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Abstract 

Repurposing of existing drugs to treat chronic, communicable and non-communicable diseases 

is becoming progressively important since it uses existing drug molecules or failed compounds 

by utilizing the available data. It uses several approaches, potentially decreasing the total 

development cost and shorter development timeframes. The traditional search for drugs for the 

treatment of diseases is a slow process, where significant expenses of new drug research and 

development are involved. This review discusses the drugs that are being approved for diabetes 

epidemic using drug repurposing approaches, as well as the challenges and future perspective. 

Keywords: Drug repurposing, Diabetes, Antidiabetics, Clinical trials, Mechanism 
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Chapter 1 

Introduction 

The global burden of chronic diseases, like cancer, heart diseases, type 2 diabetes, chronic lung 

disease, chronic kidney disease, Alzheimer’s is on the rise and as such, the search for affordable 

and alternate drugs for their treatment is of paramount (Centers for Disease Control and 

Prevention, 2019). Diabetes is considered to be one of the world’s fastest growing disease. 

Roughly 463 million people have been suffering from this disease according to the 

International Diabetes Federation. Currently, 463 million individuals are living with diabetes 

in the world. By 2030, that number is projected at 578 million and by 2045 it would reach 700 

million. The prevalence is greater in urban regions (10.8 percent) than in rural areas (7.2 

percent). Similarly, the prevalence of this disease is higher in high-income nations (10.4 

percent) than in low-income countries (4.0 percent). 50.1 percent of people with diabetes are 

found to be unaware that they have it. Impaired glucose tolerance was globally prevalent in 

2019 and the percentage was 7.5 percent (374 million). It is anticipated to rise to 8.0 percent 

(454 million) by 2030 and 8.6 percent (548 million) by 2045 (Saeedi P et al., 2019). 

Despite significant investments in traditional medicine pipelines by the different 

pharmaceutical firms, the development of new medications has failed to address the growing 

prevalence of Type 2 diabetes (T2D). Till date two drugs have been successfully repurposed 

for diabetes, and many more potential therapeutic molecules are still under investigation. 

Nevertheless, there are some challenges associated with drug repurposing, which need to be 

tackled well for the progress of drug development by repurposing (Turner et al., 2016). 

Drug repurposing, which is also known as drug repositioning is a method applied to identify 

novel indications and applications of existing drugs which are FDA approved and are in use 
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clinically. Drug candidates with new pharmacological activity or therapeutic characteristics 

can be developed using this method. Moreover, by drug-repurposing discontinued drugs, drugs 

which are in experiment or failed drugs at the time of development can be established for novel 

therapeutic indications (TT & KB, 2004a). 

Drug repurposing (DR) is a novel way of identifying drug compounds and targets that have 

been de-risked at the time of development stages which helps to speed up the total process so 

that the production time, effort and costs are less. It has decreased the drug discovery failure 

rate, leading to therapeutic breakthroughs (Osakwe & Rizvi, 2016). The technique of drug 

repurposing is used to enhance the success rate of medication development since the traditional 

process of drug discovery is an expensive and time-consuming procedure. This process 

outperforms the standard drug discovery processes in terms of time needed for the drug 

development, cost, efficiency, and risk of failure and potential candidates has already been 

evaluated in a number of clinical trials. 

 

DR is an efficient method for revealing new targets and pathways in a less costly and safer 

manner (Pushpakom et al., 2018). However, repurposing of drugs has recently gained 

popularity due to its high success rate. Drug development has progressed commercially after it 

was discovered to have an off-target impact or the newly discovered on-target effect. There are 

numerous examples of existing drugs to have shown alternate therapeutic indications. 

Successful Computer Aided Drug Designing (CADD) techniques for the identification of 

repurpose able drug molecules are also being used (TT & KB, 2004a). This had led researchers 

to search for the identification of a number of potential drugs for a wide variety of diseases, 

such as diabetes. 
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Chapter 2 Aim 

Understanding drug repurposing in the development of new anti-diabetic treatments. 
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Chapter 3 

Methodology 

Recent literature was extensively studied. Secondary data for the study was compiled from 

several journals endorsed by Nature, Elsevier, Springer and other distinguished journals. The 

different conventional therapies such as insulin and sulfonylureas, as well as the drugs 

repurposed or considered for repurposing have been discussed in this study. The study compiles 

the different computational approaches and the tools used in drug repurposing for an 

antidiabetic drug. It also outlines the challenges associated with drug repurposing. Specific 

topics of drug repurposing were omitted due to the vast quantity of research in this field. In an 

internet search engine, the search was done with specific exclusion criteria. The review did not 

include potentially relevant research results such as conference contributions, working papers, 

or books. 
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Chapter 4 

Diabetes 

Diabetes leads to micro and macro complications, including stroke, coronary artery disease, 

which leads to a short-ended life expectancy. 

United Nations and WHO have thus focused on diabetes as a significant global health problem 

in light of the massive worldwide epidemic of this disease, which is arguably the most serious 

non-communicable global disease generated by an unhealthy contemporary lifestyle. 

According to experts, diabetes and cardiovascular illness are like two sides of the same coin 

when it comes to cardiovascular risk. People with diabetes are more likely to die from heart 

disease than those without, and vice versa. 

Estimation of diabetes prevalence for 2019 and forecast for 2030 and 2045 are found in the 9th 

edition of the IDF Diabetes Atlas. Adults aged 20 to 79 are included in the estimations, which 

include type 1 and type 2 diabetes, both diagnosed and undiagnosed There are 463 million 

individuals aged 20 to 79 globally who have diabetes (9.3 percent of all adults in this age 

range). 79.4 percent of people reside in low- and middle-income nations, according to 

estimates. 

Diabetes is a result of abnormalities in insulin production or insulin activity, marked by 

persistent hyperglycemia. Carbohydrate, lipid, and protein metabolic irregularities are the 

outcome of insulin's role as an anabolic hormone. It is believed that these metabolic anomalies 

are caused by low insulin levels and/or insulin resistance in target tissues such as skeletal 

muscles, fat, and to a lesser degree liver, at the level of insulin receptors, the signal transduction 

system, and/or effector enzymes and genes. The intensity of the symptoms is determined by 

the kind and duration of the diabetes. In the early stages of diabetes, some individuals are 
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asymptomatic, though found later to be significantly hyperglycemic. This is found especially 

in children with total insulin insufficiency may suffer from polyuria, polydipsia, polyphagia, 

and weight loss. 

Diabetes is classified into several types: 

• Type 1 diabetes is an autoimmune disorder. Mainly occurs when the immune system attacks 

and kills pancreatic cells which are responsible for insulin production. It is estimated that 10 

percent of the diabetic patient suffers from Type1 diabetes. 

• Type 2 diabetes is mainly caused by insulin resistance when body is unable to use the insulin 

to transport sugar into the cell thus the sugar level in blood elevates and causes 

hyperglycemia.90 percent of the diabetic patient suffers from type 2 diabetes. 

• Prediabetic is a state when sugar level of blood is higher than normal but not high enough to 

be diabetic. This state can be prevented and sugar level can be managed by managing healthy 

life style. 

• Gestational diabetes. This type of diabetes occurs during pregnancy when the placenta 

produces hormones causing insulin resistance and the blood sugar level is elevated. 

Diabetes insipidus, despite its similar name, is a rare illness that is unrelated to diabetes 

mellitus. Basically, in this disease condition kidneys excrete too much fluid from body 

4.1 Treatment of Diabetes 

In the case of type 1 diabetes, insulin is the major therapy. This helps to make the hormone; 

the body doesn't generate. The four most widely used insulins are Type 1, insulin aspart, insulin 

detemir, and insulin glargine. Their levels of productivity are distinguished by the speed at 

which they begin working and the duration of their effects. 
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On the other hand, people having type 2 diabetes and gestational diabetes, the blood sugar can 

be controlled through diet and exercise. However, medication is required to reduce blood sugar 

when lifestyle changes aren't adequate. 

Table 1: Commonly used antidiabetics 

Drug class  Description  Generic name Brand name Reference  

 

Insulin Insulin is a peptide 

hormone that is 

produced as a 

precursor to insulin 

(pro-insulin), and that 

undergoes to 

proteolytic cleavage to 

form insulin. Produced 

by pancreatic beta cell 

 

Rapid acting 

insulin: 

 1. Insulin lispro 

injection, 

 

2.Regular human 

insulin,  

3.Insulin glulisine, 

 

4.Insulin aspart,  

 

5.Insulin lispro  

 

 

 

Short acting 

insulin:  

1.Regular human 

insulin  

 

Intermediate acting 

insulin:  

 

 

 

 

Admelog 

 

Affeza inhalation 

powder  

Apidra, 

Apidrasolostar 

Novolog, 

Fiasp, 

Fiaspflextouch 

 

Humalog, 

Humalog pen, 

Humalog Kwikpen 

 

 

 

 

 

Humulin R, 

Humulin R pen, 

Novolin R 

 

Humulin N,  

Novolin N 

 

 

 

 

 

 

(Insulin | 

FDA, 

2019) 
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Drug class  Description  Generic name Brand name Reference  

1.NPH(Human 

insulin isophane 

suspension) 

Long-acting 

insulin:  

1.Insulin Glargine, 

 

 2.Insulin 

Degludec 

 

Levemir, Toujeo, 

Toujeo max 

 

Tresiba Flextouch 

 

Sulfonylur

eas 

These substances 

stimulate insulin 

secretion thus called 

insulin 

secretagogues.    

First generation: 

1.Tolbutamide,  

2.chlorpropamide, 

3.Tolazamide  

Second generation:  

1. Glyburide,  

2.Glipizide  

3. Glimepiride  

 

 

 

 

Tol-tab 

 

Diabinese 

 

Tolinase 

 

 

Diabeta, glynase 

Glucotrol, 

Glucotrol XL 

Amaryl 

(Diabetes 

Medicines 

DIABETE

S TIPS, 

2018) 

 

Glinides 

 

These are known as 

Insulin secretagogues 

1.Repaglinide 

 

2. Nateglinide 

Prandin 

 

Starlix 

(Diabetes 

Medicines 

DIABETE

S TIPS, 

2018) 

 

Biguanide These are categorized 

as an insulin sensitizer. 

It helps to increase 

glucose absorption by 

decreasing insulin 

resistance  

Metformin Fortamet, 

Glucophage, 

Glucophage XR, 

Glumetza, 

Riomet 

(Diabetes 

Medicines 

DIABETE

S TIPS, 

2018) 
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Drug class  Description  Generic name Brand name Reference  

Thiazolidi

nediones 

 

 

TZDs) are insulin 

sensitizers as well. 

 

1. Pioglitazone 

 

 

2. Rosiglitazone 

 

Actos 

 

 

Avandia 

(Diabetes 

Medicines 

DIABETE

S TIPS, 

2018) 

 

α -

Glucosidas

e 

inhibitors 

 

They are starch 

blockers, reduces post 

meal glucose level 

 

 

1. Acarbose 

 

2. Miglitol 

 

Precose 

 

Glyset 

 

 

(Diabetes 

Medicines 

DIABETE

S TIPS, 

2018) 

 

DPP-4 

inhibitor: 

 

 

They inhibits the DPP-

4 enzyme and lowers 

blood glucose level 

 

 

1.Sitagliptin 

 

2.Saxagliptin 

 

3.Alogliptin 

 

4.Linagliptin 

 

Januvia,  

 

Onglyza, 

 

Nesina,  

 

Tradjenta 

(Informati

on on 

Dipeptidyl 

Peptidase-

4 (DPP-4) 

Inhibitors 

| FDA, 

2016) 

Sodium 

glucose 

co-

transporter 

2 (SGLT2) 

inhibitor  

This class of medicine 

reduces the blood 

sugar level by 

blocking the action of 

sodium glucose co-

transporter2. 

 

 

1.Dapagliflozin 

 

2.Canagliflozin 

 

3.Empagliflozin 

 

4.Ertugliflozin 

Farxiga,  

Invokana,  

Jardians 

Steglatro 

 

(Sodium-

Glucose 

Cotranspo

rter-2 

(SGLT2) 

Inhibitors 

| FDA, 

2018) 

 

FDA Approved Combined Drugs 

Table 2 lists some of the FDA approved combined drugs for the treatment of diabetes. 

 

Table 2: FDA approved combined drugs for diabetes treatment (Adapted from (Diabetes Medicines DIABETES 

TIPS, 2018; Insulin | FDA, 2019) 
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Brand name  Combination 

Humalog Mix 75/25, 

Humalog Mix 75/25 

KwikPen 

75% insulin lispro protamine suspension+25% insulin lispro 

injection 

Humalog 70/30 70% human insulin isophane suspension+30% human insulin 

injection 

Humalog Mix 50/50, 

Humalog Mix 50/50 

KwikPen 

50% insulin lispro protamine suspension+50% insulin lispro 

injection  

 

NovoLog Mix 70/30, 

NovoLog Mix 70/30 Flex 

Pen 

70% Insulin Aspart Protamine Suspension+30% IsulinAspart 

Injection 

 

 

Ryzodeg 70/30, FlexTouch 

 

70% Insulin Degludec+30% Insulin Aspart 

 

 

Humulin 70/30, 

Humulin 70/30 KwikPen 

70% NPH Human Insulin+30% Regular Human Insulin 

injection  

 

Novolin 70/30 70% NPH Human Insulin+30% Regular Human Insulin 

Injection 

ActoPlus Met,  

ActoPlus Met XR 

Pioglitazone + Metformin 

Avandamet Rosiglitazone + Metformin  

Avandaryl 

 

Rosiglitazone + Glimepiride 

Duetact Pioglitazone + Glimepiride  

Glucovance Glyburide + Metformin 

Glyxambi Empagliflozin and Linagliptin 

Invokamet,  

Invokamet XR 

Metformin + Canagliflozin 

 

Janumet,  

Janumet XR 

Metformin + Sitagliptin 

 

Jentadueto Metformin + Linagliptin 

Kazano Metformin + Alogliptin 

Kombiglyze, 

Kombiglyze XR) 

Metformin + Saxagliptin 

 



 

 

11 
  

Brand name  Combination 

 

Metaglip Metformin + Glipizide 

Oseni Pioglitazone + Alogliptin 

PrandiMet Metformin + Repaglinide 

Xigduo XR Metformin + Dapagliflozin 
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Chapter 5 

Drug Repurposing for Diabetes 

As already mentioned, among the chronic diseases, diabetes is one of the rapidly growing 

disease of the world. It can lead to serious pathological complications such as cardiovascular 

disease, retinopathy, and nephropathy. Thus, there is an urgent need for new preventive and 

therapeutic approaches to combat this disease. Despite the large amount of investment of 

pharmaceutical companies in the traditional drug discovery pipelines, improvement of new 

drugs has failed to keep up with the rising incidence of many diseases, particularly type 2 

diabetes (T2D). Moreover, drug development from traditional methods takes a lot of time, and 

the failure causes severe financial loss as well. Safety of anti-diabetics is also a major concern 

in the development stage of new drugs. In 2010, the European Medicines Agency (EMA) 

recommended suspending the use ofAvandiaof GSK since it was found to be a potential cause 

of heart attack. Similarly in 2013, Aleglitazar from Roche, was terminated in its Phase III 

clinical trial because of concerns for heart failure, bone fractures, and gastrointestinal bleeding. 

Moreover, the new antidiabetic drugs that have passed the initial stages of clinical studies, are 

still under the observation of FDA and EMA for their safety and efficacy. The extensive time, 

effort, and investment required to develop and market new, safer, more effective and affordable 

antidiabetics has led to exploration of novel approaches with lower risk of failure and greater 

assurance of safety. Drug repurposing is one such promising approach (Turner et al., 2016). 
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5.1 Steps in Drug Repurposing: 

The four main steps in drug repurposing are as follows:  

1. Compound identification 

2. Compound acquisition 

3. Development  

4. Registration   

It is evident that drug repositioning takes less time to discover a new compound. Drug 

repurposing takes approximately 3-12 years and costs approximately 300 million dollars 

(Pushpakom et al., 2018). On the other hand, the traditional discovery of a new molecule to be 

commercially marketed as a drug usually requires a longer time to get the safety and efficacy 

profile of a new drug (Hughes et al., 2011). It costs around 12 billion dollars, and takes 

approximately 10-17 years to identify and develop a therapeutic molecule, with the clinical 

trials being time consuming and costly (Parvathaneni et al., 2019). The advanced science and 

technology and available data regarding the candidate drugs help to accelerate the DR process. 

Moreover, the chance of failure is very less in this process of getting a new compound once the 
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DR process is completed with diligence (Allarakhia, 2013; G. Jin & Wong, 2014). Moreover, 

the development of repositioned drugs saves time and money. 

 

Figure 1: A Comparison between Traditional de Novo Drug Discovery and Development vs Drug Repositioning. 

Adapted from (TT & KB, 2004b). 

5.2Strategies of Drug Repurposing: 

On-target strategy and Off-target strategy are the main two Drug repurposing strategy. In On-

target strategy, by using the existing mechanism of a therapeutic molecule novel indications 

are identified. The biological target of the therapeutic molecule stays same in this strategy but 

the disease is different (Ferreira & Andricopulo, 2016; Rudrapal et al., 2020). The 

pharmacological mechanism in the Off-target strategy, remains unknown. Drug and drug 

candidates act on novel targets and new therapeutic indications that were not previously 

considered. As a result, the targets and the indications both are new (Ashburn & Thor, 2004; 

Rudrapal et al., 2020). 

. 
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Figure 2: Strategies of Drug repurposing. A) On Target Drug Repurposing Strategy and B) Off Target Drug 

Repurposing Strategy. Adapted from (Vogrinc & Kunej, 2017) 

5.3Approaches of Drug Repurposing 

According to the availability of information relating to pharmacological, toxicological, and 

biological activity, in terms of quantity and quality the methods of DR can be divided into three 

major categories. These are: 

i. Drug-oriented. In this process, properties of drug molecules such as adverse effects, 

structural characteristics, toxicities and biological activities are evaluated. 

Identification of molecules with biological effects that are based on animal or cell 

assays are done through this. In order to establish the biological efficacy of drugs, this 

methodology utilizes traditional pharmacology and drug discovery principles without 

the information of their biological targets. Such types of drug repurposing has been 

successful In this process, properties such as adverse effects, structural characteristics 

of drug molecules, toxicities and biological activities are evaluated. Identification of 
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molecules with biological effects that are based on animal or cell assays are done 

through this. In order to establish the biological efficacy of drugs, this methodology 

utilizes traditional pharmacology and drug discovery principles without the information 

of their biological targets. Such types drug repurposing has been successful 

ii. Target-oriented. This category of repurposing approach involves the in silico screening 

or virtual high-throughput screening (vHTS) of drugs or compounds derived from drug 

libraries or databases of compounds such as molecular docking. This is followed by the 

in vitro (ligand-based screening) and in vivo (high-throughput and/or high-content 

screening (HTS/HCS) of drugs) steps against a selective protein molecule ora 

biomarker of interest. As opposed to a drug-oriented method, this method has a higher 

rate of success in drug discovery, because the disease pathways/mechanisms are 

directly represented by most of the biological targets.  

iii. Disease/therapy-oriented: The availability of more information on disease model makes 

the application of the approaches relevant in drug repositioning. This category includes use 

of information such as genomics (disease specific genetic data), proteomics (disease 

specific target proteins), phenotypic data (pharmacological targets, off-target mechanism, 

pathological conditions, disease pathways, adverse and side effects etc.) and metabolomics 

(disease specific metabolic pathways/profile) regarding the disease process. Thus, it 

necessitates building of specific disease networks, recognition of expression of genetic 

profiles, consideration of key targets, identification of protein molecules that causes disease 

in the cell and metabolic pathways of the disease model.  

5.3.1 Computational Approaches 

In silico repositioning screens publicly available databases of huge chemical or drug libraries 

virtually by using tools such as bioinformatics or cheminformatics and computational biology 
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tools. This method identifies bioactive molecules which have the potential to be repurposed 

depending on the molecular interaction between the drug and protein target. 

The computational approach has become very popular with a remarkable rate of success in 

drug discovery programs over the past few decades. Due to the abundance of information on 

chemical structures of bioactive compounds, proteins and pharmacophores in the public 

domain, a large number of drug discovery research laboratories and pharmaceutical companies 

have integrated the computational techniques and tools. 

Computational approaches are mostly driven by data. They systematically analyze data of any 

type such as proteomic data, gene expression, chemical structure genotype or electronic health 

records (EHRs). These analyzed data can then pave the path to the formulation of repurposing 

hypotheses (Hurle et al., 2013). Computational approaches that are frequently used in drug 

repurposing are as follows. 

• Signature Matching: This approach compares the distinctive or "signature" features of a drug 

with the unique qualities of another disease, drug or clinical phenotype (H. H et al., 2006; MJ 

et al., 2009). Three forms of data might be used to derive characteristics of a drug: proteomic, 

metabolomic or transcriptomic data proteomic, chemical structures; or profiles of adverse 

events. Comparison of drugs with disease (estimation of drug similarity – similarities with 

disease) and comparison of other drugs (drug similarity – drug similarity) is used for matching 

transcriptome signatures. In the first example, a particular drug having the transcriptomic 

signature might result from a comparison between the genetic profile of biomaterial, such as 

cell or tissue, before and after effect comparison of the therapy (F et al., 2013; JT, T, et al., 

2011). Disease association gene expression is analyzed by the analysis of diseased condition 

against healthy condition then this is compared with the molecular signature of the drug. If the 

drug down regulates the upregulated gene in the disease condition, then the drug would be 
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considered as potential treatment of the disease.  The degree of medication-related genes 

regulated up in the disease (i.e. a negative connection between the gene expression and 

medication's signature and that of the disease) would therefore enable us to determine whether 

or not this medicine may be a cure for the disease  (JT, M, et al., 2011; S. M et al., 2011). This 

computational approach is based on the principle of signature reversion principle (SRP), when 

a drug reverses the expression motif of a certain set of genes characterized by a particular 

phenotype of the disease which is close to the healthy phenotype then the drug possibly could 

reverse the diseased phenotype itself. Even if this theory is simple, this principle is used for 

metabolic conditions and has been successful and has shown considerable effectiveness in the 

new drug repurposing prospects in a variety of therapeutic areas (S. E et al., 2015). By drug-

drug similarity approach, similarity of pathways and mechanism of different pharmacological 

classes drugs can be identified and novel mode of action of a particular drug can be identified 

too. Moreover, by this principle, novel targets of existing drugs and off target therapeutic 

indications can be identified too.   If two drugs show similarity of transcriptome signatures, 

they also have a therapeutic indication, even though the chemical structures differ (F et al., 

2010). 

 Both methods of drug-disease similarity or drug-drug similarities include combining 

transcriptomic markers and relying significantly on data on gene expression that is accessible 

to the public. Nonetheless, another form of signature matching employed in the repurposing of 

drugs compares one drug with the other in order to recognize the existence of chemical 

similarities between drugs, therefore implying a common biological activity between these two 

drugs (TI et al., 2007). There are drawbacks of approaches to chemical similarity: physiological 

and chemical structures may have errors (JT, T, et al., 2011). 



 

 

19 
  

Last but not least, any drug's adverse effects profile may be utilized as a proxy for its phenotype. 

It is hypothesized that if these two drugs have the same adverse effects, they may operate in 

the same target or protein, or in the same pathway (JT, T, et al., 2011). The adverse effect 

phenotype of a specific drug can also be similar to the phenotype of a disease. This would 

imply that the physiology and pathway for this drug and disease are common (Pushpakom et 

al., 2018). 

• Computational Docking: Molecular docking is a computational method based on structure 

that anticipates the interaction between a ligand such as a drug and a target like a receptor (DB 

et al., 2004). If information is available on a receptor target, various drugs can be explored for 

that target. This is called conventional docking. On the other hand, drug libraries can be utilized 

to identify a ligand for numerous targets. This is called inverse docking. Even with the 

advantages, this approach has some inconvenience. First, as pharmacological targets generally 

consist of several proteins, such as G-protein-coupled (GPCR) receptors, it is not always 

possible to achieve their 3D structures, although significant progress was achieved in GPCR 

crystallography (RM et al., 2015). 

Second, there is a challenge of getting correct structural information due to the lack of well-

curated macromolecular target database sources (PS et al., 2014). Even though this can be 

overcome by the passing time and improvement (GL et al., 2006). Finally, it has been 

questioned about the efficacy of docking methods to predict binding affinity yet, although it’s 

improving, differences may still be found across various software packages, and some 

prediction constraints are still there (NS et al., 2017; Pushpakom et al., 2018). 

• GWAS: GWAS (Genome wide association studies) identify genetic variants of common 

diseases. These data further are used to identify disease biology, disease phenotype, novel 

targets which helps in drug repurposing (Sanseau P et al., 2012). But the use of GWAS 
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information for repositioning drugs is challenged, and its usefulness is now unclear. In gene-

rich regions GWAS findings with high linkage imbalances can make In GWAS studies it can 

be challenging to identify causal and/or gene variants because GWAS signals in gene-rich 

regions with strong and might cause disequilibrium (Sanseau P et al., 2012). Another problem 

is the absence of data on the gene variant's direction of action; functional tests will need to be 

carried out to determine if the disease is controlled by an activator or suppressor. GWAS data 

do not provide comprehensive pathophysiological information, and therefore, before 

repurposing targets, doing a rational use of GWAS data is necessary (ZY & HY, 2013). It 

should also be mentioned that the human genome's present knowledge is not definitive, and 

many more novel genes might be found (W. C, 2018). 

• Pathway or Network Mapping: Pathway based methods or network-based approaches have 

been utilized to discover drugs or pharmacological targets that might perhaps be repurposed 

(SB et al., 2012). As mentioned, while certain prospective targets identified by GWAS or by 

other methods may be immediately accessible, these genes might not be the ideal targets for 

pharmaceutical drug use. In certain instances, a pathway-based method might give information 

about genes downstream or upstream of the GWAS-related target which can be used for 

repurposing opportunity (CS & BF, 2016). On the other hand, network analysis includes 

building networks of drug/disease based on patterns of gene expression, disease pathology, 

protein interactions and GWAS data to help identify potential drug repurposing applicant. To 

efficiently identify potential drug repurposing candidate network-based approach and GWAS 

are combinedly done in some experiments and shows better result (Pushpakom et al., 2018). 

• Ligand Based Approaches: The idea that similar compounds have similar biological features 

is used for ligand-based methods. These approaches are widely utilized in the field of drug 

repurposing to assess and predict ligands' activities for new targets.  Bioactive public databases 
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like DrugBank, ChEMBL and PubChem contain information that has been collected from 

literary data (G. A et al., 2017; DS et al., 2006; W. Y et al., 2017). These databases contain an 

enormous and ever-growing stock of biological and chemical data, such as binding affinity, 

cellular function, and Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) 

properties. This information is used for comparing similarity and the activity of potential drugs 

for repurposing. Moreover, recent progress in drug repurposing has included the publication of 

repurposed pharmaceuticals, failed drugs, and therapeutic indications of these treatments and 

data on bioactivity (AS & CJ, 2017b; S. K et al., 2018). One benefit of the use of these drug 

repurposing techniques is the fact that the number of compounds that are publicly available 

(more than 100 million supplied alone by PubChem) is far higher than the number of placed 

protein crystal structures (under 150,000 now in Protein Data Bank) (HM et al., 2000; W. Y et 

al., 2017). Ligand-based approaches, on the other hand, plainly depend on the chemical space 

coverage of the known compounds. Moreover, the great overall similarity does not always 

ensure activities on a secondary target (Stumpfe D & J, 2012). However, the rise in structural 

variety in biological databases will ultimately overcome this limitation (March-Vila et al., 

2017; H. Y & J, 2013). 

• Retrospective Clinical Analysis: A systemic strategy is now widely advocated for clinical 

data analysis to discover potential for drug repurposing (PB et al., 2012). Different sources, 

including clinical data, post marketing surveillance, Electronic Health Reports (EHRs), can be 

used to provide retrospective clinical evidence. EHRs include a vast number of structured and 

unstructured patient outcome data. The pathophysiological and diagnostic information, 

including the results of laboratory tests, and the prescription of medicinal products, is more 

structured. However, there are significant amounts of unstructured information such as clinical 

descriptions and imagery of patient symptoms that is important to define the phenotype of 

disease. This quantity of data in EHRs may be utilized to discover signals for repurposing drugs 
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(Karaman & Sippl, 2018). The vast number of EHR data also gives high statistical power. The 

United Kingdom Clinical Practice Research Datalink (CPRD), the European Medicines 

Agency (EMA) yellow card, the FDA Adverse Event Reporting System (FAERS), and the 

World Health Organization (WHO), global adverse drug reaction database (VigiBase) are 

important sources of data which can be used for further potential drug repurposing 

analyses.  However, there are still considerable problems in obtaining and utilizing EHR data, 

including ethical and regulatory constraints limiting data access and making it difficult to 

extract unstructured information from the databases. The development of greater research 

capabilities in EHR databases can increase their usefulness for different downstream 

applications such as drug repurposing. Two additional major large data sources are post market 

surveillance data and clinical trial data. However access to these data might be restricted for 

commercial or confidential purposes. However, it is becoming increasingly clear that opening 

up access to this wealth of knowledge might contribute to future research into drug 

development and repurposing. In October 2016, the EMA started to provide direct public 

access to data from pharmaceutical firms provided by the clinical trials. This data may be 

utilized by academics and researchers for independent reanalysis and drug repurposing 

guidelines (Pushpakom et al., 2018). 

• Novel sources of data: Cancer cell lines (CCLs) were utilized to assess their effects on cell 

survival in high-performance drug screens for hundreds of (both authorized and experimental) 

compounds (JN, 2012; YH & CR, 2016). Several studies have combined the pharmacological 

data sets produced by these screens with an extensive genomic characterization for the CCLs 

tested so that interactions between the molecular characteristics of cell and drug response may 

be identified (B. A et al., 2013; S.-L. B et al., 2015; F et al., 2016). It is a new resource to 

discover drug repurposing possibilities by using these data sets that are accessible to public 

combining linked genome and pharmacological data available on large panels of CCLs. 
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Naturally, CCLs are imperfect models: they might contain molecular changes that offer the in 

vitro culture selection advantages and could be biased towards specific molecular subtypes. 

However, despite these constraints, studies have demonstrated that assessing and identifying 

pharmacogenomic interaction helps to reiterate biomarkers which already exist in clinical use 

and by combining these data with clinical data will help to identify therapeutic genomic 

indicators. CCL studies also investigate genomic alterations of primary tumors based on 

clinical prevalence, and these vast data can be used further for drug repurposing (F et al., 2016). 

Of note, several of the novel pharmacogenomic interactions found were specific for tissue-type 

malignancies and involved medicines currently in clinical use in other diseases as well as in 

other tissue-type cancers. So, it is evident that data from such studies might be utilized in order 

to discover potential for repurposing drugs. Another frontier in speeding the repurposing 

research on drugs might be EHR-linked big DNA biobanks. Advances in sequencing 

technology allow enormous amounts of extensive genetic data from many people to be 

collected that might be beneficial for the repurposing of drugs, particularly for diabetes. 

However, the nature of large-scale data from these initiatives and from the usage of other high-

performance technologies offers significant analytical problems as well as successful 

application, both in the discovery and repositioning of novel drugs (Pushpakom et al., 2018). 

Figure 3: Computational Approaches of Drug Repurposing 
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Experimental Approach 

The experimental approach is sometimes called activity-based repositioning referring to the 

screening of original drugs on the basis of tests and experimental assays for new 

pharmacological indications. This includes cell/organism-based and protein target-

based screens in in-vivo or in-vitro models of diseases, without the need for any structural 

knowledge on objective of target proteins. Many experimental repositioning techniques are 

animal model, clinical approach, cell assay and target screening. 

• Binding Assay  

Binding assay is used to identify target interactions. Usually, proteomic techniques like mass 

chromatography and affinity chromatography are used. With this approach, binding targets and 

binding affinities of numerous drugs are identified. The drug-target stability is also assessed 

with this approach. For instance, when a compound binds with a target at its highest affinity, 

the thermal stability of the targeted protein can be determined by cellular thermostability assay 

(M. M. D et al., 2013). Moreover, by using chemical genetics, it gets easier to understand the 

relationship between therapeutic compound’s binding and efficacy with their target and off-

targets (DA et al., 2010; Pushpakom et al., 2018). 

• Phenotypic Screening 

Phenotypic screening can discover related to disease in model systems having no former 

understanding of the targets (JG et al., 2017). Phenotypic assays are tests that include cells or 

tissue collected from an experimental animal or people.  Clinical observations and in-vitro–in-

vivo models can be used to identify new drugs and new indications of approved drugs (Kim, 

2015). For instance, it may include screening a chemical library against cell lines to observe 

cellular response; and identifying the compounds that effectively change the phenotype 



 

 

25 
  

followed by disease condition and mechanism of action (Lage et al., 2018). Robotic screening 

platforms and extremely sensitive detection devices are utilized to swiftly screen huge chemical 

libraries to discover new indications for approved drugs. The evaluation of a series of drugs in 

a variety of separate models with the goal of determining effectiveness in one or more of the 

evaluated models demonstrates the critical requirements for successful drug repurposing 

(Reaume, 2011; V et al., 2019). 

. 

 

Figure 4: Experimental Approaches of Drug Repurposing 

Nonetheless, in silico repositioning provides several advantages over the experimental-based 

approach, such as decreased development time and cost, as well as a low chance of failure.  

Currently discovery scientists and researchers have used a hybrid strategy that combines in 

silico and experimental approaches to uncover novel therapeutic indications for existing drugs. 

The results of computational techniques are confirmed by pre-clinical biological investigations 
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(in vivo and in vitro trials) and clinical studies in the combined approach. The systematic use 

of computational and experimental techniques offers a rigorous and rational approach to the 

identification of novel indications, exhibiting better efficiency than serendipity-based 

discovery. Furthermore, the mixed approach allows for the development of repurposed drugs 

in a more efficient and timely manner. This method is both credible and reliable. Table 3 

contains some of the commonly used disease and drug centric databases for drug repurposing. 

Table 3: Commonly used Database for Drug Repurposing 

Database Description Reference  

ADReCS 

 

System Toxicology and drug safety assessment in silico. 

137,619 Drug-ADR pairings are given in this database. 

(Cai MC et 

al., 2015) 

ChEMBL 

 

64 million chemical structures are stored in the database. (G. A et al., 

2012) 

ChemSpider A database of chemical structure, 6400 chemical structure 

included 

(AJ, 2008) 

Clue (L1000 

Platform)  
 

Dataset of human cell transcriptional responses to chemical 

genetic and chemical perturbation.There are 1.2 million 

L1000 tools and profiles for analyzing them. 

(S. A et al., 

2017) 

Comparative 

Toxicogenomics 

Database  

This database includes gene-disease, drug-disease drug-

gene, and gene-gene associations. 

(CJ et al., 

2003) 

DGIdb Annotations of drug genes, interactions, and prospective 

drug abilities are stored in a database. 

(G. M et al., 

2013) 

DrugBank There are 11,000 medication entries in total, with each item 

containing chemical information and pharmacological 

targets of more than 200 fields. 

(DrugBank 

- PubChem 

Data 

Source, 

2021) 

Drug-Central  Includes drug mechanism of action, chemical entities, 

indications, active ingredients, and pharmacologic 

information 

(O et al., 

2017) 
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Database Description Reference  

e-Drug3D   e-Drug3D allows users to investigate FDA-approved 

medicines and active metabolites. 

(P. E et al., 

2012) 

 GDSC- 

Genomics of 

Drug Sensitivity 

in Cancer 

Includes anti-cancer drugs screenings >1000 genetically 

defined human cancer cell lines 

(Y. W et al., 

2013) 

Open Targets 

Platform  

Includes robust and comprehensive data integration 

allowing access to and display of possible disease-related 

pharmacological targets 

(K. G et al., 

2017) 

PharmGKB A collection of genetic variations on curates’ drug response (H. M et al., 

2002) 

pkCSM Prediction of small-molecule pharmacokinetic (ADMET) 

characteristics using SMILE data 

(DE et al., 

2015) 

Project Achilles A genome-wide database of tumor dependenciesto identify 

vulnerabilities linked with genetic and epigenetic changes. 

(GS et al., 

2014) 

Promiscuous  The database includes three categories of entities - drugs, 

proteins, and the side effects and relationships between 

them. 

( von E. J et 

al., 2011) 

PubChem  PubChem includes the chemical information for over 90 

million chemicals, as well as their bioactivities, protein 

targets and gene 

(Kim S et 

al., 2016) 

SIDER  Information about marketed medications and adverse drug 

reactions 

(K. M et al., 

2016) 

STITCH  68,000 compounds, interactions, and over 1.5 million 

proteins in 373 species are recorded. 

(K. M et al., 

2008) 

SuperPred A website that predicts ATC codes and compound targets. (D. M et al., 

2008) 

Therapeutic 

Target Database 

(TTD)  

A dataset that gives the known and investigated therapeutic 

protein and nucleic acid targets, disease and pathway 

information, and the drugs directed at each of these targets. 

(C. X et al., 

2002) 

Toxin and 

Toxin-Target 

A database of 3673 toxins, that includedrugs, pollutants, 

pesticides, and food toxins, characterized by 41,733 

(W. D et al., 

2015) 
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Database Description Reference  

Database 

(T3DB)  

synonyms and connected to 2087 related toxin target 

records. 

Human Protein 

Atlas  

It is composed of three parts, showing the distribution of 

proteins in all major organs and tissues of the human 

body.The Cell Atlas shows the subcellular localization of 

proteins in single cells, whereas the Pathology Atlas 

indicates the impact of protein levels on cancer patient 

survival rates. 

(U. M et al., 

2015) 

KEGG Medicus  Database collection including information on genomes, 

chemical compounds, disease drugs and biological 

pathways. 

(O. H et al., 

1999) 

Allen Brain 

Atlas  

Maps of gene expression in the mouse and human brains (S. SM et 

al., 2013) 

ArrayExpress Data about microarray gene expression at the EBI. (P. H et al., 

2005) 

CCLE  Over 1100 cancer cell lines' mRNA expression and 

mutation data are stored in the database. 

(B. J et al., 

2012) 

COSMIC   Catalogue of cancer-causing somatic mutations (SA et al., 

2015) 

dbGAP Catalogue of cancer-causing somatic mutations (MD et al., 

2007) 

dbSNP Single nucleotide polymorphism database (ST et al., 

2001) 

dbVar Public archives for genomic structural variation (I et al., 

2013) 

DisGeNET Human disease-associated genes and variants database (P. J et al., 

2015) 

ENCODE   A comprehensive list of functional components in the 

human genome, consisting database. 

(E. D et al., 

2013) 

Genomics Data 

Commons  

Cancer Datasets Harmonized with 40 cancer mutated gene 

projects, 22,147 genes, and 3 million mutations 

(RL et al., 

2016) 
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Database Description Reference  

GEO  Dataset of high-throughput gene expression (T et al., 

2005) 

GTex A list of genetic variants and their effects on gene 

expression. 

(“The 

Genotype-

Tissue 

Expression 

(GTEx) 

Project,” 

2013) 

Human 

Proteome Map  

Massive peptide sequencing findings are available as an 

interactive resource. 

(MS et al., 

2014) 

ICGC  Dataset including over 17,000 cancer donors from 76 

studies and 21 tumor locations. 

(J. Zhang et 

al., 2011) 

IGSR  Data usability and expansion from the 1000 Genome 

Project 

(C. L et al., 

2017) 

Orphadata Rare diseases, drugs, and genes linked with them (Aymé S & 

J, 2007) 

Roadmap 

Epigenomics  

Maps for stem cells and primary ex-vivo tissues selected to 

reflect the natural equivalents of tissues and organ systems 

commonly implicated in human disease. 

(BE et al., 

2010) 

STRING  Protein-Protein Interactions, Networks, and Analysis (Szklarczyk 

D et al., 

2011) 

 

Some commonly used tools and web-servers used in drug repurposing are listed in Table 4. 

Table 4: Common tools and web-servers used in drug repurposing 

Tool Description Reference 

Clue  Used for searching for perturbagens (small 

chemicals or genes), L1000 cohorts, and heatmap 

display of gene expression 

(S. A et al., 2017) 
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Tool Description Reference 

Clue Repurposing 

Tool  

Annotations on authorized and pre-clinical drugs 

can be accessed using an interactive application 

with this too. 

(C. SM et al., 

2017) 

COGENA  Gene expression profile analysis, visualization, and 

grouping tool 

(Z et al., 2016) 

DeepChem Toolkit for drug discovery and cheminformatics 

based on deep-learning 

(A.-T. H et al., 

2017) 

DR.PRODIS Used for predicting drug-protein interactions and 

adverse reactions 

(Z. H et al., 2015) 

e-LEA3D  Tools for computer-aided drug design (D. D, 2010) 

Frog2  Small compound 3D creation from 1D/2D input 

using a chemo-informatics toolbox 

(MA et al., 2010) 

GIFT Gives drug-target interactions, infer 

chemogenomic characteristics 

(Z. S et al., 2015) 

GoPredict Used for breast and ovarian cancer drug target 

prioritization 

(R et al., 2016) 

JOELib/JOELib2  A toolkit for converting chemical file formats, 

descriptor calculation classes, and substructure 

searching 

(S. C et al., 2003) 

ksRepo Using gene expression drug datasets from diverse 

platforms, a method for repositioning drugs 

(AS et al., 2016) 

L1000CDS  Search engine for gene expression signatures based 

on the L1000 dataset 

(D. Q et al., 2016) 

MANTRA  Analysis and prediction of pharmacological 

mechanism of action in the context of repositioning 

(C. D et al., 2014) 

NFFinder Used to identify genes that are up- or down-

regulated can be used to find medications that are 

comparable. 

(S. J et al., 2015) 

Open babel  A chemical toolkit available for free (NM et al., 2011) 

Open PHACTS  An RDF-based data model for semantic integration 

of pharmaceutical data has been sponsored by the 

European Union. 

(AJ et al., 2012) 
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Tool Description Reference 

Biovista Framework for discovering gene-protein 

interactions. 

(A. C et al., 2011) 

Alibaba A tool for fitting a PubMed search as a graphical 

network. 

(P. C et al., 2006) 

ChemMapper 3D similarity (chemotype characteristics and 

molecular shape) calculating software. 

(Gong et al., 

2013) 

ChemProt 3.0 Tool for identifying 2D similarity  (Taboureau et al., 

2011) 

HitPick Tool used for 1NN similarity search (Liu et al., 2013) 

iDrug-Target Tool that uses Fingerprint-based approach with 

machine learning 

(Xiao et al., 2015) 

Polypharmacology 

Browser (PPB) 

Tool that uses multi fingerprint-based approach. 

Ten different fingerprints 

(Awale & 

Reymond, 2019) 

Similarity 

ensemble 

approach (SEA) 

Tool that uses 2D similarity-based approach (MJ et al., 2007) 

SwissTarget-

Prediction 

Combination of 2D and 3D similarity approach (G. D et al., 2014) 

TarPred KNN-based data fusion with 2D fingerprint-based 

similarity 

(L. X et al., 2015) 

TargetHunter Tool that uses 2D similarity-based approach (W. L et al., 2013) 

idTarget Divide-and-conquer-based docking approach (JC et al., 2012) 

PDID Predictions generated using ILbind, SMAP and 

eFindSite 

(K. A et al., 2006) 

TarFisDock Reverse ligand-protein docking approach (L. H et al., 2006) 

Balestraweb PMF method (Cobanoglu MC 

et al., 2015) 

CSNAP Tool that uses CSN-based approach (Y. Y et al., 2010) 

DASPfind Tool that uses Network-based approach (B.-A. W et al., 

2016) 

DT-Web Tool that uses Recommendation-based approach (Alaimo S et al., 

2015) 
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Tool Description Reference 

PROMISCUOUS This tool has a new network-based approach to 

target–target and drug–target interactions as well as 

side effects in the works. 

( von E. J et al., 

2011) 

SLAP Tool for prediction using Semantic Link 

Association 

(Chen B et al., 

2012) 

ProBis The Fast Maximum Clique Algorithm tool. (K. J & D, 2012) 

PoSSuM All-pairs similarity finding tool (I. J et al., 2015) 

DrugE-Rank Tool that uses feature-based and similarity-based 

approach 

(Y. Q et al., 2016) 

SPiDER Self-organizing map-based prediction tool (R. D et al., 2014) 

MeSHDD Tool to find drug– drug similarity (AS & CJ, 2017a) 

RE:fine drugs Tool to findgene disease interaction and drug– 

protein interaction 

(M. S et al., 2016) 

CMap Tool for identification of gene expression profiles 

that are associated with drug sensitivity 

(S. A et al., 2017) 

DeSigN Global baseline DEGs to drug response (BK et al., 2017) 

PDOD Tool to predict drugs with opposing effects on 

disease genes 

(Y. H et al., 2016) 
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Chapter 6 

Drugs for Treatment of Diabetes Epidemic 

6.1 Drugs Approved by FDA 

The following section discusses the two FDA approved repurposed drugs that can be usedin 

the treatment of diabetes. 

1. Colesevelam (Brand name Welchol) 

It is a bile sequestering agent. It was mainly used for hyperlipidemia to decrease the increased 

level of low-density lipoprotein cholesterol (LDL-C). Colesevelam is now repurposed for type-

2 diabetes mellitus. It got FDA approval in 2008 as anti-diabetic.  

The mechanism of colesevelam to decreases blood glucose levels in patients with T2DM is 

unknown. However, there is growing evidence that bile acid sequestrants' glycemic effects are 

mediated by fibroblast growth factor-19, liver X receptor, farnesoid X receptor (FXR/bile acid 

receptor), and TGR5-mediated effects on intestinal glucose absorption and/or hepatic glucose 

metabolism, as well as effects on peripheral insulin sensitivity, incretin effects, and energy 

homeostasis. The gene expressions required in gluconeogenesis, such as phosphoenolpyruvate 

carboxy kinase and glucose-6-phosphatase, has been demonstrated to be reduced when FXR is 

activated by bile acids. FXR may also influence hepatic glucose synthesis while fasting and 

hepatic glucose utilization postprandially (D.-S. D et al., 2005; Y. K et al., 2004; L. P et al., 

2009). The effects of changes in the bile acid pool in T2DM on FXR activation are still being 

studied. Emerging evidence suggests that FXR modulators play a partial regulatory role in 

peripheral insulin sensitivity, implying that FXR may have a future role in the treatment of 

insulin resistance and T2DM (Cariou B et al., 2006; M. K et al., 2006; Z. Y et al., 2006). Bile 
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acids have been demonstrated to increase glucagon-like peptide-1 (GLP-1) secretion via the G-

protein-coupled receptor TGR5 activation, suggesting that they may influence incretin release 

(T. C et al., 2008; Katsuma S et al., 2005). Despite these gains, more research is needed to 

establish the exact mechanism underlying bile acid sequestrants influence on glucose 

metabolism in T2DM patients (Fonseca et al., 2010). 

 

Figure 5: Potential Mechanism of Action of Colesevelam for Diabetes. Adapted from (Ramírez-Pérez et al., 

2017). 

Signature matching (Drug-drug) were used in the early development stage for repurposing 

colesevelam. Colesevelam was compared with first generation bile acid sequestrants. 

Afterwards, clinical trials and other experimental approaches were used in the process of 

repurposing.  
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Table 5 contains the summary of all the clinical trials of colesevelam carried out to date. 

Table 5: Clinical trials of Colesevlam 

Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment and 

duration 

Result Reference  

 

Study 1 

 

Type 2 

diabetes 

 

316 

 

All gender 

18-75 years 

 

Colesevelam 

hydrochloride 

metformin 

For 26 weeks 

 

Lowered 

HbA1c 

level 

compared 

to placebo 

(-0.54%) 

 

Lowered 

Hba1c(-

0.62%) by 

combinati

on with 

metformin 

 

Lowered 

plasma 

glucose 

level (13.9 

mg/dL) 

 

(Bays et 

al., 2008) 

Study 2 Type 2 

diabates 

461 All gender 

Age:18-75 

years 

Colesevelam 

hydrochloride 

with sulfonylurea  

And placebo 

For 26 weeks 

Lowered 

A1c from 

baseline (-

0.32%), 

and 

increased 

in 

placebo(0.

23%) 

 

Lowers 

LDL 

cholestero

l  

(Fonseca 

et al., 

2008) 
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Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment and 

duration 

Result Reference  

Study 3 Type 2 

diabetes 

287 All gender  

Age 18-75 

years 

Colesevelam and 

placebo 

For 16 weeks 

Glycated 

hemoglobi

n level 

from 

baseline to 

week 16 

was found 

to be -

0.41% 

(0.07%) 

for the 

colesevela

m-treated 

group, and 

0.09% 

(0.07%) 

for the 

placebo 

group 

 

Reduced 

fating 

glucose 

level 

 

Reduced 

LDL 

cholestero

l 

(Goldberg 

et al., 

2008) 

Study 4 Type 2 

diabetes 

236 All gender 

Age:10 to 17 

years 

-Colesevelam in 

high dose 

-Colesevelam 

low dose 

For 52 weeks 

HbA1c 

≥0.7% or 

≥0.5% 

from 

baseline, 

and/or 

reduction 

in FPG 

≥30 

mg/dL 

from 

baseline 

(Colesevel

am for 

Children 

With Type 

2 Diabetes 

- Full Text 

View - 

ClinicalTr

ials.Gov, 

2011) 



 

 

37 
  

Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment and 

duration 

Result Reference  

Study 5 Type 2 

diabetes 

61 All gender 

Age:18-80 

years 

Drug: 

Colesevelam 

Drug:Sitagliptin 

For 12 weeks 

Fasting 

glucose 

level 

reduced (-

.8% 

mol/l)) for 

colesevela

m treated 

patients 

and (-

0.6%mol/l

) reduced 

in 

combined 

therapy 

 

Fasting 

gluconeog

enesis in 

colesevela

m treated 

patient 

(0.2uol/kg

) 

And (-

0.3% 

umol/kg) 

in 

combined 

therapy 

 

Postprandi

al 

Endogeno

us 

Glucose 

Productio

n in 

colesevela

m treated 

patient (-

0.1) and (-

0.2) for 

combined 

therapy 

 

Reduced 

post 

prandial 

insulin, 

glucagon, 

postprandi

al GLP-1, 

fasting 

insulin 

compared 

(FJ et al., 

2007)  
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Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment and 

duration 

Result Reference  

to the 

combined 

therapy 

with 

sitagliptin  

Study 6 Type 2 

diabetes 

38 All gender  

Age: 35-70 

years 

Drug: 

Colesevelam, 

Placebo 

Metformin 

For 12 weeks 

Increased 

Glp-1 in 

colesevela

m treated 

group than 

placebo 

 

Decreased 

plasma 

glucose 

concentrat

ion, 

HbA1c 

level, 

insulin 

concentrat

ion in 

colesevela

m treated 

(S. G et 

al., 2013) 
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Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment and 

duration 

Result Reference  

group than 

placebo 

Study 7 Type 2 

diabetes 

357 All gender 

Age: 18 years 

and above 

Drug: Welcol, 

placebo 

For 24 weeks 

HbA1c 

decreased 

(0.41%) 

for 

welchol 

treated 

group and 

(0.14%) 

decreased 

in placebo 

treated 

 

Fasting 

plasma 

glucose 

decreases 

(-

4.6mg/dl) 

and in 

placebo 

treated 

group it 

increased 

5.7 mg/dl  

(R. J et al., 

2014) 

 

2. Bromocriptine (Brand Name Cycloset) 

Bromocriptine is a dopamine receptor agonist. Its main indication is hyperprolactinemia-

associated dysfunctions, acromegaly and Parkinson disease. Bromocriptine was FDA approved 

in 2009 for treating type 2 diabetes. 

While examining the metabolism of migratory birds, the idea of utilizing bromocriptine to treat 

type 2 diabetes arose. They exhibited seasonal variations in body fat storage and insulin 

sensitivity, according to the researchers. The temporal interaction of circadian neuroendocrine 

oscillations controls body fat storage and insulin activity in vertebrates. When food supply is 

scarce during hibernation, migration, and overwintering, many vertebrate species acquire 

obesity and insulin resistance (IR). The basal lipolytic activity accelerates during the shift to 

this insulin-resistant state, sparing glucose use by peripheral tissues and favoring fat oxidation 
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becomes predominant. During lengthy periods of winter food scarcity, hepatic glucose 

synthesis and gluconeogenesis increase to provide glucose to the CNS (RI et al., 2010). It’s a 

tactic of their winter survival.   Animals revert to the insulin-sensitive / glucose-tolerant phase 

towards the ending of the season and become slim. Dopamine levels are low when they are 

insulin-resistant, but they rebound to normal once they're back in the insulin-sensitive 

condition. In insulin-resistant animals, intracerebral bromocriptine treatment reduces increased 

VMH noradrenergic and serotonergic levels, resulting in improved insulin sensitivity and 

decreased plasma glucose and adipocyte lipolysis (AH et al., 1993; L. S et al., 1998, 1999b; M. 

Zhang et al., 2015). 

Insulin resistance development in animals throughout these seasons of seasonal shift closely 

resembles the changes seen in people with type 2 diabetes and insulin resistance syndrome. 

Reduced hypothalamic dopaminergic tone may be implicated in the development of insulin 

resistance, according to research (Defronzo RA, 2011; DeFronzo RA & E, 1991).  

Because of the ample calorie intake year around, the typical circadian cycle that results in a 

slimmer body in the summer and a heavier body in the winter is altered in humans, resulting in 

the lack of a lean phase. It's thought that type 2 diabetics experience a morning decrease in 

dopaminergic tone, which leads to greater sympathetic activity (Kalra S et al., 2011). Plasma 

prolactin concentrations in lean, normal, glucose-tolerant, insulin-sensitive individuals peak at 

night, during sleep  (L. S et al., 1999a).  

Insulin-resistant people had higher daytime plasma prolactin levels than non-insulin-resistant 

people, which is associated with lower dopaminergic tone. Bromocriptine mesylate, a 

sympatholytic dopamine D2 receptor agonist with inhibitory effects on serotonin turnover in 

the central nervous system, is an ergot derivative. Quick-release Bromocriptine, taken once a 

day, is thought to reset the circadian clock, which has been locked in a winter rhythm for a long 

time. This indicates that in insulin-resistant individuals, the excessively high hypothalamic 
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drive for increased plasma glucose, triglycerides, and free fatty acid levels is reset in fasting 

and postprandial states (Defronzo RA, 2011; Shivaprasad & Kalra, 2011). 

 

Figure 6: Potential Mechanism of action of Bromocriptine for diabetes. Adapted from  (DeFronzo, 2011) 

It was serendipitously discovered while studying hibernation of seasonal birds. Then other 

experimental models, phenotypic screening was used to identify the effect of Bromocriptine 

for glycemic control. Then pathway mapping for dopaminergic pathways was also done along 

with several clinical trials.Table 6 contains the summarized clinical trial results of 

Bromocriptine that have been carried out to date. 
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Table 6: Clinical Trials of Bromocriptine 

Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment Result Reference  

Study 1 Type 2 

diabetes 

3095 All gender 

Age:30-80 

Drug: 

Closet 

Drug: 

antidiabetics 

plus placebo 

For 52 weeks 

In 

bromocr

iptine 

administ

ered 

group 

8.6% 

reported 

for 

severe 

adverse 

effect 

compare

d with 

9.6% in 

placebo 

group.  

-some 

people 

reported 

CVD 

 

Nausea 

was the 

most 

reported 

adverse 

effect 

for 

bromocr

iptine 

group 

(Gaziano 

et al., 

2010) 
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Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment Result Reference  

Study 2 Type 2 

diabetes 

15 All gender 

Age: 30-65 

years 

Bromocriptin

e with insulin 

and 

metformin 

For 24 weeks 

In 

metform

in+ 

insulin 

administ

ered 

group 

HbA1c 

percenta

ge was 

9.47 and 

with 

bromocr

iptine it 

was 7.98 

 

No 

severe 

adverse 

effect 

reported 

(QR-

Bromocrip

tine as an 

Adjunct to 

Insulin 

and 

Metformin 

in the 

Treatment 

of Type 2 

Diabetes - 

Full Text 

View - 

ClinicalTr

ials.Gov, 

2011)  

Study 3 Type 2 

diabetes  

1791 All gender 

Age 30-80 

Drug: 

bromocriptin

e 

Drug: 

Antidiabetics 

and placebo 

CVD 

events 

occurred 

1.3% in 

bromocr

iptine 

treated 

group  

And 

3.1% in 

placebo 

treated 

group 

 

Glycemi

c control 

evaluate

d 

(Chamarth

i et al., 

2016) 
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Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment Result Reference  

Study 4 Type 2 

diabetes 

1834 All gender 

Age: 30 – 

80 years 

Drug: 

Bromocriptin

e 

Drug: 

placebo for 

52 weeks 

CVD 

endpoint 

reduced 

by 48%  

 

Showed 

good 

glycemi

c control 

(Chamarth

i et al., 

2015) 

Study 5 Type 2 

diabetes 

66 All gender 

Age: 18-75 

years 

Drug: 

Bromocriptin

e mesylate 

Drug: 

Placebo 

For 18 weeks 

Bromocr

iptine 

treated 

group 

showed 

0.95% 

decrease

d HbA1c 

and 

placebo 

administ

ered 

showed 

0.87%. 

 

(3.37%) 

reported 

severe 

adverse 

effect 

angina. 

And 

some 

other 

adverse 

effect 

were 

reported 

like 

nausea,v

(Efficacy 

and Safety 

of 

Cycloset® 

Compared 

With 

Placebo 

When 

Added to 

Metformin 

- Full Text 

View - 

ClinicalTr

ials.Gov, 

2007) 
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Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment Result Reference  

omiting, 

blurred 

vision,b

ack pain 

, 

dyspepsi

a etc. 

 

Study 6 Type 2 

diabetes 

17 All gender 

obese 

individuals 

Drug: 

Ergoset 

Placebo 

For 18 weeks 

Reduced 

body 

weight 

compare

d with 

placebo 

 

Improve

d 

glucose 

toleranc

e than 

placebo 

(Cincotta 

& Meier, 

1996) 

Study 7 Type 2 

diabetes 

16 All genders Drug: 

bromocriptin

e and placebo 

For 16 weeks 

No 

change 

in body 

weight  

 

Bromocr

iptine 

reduced 

HbA1c 

level 

(from 

8.7% to 

8.1%) 

and 

fasting 

blood 

glucose 

level(fro

m 190 to 

(Pijl et al., 

2000) 
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Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment Result Reference  

172 

mg/dl) 

 

Placebo 

increase

d the 

variable

s 

 

Study 8 

 

 

 

 

 

  

 

Type 2 

diabetes  

 

40 

 

All gender 

40-70 years 

 

Drug: 

Bromocriptin

e and placebo 

for 12 weeks 

 

No 

changes 

in body 

weight  

 

Bromocr

iptine 

reduced 

HbA1c 

level 

(from 

9.9% to 

9.5%) 

and 

fasting 

blood 

glucose 

level(fro

m 10.96 

to 9.6 

mol/dl) 

 

Placebo 

increase

d HbA1c 

level, 

and 

fasting 

blood 

glucose 

level 

 

(Aminorro

aya et al., 

2004) 
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Study  Patient 

Disease 

condition 

No. of 

participants  

Age and 

gender 

eligibility 

Treatment Result Reference  

was 

unchang

ed 

 

6.2Drugs in the Pipeline for Approval 

The table below (Table 7) lists the repurposing drugs for diabetes that are not yet approved by 

FDA. 

Table 7: Repurposing drugs for Diabetes 

Drug Name Original 

Indication 

Repurposing 

approaches 

Reference Phase of clinical 

trials  
Clinical 

trials 

Amlexanox Oral aphthous 

ulcers 

Signature matching, 

Genomic approach, 

phenotypic approach 

 
Phase 2 (Efficacy of 

Amlexanox 

vs. Placebo 

in Type 2 

Diabetic 

Patients - 

Full Text 

View - 

ClinicalTria

ls.Gov, 

2013) 
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Drug Name Original 

Indication 

Repurposing 

approaches 

Reference Phase of clinical 

trials  
Clinical 

trials 

 

Berberine  

 

Infectious 

diarrhea  

 

Signature 

matching(drug-

disease), 

Genomic,  

Pathway mapping, 

Phenotypic   

 
 

Phase 3 
 

(Effects of 

Berberine 

Hydrochlori

de and 

Bifidobacter

ium in 

Diabetes 

Mellitus 

Prevention 

and 

Treatment - 

Full Text 

View - 

ClinicalTria

ls.Gov, 

2015) 

BGP-15  Ischemia–

reperfusion 

injury  

Phenotypic screening 
 

Phase 2 (Literáti-

Nagy et al., 

2014) 

Bile acids  Primary 

biliary 

cirrhosis  

Phenotypic screening, 

Pathway mapping 

 
Phase 4 (Amori et 

al., 2007; 

Shima et al., 

2018; 

Thomas et 

al., 2009) 

Diacerein  Osteoarthritis Signature matching, 

Phenotypic screening, 

Retrospective clinical 

analysis 

 
Phase 3 (Cardoso et 

al., 2017) 

Hydroxychloroq

uine  

Malaria, 

rheumatoid 

arthritis 

Retrospective clinical 

analysis, 

Phenotypic screening  

 
Phase 4 (Pre-diabetes) 

Phase 1 (insulin 

resistance) 

Phase 2 (Type-2 

diabetes with 

hyperglycemia) 

(Wasko et 

al., 2015) 

(Rediscoveri

ng 

Hydroxychlo

roquine as a 

Novel 

Insulin 
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Drug Name Original 

Indication 

Repurposing 

approaches 

Reference Phase of clinical 

trials  
Clinical 

trials 

Sensitizer - 

Full Text 

View - 

ClinicalTria

ls.Gov, 

2014) 

(Hydroxychl

oroquine 

Versus 

Pioglitazone 

in 

Combinatio

n Treatment 

for Type 2 

Diabetes 

Mellitus - 

Full Text 

View - 

ClinicalTria

ls.Gov, 

2014) 

Methazolamide  Glaucoma Phenotypic screening 
 

Phase 2 (Saporito et 

al., 2012) 

MLR-1023  Gastric ulcers Phenotypic screening 
 

Phase 2 (Lee et al., 

2020) 

Salicylates  Pain and 

inflammation 

Phenotypic screening 
 

Phase 2 (Goldfine et 

al., 2008) 

TUDCA  Cholestasis 

Alleviates 

Phenotypic screening  
 

N/A (Kars et al., 

2010) 

Triterpenoids Anti-

inflammatory, 

antipyretic, 

analgesic   

Molecular docking, 

binding assay, 

Phenotypic screening 

 
Phase 2 (Effect of 

Ursolic Acid 

Administrati

on on Insulin 

Sensitivity 

and 

Metabolic 

Syndrome - 

Full Text 

View - 

ClinicalTria
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Drug Name Original 

Indication 

Repurposing 

approaches 

Reference Phase of clinical 

trials  
Clinical 

trials 

ls.Gov, 

2014) 

Verapamil Hypertension Genomic studies, 

phenotypic screening 

 
Phase 2 (Ovalle et 

al., 2018) 

Naltrexone Opioid 

Addiction 

Phenotypic screening 
 

Phase 3 (Hollander 

et al., 2013) 

Ustekinumab Plaque 

Psoriasis 

Pathway mapping, 

Phenotypic screening 

 
Phase 2 (Study of 

Tolerability 

and Safety of 

Adding 

Ustekinuma

b to INGAP 

Peptide for 

12 Weeks in 

Adult 

Patients 

With TD1 

Melitis - Full 

Text View - 

ClinicalTria

ls.Gov, 

2015) 

Piroxicam 

(NSAID) 

Osteoarthritis, 

rheumatoid 

arthritis 

Molecular docking, 

Phenotypic screening, 

 

 
Pre-clinical  (Chittepu et 

al., 2019) 

Combination of 

Trolox C and 

Cytisine 

Smoking 

cessation 

(Cytisine)  

Signature matching 

my Cmap screening, 

Genomic studies, 

Phenotypic screening 

 
Pre-clinical (L. Jin et al., 

2014) 

Matrine Hepatitis B Molecular docking, 

genomic screening, 

phenotypic screening 

 
Pre-clinical (Zeng et al., 

2015) 
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Drug Name Original 

Indication 

Repurposing 

approaches 

Reference Phase of clinical 

trials  
Clinical 

trials 

NEN Intestinal 

infection with 

tapeworm 

Phenotypic screening  
 

Pre-clinical (Tao et al., 

2014) 

 

6.2.1Drug Repurposing Evidence Level 

According to the experts, the field of study of drug repurposing would be benefitted if there is 

clearer definition present in the articles or published papers.  Therefore, based to the scientific 

evidence level, the categorization system of the papers and projects are called - Drug 

Repositioning Evidence Level (DREL). which has been developed for different types of drug 

repositioning projects. 

By the provided quality of scientific evidence, the drug repurposing levels are classified.   The 

assessment identifies five stages of DREL 7.  Experts   believe that there will be less 

subjectiveness in evaluating projects by classifying drug repurposing and restoring efforts 

according to the five DREL levels. For example, although DREL-0 may seem controversial to 

some, facts should really be distinguished from by computational calculations until such a time 

when scientific proof advances to the DREL-1 project in vitro. In fact, many journal papers 

directed at the software and related community do not reveal experimental evidence. Similarly, 

in vivo (DREL-2) effects, or even in clinical circumstances (DREL-3) toxicity, may be 

restricted for those compounds functioning on extremely high in vitro concentrations (DREL-

1). Such a categorization method can aid the community in swiftly evaluating the amount of 

advancement for every project when connected to specific initiatives, thereby mitigating 

increased social expectancies for rapid treatments if evidence does not justify it. 
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Table 8: Classification of Drug Repurposing Evidence Levels (Oprea & Overington, 2015). 

DREL level   Scientific evidence quality  

0 In silico predictions are   I.     Included without any evidence  

 

1 Includes in vitro studies and prediction of results in in vivo situation 

2 

Includes animal studies and hypothetical effect relevance in human 

3 Incomplete studies in human with appropriate dose along with information like 

clinical effect, medical records, proof of concept etc. 

4 There are well-documented clinical endpoints seen for the repurposed medication 

at dosages within the safety limits 

 

Examples of DREL level are explained below. 

i. DREL Classification = 0 

M. Zhang et al conducted a diabetic drug repositioning study. In PubMed they looked for a 

literature by utilizing keywords such as diabetes, GWAS, proteomics. Further research includes 

sixteen GWAS, seventeen proteomics and eighteen metabolomics studies on diabetes. The 

Human Metabolome Database (HMDB) was utilized for the extraction of the names of 

enzymes and transporters relevant to protein diabetes from previous studies. Both data were 

used to build the Cytoscape network of metabolites-proteins. In addition, a Therapeutic Target 

Database (TTD) has been used to assess if the potential for drugs projection is there for a group 

of diabetic risk proteins. 

Results have shown that at least one drug project is present in 108 of 992 proteins. Of the 108 

proteins, 35 were approved clinically and did not have a demonstrated human toxicity.  Twelve 

targets for protein, which were correlated with 58 drugs, had pathogenesis data that suggest 
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their therapeutic potential. Connectivity Maps (CMaps), a bioinformatics tool were used to 

discover functional relationships between diseases, genetic disorders and drug activity, nine 

drugs were reported eligible for diabetic repositioning by CMap study.  Valdecoxib, diflunisal, 

niflumic acid, and nabumetone, has usual target which is prostaglandin G/H synthase 2 linked 

with type 1 diabetes 

Idazoxan and phenoxybenzamine, targets adrenergic receptor alpha-2A. Diflorasone, d-

cycloserine and perhexiline are all the remaining three drugs (M. Zhang et al., 2015). 

ii. DREL Classification= 1 

The purpose of this study was to find novel anti-glycation agents from current drug product. 4 

type of in vitro assays were conducted for 18 drugs during this study which are in vitro BSA-

MG assay,in-vitro BSA-glucose assay, DPPH free radical scavenging assay and in-vitro Fe+2 

chelation assay. As a result, these 18 drugs, which were not previously known, were shown to 

be activated in protein antiglycation. GraphPad Prism-5.0, SoftMaxPro 4.8, MS-Excel software 

programs were used to evaluate the findings. The enzyme kinetics software EZ-FIT is used to 

calculate the value of IC50. Among the 18 drugs nimesulide and dihydrate of phloroglucinol 

have been shown to be effective inhibitors of in vitro protein glycation. Based on the data the 

it can be recommended that in nimesulide,the polyphenilic ring, in phloroglucinol dihydrate 

and the nitrobenzene moiety, may be shown to be responsible for its anti-glycation action   As 

a result of the investigation, it was shown that several drugs available for the treatment of 

protein glycation-mediated problems in diabetes have anti-glycation activity. To improve anti-

glycation treatment, they can also be utilized as gufor altering their structures (Rasheed et al., 

2018). 
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iii. DREL Classification = 2 

In the study, a computational drug repurposing scoring system was developed to determine 

viable drug combinations for diabetes. Using this technique, they speculated drug combinations 

that may be utilized to treat type 2 diabetes after presenting over 1,400 drugs for diabetes. The 

up/down genes associated with diabetes have been discovered. The Array Express database 

was used to find up- and down regulated genes in type 2 diabetes. As a consequence, they 

found 185 genes that were upregulated in type 2 diabetes and 278 genes were downregulated 

correspondingly. They obtained drug-induced deregulated genes from the CMap database. The 

number of gene deregulations by each drug in the disease was subsequently counted. Then, the 

significance of any pair of drugs that reverse the disease genes in their experiment was 

rigorously evaluated by taking a number of mice and made several groups containing 10-14 

mice in each group and kept them in high fat diet to build insulin resistance. Moreover, they 

conducted the experiment by treating a group of normal mice with saline and diabetic mice 

group were randomly assigned to one of the five groups including insulin (group 

SI),combination of Trolox C and Cytisine (group STC), saline (group SS), Cytisine (group SC) 

,Trolox C (group ST), which had been approved by the Animal Care Committee of the Peking 

University Health Science Center. They performed all the animal experiments in compliance 

with the “Guidelines for Animal Experiment”. Finally, the results indicated that Trolox C's and 

Cytisine's combination is beneficial for the treatment of type 2 diabetes, however none of these 

is effective alone. These findings show that the approach described might assist to detect 

combinations of drugs for any other disease condition (L. Jin et al., 2014). 

iv. DREL Classification: 3 

In this study, salsalate's effect on lowering of glycemia and insulin resistance was assessed as 

a possible pharmacological target for diabetes and probable mechanisms of action to validate 
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NF-kB. The Institutional Review Boards authorized protocols where they asked for consent 

form all the subjects. The subjects which did not have clear documents for being diabetic were 

tested with 75-g oral glucose tolerance test. Three independent investigations have been 

successively conducted with three separate patient cohorts. The first two studies have been 

conducted using an open label trial design of 2 weeks duration, one dosed at 4.5 g/d salsalate 

(1.5 g/d thrice daily) for the historically-useful dosage and durations to improve the level of 

glycosuria and another one dosed at 3 g/d (1.5 g/d twice daily). In the third trial, the 

effectiveness of this study was assessed at maximal dosage using a randomized, double-mask 

placebo-controlled 4-week experimental design. Open label trials showed decreased fasting 

and post-challenge glucose levels after 2 weeks of therapy, both high (4.5 g/d) and 

standard (3.0 g/d) doses of salsalate. The use of salsalate, increased glucose utilization by 

roughly 50% and 15% at high and normal doses and lowered insulin clearance for euglycemic 

hyperinsulinemic clamps correspondingly. Only at the higher dose, dose-limiting tinnitus 

occurred. In a third double-masked, placebo-controlled trial, its shown that 1 month of salsalate 

therapy, improves fasting and post challenge glycemia with a maximum tolerated dosage (not 

tinnitus). Free-circulating fatty acids have been decreased and in all treated patient’s 

adiponectin increased. These findings show that salsalates enhance in vivo glucose and lipid 

homeostasis and support a therapeutic approach by targeting inflammation and NF-kB in type 

2 diabetes (Goldfine et al., 2008). 

v. DREL Classification=4 

In this article, the 52-week cycloset safety test assessed the overall safety and cardiovascular 

safety of this novel type 2 diabetes drug and examined the randomized, double-blind, 

multicenter test. A total of 3,095 diabetic patients were randomized 2:1 to bromocriptine-QR 

or placebo therapy who is under usual antidiabetic medication. 
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The safety end-point was the incidence of any serious adverse event (SAE) with a hazard ratio 

(HR) noninferiority margin of 1.5.  The frequency of cardiovascular disease (CVD) in a 

prespecify analysis was assessed with a modified intent-to- treat analysis and the frequency of 

events defined as myocardial infarction, stroke, coronary vascularization and hospitalized 

angina or cardiac insufficiency. 

As a consequence of this, 176 (8.6%) in the bromocriptine-QR group reported SAEs compared 

to 98 (9.6%) in the placebo group (HR 1.02 [96 percent one-sided CI 1.27]). In the 

bromocriptine-QR group fewer patients reported a CVD-ending point compared the placebo 

group (37 [1.8%] vs. 32 [3.2%], respectively) (HR 0.60, [95% two-sided CI 0.35–0.96]). In the 

bromocriptine-QR groups, nausea was the most often reported adverse effect. Between 

treatment arms, the frequency of SAEs was comparable. Fewer participants with bromocriptine 

QR have had a cardiovascular end point compared to individuals with placebo arm (Gaziano 

et al., 2010). 
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Chapter 7 

Challenges 

As previously stated, drug repurposing has had several notable successes. However, 

repurposing does not always work; certain drug candidates for repurposing may fail, usually 

during phase 3 studies. Some of the failures are unavoidable in later stage of development, as 

they are in the development of totally novel drugs, but toxicity should be less likely to be related 

with such failure because the candidates' safety profiles have already been characterized. Other 

causes for failure in the repurposing area (including lack of ability to begin to explore a 

potential candidate beyond initial investigations) are linked to obstacles of drug repurposing, 

as mentioned below: 

• Dose adjustment: The right dose of a drug varies with its disease condition. For its maximum 

therapeutic efficacy, the recommended dose for a potential drug is important. Once a 

repurposed drug is licensed, clinical studies should additionally be done for an indication of its 

optimal dose. 

• Heterogeneity and availability of data: In response to a rise in expression available to the public, 

open-source models were developed however access to some types of data is restricted to 

public, such as clinical data for patients, requiring substantial alteration for direct use and 

understanding. In addition, the heterogeneity of the data creates a further computational barrier 

for successful drug repositioning, integrating multiple variations of data like chemical 

structure, clinical data, and transcriptome data. 

• Validation of Drug: To make drug-repurposing utmost successful, combining computational 

approaches for prediction and in-vitro confirmation is essential. Different drug repositioning 

approaches are used to detect new disease-drug connections and can be coupled with clinical 

records for effective drug determination like, electronic health records (HER), physical tests 

data, and information from health insurance.  High-capacity in vitro or in vivo systems testing 



 

 

58 
  

of chemical products may be helpful in validating potent drugs anticipation. However, there is 

difference in in-vitro systems and in-vivo conditions mostly, for that validation should take 

into account in-vitro cell cultures that resemble in-vivo conditions. 

• Patent considerations: To maximize the potential profit from repurposed products, it is 

important to protect the new indication by patenting it and defending the patent right. The 

ability to acquire patent protection may be limited if prior scientific knowledge of the 

repurposed usage cannot be distinguished from information already in the public domain. An 

applicant seeking patents for new medical uses will also be expected to provide in the patent 

application evidence that the medicine is a credible therapy for the new medical indications 

that are being sought. An MOU (new Method-of-use) patent can be obtained for an outdated 

generic medicine that has been repurposed. However, if the new repurposed indication relies 

on existing formulations and dosage forms of the generic drug, enforcement of MOU 

patent might be a big issue. Due to the fact that other manufacturers of the generic medicine 

may make it widely available, as well as the fact that physicians may prescribe it for non-

patented purposes. As long as the generic manufacturer does not advocate the use of their 

product for the patented indication in any manner, it will be impossible to claim that they are 

infringing on the new MOU patent. To limit off-label usage of the newly-patent repurposed 

indication might be difficult in this situation, lowering the product's potential revenue. 

• Regulatory Considerations: There is 10 years of market exclusivity in the EU/EEA for 

repurposed pharmaceuticals with recognized orphan indications, plus an extra 2 years if they 

are compliant with a Pediatric Investigation Plan (PIP). Each and every application for an 

orphan medication must be filed through the centralized process. Repurposed medicines 

without an orphan designation get 10 years of data exclusivity. In accordance with Article 

10(5), applications for new indications of well-established drugs may be given a one-year data 

exclusivity. As a result, existing marketing authorizations that have been modified are not 
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subject to the data exclusivity clauses. FDA offers a three-year data exclusivity term in the 

United States for repurposing a previously-marketed medication, but this is not enough time 

for a firm to recoup the money it has committed. The off-label usage of a repurposed generic 

medicine may further devalue the product, as stated above in the section on patent issues. 

• Organizational hurdles in industry: In the instance that the repurposed indication is not located 

within the organization's core disease area or the compound is no longer in development or 

been discontinued/terminated and thus no "live" project within the R&D division exists to 

provide dedicated support for the new indication.  In other words, there are lacking 

of individuals and resources to carry out the research for drug repurposing (Pushpakom et al., 

2018). 
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Chapter 8 

Conclusion 

Diabetes has risen dramatically in recent decades, indicating that present therapies are 

inadequate and new drugs and treatment options are urgently needed. Drug repositioning is 

gaining momentum as a valuable strategy for generating new candidates in addition to the 

currently used drugs. As previously stated, a number of drugs targeting pathophysiological 

pathways that impact glucoregulatory processes have been considered as potential treatments 

for diabetes through various approaches. More drugs can be identified with the better use of 

these approaches. Taking into account the opportunities and obstacles for drug repurposing 

described in the study, it can be concluded that drug repurposing is a promising tool to identify 

potential and novel treatments of diabetes. In silico results could possibly help in designing in 

vitro and in vivo trials in animals (insulin resistant mice, rodents etc.) The phenotypic screening 

results of in vitro models might differ from in vivo models. So, by performing more in vivo 

trials in animals which share similar phenotype with humans will help in finding clearer 

pathways, mode of action and effectiveness of the selected candidates. 

Besides, as drug repurposing majorly depends on existing data of approved drugs, integrative 

systems for data analysis are required. Improvement in big data analysis will contribute to 

clearer identification of repurposing opportunities. In addition, clinical trials play an important 

role in drug repurposing for assuring safety and efficacy of the potential drugs. Several clinical 

trials get terminated for the lack of funding, so managing funds for clinical trials is essential. 

There is a need for clinical data access of industry-conducted clinical trials as well as data of 

safety trials of the potential compounds for academic researchers, which will help in further 

data analysis and research works. 
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Moreover, after repurposing the drugs, the safety liabilities with the new dosing schedule 

should be studied. This will ensure the safety of the drugs. Nonetheless, to make drug 

repurposing more convenient, measures should be taken to incentivize the challenges specially 

the patent and regulatory challenges. Changes in legislative and patent consideration will 

increase more opportunities for drug repurposing. 

Finally, by mitigating all the challenges, drug repurposing can act as a promising tool in 

identifying alternative treatment options for diabetes. 
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