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Abstract 

 

Tau protein is one of the keystones in the diagnosis of Alzheimer’s disease. The modern 

detection techniques have come up to visualize, track and assess tau pathology and have further 

contributed with information about tau deposition in human brain. The commercially available 

techniques include PET scan, digitalized enzyme-linked immunosorbent assay, Biolayer 

interferometry. However, each of the techniques has its own limitations such as tracers binding 

to off target, higher chances of cross reaction. This report has detailed the information about the 

active field of ongoing research methods to detect tau protein such as Surface plasmon 

resonance, Quartz crystal microbalance, Surface-enhanced Raman scattering based sandwich 

assay along with their selectivity. Hence, all of these techniques can be used to detect the 

inhibitors that target tau protein deposits or phosphorylates. 

 

Keywords: Alzheimer’s disease; Tau protein; Surface plasmon resonance; enzyme-linked 

immunosorbent assay; Quartz crystal microbalance. 
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Chapter1: Introduction 
 

1.1 Alzheimer Disease 

 

Alzheimer's disease (AD) is the most common cause of dementia, accounting for up to 80% of 

all diagnoses. Dementia is a psychiatric illness in which two or more cognitive domains, such as 

memory, speech, executive and visuospatial control, personality, and cognition, continue to 

deteriorate which impairs one's ability to conduct instrumental functions and/or accomplish the 

most fundamental duties of daily life (Weller & Budson, 2018).  According to recent study, 

Dementia affects 40 million individuals around the world, and the number is expected to rise 

every 20 years until 2050 (Yiannopoulou & Papageorgiou, 2020). As dementia is most 

commonly affects elderly people of around 60 years, since dementia mostly affects people over 

the age of 60, the growing expansion of lifespan has resulted in a rapidly increasing number of 

patients with dementia, primarily Alzheimer's disease, prompting an increase in research 

focusing on the disease's treatment. Despite all of the hard effort that went into science, there are 

currently no successful treatment options for the disease (Yiannopoulou & Papageorgiou, 2020). 

According to a statistics from the Established Populations for Epidemiologic Study of the 

Elderly, approximately 491,000 persons aged 65 and up in the United States are expected to have 

Alzheimer's dementia by 2020. 

The Framingham Heart Study data were used to calculate the lifetime risk of Alzheimer's 

dementia based on gender and age. In Figure 1, it shows that the study proves that life risk for 

people at age 45 was estimated around 20% for women and 10% for men for Alzheimer’s 

dementia (AD). However, AD  was comparatively greater among both the gender at age 65 

(Hebert et al., 2013). 
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Figure 1: Approximated life risk of AD at age 45 and 65 (Vermunt et al., 2019) 

 

1.1.1 Disease progression:  

In the Alzheimer’s disease continuum, it consists of three wide stages: Preclinical AD, mild 

cognitive impairment due to AD and dementia due to AD (described in figure 2). The dementia 

stage is further divided into mild, moderate and severe stages, which contemplate the extent to 

which the indications can influence the individual’s daily activities. Moreover, the amount of 

time each individual go through each stage in continuum depends upon age, genetics, gender and 

many other factors (Vermunt et al., 2019). 
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Figure 2: Alzheimer's disease continuum (Vermunt et al., 2019). 

 

1.1.2 Prevalence:  

The prevalence of AD indicates the quantity and percentage of individuals in a community 

suffering from Alzheimer’s dementia at any given period. Millions of Americans are suffering 

from Alzheimer’s or other brain disorders. In the United States, the total number of people living 

with Alzheimer's disease is increasing as the country's population of people aged 65 pursues to 

grow. Therefore, these will elevate quickly in the future when the population of America 

happens to expand from 56 million in 2020 to 88 million by 2050. 

In 2020, approximate populations 5.8 million Americans age 65 and older are 

with Alzheimer’s dementia. 80% are of age 75 or older as shown in figure 3 

Statistics shows that out of the total U.S. population, the proportion of people living with 

Alzheimer’s dementia is directly proportional to the age 

 10% of  age 65 and older 

 3% of people age 65-74,  

 17% of people age 75-84 
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 32% of people age 85 and older are living with Alzheimer’s dementia (Hebert et al., 

2013). 

 

 

Figure 3: Number and age of people 65 or older with Alzheimer's dementia in 2020 (Hebert et al., 2013). 

 

1.2 Tau protein 

 

Tau is a long chain protein which is highly soluble and is essentially found in neuronal cells 

(Weingarten et al., 1975).  Its primary role is to grip the microtubules (MT) tight and stable, ease 

neuronal transportation and to preserve the cellular consistency and stability. There are various 

types of tau post translational changes such as phosphorylation through protein kinases, are one 

the reason for tau aggregation and causing a distance between the microtubules, which leads to 

cell death and cytotoxicity (A. D. Alonso et al., 2010). However, the tau aggregates can 

proliferate from one cell to another resulting to loss of structure or function of neuron (neuro 

degeneration) (De Calignon et al., 2012).  Hence, tau protein is a useful biomarker for disease 

identification, diagnosis and therapeutic development (Ziu et al., 2020). 



5 
 

 

Figure 4: Tubulin binding domains (blue) used to hold microtubule with tau. Interaction of tau molecule with 

microtubule and function of axonal transport can be controlled by phosphorylation (pink) (Barbier et al., 2019). 

 

1.3 Role of Tau protein in AD  

 

The function of tau protein is to hold tight and stabilize microtubules (MT), decrease the number 

of quick changes like microtubule disintegration. Tau holds tubulin through microtubule-binding 

domains with a single tau molecule conjugated to several tubulin dimers. Lack of Microtubule or 

faulty microtubule assembly are the common cause of AD (Kent et al., 2020). 
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Figure 5: (A) Tau eases microtubule stabilization within the cell.  (B) Tau's role is depleted  in Alzheimer's patients 

(Kent et al., 2020). 

 

1.4 Detection of Tau Protein 

 

Tau protein is one of the biomarker for AD. There are various prospective detection methods that 

are used for tau protein. These methods are present in the specialized hospitals to diagnose, scan 

the patient’s brain. However, there are many other potential methods found in the ongoing field 

of research in order to deplete the drawbacks of the present methodologies. Therefore, in this 

article we are going to focus on some prospective detection methods of tau protein. 

 

1.5 Purpose of the study 

 

Alzheimer’s disease is a neurodegenerative disease. Tau protein plays vital role in AD. In normal 

condition, tau protein is used to stabilize the microtubule, ease neuronal transport and maintain 
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cell integrity. Lack of Microtubule or faulty microtubule assembly are the common cause of AD 

(Kent et al., 2020). As tau protein is a biomarker of AD, therefore it is necessary to study and 

find out the efficient and potential detection methods for this protein. 

 

1.6 Aim of the study 

 

The aim of the study is to know the importance of tau protein in AD along with the current 

detection methods for tau protein and to know about the ongoing research programs going on for 

further potential detection methods of tau protein. 
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Chapter 2: Tau Protein 
 

2.1 Tau Protein 

 

The tau gene has 16 exons and is centered over 100kb on the heavy chain of chromosome 17 at 

band position 17q21. Exon1 undergoes transcription but not translation as it is a component of 

the promoter. Fundamental exons include exon 1, 4, 5, 7, 9, 11, 12, and 13. In the brain of elderly 

person, exon 2,3 and 10 are alternately braided and manifested in which exon 2 can emerge 

independently whereas exon 3 is dependent on exon 2. Alternate intertwining of exon 2, 3 and 10 

in the central nervous system leads to the emergence of the six tau isoforms that are 

overexpressed throughout neurodevelopment (Sergeant et al., 2005a). 

Tau phosphorylation is the prime regulator of microtubules. The smallest tau protein is present in 

the fetus, while the lengthiest isoforms are seen adulthood. In AD, the mean number of 

phosphate groups for every tau protein molecule increases, which leads to separation of proteins 

from microtubule (Ebneth et al., 1998). Therefore, hyperphosphorylated tau molecules results in: 

 synaptic dysfunction 

 impaired degradation through autophagy or within the proteasome 

 increased agglomeration 

 interactions with other compounds are disrupted. 

The key contributor for the formation of neurofibrillary tangles that contains paired, coiled and 

linear filaments of tau depositions are the inappropriately hyperphosphorylated tau (Kolarova et 

al., 2012a). 
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2.1.1 Structure 

 

Tau is  hydrophilic, unstructured and complex protein (Mandelkow & Mandelkow, 2012). 

According to biophysical studies, tau is a prototypical “natively unfolded” protein. Tau refers to 

a class of protein called as Microtubule-Associated Proteins (MAPs). Due to its secondary 

structure, it is found out that tau is heat resistant and is barely influenced by the acid treatment 

without losing their function. The protein is mostly found in the axons of the CNS which are 

subdivided into six isoforms by alternative splicing (Goedert et al. 1989). The structure varies by 

the exclusion or inclusion of two near-amino-terminal inserts of 29 residues each, coded by 

exons 2 and 3, and by one of the repeats (R2, 31 residues) in the carboxyl-terminal half 

(mandelkow2020). 

 

 Figure 6: Linear diagram of the lengthiest isoform of human tau (Pedersen & Sigurdsson, 2015). 

 

2.1.2 Classification 

 

Tau proteins are distinguished based on the composition of three (3R) or four (4R) tubulin 

binding domains (repeats, R) of 31 or 32 amino acids in the C-terminal part of tau protein and 
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one (1N), two (2N), or no inserts of 29 amino acids each in the N-terminal portion of the 

molecule. The Presence and lack of sequence encoded by exon 2, 3 or 10 determines the length 

of an isoform, which ranges between 352 to 441 amino acid sequences. Incorporation of the 

faulty gene encoding exon 10 causes the expression of tau consisting four microtubule binding 

repeats (MTBRs) (4R tau: 0N4R, 1N4R, 2N4R), whereas omission of exon10 leads to binding 

products expressing tau with three MTBRs (3R tau: 0N3R, 1N3R, 2N3R) (M. Goedert & Jakes, 

1990).  These six isoforms are often labeled as τ3L, τ3S, τ3, τ4L, τ4S, and τ4 (A. D. C. Alonso et 

al., 2001b).  

Primary structure sequence for tau protein contains of a half-N-terminal acidic part led by a 

proline-rich subunit and the C-terminal tail, which is the fundamental component of the protein. 

Exon 2 and 3 codes for the polypeptide sequence that gives acidity property to tau while exon10 

codes a positively charged region that correlates to tau’s fundamental characteristics. At the other 

hand, N terminal containing an isoelectric point of 3.8 along with a proline rich region having pI 

of 11.4 and the C terminal is positively charged with pI of 10.8. Hence it is said that tau protein 

is described as a dipole containing two domain of opposing charges. Each of the isoforms serves 

a distinct physiological function and is distinctively expressed during the growth of the brain. 

For example: 

 isoform containing 3R and no N-terminal insert is found in the fetal stage 

 isoform containing one or two N-terminal insert are found during the adulthood phase 

However, tau protein is mostly found in the neurons although it is found in the oligodendrocytes. 

Another MAP2 is a microtubule-binding protein which is present in the somato-dendritic portion 

of neuron, whereas MAP4 is widely distributed (Ebneth et al., 1998) (Kolarova et al., 2012a). 
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Figure 7: The operational domains of the lengthiest isoform of tau containing 441 amino acids are shown in here. It 

consists of the projection domain which comprises an acidic and a proline-rich region that combines with 

cytoskeletal elements to establish the spacing between the microtubules in axons. The C-terminal region is used for 

microtubule binding area (Luna-Munoz et al., 2013). 

 

2.1.3 Distribution of Tau  

 

Tau is primarily present in the brain, especially in the neurons.  They are predominantly 

immature in neurons but as they develop, they become axonal with greater- molecular weight 

isoforms and lesser phosphorylation (Drubin and Kirschner 1986; Kosik et al. 1989). Lower 

concentration of tau are found in other neuronal compartments such as in nucleus, dendrites and 

in other brain cells, particularly in oligodendrocytes even after maturation. Moreover, tau can be 

present in wide variety of cell types, including muscle fiber, where tau clusters in addition to 

body myositis (Mandelkow & Mandelkow, 2012). 

2.2 Tau Protein in AD 

 

Normally, tau protein’s function is to uphold the cytoskeleton in a regular manner in the axonal 

process. However, in AD this role of tau protein is lessened due to the capacity of the protein to 
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attach to the microtubule is lost. This uncommon behavior is facilitated by the epigenetic 

alteration and misfolding in the regular tau protein configuration resulting to the conversion of 

abnormal cluster formation into fibrillary structure inside the neuron. (Carrell & Gooptu, 1998). 

Hence, the transformed form of tau protein is spread and concentrates in the somatodendritic 

region and unhealthy neurons. Changing the sequence of tau protein can harm the stability of 

microtubule. For example, overexpression and mislocalization can rise the intracellular entry of 

tau concentration or may prohibit the plus-end-directed transport of  vesicles into the 

microtubule via kinesin thereby making the plus-end-directed transport more robust which 

influences the dissemination of mitochondria by forming clusters nearby to microtubule-

organizing center (MTOC). The lack of of mitochondria and endoplasmic reticulum in the 

periphery compartment in the axons can result to reduced glucose and lipogensis as well as ATP 

production and Ca2+ regulation (Futerman & Banker, 1996), resulting in a distal degeneration 

process known as "dying back" of axons (Kolarova et al., 2012a). 

Moreover, phosphorylated tau protein has strong affection towards kinesin so it is conveyed to 

the distant site of neuropile. This process explains how tangle pathogenesis in AD tends to 

originate distally and degrade backwards to the perikaryon. This helps to preserve the strength of 

microtubule by transferring hyperphosphorylated tau to the other regions of the cell at higher rate 

where they can form clusters. It is said that the unusual post-translational changes in the tau are 

the main reason of acquiring abnormal features which includes, abnormal phosphorylation 

(hyper phosphorylation), acetylation, glycation, ubiquitination, nitration,  proteolytic cleavage 

(truncation), structural alteration and some other alterations (Martin et al., 2011). In the next 

subtopic we will focus on the hyper phosphorylation, acetylation and self aggregation of tau 

Protein. 
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2.2.1 Hyper phosphorylation of Tau Protein 

The significant role of phosphorylated tau is to control the capability to attach microtubules and 

promote the assembly. A standard degree of phosphorylation is needed for the basic functioning 

of tau protein, whilst the hyper phosphorylation state diminishes its biological property. It is said 

that the longest tau isoform (containing 441 amino acids) contains about 80 potential serine or 

threonine phosphorylation sites (Sergeant et al., 2005b). Apart from Ser262, Ser293, Ser324, and 

Ser356 in R1, R2, R3, and R4 domains (Drewes et al., 1995), (Dickey et al., 2007), majority of 

these potential sites are present nearby the microtubule binding region in the proline rich zone 

and at the end of  C-terminal of tau (Sergeant et al., 2008), (Buée et al., 2000).  

The disease condition causes up regulation of tau kinase(s) or down regulation of tau 

phosphatase(s) although these two possibilities are not completely exclusive (Buée et al., 2000), 

(Qtrojanowski & M-y Lee, n.d.). GSK-3β, cyclin-dependent kinase 5 (cdk5), cAMP-dependent 

protein kinase (PKA), and calcium/calmodulin-dependent kinase II (CaMK-II) are the kinases 

that are said to have the most essential part in phosphorylation of tau protein (Gong & Iqbal, 

2008). GSK-3β  has major crucial impact in managing tau phosphorylation in both healthy  and 

diseased conditions as well as in phosphorylating tau on Ser199, Thr231, Ser396, Ser400, Ser404, and 

Ser413in vivo and in vitro that are highly phosphorylated in PHF-tau (Liu et al., n.d.). 

Phosphorylation of Thr231 leads to local conformational alteration that permits of GSK-3β or 

other kinases to phosphorylate tau more extensively. However, PP1, PP2A, PP2B, and PP2C 

gene can dephosphorylate tau protein in vitro have a complimentary and opposing impact. The 

action of PP2A has already been observed to be diminished in certain parts of the brain in AD 

sufferers (Liu et al., 2005). 
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Tau in the cytosol that has been inappropriately phosphorylated (AD P-tau) never attaches on 

tubulin or facilitates microtubule formation in the damaged neurons in AD (Kolarova et al., 

2012c), (Dephosphorylation of Alzheimer Paired Helical Filaments by Protein Phosphatase-2A 

and âˆ’2B (âˆ—) | Elsevier Enhanced Reader, n.d.). In fact, this protein inhibits the formation of 

microtubules and causes them to disorganize (Kolarova et al., 2012c). Therefore, these findings 

suggest that abnormal phosphorylation plays a vital role that results in aberrant aggregation of 

tau in AD. 

 

 

Figure 8 :  Kinases regulate the stabilization of microtubule-associated tau protein. Aberrant hyper phosphorylation 

of protein leads to greater depolymerization of microtubule resulting to intractable cytoplasmic tau oligomers, 

which then aggregate to form protomers. Later two protomers coiled around each other to form paired helical 

filaments, which then gathered and eventually formed neurofibrillary tangles (Mamun et al., 2020). 
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2.2.2 Acetylation of Tau Protein 

In the recent investigation, it is found out that tau acetylation is a form of post translational 

alteration that controls normal tau activity (Acetylation of Tau Inhibits Its Degradation and 

Contributes to Tauopathy | Elsevier Enhanced Reader, n.d.), (Cohen et al., 2011), (Kolarova et 

al., 2012b). In particularly, reversible lysine acetylation has identified as putative regulatory 

change linked to AD and other neurological illnesses. Abnormal acetylation may inhibit tau from 

attaching to microtubules as acetylation helps neutralizing the charges in the microtubule-

binding domain. Hence, abnormal acetylation leads to tau malfunction and may play a vital part 

in tau accumulation in AD (Acetylation of Tau Inhibits Its Degradation and Contributes to 

Tauopathy | Elsevier Enhanced Reader, n.d.). According to recent study, acetylation of Lys280  

may be an intermediary stage for creation of tangles (Kolarova et al., 2012c). Greater acetylation 

on Lys280 may disrupt collision of tau with microtubules and produces more cytoplasmic tau for 

abnormal PHF aggregation. Lys280, Which is found in the inter-repeat zone (275VQIINKK280), 

was recognized as one of three lysine groups which is most important in regulating tau-

microtubular collisions (Cohen et al., 2011). The molecule of tau has plenty amount of 

phosphorylation sites among which majority of them are found in areas surrounding the 

microtubule-binding repetition (Buée et al., 2000), where Lys280 is present. Thus, 

phosphorylation of tau will disrupt the residues present for acetylation (Choudhary et al., 2009). 

2.2.3 Self aggregation of Tau Protein  

Extensive length of positively and negatively charged regions present in tau molecule make 

intermolecular hydrophobic interaction difficult (Iqbal et al., 2010). Only R2 (exon 10) and R3 

(exon 11) in monomeric tau have the β-structure, which can assemble themselves into 

filamentous like substances and coassemble with heparin as a synthetic inducer (Michel Goedert 
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et al., n.d.). The availability of both N- and C-terminal that is located in microtubule binding 

region and inhibit the collision between these sticky domains hinders self-aggregation of Tau. A 

flexible structure of tau molecule caused by aberrant phosphorylation surrounding the N-terminal 

and C-terminal may unclip both the extremities from the microtubule binding region. Therefore, 

this allows self-collision between these sticky domains and produces paired helical filaments 

(PHF) / straight filaments (SF) as shown in figure 9 (A. D. C. Alonso et al., 2001a). 

 

Figure 9: Self aggregation of tau (A. D. C. Alonso et al., 2001a). 
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Chapter 3: Current detection methods for Tau protein 
 

3.1 Introduction 

 

Alzheimer's dementia results from the gradual decline of brain cells. This deterioration may 

show up in a number of ways in brain scans. Therefore, the brain imaging can help to identify the 

degree of degeneration of the brain. 

3.2 Positron emission tomography (PET)  

 

Positron Emission Tomography (PET) is a non-invasive diagnosing imaging technique using 

isotope-labeled biomarkers that adhere to biomolecules with higher degree of precision and 

sensitivity. Various PET tracers attacking aberrant tau protein conformations that have developed 

in recent years, which helps the researchers to see tau aggregation in vivo (Yeung et al., 2017).  

As tau is a complicated protein with various forms that undergoes subsequent translational 

modications, tau PET tracers can link to single, several isoforms. Furthermore, tau is a 

cytoplasmic (intracellular) protein it needs the capability to pass across the plasma cell 

membrane and the blood-brain barrier (BBB). Several PET ligands have been used for imaging 

tauopathies in the brains of AD individuals, which includes [11C]PBB3, [18F]THK5105, 

[18F]THK5117, [18F]THK5351, [18F]T807, and [18F]T808 (Imaging of Tau Pathology in a 

Tauopathy Mouse Model and in Alzheimer Patients Compared to Normal Controls | Elsevier 

Enhanced Reader, n.d.-a), (Chien et al., 2014).  Few of these PET tracers are now approved for 

therapeutic usage on individuals having tauopathies such as AD and healthy people. As a result, 

Tau imaging is essential for progression toward earlier and effective diagnosis of tau pathology 

along with monitoring disease progression therapeutic intervention tracking and drug 

development (Wang & Edison, 1910). 
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3.2.1 Mechanism of action of PET tracer 

 

Alzheimer's disease is a neurodegenerative disorder caused by accumulation of 

hyperphosphorylated tau protein. Paired helical filaments (PHFs) are formed when 

hyperphosphorylated tau produces dimers which form cluster to form neurofibrillary tangles 

(NFTs) linked with neurodegeneration and extent of Alzheimer's symptoms (Bavaskar & Bhurat, 

2021). 

 
 

Figure 10:  Mechanism of PET tracer 
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3.2.2 Commonly used PET tracers 

[18F]FDDNP 

 

Initially, 2-(1-{6-[(2- [fluorine-18] Fluoroethyl) (methyl) amino] -2-naphthyl}- ethylidene) 

malononitrile (FDDNP) is the PET tracer used to detect AD pathologies in actual humans 

(Mosconi et al., n.d.). FDDNP is not the sole tau tracer as it is seen in the brain, it attaches to 

neurofibrillary entangles and amyloid plaques (Smailagic et al., 2018).  

[11C]PBB3 

11C-pyridinyl-butadienyl-benzothiazole 3 ([11C] PBB3) was one of the first tau PET tracer to be 

described as to detect a wide spectrum of tau plaques. [11C]PBB3 has effectively showed the 

expansion of brain tauopathis during the shift from normal aging to intermediate AD, indicating 

that tau PET imaging can be used as a quantitative indicator of progression of the disease. 

(Wood, 2013). As a result, it supports the idea that tau lesions are highly linked to neuronal 

malfunction than Aβ plaques (Imaging of Tau Pathology in a Tauopathy Mouse Model and in 

Alzheimer Patients Compared to Normal Controls | Elsevier Enhanced Reader, n.d.-b). 

.. 

 

Figure 11:  Chemical structure of [11C]PBB3 (Wang & Edison, 1910). 
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Quinoline Derivatives  

The three quinolone derivatives of quinoline compounds including [18F]THK-523, [18F]THK-

5105 and [18F]THK-5117 showed selectivity and greater affinities linking onto tau than Aβ on 

patients brain regions in vitro (R Harada et al., 2018).  

[18F]THK5351 is a single S-enantiomer of [18F]THK5117 that was said to enhance the 

pharmacokinetics of aryl quinoline derivatives. [18F]THK5351 had a stronger attraction for 

linking hippocampal homogenates from AD brains and dissociated from white matter tissue 

faster compared to [18F]THK5117, as per the researchers (Wang & Edison, 1910). 

 

Figure 12: Chemical structure of [18F]THK5117 and its S-enantiomer [18F]THK5351 (Wang & Edison, 1910). 

 

 

The quantity of tracer binding to human brain is closely associated with the amount of tau 

plaques. [18F]THK5351 had quicker kinetics and reduced accumulation in the subcortical white 

matter, indicating that it is an effective PET tracer for preliminary diagnosis of neurofibrillary 

disease in AD individuals (Ryuichi Harada et al., 2016).  
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Tauvid  

 

Figure 13:  Chemical structure of Tauvid (Jie et al., 2021). 

 

Tauvid is also known as [18F]Flortaucipir, [18F]AV-1451, and [18F]T807. Its IUPAC name is 

7-(6-[18F]fluoropyridine-3-yl)-5H-pyrido [4,3-b]indole. On 28th May, 2020 Avid 

Radiopharmaceuticals launched TAUVID™ (Bavaskar & Bhurat, 2021), the first FDA approved 

PET tracer for monitoring tau disorder in AD (Jie et al., 2021). Tauvid is a tiny indole molecule 

produced with a radioactive fluorine isotope with molecular weights of 262.27. It is utilized as a 

biomarker in positron emission tomography (PET) scanning of Alzheimer’s patient. Flortaucipir 

F-18 interacts to the tau plaques after penetrating the blood-brain barrier, a marker whose 

occurrence corresponds with disease development. Although flortaucipir F-18 has minimal levels 

of background binding across the brain, it does have off-target binding to monoamine oxidase 

MAO-A and MAO-B, as well as sites with significant quantities of melanin, neuromelanin, and 

iron.  Pathological version of tau protein forms inside neurons in AD patient, resulting in 

neurofibrillary tangles. After flortaucipir (18F) is injected intravenously, it binds to region of the 

brain containing tau protein misfolding. The brain can be then examined using a PET scan to 

diagnose the disease progression (Bavaskar & Bhurat, 2021). 

Tauvid is used to evaluate the concentration and spreading of neurofibrillary tangles in the brain 

of patients suffering cognitive impairment who are examined for AD by PET. Tauvid should not 
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be recommended for the diagnosis of chronic traumatic encephalopathy (CTE) patients. The 

capability of tauvid binding may be hampered due to the changes in the tau conformation and 

distribution, therefore it is not recommended for chronic traumatic encephalopathy (CTE) 

patients (Jie et al., 2021).  

 

3.2.3 Advantages and Disadvantages of PET tracers 

 

Advantages: 

 Has the ability to detect Alzheimer’s disease progression 

 Has decreased radioactivity exposure 

 Also has affinity for other isoforms of tau 

 [18F]AV-1451 is highly selective, specific, lipophilic along with greater affinity for PHF-

tau binding (Wang & Edison, 1910).  

Disadvantages: 

 There is a greater chance of cross- reaction occurring, as the suggested PET ligands were 

developed to focus on β -pleated sheets, a fundamental protein feature found in tau and 

Aβ (Wood, 2013).  

 Radioactive half- life of [11C] is very small 

 Few tracers bind to “off-target”(Wang & Edison, 1910). 

 As tau being present in the intracellular site it is more difficult to create a radio ligand 

(Lemoine et al., n.d.) meaning that the ligand need to have the ability to penetrate by the 

plasma membrane  along with the blood-brain barrier to get access to tau protein (Wang 

& Edison, 1910). 
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3.3 Digitalized ELISA 

 

Digital ELISA, also known as Single molecule array. Tau protein was evaluated using digital 

ELISA to regulate the NFTs and is used for the initial diagnosis of AD. In this technique, 

antibody/antigen complex was established on microbeads at single-molecule level (Ono et al., 

2014). 

Digital ELISA is a revolutionary approach that is approximately 1000 times more accurate 

compared to traditional ELISA methodology  (Sci-Hub | Use of high-sensitivity digital ELISA 

improves the diagnostic performance of circulating brain-specific proteins for detection of 

traumatic brain injury during triage. Neurological Research, 1–8 | 

10.1080/01616412.2020.1726588, n.d.). 

3.3.1 Mechanism 

 

 

 

 

Figure 14: Schematic diagram of digital ELISA system (S. H. Kim et al., 2012). 
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Figure 15: Mechanism of digitalised ELISA method. 

 

 

 

 

Tau-1 was used as a capture antibody which was grafted on polystyrene beads 

 

 

 

 

Tau-12 as detection antibody was cross linked to β-galactosidase 

which breakdown fluorogenic substrate fluorescein di-β-D-galactopyranoside to 

fluorescein. 

Each bead were separated into the microwells and closed with fluorine oil and 

the fluorescent wells were summed up using a fluorescence microscope 

Eight million beads were combined with detection antibody and tau protein for 

250 minutes at room temperature. Then they were mixed with 1 mM FDG to 

carry out ELISA (S. H. Kim et al., 2012). 
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3.3.2 Single molecule array SimoaTM 

 

SimoaTM is a commercially accessible technique used to evaluate the mid region of tau protein 

isoforms (Danni Li & Mielke, 2019). The Simoa™ technology is the center of Quanterix’s 

platform that enables the identification and quantification of biomarkers that were previously 

difficult to quantify (The Scientific Principle of Single-Molecule Array Technology, n.d.). 

A researcher named Zetterberg et al. were the first to apply Simoa technique to analyze both 

normal and p-tau protein in CSF and plasma samples. Since then, the business Quanterix has 

industrialized the assay technology. Additionally, Tatebe et al. also applied this technique to 

discover tau phosphorylated at Thr181 with an outstanding limit of detection of 0.0090 pg/mL by 

acquiring the plasma sample. (Arbaciauskaite et al., 2021).  

 

3.3.3 Sensitivity and specificity of the technique: 

 

 Digitalised ELISA has the capability to detect very low quantity of protein when 

contrasted to conventional ELISA, due to two factors:  

1. Simoa™ has great sensitivity to enzyme label 

2. the low background signal that may be achieved by digitizing protein detection (The 

Scientific Principle of Single-Molecule Array Technology, n.d.). 

 

 Single molecule sensors are digital by character: every molecule emits a countable signal. 

As a result, detecting the presence and absence of signal is much easier than detecting the 

actual number of signal. In short, counting is easier than integrating (The Scientific 

Principle of Single-Molecule Array Technology, n.d.). 

https://www.quanterix.com/products-technology/simoa-assay-kits
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3.4 Biolayer Interferometry (BLI) 

 

BLI is a powerful optical technique to learn about the molecular collisions without any need for 

marked agents for the identification of certain biomarkers like low molecular weight compounds, 

protein, cells and many others (Mechaly et al., 2016).  BLI is generally used for the serological 

testing for SARS-CoV-2 for the use of virus nucleocapsid. 

BLI consist of a biosensor which are immersed into the microplate well holding pure or complex 

mixtures, engaging to extremely equidistant, user-friendly experiment. The interference pattern 

of the white light that is reflected on the reusable fiber optic-based sensor must be measured (Do 

et al., 2008). The interaction of a ligand bound on the surface of the biosensor tip with an 

element in sample causes the biosensor tip's optical thicknesses to develop, leads to alteration of 

the wavelength which is a quantitative measurement of the changes in biological layer thickness 

(BLI Technology | Sartorius, n.d.). 

The fluctuation in the interference pattern can be observed as the amount of molecules linked to 

the biosensor tip varies, which can be calculated in real time as shown in figure16 (Do et al., 

2008). 

On the Octet system, only molecules that can attach to or dissociate from the biosensor can alter 

the interference pattern and produce a reaction profile. However, the interference pattern in 

unaffected by the loose unbound molecules or by variations in the refractive index or changes in 

the flow rate. This is the most uncommon property of BLI which allows it to perform in crude 

samples for protein binding, quantification, affinity, and kinetics applications (BLI Technology | 

Sartorius, n.d.). 
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Figure 16: Illustrates the BLI biosensor technique (Bio-layer Interferometry (BLI) Technology for Coronavirus 

Research - Coronavirus, n.d.). 

 

3.4.1 Detection of tau441 protein by the BLI biosensor 

 

 

Figure 17: Tau protein identification using a BLI sensing technique (Ziu et al., 2020). 
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Initially, insertion of biotin-aptamer (5′- Biotin-GCGGAGCGTGGCAGG-3′) is 

carried out 

 

The biosensors were rinsed with phosphate buffered saline (PBS) 

 

The biosensor is further rinsed with M 2-(N-5-morpholino) ethane sulfonic acid 

(MES), buffers for tau441 protein binding 

 

Then, the biosensor was revealed to tau441 mixture in MES buffer, pH 6.8, at 

numerous tau441 concentrations (0, 2, 5, 11, 16, 21, 32, 43, 55, 64 nM) 

 

The BLI signal was kept under observation with time. 

  

 

Therefore, the increment in BLI response shows an increased concentration of tau441 

(Ziu et al., 2020). 

Figure 18: Detection method of tau441 protein. 
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3.4.2 Selectivity of BLI biosensor  

 

1. The aptamer-based biosensor was tau441 specific with a very negligible non-specific 

binding to BSA as the tau441 biosensors selectivity was tested between bovine serum 

albumin (BSA) and MES buffer. Although, BSA protein was comparably similar to MES 

buffer yet had no impact on the biosensor. 

 

2. The biosensor selectivity was further investigated in the vicinity of other 

neurodegenerative indicators such as Amyloid-β40 and α-synuclein. As a result, proving 

the biosensor specificity for tau441 indicators over other neural proteins is essential for 

the creation of a successful tauopathies biosensor (Ziu et al., 2020). 
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Chapter 4:  New detection methods for tau protein 

 

4.1 Introduction 

 

Due to the fact that different detection methods are available, there is always a potential need for 

better and improved methodologies in order to deplete the drawbacks of the current methods 

mentioned in previous chapters. Hence, researchers are working to develop simpler and 

analytically low cost methodologies that can screen the target molecules in a very small period of 

time with excellent sensitivity and accuracy in the field of research. 

4.2 Surface Plasmon Resonance (SPR)   

 

SPR is an optical method for detecting collisions between two molecules on a thin gold film, one 

of which is mobile and the other static (Drescher et al., 2009). 

SPR is referred when free mobile electrons present on the interface of a metal media vibrates 

after taking in the energy of the incident light. When a bond is formed between the target and 

biomolecules that are absorbed on the metal media's surface, a change in refractive index occurs, 

causing the resonate spectrum to shift, allowing for quantitative analysis of the target molecule 

(Lisi et al., 2017). 
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Figure 19:  A. schematic diagram of SPR process B. Variation of the angle before and after the biomolecule is 

bound in SPR C. A sonogram of the biomolecule adsorbed onto the surface of the sensor in real time (Sci-Hub | 

Surface plasmon resonance biosensors for detection of alzheimer’s biomarkers; an effective step in early and 

accurate diagnosis. Biosensors and Bioelectronics, 112511 | 10.1016/j.bios.2020.112511, n.d.). 

 

4.2.1 Mechanism of SPR assay: 
 

 

Figure 20: Schematic diagram of SPR assay for Tau protein detection (Vu Nu et al., 2018). 
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2. Carboxyl group activation- 5' end NH2 modification and 

EDC/NHSS linking chemistry were used 

3. Fixation of tau antibody- EDC-NHS was used to covalently 

conjugate the tau specific DNA aptamer and control sequences to 

MUA (S. Kim et al., 2016). 

4. Nonspecific bonds are restricted via blocking 

5. Capturing of tau proteins (Vu Nu et al., 2018). 

. 

 

 

 

 

 

1. Crosslinking of carboxyl groups- mixed monolayer of 11-

mercaptoundecanoic acid (MUA) and 11-

mercaptoundecanol (MUD) was introduced into the SPR 

gold chip 

Figure 21:  Mechanism of SPR assay. 
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A researcher named, Lisi et al, Focused on SPR platform and antibodies (Lisi et al., 2017) had 

enveloped three techniques of qualitative detection of Tau  which  includes a) direct detection  b) 

unlabeled sandwich c) labeled sandwich and the corresponding linear ranges of Tau were 7–250 

nmol/L, 2–25 nmol/L and 125–1000 nmol/L, and the Limit of detection (LODs)  were 15, 2 and 

0.125 nmol/L, respectively as shown in figure 21. 

 

Figure 22:  Three techniques of SPR platform a) direct detection b) label free sandwich assay c) multi-walled 

carbon  nanotube-labeled sandwich assay (Lisi et al., 2017). 

 

a) Direct detection method is where the primary monoclonal antibody (mAb1) directly 

conjugates with tau protein 

b) Label free sandwich assay is where a secondary monoclonal antibody (mAb2) was used 

to further bind to tau protein which was already bound to primary monoclonal antibody 

(mAb1). Hence forming a sandwich. 
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c) Multi-walled carbon nanotube (MWCNT)-labeled sandwich assay- It is another step to b 

where MWCNT is bound to mAb2. A Multi-walled carbon nanotube (MWCNTs) was 

used to diagnose sensitive, rapid and selective tau protein in AD (Lisi et al., 2017).  The 

metal nanoparticles, carbon-based nanomaterials, which includes graphene oxide and 

carbon nanotubes (CNTs) due to their distinctive properties like higher molecular mass, 

larger surface area, greater RI and stronger suitable adhesion of molecules can boost the 

SPR signals (Gupta et al., 2019). MWCNTs modified with tau protein-related secondary 

antibody and a sandwich method for the binding of secondary monoclonal tau antibody 

(mAb2) on MWCNTs interface in order to produce appropriate signals (Rezabakhsh et 

al., 2020).  

4.2.2 Advantages of SPR technique 

 

 SPR imaging technique allows real-time and tag free analysis for both control and 

experimental groups. 

 Researchers have been able to produce accurate and effective methodologies for femto-

molar series in diagnosis of AD markers in sufferers. 

 Various proportions of AD antibodies or nucleic adjuvants can be immobilized on SPR 

gold chips with using SPR method using modified surface chemistry (Palchetti et al., 

2019). 
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4.3 Quartz Crystal Microbalance (QCM) 

 

The Quartz Crystal Microbalance (QCM) is a highly sensitive mass balance that detects changes 

in mass per unit area at the nanogram to microgram level. Quartz is a piezoelectric substance that 

is induced to vibrate at a specific frequency via supplying voltage using metal electrodes. The 

insertion or elimination of small quantity of mass from the electrode surface can cause a 

deflection in frequency of vibration. Therefore, the shift in frequency can be tracked in real time 

to learn about the biomolecular interaction and reactions occurring in the interface of the 

electrode such as film growth, oxidation, corrosion/decay, etc (Quartz Crystal Microbalance 

(QCM) - Nanoscience Instruments, n.d.-a).  

 

Figure 23: (A) Illustrates the QCM biosensor at which the quartz crystal is coated with two gold electrodes on 

either side. (B) Illustrates the basic operation of QCM  (Migó et al., n.d.). 

 

The quartz crystal was covered with two gold electrodes on either side as shown in fig23. 

In the ∆f and ∆D graph, shows the basic operation which shows how the change in ∆f and ∆D 

changes as the molecule mass binds to gold surface sensor. The clean surface and stable 
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baselines are shown in section I of the schematic adsorption mechanism; during adsorption, 

molecular variations in f and D are noticed (section II). The baselines are stabilized after 

complete adsorption on the surface (section III) of figure 23 (Migó et al., n.d.). 
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4.3.1 Detection of Tau protein 

 

a) For Direct Assay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tau protein was introduced into the exterior of the sensor in various concentrations  

 

and kept proximity to the trapped primary antibody for 15 minutes. 

  

 

The exterior was then rinsed to eliminate any unattached protein  

 

The difference in frequency signals before and after protein incubation were observed 

  

 

Then, the acquired result is shown as a form of ∆f and ∆D versus time graph (Dujuan Li et 

al., 2018). 

   

 

Figure 24:  Direct assay method. 
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b) For sandwich-based assay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After tau-mAb1 binding, monoclonal secondary antibody (mAb2) was introduced into 

the sensing surface 

 

and allowed to incubate for 15 minutes. 

  

 

The immunocomplex was then rinsed to eliminate any unattached mAb2 

 

the variation in frequency was monitored before and after each addition 

 

and relative binding shift graph was evaluated (Dujuan Li et al., 2018). 

  

  

Figure 25: Sandwich-based assay. 
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4.3.2 Sensitivity of QCM 

 

1. Because of its excellent resonator stability, the frequency alteration in QCMs can be 

detected on crystals with resolution of 1 Hz or lesser. As a result, measurement of 

nanogram-scale masses can be attained (Quartz Crystal Microbalance (QCM) - 

Nanoscience Instruments, n.d.-b). 

2. The maximum thickness that can be detected ranging from hundreds of nanometers to a 

few microns, based upon the hardness of the surface (Quartz Crystal Microbalance 

(QCM) - Nanoscience Instruments, n.d.-b). 

3. Sensitivity improves as the concentration of the injected analyte rises (Hadi Shinen et al., 

2014). 

 

4.4 Surface-enhanced Raman scattering (SERS) based sandwich assay 

 

Surface-enhanced Raman spectroscopy (SERS), a biomolecular detecting technology that 

intensifies Raman scattering whenever the targeted substrate gets deposited onto the top of a 

coarse metal or using nanoparticles such as plasmonic- magnetic silica nanotubes, is based on 

Raman scattering, a phenomenon in which photons scatter inelastically. The Raman 

spectroscopy signals are significantly enhanced by the electromagnetic environment surrounding 

nanostructures and nanomaterials. SERS biosensors have proven to be precise yet promising 

technology for detecting solutes in solutions at low doses due to its high sensitivity. Hence, 

SERS biosensor was established for tau protein with limit of detection less than 25 femtomolar.  
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4.4.1 Detection of Tau protein 

 

Figure 26:  Tau protein detection using a SERS biosensor (Sci-Hub | Biosensors for detection of Tau protein as an 

Alzheimer’s disease marker. International Journal of Biological Macromolecules | 10.1016/j.ijbiomac.2020.06.239, 

n.d.). 
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It is comprised of magnetic silica nanoparticles and monoclonal anti -tau as trapping 

reagents having high affinity to binding tau protein within the samples as well as 

functional gold nanoparticles with polyclonal anti -tau acting as SERS surface. 

 

A EDC/NHS polyclonal anti-tau layer deposited on the interface of gold nanoparticles to 

activate them 

 

Also, the Raman reporter 5, 5 -dithiobis (2 -dinitrobenzoic acid) (DTNB) has employed 

to coat gold nanoparticles surface 

 

During low concentration tau protein samples, using polyclonal anti-tau as bioreceptor 

component enhances the signal strength 

 

Collision between anti-tau and tau protein solution leads to nanoparticle accumulation 

 

SERS signal can be seen which produces strong peak in the SERS spectrum due to 

DTNB absorption. 
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4.4.2 Specificity & sensitivity of SERS: 

 

1. SERS, is an exceptional technique for the detection of relatively low concentration 

analyte (SERS: Materials, applications, and the future | Elsevier Enhanced Reader, n.d.). 

2. A researcher named, Zengin et al. acquired SERS intensity from the response of IgG, 

Tau, BSA complexes which showed no detectable variation, indicating that  BSA and 

IgG had least effect on tau detection (Zengin et al., 2013). 

 

Figure 28: SERS intensity of  IgG, Tau and BSA complexes (Zengin et al., 2013). 

  

 

Peak height may fluctuate depending on tau concentration in the sample (Sci-Hub | 

Biosensors for detection of Tau protein as an Alzheimer’s disease marker. International 

Journal of Biological Macromolecules | 10.1016/j.ijbiomac.2020.06.239, n.d.). 

 

  
Figure 27: Detection mechanism of Tau protein using SERS method. 
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Chapter 5:  Conclusion and Future Prospects 

 

As dementia is most commonly affects elderly people of around 60 years and the most leading 

cause of dementia is Alzheimer's disease. Tau proteins are essential biomarker for the detection 

of AD and other forms of neurodegenerative diseases and to monitor the disease progression. 

This enables with various clinical trials for the initial detection of disease and to assess the 

efficiency of the drug for preventing its progression. Tau proteins are classified into six isoforms 

created via alternative splicing and are distinguished based on the composition of three (3R) or 

four (4R) tubulin binding domains (Goedert et al. 1989). Primary role of tau is to hold tight and 

stabilize the microtubules (MT) and is mostly distributed in the brain along the axons of the 

neuron. Also it is believed that aberrant posttranslational modifications which are 

hyperphosphorylation, acetylation, glycation, nitration and truncation are the major reason of tau 

pathology. Therefore, it can hamper the stability of microtubule. However, there are various 

current methodologies that are commercially available to diagnose tau pathology in AD. 

Multiple novel PET radiotracers are found that binds to tau protein for instance, Tauvid is a PET 

tracer that is first approved by FDA which is highly selective in nature. However, biosensors 

based technique like BLI have come up which are analytical low cost devices that can screen the 

target molecules in a very small period of time with excellent sensitivity and specificity in the 

field of research (Ameri et al., 2020). BLI is a label free technique used to determine the 

biomolecular collisions without the need of any tagged reagents. Likewise, Digital ELISA is also 

a commercially revolved method that is approximately 1000 times more accurate compared to 

traditional ELISA methodology. However, due to each of the techniques has its own limitations 

the researchers have come up with more simpler methodologies such as SPR, QCM, SERS  that 

can easily detect the target molecules with excellent in the field of research. SPR biosensor has 
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the capability to detect even the tiniest mass changes on the gold sensor surface. QCM is a highly 

sensitive mass balance that detects variation in mass per unit area at the nanogram to microgram 

level whereas SERS-based biosensors tend to be used for detecting proteins even at as low as 25 

femtomolar dose with high sensitivity. Therefore, all of these techniques could be used to track 

the inhibitors that target tau protein deposits or phosphorylates. A further enhancement of the 

sensor's sensitivity may be acquired by improving the aptamer pattern and by limiting the non-

specific adsorption. Finally, precise detection of modified tau protein from cerebrospinal fluid 

and other biological fluids may help forecast the development and progression of dementia. 
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