Anaconda is the easiest approach to execute. Open-source packages and libraries
may be accessed using this toolset, which is designed for solo practitioners. As a
starting point for both new and more experienced Python programmers, this is the
ideal way to get started with the language.

4.2.2 NVIDIA GPU

The Graphics Processing Unit, often known as a GPU, functions as a co-processor
to speed up the performance of the CPU. Loading some of the most time-consuming
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and complicated tasks onto the GPU (Graphics Processing Unit) speeds up the CPU
(Central Processing Unit) based applications [3]. NVIDIA has introduced a new
computing platform for its graphics processing units called CUDA. This platform
is designed for general purpose computing (GPU). The effectiveness of using this
platform for statistical machine learning applications is analyzed in this research.
Both the transfer rates to and from the GPU and the performance of matrix vector
operations on the GPU are measured. A description and evaluation of a GPU-based
implementation of a sparse matrix vector product are presented here [5]. The initial
component of NVIDIA CUDA is an integral image method that is based on prefix
sum. The artificial intelligence that is accelerated by the Tensor Cores that are in-
tegrated into NVIDIA’s Turing GPUs is, in turn, being utilized to speed up games.
GPUs have a number of opportunities for growth in the automobile sector. They
feature picture recognition skills that are unparalleled, just as anyone would expect
[5].

4.2.3 CUDA

In the Compute Unified Device Architecture (CUDA), the GPU may be used as a
data-parallel device without the requirement to transfer calculations to a graphics
API. CUDA is a hardware and software architecture. CUDA changes the hard-
ware’s characteristics from a graphics card to a multi-threaded coprocessor. BLAS
and FFT implementations are included in CUDA, however NVIDIA only offers a
C/C++ API for them [4]. That portion of the program running on the GPU is
handled by CUDA, which utilizes hundreds or thousands of threads. These threads
are laid out in the form of a grid with blocks. One, two or three-dimensional threads
can be used in the grid, and each block can be either one, two, or three-dimensional
threads.

Figure 4.2: CUDA WorkFlow

It is possible to set the grid and block dimensions at runtime, with each thread
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being able to get its own thread and block ids. NVIDIA hardware will only provide
synchronization and access to fast shared memory for threads that are part of the
same block when several blocks of threads are being performed on a single physical
SM.

The figure 4.2 shows how the CPU is responsible for its primary execution. When a
kernel call is made, the program will continue executing on the CPU using a func-
tion that is not part of the kernel. At the same time, the execution of the kernel
function takes place on the GPU. This allows us to perform processing in parallel
on both the CPU and GPU. Another name for this technique is “heterogeneous pro-
gramming”. Memory transfer between the host and the device is the key bottleneck
in the execution of applications. Both will have their execution delayed until this
procedure is fully finished.

The shared memory paradigm is utilized by the CUDA architectural framework.
Allows for memory transfers between the Host and the Device Memory operations
can be kept on the chip by using local shared memory and registers. Various ele-
ments of the graphics accelerator’s memory are partitioned. Operation of the Local
Thread is carried out in the Local Memory or Register. Communication between
threads takes place in the shared memory. The blocks and grids communicate with
each other via the global memory.

Figure 4.3: CUDA Architecture

Using a graphics processing unit as a general purpose computer allows for simulta-
neous processing on low-cost hardware. Programmers can use NVIDIA’s Compute
Unified Device Architecture (CUDA) to develop data-parallel applications that run
on the GPU. The CUDA paradigm considers a GPU to be a coprocessor capable
of handling several tasks at once. It is possible to offload a kernel, a data-parallel
compute process, to the GPU for execution. Simultaneous execution is referred to
as SIMT, and it involves hundreds of threads running the same code on various data
sets.

Each thread may identify its spatial position using its thread ID and thread block
ID, and can thus access the data associated with that place. Multiprocessors (14-
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30 in recent versions) are housed in a single GPU chip in the CUDA architecture.
8 or more stream processors are used to run up to 1024 concurrent threads on
each multiprocessor, all of which are running the same code. Each thread in a
multiprocessor may access 16KB of shared memory with a 1 clock cycle access
delay. All multiprocessors have access to a global memory that ranges in size from
256 MB to 1 GB and has a greater access latency. This memory is known as device
memory (300-400 cycles). The cost of accessing global memory can be amortized
by combining accesses from many threads. It is also feasible to send huge blocks of
data from the main memory to the device memory using DMA [26].

4.2.4 cuDNN

The NVIDIA CUDA Deep Neural Network library, also known as cuDNN, is a GPU-
accelerated collection of fundamental building blocks for use in deep neural net-
works. All the typical convolutional and activation techniques are well-implemented
in cuDNN thanks to its high-quality implementations. cuDNN is the ready GPU
accelerator for deep learning researchers and framework developers across the world.
Rather of wasting their time tinkering with low-level GPU performance, they may
focus on training neural networks and designing software applications instead. A
wide range of deep learning frameworks, such as Caffe2, Chainer, Keras, MAT-
LAB, MxNet, PaddlePaddle and PyTorch can benefit from cuDNN’s performance
improvements [19]. cuDNN’s APIs are designed to be open to the entire community
of neural network frameworks. This resulted in us coming up with a design that
is framework agnostic, which means that users of cuDNN are not forced to adopt
any certain software framework, methodology, or even data architecture in order to
utilize it.

The cuDNN interface is meant to be independent of neural network topology. Data
about threads and CUDA run-time management are kept in modest amounts of
global state. Datatypes like filters and tensors are also represented as opaque struc-
tures. It’s not that these objects don’t have a purpose; they’re just lightweight
representations of data held by the client program, not by the library itself. API
methods that conduct basic operations on user-controlled buffers make up most of
the API’s content. With a basic object model and stateless API, the library eas-
ily interacts with other frameworks. All of cuDNN’s algorithms enable single- and
double-precision forward and backward propagation. Convolution, pooling, and neu-
ron activation functions are all examples of these. Variable data layout and strides
are supported, as is indexing of input picture sub-sections. An additional collection
of 4d-tensor transformation procedures makes it easier to manipulate 4d-tensors [30].

4.2.5 TensorFlow Object Detection API

In computer vision, the phrase object detection refers to approaches for finding and
classifying things. Static and moving photos may both be used for object iden-
tification algorithms. These pre-trained object detection models are utilized with
open-source libraries like OpenCV’s DNN library and TensorFlow Object Detection
API to detect a wide range of objects, from humans to television monitors [25]. A
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solution to issues with object detection can be found in the package that is provided
by the TensorFlow Object Detection API. Real-time object detection in a picture
is now possible using this method. Out-of-the-box TensorFlow object recognition
structures include the SSD (Single Shot Detector), Faster R-CNN (Faster Region-
based Convolutional Neural Network), and RFCN (Random Field Convolutional
Network) (Region-based Fully Convolutional Networks).

In addition, these feature extractors are essential since they play a significant role in
the framework’s speed/achievement trade-off like MobileNet, Inception, and ResNet,
among others. In reality, training a convolutional network from scratch needs a lot
of time and a lot of data. TensorFlow API is used as a model for transfer learning
to overcome this issue. Using a model developed for one function as the starting
point for a model for another function is known as transfer learning. This method
is commonly used in deep learning because of the high computational and tempo-
ral resources required to create neural network models. Instead of beginning from
scratch, a pre-trained model can be used as a starting point for training the system,
rather than constructing a new model from scratch [22].

The goal of the TensorFlow Object Detection API is to simplify the process of con-
structing, training, and deploying object detection models. It is described as an
open-source framework built on top of TensorFlow. As a result of this, the Ten-
sorFlow object detection API offers the user with a variety of pre-trained object
recognition models that can be fine-tuned and used in object identification tasks. A
variety of pre-trained models may be utilized with TensorFlow’s Object Detection
API. It was decided to use an SSD model with MobileNet in this study. There are
2.5 million annotated instances in 328 000 photos in the MSCOCO Dataset, which
includes 91 object classes, such as human and 91 different kinds of animals. Mean
Precision (mAP) is stated to be 21 on the COCO dataset for the SSD MobileNetv1
coco-model. Both a pre-trained version of the SSD model without any fine tuning
and a version that was well-tuned for our own dataset were evaluated and compared
in this study [25].

4.2.6 TensorFlow Model Garden

The TensorFlow Model Garden is a repository where TensorFlow users can find dif-
ferent ways to implement state-of-the-art (SOTA) models and modeling solutions.
TensorFlow users will be able to make the most of this functionality for their research
and product development endeavors if the Model Garden is successful in demonstrat-
ing the most effective modeling techniques. TensorFlow Hub will continue to fulfill
its function as a repository where users may search in an uncomplicated manner for
pre-trained models that are ready for use.

4.2.7 Protobuf

Protocol buffers are much like JSON, XML, or HTML in terms of structural nota-
tion. Because of its small size and good typing, Protobuf is a popular choice. The
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Protobuf GraphDef is required to define a graph in TensorFlow. It is possible to
export and import this GraphDef Protobuf. A Google-created binary format known
as Protobuf or Protocol Buffers, is used to serialize data across different services. A
number of the most popular programming languages are already supported by this
protocol, thanks to Google’s decision to make it open source.

4.2.8 COCO API

With the COCO API you can do tasks like object identification, segmentation,
facial recognition, item segmentation and caption creation on a big range of im-
ages. This package offers application programming interfaces (APIs) for MATLAB,
Python, and Lua that facilitate loading, processing, and displaying COCO annota-
tions. For computer vision, the COCO dataset provides demanding, high-quality
visual datasets, which are largely neural networks. For instance, COCO is frequently
utilized for benchmarking algorithms in order to evaluate and compare their effec-
tiveness in real-time object recognition.

Figure 4.4: Keypoints detected by OpenPose on COCO Dataset

In the Figure 4.4 , 18 pre-trained Keypoints (classes) are annotated with three values
in the COCO Keypoints (x,y,v). The coordinates are shown by the x and y values,
while the visibility of the key point is indicated by the v value (visible, not visible).

4.2.9 SSD MobileNetv2

The SSD system, unlike the Faster R-CNN system, employs a single-stage detector
architecture for detections. As a result, the region proposal stage is eliminated, and
detection is carried out in a single iteration of the network. The initial layer of
the system is a network that extracts features from the data. Standard backbone
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networks, such as ResNet and VGG, are examples of what is referred to as the
base network[59]. SSD is quicker than the region-based techniques since it predicts
the bounding boxes and class probabilities all at once. Faster R-accuracy CNN’s
is also comparable. Furthermore, the feature maps’ various sizes aid in producing
boxes of varying dimensions, which in turn aids in detecting objects of different sizes.

Machine learning architecture models include SSDMobileNetv2 and SSDMobileNetv1.
SSD MobileNetv2 is capable of simultaneously detecting a large number of items.
SSD MobileNetv2 is designed for light-spec mobile devices. There are linear bot-
tlenecks and shortcut links in SSD MobileNetv2. An example of a Convolutional
Neural Network (CNN) model is the SSD MobileNetv2 algorithm.It is a branch of
computer science that uses human neural networks to build artificial neural networks
that can recognize and identify items. Storage Device MobileNetv2 makes use of
depth- and point-wise convolution [52].

For mobile visual recognition comprising object identification and semantic seg-
mentation, MobileNetv2 represents a considerable advancement over MobileNetv1.
In addition to the TensorFlow-Slim Image Classification Library, MobileNetv2 is
available in the Collaborator for immediate exploration. You may also download
the notebook and use Jupyter to examine it locally. Pre-trained checkpoints and
modules for MobileNetv2 may be accessible from various sources respectively.

Figure 4.5: MobileNetv2 Architecture

Improved efficiency and power are achieved by making use of the MobileNetv2 in
conjunction with the MobileNetv1. An entirely new design has been implemented for
the depthwise separable convolution block, as seen in Figure 4.5. The novel depth-
separable convolution block has three convolutional layers. Before the depthwise
convolution layer, the input feature map is multiplied by an 1x1 convolution layer
to increase its number of channels. The input feature map is filtered using a 3
x 3 depthwise convolution layer in the middle layer, similar to the one used in
MobileNetv1. A convolutional layer with a size of 1 x 1 is used as the final layer.
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Nevertheless, this last layer of convolution is used to transform data with a large
number of channels into one with a much smaller number of channels, decreasing
the number of channels in the input feature map. This last layer is also known as a
bottleneck layer due to the fact that it reduces the quantity of data that passes across
the network [6]. The model’s intermediate inputs and outputs are encoded in the
bottlenecks, while the inner layer embodies the model’s capacity to transition from
lower-level ideas like pixels to higher-level descriptors like image categories. Finally,
shortcuts allow for faster training and improved accuracy, much like classical residual
connections.

4.2.10 YOLO

The YOLO (You Only Look Once) object detection technique reduced the com-
putational complexity problems associated with R-CNN by structuring the object
identification problem as a single regression problem, where bounding box coordi-
nates and class probabilities are computed simultaneously. Though it was proved
that YOLO had a large performance advantage over R-CNN (for example on an
Nvidia Titan-X GPU, 45 frames per second), it was also shown to have a much
greater localization error than more current R-CNN variations like Faster R-CNN.
Instead of predicting bounding box coordinates directly, the RPN in Faster R-CNN
uses hand-picked priors to forecast offsets and confidences for the anchor boxes.
Each anchor is coupled with four locations for the box and two score values that
assess the likelihood of object and object not object of the proposed box [20]. So
far, YOLO has been improved to five versions and recognized as one of the top
object identification algorithms, incorporating several of the most original concepts
from the computer vision research field. As of YOLOv5, the 5th generation, it was
not produced by the original YOLO creator. In engineering, the You Only Look
Once (YOLO) object identification technique of proYOLOv5 was superior. Instead
of C, YOLOv5 utilizes the Python programming language. That eases the process
of installing and configuring IoT devices. In addition, the PyTorch community is
far larger than the Darknet community, which indicates that PyTorch will get more
contributions and growth opportunities in the near future. Due to the fact that
YOLOv4 and YOLOv5s are developed in two separate languages on two different
frameworks, comparing their performance is challenging. It wasn’t until a while later
that YOLOv5 was able to establish its superiority over YOLOv4 in some situations
and acquire some trust from the computer vision community [52].

4.2.11 Matplotlib

A 2D plotting and imaging software, matplotlib largely serves the needs of scientists,
engineers, and financial analysts. As a Python command-line tool, matplotlib may
be used directly from the command line, or as a GUI application (GTK, Wx, Tk,
Windows). JPEG, PNG, PostScript, and SVG are all supported for print output. In
addition to the ability to create numerous axes and figures on a single page as well
as dynamic navigation and a variety of predefined line styles, symbols, photos and
antialiasing, alpha blending as well as calendar and financial charts are just a few of
the features. It is compatible with both numeric and NumArray expressions [2]. The
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notion of the matplotlib code is broken up into three distinct sections. In the first
place, MATLAB’s command-line interface is the collection of functions that allow a
user to construct plots. Matplotlib’s frontend or API is the set of classes responsible
for producing and maintaining figures, text, lines, plots and other elements of data
visualization. This is a purely graphical user interface that has no concept of how it
will be used. As a last step, the backends are the rendering and/or drawing devices
that use the frontend representation to produce hardcopy (such as a JPG or PNG
file) or an image for use on a display device (such as a Paint or GD file). Because
so much of the rendering code is built in C/C++, it performs exceptionally well [2].

4.3 Input and Training Dataset

4.3.1 YOLOv5

We can use YOLOv5 for fastest object detection in real time. The speed and accu-
racy of collecting images are controlled by resolution of the image that we collected.
In this paper, we describe a layered YOLOv5 architecture with layering. Firstly, we
generate the total number of people. The stream’s results are then acquired by com-
paring the distance by 80 pixels [77]. Using a model neck, it builds feature pyramids
which let the model conclude effectively on object scaling. Pytorch, SSD MobileNet
etc. served as the foundation for the YOLOv5 object detector. In YOLOv5, the mo-
saic data augmentation enhances the accuracy of locating tiny details by combining
four images. Using pre-trained YOLOv5 weights and a scale factor of 0.00392 the
YOLOv5 was trained on the video with a convolutional neural network spatial size
of 416 x 416 [77]. The computer recognizes persons in the video and uses four coor-
dinates to calculate their location. Afterwards, the data loader does three types of
augmentation scaling, color space alterations, and mosaic augmentation. YOLOv5
generates three forecasts for each spatial position in an image. To keep track of each
forecast, calculating objects, pedestrian points regressors and classification scores
are used [77].

Weights selection

We select a model in the form of weights in YOLOv5. In this model, the very
first work that we will be doing is selecting our weights or dataset. We have se-
lected YOLOv5s as our desired weight. The YOLOv5’s framework is composed of
three portions. They are; backbone network, neck network and detection network.
YOLOv5’s speed has increased dramatically, reaching 140 frames per second at its
fastest. To improve the training efficiency of this social distance analyzing model,
we compressed the original video and took it frame by frame via datasets so that
they meet the input channel requirements of YOLOv5s. We have also tried this
model’s implementation on YOLOv4 and found the result of training time being
taken much more than that of YOLOv5s. Again, in comparability among all the
versions of YOLOv5 such as, YOLOv5x, YOLOv5l, YOLOv5m and YOLOv5s, this
YOLOv5s needs less storage which is efficient for any device or system. The next
step begins with generalizing the data. Here, this term identifies the data that we
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are giving as input is a what source or type of data. Following this we will also
need to set the input data in the dataset. Augmenting the classes and agnostic for
determining the true coordinates is also one of the essential steps for implementing
this algorithm.

Labeling objects

Figure 4.6: COCO Dataset in YOLOv5

In figure 4.6, it is shown the use of the COCO dataset in our YOLOv5 model. It
helps to get our detector off the ground and for that the first work we need to do is
collect training images. Next, we have to be sure that the number of objects in every
class is equally distributed. Again, to train the object detector, first we need to fix
its training using pedestrian points annotations. Next, splitting of the dataset is
required for labeling various objects in frames. Again, to train the YOLOv5 model,
we also need to add a ‘.yaml’ file to state the parameters in the dataset.

Measuring distance

Here, we are initially determining the humans and citing them with pedestrian
points. Also, determining humans along with their movements. The center and ra-
dius are determined to plot the points on humans. Following this when we are doing
finding the centroid values, we need to figure out the main distancing between the
centroids. For finding out the centroids we need to input the people coordination,
the image dataset and the required distance threshold. So, after determining these
centroid values (cntr1 and cntr2), we calculate the distance between them.

Again, calculating the distance between the threshold limit we can determine the
“Low Risk” when we are getting the threshold limit higher than that of actual value.
We label it and call append for the value of the centroids. From this value when we
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Figure 4.7: Determining pedestrian points and measuring distance

are able to calculate the center of the pedestrian point, we can easily label it and
call for the next frame calculation as the position of the pedestrian is changing from
frame to frame. Also, used file writer for determining the people in every frame
or images and plotting pedestrians on the centroids. And when we are getting the
distance less than that of our threshold limit, we are getting the warning labeled as
“High Risk”. We have done it the same as done for labeling Low Risk. Lastly, in the
later part of the model, we have taken all the values from the distancing class and
generated all the values of Frame ID, Date and Time, Total people and People at
High and Low Risk. So, the values of the model will be generated in a form of CSV
in the desired location as results. We will discuss more about results in your next
portion. And also using a video writer we are saving all the frames with the desired
pedestrian points and the distance calculator are synced together and an AVI file is
being created.

4.3.2 TensorFlow

In our second model which is TensorFlow, first we have to install Anaconda Python
3.8 32/64-bit Graphical Installer. We need to make sure of installing all the paths
of the anaconda in the environment variables just to make sure that we have all the
same default python distribution. Next step will be creating the anaconda virtual
environment with the name TensorFlow. So, now we are ready for our TensorFlow
installation process. So, for this installation first we need to install the TensorFlow
pip packages and verify them by importing the TensorFlow libraries.

TensorFlow installation

In this figure, we can see the output when we are importing the TensorFlow as tf.
So, this desired output verifies the TensorFlow installation. If the device we are
working on is a CUDA- enabled GPU, then it is necessary to use CUDA Toolkit
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Figure 4.8: TensorFlow Installation

v11.2 and CuDNN 8.1.0 for better performance and execution. NVIDIA created
the CUDA parallel computing platform and programming model. By utilizing the
GPUs power, it allows for huge boosts in computing performance. CUDA capable
GPUs contain hundreds of cores and can run thousands of computational threads at
the same time. A register file and shared memory are among the shared resources
available to these cores. Again, CuDNN is a deep neural network primitive library
that runs on the GPU. Forward and reverse convolution can be implemented with
great precision. A layer of normalizing and stimulation. Many analysts are highly
interested in this model for high performance GPU acceleration. Now, after in-
stalling the CUDA toolkit the next process will be setting up the installation paths
in the system variables on the environment variables of the device. TensorFlow
object detection is therefore necessary for this model. This open-source framework
built on top of TensorFlow is the finest option for designing, training, and deploying
object identification models. Model Zoo is a framework that has a collection of
pre-trained models that are used to create this model. An image/frame or video
can be detected, located, and traced by using TensorFlow object detection. By
detecting items, the method allows us to understand how the models function and
gives us a better knowledge of the image/frame or video. Object detection with
TensorFlow allows us to train machines to better comprehend human behavior and
perform at their best using that information. In this phase of object detection API
installation, the model requires the TensorFlow model garden. This model garden is
a repository with a total number of different implementations of SOTA and various
modeling solutions for users. There has to be a TensorFlow model repository in
a folder named TensorFlow. This TensorFlow object detection API now requires
Protobuf to configure the model and training parameters. The Protobuf libraries
must be installed, setup, and compiled correctly before this TensorFlow model can
be used. COCO is an image dataset that may be used for a variety of tasks like item
detection, segmentation, and human detection and segmentation, and many others.
Using this tool, MATLAB and Python users can load, analyze and display COCO
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annotations. The COCO dataset offers demanding, high-quality visual datasets for
computer vision, with the majority of the datasets containing SOTA neural net-
works. In real-time object identification systems, COCO is widely used to compare
the performance of different algorithms. Then the object detection API needs to
be installed in the folder named research inside the model folder. Now, after these
steps the installation of the TensorFlow model needs to be tested.

TensorFlow model activation

Once we get the output, we can verify that our TensorFlow model activation and
every library installation is successfully done. Now, we are ready to implement our
code for detecting human and measuring social distancing between the human de-
tected pedestrian points. The most important thing in the TensorFlow model is
model selection where we configure SSD MobileNet dataset to the model. In order
to determine an object’s bounding box and category, this MobileNet SSD model
employs an input picture. For mobile devices, this SSD object detection methodol-
ogy may be able to provide speedy and accurate object identification. MobileNetV2
is a convolutional neural network design that is intended to be user-friendly on
smartphones and other portable devices. An inverted residual structure with resid-
ual connections between bottleneck levels supports the design of this system. Also,
restoring checkpoint is necessary for loading each image or frames of the input video
in the MobileNet dataset.

Measure pedestrian points

Figure 4.9: Determining pedestrian points and measuring distance in TensorFlow
model

In this figure, we can see initially the work of plotting lines is done. Next to this, the
center is identified and the variable of people at low risk and high risk is created in a
form of array. Later, using the equation which we mentioned above is implemented
and through this we can identify the value of centroid1 and centroid2. Finally, we
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can measure the distance between the centroids and identify the value. If the value
that we generated from the equation is higher than that of the threshold limit we
will be getting the label “Low Risk”, or else if we get the distance less than that of
the threshold value we will get “High Risk”.

While generating the output first the expansion of the model is required to deter-
mine the formation of the input. Later on, the classes, scores and boxes are defined
to store the NumPy values and finally these values are generated in the CSV file.
This CSV file will show the contents Frame ID, Date and Time, Total people, People
at Low Risk and People at High Risk. Also, this output will generate all the images
or frames into a single AVI file using the write video process.
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Chapter 5

Result Analysis

While it is impossible to identify a fair characteristic of distinct object detectors,
every real-world circumstance may necessitate a different approach. Understand-
ing the other aspects that impact performance (the kind of feature extractor, the
steps out of the extractor, the income resolutions, pictures, strategy coincidence and
threshold as predictions) is required in order to make an educated decision about
accuracy and speed. When calculating loss, it is vital to remove predictions that
are not accurate or fast enough. The IOU has no maximum suppression ratio of
positives, and the threshold IOU does not exist. Technology is always improving
and any comparison might become out of date very fast if not done correctly.

5.1 Detecting pedestrian points and measuring

distance

TensorFlow Object Detection API provides a framework including the use of pre-
trained Object Detection Models such as YOLO, SSD, RCNN and Fast-RCNN etc.
in our paper we used MobileNet SSD, COCO etc as our pre-trained model. It is
now the most widely used software library. TensorFlow is popular because of its
many real-world applications in deep learning. If anyone looking to predict with
high accuracy it will be wiser to go with Faster-RCNN and SSD. TensorFlow object
detection API has inbuilt architectures like faster RCNN and SSD. We may utilize
this framework to apply transfer learning to pre-trained models that were previ-
ously learned on big datasets, allowing us to tailor these models to a specific goal.
For example, we may use transfer learning to develop a model that can determine
whether or not someone is maintaining a distance or not. According to the theory of
transfer learning, an image classification model may be used to represent the whole
visual world provided it is trained on a sufficiently big and diverse dataset. These
feature maps may then be used instead of starting from scratch by training a huge
model using a large dataset. We don’t need to use transfer learning in this scenario
since we already have several models trained to recognize pedestrians[43]. Speed and
accuracy are well-balanced with the Single Shot Detector. A convolutional network
is applied to the input picture just once and a feature map is generated. A simple 3
x 3 convolutional kernel is used to anticipate the bounding boxes and classification
probability from this feature map, which is quite small. The anchor boxes used by
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SSDs such as Faster-RCNN are of different sizes, and instead of learning the box
itself, the offset is learned. The SSD predicts bounding boxes after a large number
of convolutional layers in order to handle the scale. The fact that each convolutional
layer operates on a different scale implies that it is capable of distinguishing between
things of diverse sizes and forms. The accuracy that we got in TensorFlow is 93.3%
for human detection and 92.5% for the social distancing calculation. The accuracy
is calculated here through the formula of determining accuracy which is dividing the
total number of correct predictions which are corresponding diagonal to the matrix
by the total number of output predictions. When we tried to implement the output,
we got a variety of outcomes in terms of CPU and RAM utilization. In the following
table, you can see how much CPU and RAM have been used.

5.1.1 Performance of TensorFlow

The TensorFlow Object Detection API provides a framework that allows you to
employ pre-trained Object Detection Models like YOLO, SSD, RCNN, and Fast-
RCNN, among others. The Single Shot Detector strikes a good mix between speed
and accuracy. A feature map is created by applying a neural network to the input
image only once. To predict the bounding boxes and classification probability from
this little feature map, a basic 3 x 3 convolutional kernel is utilized. The anchor
boxes utilized by 36 SSDs, such as Faster-RCNN, are various sizes, thus the offset
is learned instead of the box itself. To address the scale, the SSD predicts bounding
boxes after a large number of convolutional layers.

Model Use Accuracy Time
TensorFlow Human detection 93.3% 83 min 33 sec
TensorFlow Social Distancing 92.5% 83 min 33 sec

Table 5.1: TensorFlow accuracy table

This table 5.1 shows the model’s use for human detection and social distancing mea-
surements and their respective accuracy with the desired time taken for generating
the output.

Status CPU usage(percentage) RAM usage(percentage)

Pre-compiling 1.5 60.4
Compiling phase 1 74.1 74.7
Compiling phase 2 76.8 60.4
Post-compiling 2 2.6 60.6

Table 5.2: Performance of TensorFlow

The table 5.2 shows the usage of CPU and RAM while implementing the TensorFlow
model. We got 5 FPS in this model. This model requires a very large amount of
space in the device and also high end configured device as it contains various trained
libraries and datasets. It took 1 hour 23 minutes 33 seconds to generate 15,456 data
from video input.
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5.1.2 Data output generated from TensorFlow

Number Frame ID Date and TimeTotal peoplePeople at Low RiskPeople at High Risk

0 Frame 1 8/5/2022 12:25 33 10 20
1 Frame 2 8/5/2022 12:25 34 8 19
2 Frame 3 8/5/2022 12:25 39 8 21
3 Frame 4 8/5/2022 12:25 36 7 20
4 Frame 5 8/5/2022 12:25 37 7 22
... ... ... ... ... ...

15452 Frame 154538/5/2022 13:48 33 10 20
15453 Frame 154548/5/2022 13:48 33 10 20
15454 Frame 154558/5/2022 13:48 33 10 20
15455 Frame 154568/5/2022 13:48 33 10 20
15456 Frame 154578/5/2022 13:48 33 10 20

Table 5.3: Data output from TensorFlow model

The table 5.3 shows the output data which we generated from the input videos.
Through this model we were able to generate 15,456 data, which means the Tensor-
Flow model has ran for each of these times to identify the frame and detect humans
in each frame and also calculate the distance. It also shows the output that are
generated from the input video. We generated the total number of people count in
the frame. We have also added a section where the total number of people at High
Risk and Low Risk are plotted.

5.2 “You Only Look Once”- YOLO staging

You Only Look Once is the acronym for YOLO. Convolutional neural network-based
object detection is used to recognize an object. YOLO has the benefit of speed with-
out sacrificing precision. When using the Darknet implementation (official YOLO),
the algorithm is able to anticipate exceptionally quickly. YOLO has a wider use
[24]. It outperforms other approaches when applied to various types of images, such
as artwork. There is a S x S grid for each picture that forecasts N bounding boxes
as well as their confidence. It is based on the correctness of the bounding box and
whether or not it includes an item. Box categorization scores are predicted for each
class by YOLO as well. The likelihood of each class being present in a pedestrian
point may be calculated by combining both classes.

On the other hand, most of these pedestrian points have low confidence ratings,
so by setting a threshold of say 30 percent, we can exclude the majority of them.
YOLO is very quick and can be run in real time. Training for the YOLO method
consists of two phases: Classifier networks like VGG16 are first trained. We then
replace the completely connected layers with a convolution layer and teach the sys-
tem to recognize objects. Afterwards, 448 x 448 photos are used for object detection
training purposes. As an example, YOLOv2 initially trains the classifier using 448
x 448 photos, but then retrains it using 224 × 224 images, which results in the clas-
sifier being trained with a significantly lesser number of epochs. Detector training
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becomes simpler and mAP rises 4 percent as a result. Furthermore, YOLO views
the whole picture at once, while the earlier approaches merely created area recom-
mendations. In other words, having this background knowledge helps to prevent
false positives. Even though it can only predict one class in one grid, YOLO has
a problem with extremely small objects due to this constraint. But for accuracy
YOLO will not be recommended as a detection model. The accuracy that we got
from YOLOv5s model is 76.6% for human detection and 78.7% for social distancing
measurements. While implementing the outcome, we saw a wide range of results in
terms of CPU and RAM utilization. In the following table, you can see how much
CPU and RAM have been used.

5.2.1 Performance of YOLO

The performance of image categorization networks has substantially improved be-
cause of the implementation of new training techniques. 15–30 frames per sec-
ond(FPS) is a normal video frame rate. The number of frames per second necessary
for real-time object detection varies based on the application’s characteristics, and
such rates are comparable to the speed of a normal video that can be verified with
human eyes.

Model Use Accuracy Time
YOLOv5s Human detection 78.7% 63 min 20 sec
YOLOv5s Social Distancing 76.6% 63 min 20 sec

Table 5.4: YOLOv5 accuracy table

This table 5.4 shows the model’s use for human detection and social distancing mea-
surements and their respective accuracy with the desired time taken for generating
the output.

Status CPU usage RAM usage

Pre-compiling 1.2% 58.8%
Compiling phase 1 58.1% 62.4%
Compiling phase 2 56.8% 60.5%
Post-compiling 2 1.6% 60.4%

Table 5.5: Performance of YOLO model

The table 5.5 shows the usage of CPU and RAM while implementing the YOLOv5
model. Here we can see YOLOv5 is taking less RAM Usage than TensorFlow. This
model requires a very small amount of space in the device and also any device of
any configuration can smoothly run this model. As the pre-trained libraries and
dataset or weights are of minimum size. It took 1 hour 3 minutes 20 seconds to
generate 15,456 data from video input. The table 4 below shows the output data
which we generated from the input videos. Through this model we were able to
generate 15,456 data, which means the YOLOv5 model has ran for each of these
times to identify the frame and detect humans in each frame and also calculate the
distance.
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5.2.2 Data output generated from YOLO model

Number Frame ID Date and Time Total peoplePeople at Low RiskPeople at High Risk

0 Frame 1 12/5/2022 9:56 41 20 13
1 Frame 2 12/5/2022 9:56 42 20 13
2 Frame 3 12/5/2022 9:56 39 19 15
3 Frame 4 12/5/2022 9:56 36 18 17
4 Frame 5 12/5/2022 9:56 37 19 22
... ... ... ... ... ...

15452 Frame 1545312/5/2022 10:58 6 2 3
15453 Frame 1545412/5/2022 10:58 7 1 4
15454 Frame 1545512/5/2022 10:58 7 2 4
15455 Frame 1545612/5/2022 10:59 7 3 4
15456 Frame 1545712/5/2022 10:59 8 2 5

Table 5.6: Data output from YOLOv5 model

The table 5.6 shows the output data which we generated from the input videos.
Through this model we were able to generate 15,456 data, which means the YOLO
model has ran for each of these times to identify the frame and detect humans in each
frame and also calculate the distance. It also shows the output that are generated
from the input video. We generated the total number of people count in the frame.
We have also added a section where the total number of people at High Risk and
Low Risk are plotted.

5.3 Comparison

This pandemic was not being given the attention it deserves. As a result, this system
will be able to recognize humans, and by measuring the distance between them, it
will be able to identify and warn people about the dangers of interacting too closely.
Using YOLOv5s and TensorFlow, we implemented and demonstrated our findings.
An assessment of this distance criteria is done to determine whether two persons
are complying to social distancing rules. Because of its high precision and low error
rate, the proposed method is straightforward to employ in real-world situations. In
our tests, the TensorFlow model outperformed the YOLO model in terms of accu-
racy and precision. In some circumstances, the YOLO model fails to distinguish and
detect humans due to low light in photos, whereas TensorFlow performs better. Ten-
sorFlow, on the other hand, is larger than YOLO since it provides large data-sized
pre-trained libraries. In addition, the TensorFlow model necessitates high-end con-
figuration devices in order to execute fast and smoothly and produce more accurate
results. The TensorFlow model will continue to generate results on low resolution
frames because most surveillance cameras do not produce acceptable quality output.
The YOLOv5 model, on the other hand, will be unable to detect humans from the
same data. Again, we have also shown the usage of RAM and usage of CPU for both
the models. Where we gained results from the TensorFlow that it occupies higher
RAM and higher CPU usage as it trains a large number of data with a large number
of pre-trained libraries and dataset. Again, the usage of GPU libraries mostly makes
the device compatible and the TensorFlow system gains more power for simulation.
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While YOLO with numerous data might malfunction and also the results may not
be as precious when compared to TensorFlow during low light.

MODEL Accuracy Avg. CPU usage Avg. RAM usage Time FPS

TensorFlow 92.90% 38.75% 54.02% 83 min 33 sec 6
YOLOv5 77.65% 29.42% 60.52% 63 min 20 sec 5

Table 5.7: Comparison of YOLOv5 and TensorFlow

In the above table, we can see the comparison between TensorFlow and the YOLOv5
model. Here, the accuracy of TensorFlow is much higher than the YOLOv5 model.
Also, RAM usage of TensorFlow is 54% whereas YOLOv5 RAM usage is 60% which
is lower than YOLOv5. Again, the CPU usage of YOLOv5 is 29.42% and TensorFlow
CPU usage is 38.75%. Furthermore, TensorFlow is taking 83 minutes 33 seconds to
compute. On the other hand, YOLOv5 is taking 63 minutes 20 seconds to compute.
YOLOv5 is giving 5 frames per second and TensorFlow is taking 6 frames per second
which is more efficient.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We just got out of a deleterious pandemic, it is critical for us to maintain social
distance and be wary of large crowds. Social isolation is one of the most important
precautions in avoiding physical contact that could contribute to the spread of coro-
navirus. Noncompliance with these rules will result in increased viral transmission
rates [56].

We proposed an image processing based human detection with monitoring via fine-
tuned deep learning and computer vision for social distance measurement purposes.
This pandemic is not being taken as seriously as it should be. As a result, this sys-
tem will be able to identify and alert people to the dangers of socializing too close
to each other. In addition, we’ve employed social distancing algorithms to gauge
the level of social distance between individuals. We have implemented and shown
our results through YOLOv5s and TensorFlow. To determine whether two people
are adhering to social distancing norms, an evaluation of this distancing criteria is
made. Using the proposed method in real-world applications is simple because of its
high precision and low error rate. One of the most efficient methods of preventing
the development of this pandemic is to establish social space between individuals.
There is a fixed range of transmission for coughing, sneezing, and forced speaking
droplets. By maintaining this distance, we can lessen the spread of the virus. Other
information, such as the centroid coordinates, can also be found in the detection
model’s pedestrian points. Distance is derived using the pairwise centroid distances
between the spots on the ground where pedestrians have been observed. An esti-
mate of the physical distance between the person and the pixel is employed in order
to identify social distance violations between persons, and a threshold is established
for each violation. Those who practice social distance believe that by staying at
home, avoiding large groups of people, and not interacting with one another, virus
spread will be prevented. In conclusion, the research is likely to yield new infor-
mation that will be useful in the study of social distancing and implementation.
Using some algorithms, the paper investigates the significance and interactions of
many factors on the formation, implementation, and compliance of social distance.
The study also provided information on critical problems during the pandemic and
steps to prevent the spread of the coronavirus and other future viruses. Our paper
has the potential to uncover effective strategies for making social distance policy
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measures more acceptable and comprehensible, resulting in actionable knowledge in
the fight against the coronavirus and future viruses. Numerous recipients worldwide
will benefit from the project’s outcome.

6.2 Future Work

Coming from the news a new virus has been detected this month called monkeypox.
Although it is not as deadly as COVID was, it spreads the same way as COVID
did. This virus also requires social distancing protocols. The United Kingdom (UK)
reported an imported case of monkeypox (MPX) in a traveler from Nigeria on May
7, 2022. On April 29, 2022, the subject developed a rash-like sickness and traveled
from Lagos to London on May 3-4 [72]. The diagnosis was verified on May 6 by
the UK Health Security Agency’s Rare and Imported Pathogens Laboratory using
monkeypox virus (MPXV) PCR on a vesicular swab [72]. Two more instances (both
MSM) were recorded on May 18, 2022, one in London and the other in the South-
East of England [72]. Monkeypox is a contagious disease that is difficult to spread
between individuals but still during direct and prolonged face-to-face contact, the
virus can be transferred between humans via respiratory droplets [72]. So, still we
are not safe to gather at public places. So, thinking about the future use of such
model the work could be improved for diverse indoor and outdoor conditions. To
track the person or people who are violating or breaching the social distance thresh-
old.

In future works, we intend to further enhance the performance of our algorithms by
manually executing TensorFlow on the GPU. In addition, we would like to include
more information about social distance in the loss function or directly in the model,
and assign an appropriate risk level. In order to assess the risk of infection more
accurately, it would be interesting to detect human gaze more thoroughly. Lastly,
it would be fascinating to monitor these crowds with mobile cameras.
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