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Abstract/ Executive Summary 

Lysosomal autophagy controls cellular homeostasis by degrading and recycling cytoplasmic 

molecules and organelles in the lysosome. This process in neuronal cells protects cognitive 

decline by removing abnormal intracellular protein accumulation. Since autophagy is well-

known, new regulators of the process are expected to be discovered. It has been hypothesized 

that modulating autophagy can be employed as a therapeutic mechanism to boost the efficacy 

of traditional medicines, such as chemotherapy and radiation therapy. Thus, a critical concern 

in cancer therapy is whether to promote or inhibit autophagy. To enable the successful 

development of treatments targeting autophagy, a complete knowledge of the molecular 

components of autophagy is addressed here, with a particular emphasis on druggable targets, 

combination therapy are also explored as well as the possible hurdles and constraints for the 

application of these innovative therapeutic techniques in clinical practice. 

Keyword: autophagy, autophagic cell death, anticancer therapy, chemotherapy, autophagy 

inhibitors 
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Chapter 01 

Introduction 

Cancer has become a serious public health hazard in recent decades as a result of its high 

incidence and fatality rates. Human malignancies have been treated using a variety of 

treatments, including chemotherapy, surgery, targeted therapy, radiation and a combination of 

all these therapies. (Lei et al. 2017a).  Autophagy is a significant catabolic mechanism that 

regulates cellular homeostasis through the degradation and recycling of cytoplasmic chemicals 

and organelles in lysosomes.  

1.1. Cancer and Autophagy 

Cancer is a condition in which some cells in the body grow out of control and spread to other 

areas of the body. Cancer can begin practically anywhere in the billions of cells that comprise 

the human body. Human cells normally expand and multiply (a process called cell division) to 

generate new cells as the body requires them. When cells get old or damaged, they die and are 

replaced by new cells. Using autophagy the body's cells get rid of anything that isn't needed or 

is damaged. There are three main types of autophagy: Chaperone-mediated autophagy (CMA), 

Microautophagy and Macroautophagy. They are all based on how intracellular components are 

sent to the lysosome for destruction. Several cellular activities, including development, 

differentiation, response to nutritional deficiency and oxidative stress, cell death, and the 

turnover of macromolecules and organelles, are controlled by the autophagic process.  This is 

linked to cancer because of its pro-survival and pro-death properties. Its pro-survival activity 

aids cancer cells in surviving in nutrient-depleted environments. Conversely, the pro-death 

effect aids in the demise of cancer cells, either naturally or in response to radiation and 

chemotherapy. 
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1.2. Aim of the project  

Autophagy has recently been recognized as a potential treatment in a variety of disorders other 

than cancer. Here, we will focus on cancer which is the most common cause of death in the 

world, responsible for over 10 million fatalities in 2020, or nearly one in every six deaths. To 

treat cancer patients many types of treatment are available but the result is not up to the mark. 

So researchers are continuously trying to bring new drugs or treatment strategies for different 

types of cancer. Targeting autophagy is one of them. Aim of the research is to technique 

development required for identifying new targets and inhibitors also analyzing clinical studies 

to improve the combination of drugs. 

1.3. Objectives of this study  

The objective of this study are- 

- To know the process of targeting autophagy. 

- To provide an insight into the treatment strategies using this. 

- To make better decisions about modifying autophagy throughout cancer treatment. 
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Chapter 02 

Methodology 

This article provides a comprehensive summary of several cancer treatment options that target 

autophagy. Information for this review paper was gathered from peer-reviewed published 

studies, news items, academic published papers, and web sites. Furthermore, for this study, 

articles from prestigious journals such as Springer, Nature, Cells, The Lancet, MDPI, Frontiers, 

Bio pharma, Taylor and Francis were evaluated. Many articles were consulted for information 

and data, which aided in determining the importance and future of targeting autophagy. All of 

the information was collated and properly referenced, resulting in a greater understanding. 

Attempts were made to discover gaps or withholding data in the available literature. 

However, approximately 120 clinical studies investigating the autophagic mechanism have 

been initiated thus far. (Chude and Amaravadi 2017; Mizushima 2007). The majority of this 

research focuses on autophagy in treating cancer and has earlier proven promising results, for 

example, when chloroquine or hydroxychloroquine is administered alone or in conjunction 

with other agents. Autophagy can be regulated by the development of autophagosomes 

surrounding protein aggregates or damaged organelles via the activities of autophagosomal 

membrane receptors. Through the removal of aberrant intracellular protein buildup, this 

mechanism in neuronal cells prevents cognitive decline 

Autophagy has recently been recognized as a potential treatment in a variety of disorders other 

than cancer. (Towers and Thorburn 2010a). Numerous studies indicate that autophagy 

enhancers may inhibit the growth of cancer cells in premalignant lesions. (Galluzzi et al. 2015). 

In advanced malignancies, however, both increasing and suppressing autophagy have been 

proposed as treatment methods. (Levy and Thorburn 2011; Towers and Thorburn 2016) 
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Chapter 03 

Pathway of Autophagy 

Understanding autophagy, a multistep process, is crucial to generating strong tool substances 

and eventually, remedies that significantly modulate autophagy will be developed. Generally, 

autophagy pathway contains 7 steps, with autophagy genes which are conserved (ATG genes) 

regulate steps one to five, while genes Other endosomal/lysosomal routes get this feature 

stimulate processes six and seven. These seven steps are further divided into 4 sections. They 

are Initiation, Nucleation, Maturation and Degradation. (Ravikumar et al. 2010) 

3.1. Initiation 

Step 1: The Protein Kinase Complex of the Unc-51–Like Kinase Regulates the beginning of 

AV Formation. The complex of Unc-51-like kinase (ULK) contains a ULK family kinase, 

autophagy-related gene 13 (ATG13), and focal adhesion kinase interacting protein 200 kDa are 

all components of the ULK family of kinases (FIP200). Since mTORC1 is restricted or AMPK 

is activated, this complex becomes active. Hence, the ULK complex absorbs nutritional 

(mTOR) and AMPK (energy stress) signals from the cell's master controllers. Recent research 

shows that, to increase the connection of ATG13–FIP200 protein complex formation Tank 

Binding kinase 1 (TBK1 is needed. That helps the process by phosphorylating Syntaxin17.  

(Kumar et al. 2019) 

3.2. Nucleation 

Step 2: The VPS34 Lipid Kinase Complex curvatures the Membrane. In addition to activation 

of the Beclin1 (BECN1)-VPS34 complex, the complex also involves VPS15, Beclin1 regulator 

1 (AMBRA-1) and ATG14L bdepending on the complex's subcellular location. (Behrends et 
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al. 2010) Step 2 is performed by the VPS34 lipid kinase complex.by generating membranes 

with phosphatidylinositol 3-phosphate (PI3P), usually from the endoplasmic reticulum (ER). 

3.3. Maturation 

Step 3: A protein from the LC3 family, cascade of LC3 Family Conjugation as an AV is 

conjugated to the membrane lipid, which helps identify it as such and allows it to receive cargo. 

This step involves WIPI2B binds to PI3P (Dooley et al. 2014), combining altogether two 

different protein conjugation mechanisms that are crucial for AV creation. When the WIP12B 

scaffold is available, ATG5 is converted to ATG12 by ATG7 and ATG10, which then creates 

a complex with ATG16L1. In AV membranes, the ATG5–ATG12–ATG6L1 the and ATG7–

ATG3 complex are essential for LC3 (ATG8) family members (including GABARAPs) to be 

conjugated to the lipid phosphatidylethanolamine (PE) (Ravikumar et al. 2010; Walczak and 

Martens 2013). Meanwhile, the cysteine protease ATG4 is necessary to convert pro-LC3 to its 

soluble form before it can be conjugated to lipid by this cascade (LC3-I). When LC3 is 

conjugated to a lipid, it is placed onto the surface of the newly formed AV (Ichimura et al. 

2000). On gel electrophoresis, the lipidated form of LC3 moves more quickly than the free 

form., hence the ratio of lipidated to free LC3 can be used to estimate the number of AVs 

growing at any specific time. 

Step 4: LC3 conjugation on AVs serves as a flag for AVs as well as a docking site for 

autophagy cargo receptors that deliver autophagic cargo to AVs (see below). SQSTM1 (p62) 

and BRCA1's neighbor (NBR1) link to ubiquitinated proteins and organelles, allowing these 

to be autophagically degraded (Lamark et al. 2009). Cargo receptors enable selectivity in 

autophagy by binding specific cargo to specific cargo receptors (Gatica, Lahiri, and Klionsky 

2018). 
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 Step 5: Maturity of AV To seal the AV, ATG9 recruits lipid membrane from plasma 

membrane, mitochondria, Golgi, or endoplasmic reticulum to it (Orsi et al. 2012; Young et al. 

2006). The separation membrane with trapped cargo is the AV. (Shibutani and Yoshimori 

2014) 

Step 6: The AV-Lysosome Fusion involves Rab GTPases, membrane-tethering complexes 

(HOPS complex, VPS genes), and soluble N-ethylmaleimide-sensitive factor attachment 

protein receptors (Nakamura and Yoshimori 2017). 

3.4. Degradation 

Step 7: AV Cargo Lysosomal Degradation Lysosomal enzymes degrade autophagic cargo, 

allowing recycled contents to escape, supporting cell development (Kimmelman and White 

2017). Despite the fact that these 7 phases of autophagy are well-known, new autophagy 

regulators are likely to be uncovered. New autophagy regulators identified by siRNA screen in 

pancreatic cancer cell line. Cytosolic malate dehydrogenase 1 and MPP7 are attractive 

candidates for autophagosome formation (MDH1). MPP7 promotes YAP1, which causes 

autophagy, while MDH1 controls ULK1 levels. (New et al. 2019). 
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Chapter 04 

Regulators of Autophagy In Cancer 

Autophagy is triggered by metabolic or pharmacological stress through many molecular 

mechanisms. Here's a quick rundown of a few significant examples. There are also various 

other autophagy regulators that have been identified. 

4.1. Direct Regulators 

4.1.1. AMPK/Energy Stress 

Energy stress in cancer cells can be induced by nutrition restriction or inhibitors of cancer cell 

metabolism, which act on the energy sensor 5′-AMP activated protein kinase 1 (AMPK1) and 

the nutrient sensor mTORC1. By inhibiting Raptor and Tuberous Sclerosis Complex 2 (TSC2), 

AMPK1 directly inhibits the mTORC1 regulators Raptor and TSC2 (Egan et al. 2011; Kim et 

al. 2011).  This guarantees that autophagy is activated in a coordinated manner. 

4.1.2. Growth Factor and Nutrient Stress Kinase Inhibitors 

The collection of mTOR to the lysosome surface enhances mTOR activation via 

phosphorylation by the help of lysosome-bound RHEB.  The lysosome which is being acidified 

by the vacuolar ATPase, acts as a scaffold for the RAG GTPase docking Regulator protein 

complex. The Raptor component of mTORC1 is recruited to lysosomes when amino acids are 

present (Bar-Peled et al. 2012; Sancak et al. 2010). RHEB completely activates mTORC1 once 

it reaches the lysosomal surface (Carroll et al. 2016). RHEB, the major activator of mTORC1, 

is inhibited by tuberous sclerosis complex 1 (TSC1/2). Growth factor (GF) transmission via 

the PI3K pathway regulates TSC2, which either activates or inhibits RHEB (Inoki et al. 2006). 
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Because RAG GTPases and RHEB reside in the lysosomes, the lysosomal surface is a crucial 

signaling pathway where global cellular health data is analyzed and transformed to mTORC1 

activity condition Unlike AMPK-induced ULK1 phosphorylation, which leads to autophagy, 

mTORC1-induced ULK1 phosphorylation suppresses the VPS34 complex's downstream 

activity (Egan et al. 2011; Hosokawa et al. 1981). Inhibiting mTORC1 signaling by removing 

nutrients, using allosteric inhibitors (e.g. rapamycin derivatives), direct mTORC1 kinase 

inhibitors, AKT inhibitors, or PI3K inhibitors. 

4.2. Autophagy Transcriptional Regulators Activated by Cancer Therapies 

4.2.1. PI3K/mTOR Inhibitors and TFE Family  

mTORC1 regulates autophagy transcriptionally and post-transcriptionally through changing 

the subcellular location of TFEB. Activated mTORC1 phosphorylates the TFEB/TFE3/MITF 

transcription factor family, which is then isolated in the cytoplasm. When the PI3K pathway or 

mTOR inhibitors inactivate mTORC1, TFE family members reach the nucleus and induce 

transcription of the CLEAR network of lysosome and autophagy genes. (Puertollano et al. 

2018). 

4.2.2. DNA-Damaging Agents and Activation of the p53 gene 

The defender of the genome p53 induces autophagy by transcribing p53 targets (Kenzelmann 

Broz et al. 2013). The DNA damage response checkpoint proteins crucially regulate p53 

directly and indirectly via mTORC1 and AMPK1 signaling. 

4.2.3. BRD4 and Epigenetic Modulators 

Recent research suggests that the chromatin reader protein BRD4 regulates lysosomal activity. 

(Sakamaki et al. 2017)The discovery of bromodomain inhibitors for cancer therapy makes this 
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important particularly for tumor therapy. Prosurvival autophagy is enhanced by the inhibition 

of BRD4, which may be useful in the clinic. 

4.2.4. The ER Stress Response/Targeted Therapies 

Previously, it has been demonstrated that ER stress induces autophagy. (Yorimitsu et al. 2006). 

For example, MYC expression triggers an ER stress response via PERK, which controls LC3 

and promotes autophagic flux. ATG5 and ATG7 are preferentially translated due to PERK-

dependent phosphorylation of eIF2 (Rzymski et al. 2010). 1α–dependent signaling, c-Jun N-

terminal kinase (JNK) in inositol-dependent enzyme regulates autophagy via transcriptional 

activation, phosphorylation of B-cell lymphoma 2 (BCL2), and translocation of BECN1–BCL2 

interaction.(Wei et al. 2008). ATF6 increases the production of death associated protein kinase 

1, which directly regulates autophagy at various stages (Ojha et al. 2017). The ER stress 

response has recently been recognized as a link between mitogenic signaling and autophagy. 

Combining BRAF and MEK inhibition in BRAF-mutant melanoma, stimulates the 

conventional ER stress response, which induces autophagy. (Ma et al. 2014). In BRAF-mutant 

melanoma, the molecular mechanism of resistance linking MAPK pathway suppression to 

autophagy was recently described. MAPK inhibitors promote ER translocation via Sec61 

translocase. Although the mechanism of ERK rephosphorylation remains unknown, it shows 

common resistance to MAPK inhibition. ER translocation is required for ERK reactivation. 

ERK reactivation also phosphorylates and stabilizes ATF4, which encodes many autophagy 

genes. To summarize, ER stress response programs link autophagy and ER reactivation to 

MAPK inhibitor resistance. (Ojha et al. 2019). 
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Chapter 05 

Therapeutic Strategies 

5.1. Stimulation of Autophagy in Cancer Treatment 

ACD induction is an intriguing way to circumvent apoptosis resistance and leverage caspase 

independent cell death for cancer treatment. Compounds that work by inducing autophagy are 

detailed in the following sections. 

Table 1: Compounds that operate by promoting autophagy 

Mechanism of Action Name 

mTOR Inhibitors Rapacmycin 

Temsirolimus (CCI779) 

Everolimus (RAD001) 

AZD8055 

BH3 Mimetics (-)-Gossypol(AT-101)  

Obatoclax (GX15-070) 

ABT-737 
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Cannabinoids 9-Tetrahydrocannabinol 

JWH-015 

Histone Deacetylase Inhibitors MHY2256 

Suberoylanilide hydroxamic acid (SAHA, Vorinostat)  

Natural Products Betulinic acid 

Curcumin 

Tocotrienol 

Resveratrol  

Others APO866 

Lapatinib  

5.1.1. mTOR Inhibitors 

mTOR regulates survival, cell growth, metabolism, and immunity. mTOR controls the cell 

cycle, autophagy and apoptosis. (Noda and Ohsumi 1998). Infection-fighting, anti-tumor, and 

immunosuppressive activities of rapamycin (sirolimus) from Streptomyces hygroscopicus 

(Sehgal, Baker, and Vézina 1975; Vézina and Kudelski 1975). Rapamycin and related rapalogs 

are allosteric selective mTORC1 inhibitors that alter downstream targets like autophagy 

activation (Benjamin et al. 2011; Pattingre et al. 2008). However, mTORC2 and other 
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compensatory signaling pathways are not blocked, the effectiveness of anti-tumor drugs is 

reduced. (Chiarini et al. 2019) 

In mouse osteosarcoma, sarcoma (Shi et al. 2019), lung cancer, and neuroblastoma, rapamycin 

has been found to suppress proliferation and induce ACD. (Lin et al. 2018; Liu et al. 2013; Z. 

G. Xie, Xie, and Dong 2013) Temisirolimus (CCI779), on the other hand, has been shown to 

suppress tumor development in vitro in adenoid cystic carcinoma while also activating 

autophagy as a pro-survival strategy in renal-cell carcinoma (Liu et al. 2014; Singla and 

Bhattacharyya 2017). Furthermore, everolimus (or RAD001), the oral rapalog derivative 

induces cell cycle arrest in breast cancer cells via autophagy-mediated cyclin D1 degradation 

(Chen et al. 2019), but enhances autophagy in aromatase inhibitor-resistant breast cancer cells 

(Lui et al. 2016). 

Other forms of mTOR inhibitors compete with ATP, preventing phosphorylation of its target 

proteins and thereby inhibiting mTOR more effectively. (Mao et al. 2017) AZD8055, for 

example, inhibits both mTOR complexes and has been demonstrated to reduce tumor 

development  (Chresta et al. 2010) and induce ACD in hepatocellular carcinoma cell lines (Hu 

et al. 2014), but it can also inhibit the growth of tumor via inducing cell cycle arrest and 

apoptosis.(Chen et al. 2018) .These results suggest that mTOR stimulants may promote cell 

death in a tumor context-dependent way via multiple mechanisms, making them appropriate in 

order to tackle cancerous cells resistance by a combination therapy(Carew, Kelly, and 

Nawrocki 2011). 
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Figure 1: Targeting autophagy in cancer  

5.1.2. BH3 Mimetics 

BH3 (Bcl-2 homology 3) mimetics are a class of tiny compounds that replicate the BH3-only 

protein interactions.(Merino et al. 2018), which are a subset of the Bcl-2 family's pro-apoptotic 

proteins (Opydo-Chanek, Gonzalo, and Marzo 2017). BH3 mimetics, In general, by liberating 

Beclin-1 from Bcl-XL and Bcl2 inhibition, it may enhance autophagy (Koehler et al. 2015a; 

Opydo-Chanek et al. 2017). Gossypol is a cotton-derived BH3 mimic with strong affinity for 

Bcl-XL, Bcl-2, Bcl-w, and Mcl-1 (Opydo-Chanek et al. 2017). Its orally available enantiomeric 

form (-)-gossypol (AT-101) has been related to apoptosis in squamous cell carcinoma of the 

head and neck (Voss et al. 2010), colon cancer cells and malignant mesothelioma (Benvenuto 

et al. 2017, 2018; Lan et al. 2015). Another BH3 mimic, obatoclax (GX15-070), has 

demonstrated autophagic-mediated necroptosis in oral squamous cell cancer, acute 
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lymphoblastic leukemia cells and rhabdomyosarcoma cells (Basit, Cristofanon, and Fulda 

2013; Bonapace et al. 2010; Sulkshane et al. 2016).  Furthermore, without the participation of 

Beclin-1, obatoclax induced autophagy in adenoid cystic carcinoma (Liang et al. 2015) and 

inhibited autophagy in colorectal cancer cells. (Koehler et al. 2015b). Finally, ABT-737 was 

demonstrated to be efficient in vitro against hepatocellular carcinoma cells via autophagy 

mediated by Beclin-1. (Yao et al. 2017) 

5.1.3 Cannabinoids 

There are around 60 lipophilic cannabinoid ligands for distinct cell-surface cannabinoid 

receptors (CB1 and 2) present in the cannabis sativa plant, with THC being the most 

psychotropic (Śledziński et al. 2018). Cannabinoids has anticancer qualities due to their 

association with autophagy, however, depending on the cell type and cannabinoid used, they 

can also be cytoprotective (Costa et al. 2016). In melanoma cells, THC has been discovered to 

trigger non-canonical autophagy-mediated demise (Armstrong et al. 2015). and ACD present 

in glioma cells by autolysosome permeabilization, mTORC1 inhibition, apoptosis and 

cathepsin release. (Hernández-Tiedra et al. 2016; Salazar et al. 2009). JWH-015 is a CB2 

receptor-selective synthetic cannabinoid agonist that was discovered to reduce tumor 

development in hepatocellular carcinoma cells via an autophagy-dependent mechanism and 

AMPK activation blocks the Akt/mTORC1 pathway in both in vitro and in vivo scenarios 

(Vara et al. 2011) 

5.1.4. Histone Deacetylase Inhibitors (HDACIs) 

The HDAC family have been investigated as anticancer agents due to their ability to influence 

gene expression (Newbold et al. 2016) which are consists of four classes (I-IV) of 

transcriptional repressors that affect chromatin structure (Mrakovcic, Kleinheinz, and Fröhlich 
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2017). Although it has been proposed that apoptosis occurs, as the primary mechanism for 

HDACI-induced cancer cell death, autophagy promotion has also been suggested, with the 

inactivation of  PI3K/Akt/mTOR signaling being the most well-studied (Mrakovcic et al. 

2018). For treating cutaneous T-cell lymphoma was suberoylanilide hydroxamic acid (SAHA, 

Vorinostat), a pan HDAC inhibitor, was the first HDACI approved by the FDA(Mann et al. 

2007) and has been demonstrated to decrease tumor development in breast cancer cells in vitro 

via autophagy induction via Cathepsin B activation.(Han et al. 2017) Finally, Including both 

in vivo and in vitro research has established that MHY2256 causes death in endometrial cancer 

cells, ACD and cell cycle arrest. (De et al. 2018) 

5.1.5. Natural Products 

Based on autophagy stimulation, some natural substances have showed interesting anticancer 

properties. Betulinic acid is a triterpenoid with a pentacyclic structure tha found in a variety of 

plants that has been demonstrated to promote Multiple myeloma cells with high Bcl-2 

expression have ACD. This derivative inhibits mitochondrial-mediated apoptosis while also 

increasing ACD by phosphorylating Beclin-1. (Zhou et al. 2017) Resveratrol, a polyphenol 

molecule found in plants, has been demonstrated to disrupt the Wnt/b-catenin signaling 

pathway, which inhibits cell growth in breast cancer stem-like cells.(Fu et al. 2014) Many 

malignancies have abnormally activated this system. Since it activates essential genes involved 

in tissue development and homeostasis, it has been linked to the autophagy process. Tocotrienol 

is one of four isomers of vitamin E that has been found to have lethal effects on prostate cancer 

cells in vitro by activating autophagy via ER stress.(Fontana et al. 2019) Curcumin, a 

significant component of Curcuma longa (turmeric), promotes autophagy, which has been 

demonstrated to have a dual effect in cell death and protection depending on the duration of 

therapy and concentration employed.(Deng et al. 2018) 
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5.2. Inhibition of Autophagy for the Treatment of Cancer 

Some malignancies use autophagy to defend themselves, thus blocking it may help cure them. 

The table below lists various autophagy inhibitors that block autophagy at various stages 

Table 2: Compounds that operate by inhibiting autophagy 

Mechanism of Action Name 

ULK Inhibitors Compound 6 

MRT68921 

MRT67307 

SBI-0206965 

ULK-100 

ULK-101 
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Pan PI3k Inhibitors 3MA 

3MA derivatives 

Wortmannin 

LY294002 

SF1126 

PI103 

KU55933 

Gö6976 

GSK1059615 

PI3KC3 Inhibitors SAR405 

Spautin-1 

VPS34-IN1 

Compound 31 

PIK-III 
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ATG Inhibitors LV320 

S130 

FMK-9a 

UAMC-2526 

Tioconazol 

NSC185058 

ATG7 inhibitor, miR154 

ATG7 inhibitor 

Autophagy Formation Verteporfin 

  

  

  

  

  

  

  

Lysosomotropic Agents Chloroquine 

Hydroxychloroquine 

Lys05 

DQ661 

VATG-027 

Mefloquine 

Ganoderma lucidum polysaccharide (GLP) 

Vacuolar H+ ATPase Inhibitors Bafilomycin A1 
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Lysosome 

Inhibitors 

Ionophores Tambjamines 

Monensin 

Squaramides 

Inhibition Autophagosome-

Lysosome Fusion 

Desmethylclomipramine 

Vacuolin-1 

WX8 family 

Acid Protease Inhibitors Pepstatin A 

E64d 

Leupeptin 

  

5.2.1. ULK kinase Inhibitors 

ULKs are a kind of protein kinase that forms complexes with other regulator units. Where 

ULK1 is needed for the initiation of autophagy, the involvement of ULK2 in autophagy seems 

to be dependent on cell type. (Lee et Tournier) The similarities of ULK1 and ULK2 inhibitors 

causes ULK1 to inhibit ULK2. (Chaikuad et al. 2019) ULK1 upregulation has been linked to 

poor susceptibility and treatment resistance in numerous malignancies. (Jiang et al. 2011; Yun 

et al. 2015; Zou et al. 2015). Inhibition of ULK1 reduces tumor development and induces 

apoptosis. (Dower et al. 2018; Tang et al. 2017). This led to the identification of inhibitors of 

kinase activity as compound 6, MRT67307, and MRT68921. (Lazarus, Novotny, and Shokat 
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2015; Petherick et al. 2015; Skah et al. 2018) Also, SBI-0206965 inhibits autophagy and 

increases apoptosis in the cell lines of neuroblastoma , NSCLC cells and clear cell renal cells 

of carcinoma. (Dower et al. 2018b; Egan et al. 2017b). It also inhibits AMPK, a kinase 

containing serine/threonine that triggers the ULK complex. (Dite et al. 2018) In recent years, 

further ULK inhibitors (ULK100 and ULk101) have been discovered, supporting the 

hypothesis that inhibiting ULK1 may be a suitable approach for cancer treatment.(Martin et al. 

2018) 

5.2.2. Inhibitors of Pan PI3K  

The PI3K (The phosphoinositide 3-kinases') family is divided into three groups with differing 

substrate preferences. The role of Class II autophagy is still unknown.  By the help of PI3K/Akt 

pathway, Class I activates mTORC1, while class III (VPS34) activates autophagy. (Lindmo 

and Stenmark, 2006) PI3K pathways are associated with cancer as it enhance proliferation of 

cell, migration, growth of blood vessels and survival.. So, these make better therapeutic targets 

.(Liu et al. 2009) Inhibiting autophagy is not the main impact of most PI3K inhibitors since 

they influence other cellular processes besides autophagy. Given their therapeutic value, we 

will quickly detail a few in the following. 

3MA (3-Methyladenine), one of the earliest autophagy inhibitors, has two impacts on 

autophagy. (Seglen and Gordon 1982). It hinders autophagy by inhibiting PI3KC3 under 

starving conditions. In the presence of nutrients, it inhibits PI3KC1 and thus stimulates 

autophagy. (Wu et al. 2010). Moreover, reports say that it also lowers drug efflux transporter 

expression, bypassing taxol and doxorubicin resistance. (Zou et al. 2014)3MA works well at 

high doses but has solubility issues. Derivatives have been synthesized to address this 

constraint. (Wu et al. 2013) Wortmannin is a fungus metabolite that permanently binds PI3Ks 

in its site of catalytic action. (Thelen, Wymann, and Langen 1994). LY294002 is a poorly 
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soluble, short-half-life synthetic small molecule. Aggregating tissues of integrin-expression 

with SF1126 increases the solubility of LY294002 and drug kinetics, enhancing tumor site 

aggregation., and displaying anticancer and antiangiogenic activities in mice models. (Garlich 

et al. 2008) PI103, KU55933, Gö6976, and GSK1059615 are non-selective Pan PI3K 

inhibitors.(Farkas, Daugaard, and Jäättelä 2011; Ronan et al. 2014; Xie et al. 2017) 

5.2.3. PI3KC3 Enzyme Containing VPS34 Complex Inhibitors  

VPS34 transforms PI to PI3P. VPS34 is, in fact, a multi-subunit complex, including VPS15 

(p150), ATG14, and Beclin-1, that are required for its activation.  Inhibition of VPS34 activity 

can hinder autophagy. SAR405 is a (2S)-tetrahydropyrimido-pyrimidinone drug that hinders 

kinase activity via increased competition of ATP site. There are 200 protein kinases and 15 

lipid kinases that favours PI3KC3 over the classes I and II. A lack of mTOR or starvation limits 

autophagy via SAR405. (Ronan et al. 2014).  A bipyrimidinamine, VPS34-IN1 inhibits 

PI3KC3 out of over 300 tested protein kinases. (Bago et al. 2014) This hydrophobic pocket to 

which PIK-III, a bisaminopyrimidine, is bound is present only in VPS34 and is not seen in 

other VPS34-related kinases.(Dowdle et al. 2014) Compound 31 is a protein and lipid kinase 

inhibitor.(Pasquier et al. 2015) These four inhibitors target PI3KC3, although VPS34 can form 

complexes with other subunits, affecting its localization and activity alongside vesicle tracking. 

Such as SAR405, which inhibits both VPS34 complexes resulting an effect on endosomal 

tracking (Ronan et al. 2014). It may therefore influence cellular secretion. Spautin-1 indirectly 

reduces VPS34 activity by proteosomal decreasing of VPS34 complex forming proteins, 

deubiquitination of Beclin-1 is associated with both the USP10 and USP13.(Liu et al. 2011) 
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5.2.4. ATG inhibitors 

VPS34 generating membrane PI3P binds ATG proteins and other components, aiding 

phagophore elongation. Inhibiting the development of the complexes inhibits autophagy. 

ATG7 is involved in ATG12-ATG5 complex formation and PE-LC3 and GABARAP 

conjugation. It has recently been discovered that ATG7 inhibitors (WO2018/089786), such as 

miR-154, can suppress the advancement of blade cancer that target ATG7 gene through micro 

RNAs (Zhang et al. 2019). To generate and detect autophagosomes, ATG4B cleaves LC3 and 

allows it to conjugate with PE. It is also essential for the recycling of LC3 and the fusion of 

autophagosome-lysosome. As a result, several ATG4B potential inhibitors have been evaluated 

in recent years as it can suppress autophagy more precisely. An osteosarcoma subcutaneous 

mouse model shows NSC185058 inhibits autophagy and autophagosome volume at the site of 

activation of ATG4B while suppressing tumor development. (Akin et al. 2014)Antifungal drug, 

tioconazole reduces cell viability and exposes the tumor cells to doxorubicin in a xenograft 

mouse model (Liu et al. 2018). There are also many ATG4B inhibitors that include a plasma-

stable benzotropolone derivative, UAMC-2526 and a styrylquinoline, LV-320. These inhibits 

cell lines autophagy and cell proliferation in vivo. S130 and FMK-9a reduced LC3-PE 

delipidation but does not inhibit the formation of autophagosome. Some studies also look at 

indicators that can predict inhibitor efficacy.(Tran et al. 2013) For example, ATG4B inhibition 

only works in Her-2 positive cells.(Bortnik et al. 2016) 

5.2.5. Inhibition of Autophagosome Formation 

Verteporfin is a clinically utilized benzoporphyrin derivative. It suppresses autophagosome 

formation produced by depriving glucose and serum but does not inhibit mTOR inhibition 

(Donohue et al. 2011) Verteporfin may function by inhibiting p62 oligomerization, a protein 

needed for autophagosome sequestration of ubiquitinated targets. In addition to autophagy, 
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verteporfin suppresses Hippo pathway transcriptional co-activators, which has been linked to 

cell proliferation and stem cell activity. (Ota and Sasaki 2008) Verteporfin suppresses cell 

proliferation, motility, and angiogenesis while also inducing apoptosis. It suppresses autophagy 

in vivo but has no effect on tumor growth when used alone. It does, however, make tumor cells 

more sensitive to cytotoxic treatments. (Donohue et al. 2013)                       

5.2.6. Lysosome Inhibitors 

Autophagosomes merge with lysosomes, destroying their contents. At this point, lysosomal 

inhibitors are used to block autophagy. 

The drugs hydroxychloroquine (HCQ) and chloroquine (CQ) are used to treat malaria and, 

more recently, cancer. CQ/HCQ is a weak base that may cross cell membranes and infiltrate 

organelles like lysosomes, where high H+ concentrations promote protonation and elevate 

lysosomal pH. Protonated CQ/HCQ accumulates in lysosomes, increasing their bulk and 

decreasing enzyme activity. (Pérez-Hernández et al. 2019a) 

Only CQ and HCQ are approved for clinical usage. Short-term treatment via CQ/HCQ therapy 

is considered safe, long-term HCQ medication has been linked to retinopathy in roughly 7.5 

percent of patients as well as cardiac toxicity. The outbreak varies depending on the dosage 

regimen and treatment duration. This toxicity restriction, along with variations in clinical 

outcomes, has prompted the development of novel and more effective autophagy inhibitors 

(Bristol et al. 2013a). As a result of the development of CQ analogs with enhanced autophagy 

inhibition, Lys05 aggregates more readily in acidic organelles like lysosomes than that of HCQ. 

Lysosomal degradation and autophagy is inhibited by a dimeric quinacrine, DQ661, however, 

it also inhibits mTORC1 signaling by targeting palmitoyl-protein thioesterase-1. DQ661 has 

been proven to have effects in tumor animal models alone, and it has also overcome 
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gemcitabine resistance. (Rebecca et al. 2017)VATG-027 is another antimalaria drug that 

inhibits autophagy and has antitumoral effects. Mefloquine, on the other hand, accumulates in 

lysosomes, interrupting autophagy, inducing the apoptosis, and blocking MDR1, making it 

potent in tumor cells that are multidrug-resistant. Mefloquine creates sensitivity to chronic 

myeloid leukemia CML (Chronic Myeloid Leukemia) cells to TK inhibitors, favoring 

progenitor tumor cells over normal cells. (Lam Yi et al. 2019) 

Ganoderma Lucidum Polysaccharide (GLP), is a polysaccharide having anticancer properties. 

CQ, along with its derivatives are not the only anti-autophagy drugs targeting lysosomes. GLP 

slows tumor development in mice and promotes cell death in cancer cells. (Wu et al. 2018) By 

lowering lysosome acidification, GLP reduces autophagy flux, which is thought to be the 

mechanism of inducing apoptosis. BafA (Bafilomycin A) blocks H+ entry into lysosomes, 

vacuoles and vesicles, preventing acidification. BafA also hinders autophagosome-lysosome 

fusion by altering the Ca2+ gradients associated.(Mauvezin and Neufeld 2015) 

Ionophores can alter lysosomal pH and hence autophagy. The analogues of tambjamine, being 

ionophores that are anion selective, enhance mitochondrial expansion and prevent autophagy 

in cancer stem cells and lung cancer cells. The cation ionophores monensin, nigericin, and 

lasalocid are selective for lysosomes. Synthetic chloride transporters that also cause 

apoptosis.(Rodilla et al. 2017) 

The WX8-family, on the other hand, consists of five chemical analogs that prevent lysosomes 

from fusing with autophagosomes, lysosomes from fissioning, and molecules from being 

sequestered in lysosomes keeping their pH unchanged. These compounds bind to PIKFYVE, 

a phosphoinositide kinase, and inhibit cancer growth in autophagic cells.(Sharma et al. 2019) 

However, Vacuolin-1 stimulates RAB5A, inhibiting both autophagosome-lysosome fusion and 

endosome-lysosome fusion, resulting in a deficiency of degrading endosome-lysosome. 
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 Inhibition of autophagic flow and lysosomal breakdown by desmethylclomipramine (DCMI), 

which is a metabolite of Clomipramine (CM), an FDA-approved prodrug for mental diseases, 

makes the malignant cells more sensitive to the treatment of cancer cells. (Rossi et al. 2009). 

CSCs in the lungs are also affected by DCMI. Protease inhibitors like Pepstatin A (aspartyl 

proteases), E64D (cysteine proteases) and Leupeptin [155] can prevent lysosomal degradation. 

Nanoparticles, on the other hand, are commonly internalized by endocytosis, causing lysosome 

malfunction. (Stern, Adiseshaiah, and Crist 2012) 

 Chapter 06 

CSCs And Autophagy in The Treatment of Anticancer 

It's critical to look at the interaction between CSCs and autophagy because both play a vital 

role in resistance to anticancer therapy. Researchers discovered that the fusion of gemcitabine 

and autophagy inhibitors such as chloroquine made pancreatic CSCs more susceptible to 

gemcitabine. (Yang et al. 2015). Autophagy inhibition may interfere with the maintenance of 

CSCs. Because it could block autophagic flow, Wen Yue found salinomycin to be 100 times 

more productive than pacilitaxel at reducing breast CSCs. (Jiang et al. 2018). Researchers want 

to reduce the CD44+/CD24/low CSC population by deregulating DNA methyltransferase 1 

(DNMT1) and Janus-activated kinase 2 (Jak2). Autophagy boosted PDT tolerance in CSCs, 

leading to colon cancer relapse and growth. (Wei et al. 2014). Autophagy can improve the 

efficacy of chemotherapy or any other anticancer therapies. It could be an aim for CSCs in 

terms of changing antitumor medication resistance. (Lei et al. 2017b) 
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Figure 2: CSCs behaviors in cancer therapy 
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Chapter 07 

Clinical Trials on Different Types of Cancers  

Table 3: Ongoing Clinical Trials and Results 

Compounds Treatment Strategies Diseases  

Rapamycin Autophagy induces targeting 

mTOR 

MCF-7 Breast Cancer, B16 

melanoma, Panic-1 pancreatic 

carcinoma 

Metformin Stimulates autophagy through 

AMPK activation 

Prostate cancer cells, myeloma 

Lithium Chloride Induce inhibiting inositol mono 

phosphatase 

Colorectal cancer 

Bafilomycin A1 Promotes the binding of Beclin-1 

to BCL-2, which inhibits 

autophagy 

Gastric cancer cells 

HCQ Inhibit by suppressing the fusion 

process 

B-cell chronic lymphocytic 

HCQ + 

Temozolomide + 

Radiation 

Inhibit by suppressing the fusion 

process combination help to kill 

more cell. 

Glioblastoma multiforme 
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Chapter 08 

Alternatives To Autophagy Inhibition  

Since mTOR is an important negative regulatory axis for autophagy, several drugs that directly 

block it (temsirolimus, everolimus, rapamycin) have been used to activate it. By inhibiting 

signals essential for cell growth and proliferation, mTOR inhibition simulates cellular famine 

(Jung et al. 2010). Reports shown that the PI3K/AKT/mTOR system helps melanomas 

proliferate (Jung et al. 2010; X. Xie, White, and Mehnert 2013). The important autophagy gene 

(ATG7) is required for melanoma cell viability and its loss causes cell death. However, 

temsirolimus inhibiting mTOR promotes autophagy, which promotes tumor survival, limiting 

their efficacy. Combining HCQ with temsirolimus causes apoptosis in melanoma cells. Apoptic 

cell death followed by inhibition of melanoma development was induced by temsirolimus and 

HCQ in spheroid preparations and tumor xenografts. ( X. Xie et al. 2013)  According to these 

findings, inhibiting autophagy and mTOR pathways increases apoptosis and may introduce a 

different therapeutic approach for melanoma. Other techniques of triggering autophagy exist. 

In ER(–) and ER(+) orthotopic xenograft models and breast cancer cell lines, siRNA reduction 

of Bcl-2 expression causes autophagic cell death. (Akar et al. 2008; Tekedereli et al. 2013). 

PKC delta and TTG inhibition can increase apoptosis in pancreatic cancer cells. by inhibiting 

autophagy.  Many cancer models have used JNK, MAPK, NF-kB, P38 or ERK (autophagy 

regulator) suppression or stimulation to alter autophagy responses to radiation therapy and 

chemo therapy. Therefore, studies show that there are diverse techniques for autophagy 

modulation that could improve therapy in some malignancies and that they could be used as 

co-therapy. (Ozpolat and Benbrook 2015) 
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Chapter 09 

Discussion and Finding 

Autophagy's two important concerns, that is, pro-survival or pro-death role in cancer is vital to 

determine, as in the stage of tumor growth at which autophagy should be addressed. 

Determining whether or not autophagy modulators are anti-apoptotic, pro-apoptotic, or 

protumorigenic will be critical in selecting them for cancer treatment. A gold standard 

biomarker, ideally derived from in-patient serum or plasma samples, will be a watershed 

moment in autophagy-cancer research, paving the way for more effective therapeutic 

interventions. Together, therapeutic manipulations of autophagy at various phases, via various 

receptors or signaling modulators, will be vital for the development of precision medicine for 

various cancer patients. (Ishaq et al. 2020). Oncogenic and non-oncogenic Ras-driven 

malignancies will be screened at large-scale for improved basal autophagy. These malignancies 

will expose a group of tumors that are selectively responsive to the autophagy suppression as 

a strategy to get optimum therapeutic effect. To attain this aim, technique development will be 

required due to the current methods' poor effectiveness in screening human tumor samples for 

basal autophagy. Autophagy inhibitor researchers face several challenges, including 

developing preclinical models, identifying new targets, and developing new inhibitors.In 

addition, clinical studies are now testing autophagy suppression as a monotherapy or in 

conjunction with chemotherapy or targeted treatment. (Mancias and Kimmelman 2011)  
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Chapter 10 

Conclusion 

Addressing autophagy for treating cancer appears to be a potential therapeutic technique, yet 

considerable hurdles have to be solved in order to enhance clinical results. Because the outcome 

of modifying autophagy is highly dependent on the tumor environment, it is critical to carefully 

establish which patients will benefit from which therapy before beginning any medical  

strategies.It's important to learn more about how autophagy influences cancer growth, find 

biomarkers that can help doctors figure out which patients will respond to a specific autophagy-

mimicking drug, and find clear and better suited pharmacodynamic markers that can help 

doctors figure out how patients are responding. In addition, if we do better clinical studies and 

much more detailed cellular and molecular analysis to figure out why autophagy has different 

effects on cancer in different situations, we should be able to make better decisions about when 

and how to modify autophagy throughout cancer treatment. A better way to deal with this 

problem is to learn about how autophagy changes in cancer and afterwards apply this 

information in well-designed clinical trials, rather than just not dealing with the problem at all; 

this is what we should do instead. 
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