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Abstract

In Computational Geometry edge flipping of triangulation is a well-studied topic
. Also in computer graphics, triangulations are used to form any kind of shape
of an object. Although many algorithms have been introduced for transforming
one plane triangulation to any other one, their implementation in the literature
could not be found. We have decided to check the behaviour of these algorithms
in terms of required flip to transform a triangulation into another triangulation.
While worst case behaviour of these algorithms have been established in terms of
number of flips, there is a dearth of average case analysis of these algorithms in
the literature. We want to gain some insight as to the average behaviour of these
algorithms through performing simulation. We would also like to investigate how to
visualize the transformation of these plane triangulations in an intuitive way. While
the current best-known algorithm for single edge flip is near-optimal, we believe there
is much room for improvement when it comes to transforming plane triangulations
using a sequence of simultaneous flips.

Keywords: Edge Flipping, algorithms, plane triangulation, visualization, simulta-
neous flips.
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Chapter 1

Introduction

Diagonal flipping[2.23] has become an important topic in computational geometry
and has been very widely studied. In this thesis, we simulate a number of algo-
rithms related to transforming any triangulation to any other using edge flips. The
algorithms are due to Wagner, Komuro and Mori et al[21] among others. Wagner
proves that by only flipping edges(diagonals) any triangulation can be transformed
into any other triangulation with same number of vertices. According to Wagner’s
algorithm, O(n2) diagonal flips are required for the transformation of triangulation.
Then Komuro improved the bound to O(n). Then Mori et al. improved this bound
further to max(6n− 30,0). Recently Cardinal et al. [25], showed that this transfor-
mation can be done requiring no more than 5n− 23 edge flips for n ≥ 6 where n is
the number of vertex.

1.1 Problem Statement

Many algorithms have been introduced for transforming one plane triangulation
into another with same number of vertices but unfortunately their visualization is
missing. While transforming one it is fairly easy to compute this transformation
for small number of vertices, when solving this problem can become fairly difficult
for large triangulations. If someone wants to visualize the process of transforming
a triangulation on twenty vertices in pen and paper, it might take more than an
hour. Although, there have been results relating to the upper bound on the num-
ber of flips required to transform one triangulation into another, simulated results
on the average case appears to be missing in the literature. Hence for our thesis,
we have decided to understand some of the best-known algorithm on the topic and
also implement the currently best algorithm for transforming triangulations using
sequential edge flips. In the course of this research we have also made some obser-
vations on better improve the existing algorithm for average case without incurring
any cost on worst case.

1.2 Research Objectives

In our research, our motive is to implement the algorithms for transforming a trian-
gulation into a canonical triangulation and show how it works on the average cases.
So, the objective of our thesis is to find an estimation of how many edge flips does
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it requires in an average case scenario to transform one triangulation into another.
Many algorithms have tried to decrease the upper bound of required edge flips, but
they did not represent the average case scenario. Our goal would be to heuristically
compute the performance (number of flips needed) to transform different random
triangulations from one to another. After that we can analyze the data and show
the difference between the theoretical worst case and the practical average case in
required edge flip.

1.3 Organization of the Thesis

In Chapter 1 we have given an introduction to our research problem and then,
briefly described about our research objective that what kind of problem is still un-
known regarding our topic and how we are going to perform our research about that.

In Chapter 2 we discussed some of the important theories that are available in the
literature on sequential flips, provide a brief explanation of the theories.

In Chapter 3 we showed all of our implementations. We showed how Wagner’s algo-
rithm works in our code. We showed some flow chart for the better understanding
of how we implemented the Mori’s theorem to convert a Hamiltonian triangulation
to canonical triangulation and Cardinal’s theorem to convert a non Hamiltonian
triangulation to a Hamiltonian triangulation.

In Chapter 4 we showed the difference between the upper bound given by cardinal
and the average case. We compute the average case by simulating 1000 transforma-
tion on each vertex (7 to 60).

In Chapter 5 we discovered some points which we observed from the theories. It
can bring some positive result and can decrease number of flips. We also showed
how we can remove separating triangles from triangulation (Dummyflip and 4 −
Connector).

In Chapter 6 we talked about the importance and the future uses of our thesis topic.
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Chapter 2

Literature Review

2.1 Triangulation

A graph G = (V,E) consists of a set of vertices V and a set of edges E, each member
of which corresponds to a pair of vertices from V . If this pair is unordered we call
it a graph. Otherwise it is called a directed graph or simply a digraph. If no two
pairs are identical and (u, v) ∈ E implies that u 6= v then we call it a simple graph.
Otherwise the graph is called a multigraph. A simple graph is said to be planar if it
can be embedded in such a way that none of its edges intersects other than at the
endpoints. If for a graph G = (V,E) there is a planar embedding then G is said
to be a plane graph. A region of a plane graph bounded by a sequence of edges
and containing no vertices and edges inside is said to be a face. If a planar graph
G = (V,E) contains all its vertices in a single face then the graph is said to be
outerplanar. We start with a few terminologies before understanding triangulation.

There is a lot of literature on triangulations. For example, simultaneous diagonal
flips can be used to transform planar triangulations [26]. There is also further
literature on the transformation of a triangulation into another triangulation [1],
[16], [18], [22].Many authors presented their conclusions and assumptions regarding
diagonal flips while transforming one triangulation into another [11], [12], [17], [24].

Definition 2.1 (Loop) Given a graph G = (V,E), if an edge connects a vertex to
itself then it is called a loop.

Definition 2.2 (Parallel Edges) Given a graph G = (V,E) and u, v are two
distinct vertices of G, if multiple edges connect the same pair of vertices u, v then
they are called parallel edges.

Definition 2.3 (Simple Graph) Given a graph G = (V,E), if for every edge uv ∈
E, u 6= v and if no two edges e1, e2 ∈ E connect the same pair of vertices in V , then
we can say G is a simple graph.

Definition 2.4 (Adjacent) Given a graph G = (V,E), if a vertex A is connected
to another vertex B by an edge then B is called adjacent to A. It is also called a
neighbor.

In Figure 2.1 the vertices in {D,E,B} are adjacent to A.
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Figure 2.1: Adjacent of vertex of A

Definition 2.5 (Path ) For the ordered set of pair-wise unique vertices (u = u0, u1, · · · , un =
v) if every consecutive pair of vertices is adjacent then this order set of vertices de-
notes a path.

Definition 2.6 (Cycle) Given a graph G = (V,E), if for a path (u = u0, u1, · · · , un =
v) u = v then this path is called a cycle.

Definition 2.7 (Connected) Given a graph G = (V,E), if a path exists between
two vertices u and v where u, v ∈ V then u and v are said to be connected.

In Figure 2.2 all the vertices of the graph {C,D,E, F,B} are connected to A as
there exist a path in all of those vertices.

Figure 2.2: Connected vertex of A

Definition 2.8 (Connected graph) Given a graph G = (V,E), if there is no such
vertices u and v, such that u and v are not connected then the graph is connected
graph. In another word, every vertices have to be connected with every other vertices
to make the graph connected.

Definition 2.9 (Distance between a pair of vertices) Given a graph G = (V,E),
the distance between a pair of vertices u and v is the minimum number of edges
among all paths connecting these two vertices.

Definition 2.10 (Diameter ) Given a connected graph G = (V,E). The longest
among the distances between any pair of vertices is called the diameter of graph G.
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Definition 2.11 (Plane Graph) Given a graph G, if it is embedded on a plane
such that no two of its edges intersect except at their endpoints, then G is called a
plane graph. The outer-face of G is the (unbounded) face that lies on the outside.
However, depending on the problem, sometimes we may nominate a bounded face to
be the outerface as well.

Definition 2.12 (Planar Graph) Given a graph G = (V,E), if it has a plane
embedding with the edges only at the endpoints, then G is called a planar graph.

Definition 2.13 (Region) If an area of a plane graph is bounded by a cycle then
it is called a region. Every cycle of a plane graph divides the graph into two regions;
One in its interior and the other in its exterior.

Definition 2.14 (Face) Given a region, if there are no vertices or edges strictly
inside it, then it is called a face.

Definition 2.15 (Outer-face) Given an embedding g of a graph, face abc is an
outer-face if it has an unbounded area.

Definition 2.16 (Outerplane Graph) If a plane graph has all its vertexes on its
outerface, then it is called an outerplane graph.

Definition 2.17 (Maximal Outerplane Graph) An Outerplane graph is a Max-
imal Outerplane Graph if we cannot add any additional edges to it. Notice that, it
will not be an Outerplane Graph anymore if we add any new edge in Maximal Out-
erplane Graph..

Figure 2.3: Triangulation

Definition 2.18 (Triangulation ) If every face of a planar graph is a 3-cycle,
then it is called triangulation. Notice that, a triangulation is an (edge) maximal
planar graph as inserting any more edges will not keep the graph simple and planar.

Figure 3.2 illustrates a triangulation where every face is a triangle.

Definition 2.19 (Flip Graph ) Let G = (V,E) be a triangulation. Now consider
every non-isomorphic triangulation of G as nodes of g. And two nodes are adjacent
if, they can be transformed into one another with a single flip. This graph g is called
the flip graph of G.
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2.2 Wagner’s Theorem

Wagner’s Theorem gives us the idea about how to convert a triangulation into a
canonical triangulation. We first start with a few more definitions.

Definition 2.20 (Dominant Vertex) If a vertex is adjacent to all other vertices
then that vertex is called a dominant vertex.

In Figure 2.4 B and C are the dominant vertices.

Figure 2.4: Dominant vertex on Canonical Triangulation

Definition 2.21 (Canonical Triangulation) In a triangulation, if there exists 2
dominant vertices, then the triangulation is called canonical triangulation.

In Figure 2.4 the graph is a canonical triangulation.

Definition 2.22 (Degree) Given a graph G = (V,E), the number of edges that
are incident to a vertex is called the degree of that vertex.

Figure 2.5: Isomorphism

Definition 2.23 (Diagonal Flip) Let us assume ABCD is a quadrilateral with a
diagonal BC where ABC and BCD are faces. Now, if we remove this diagonal and
add a new diagonal AD such that AD lies in the same region of ABCD as BC did,
then this operation is called Diagonal flip.
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Figure 2.6: Diagonal Flip

In Figure 2.6 here edge CD flipped to edge AD.
To convert any triangulation into any other triangulation of equal order, Wagner
first introduced canonical triangulation. Later on it was found that [2] by using
Wagner’s method we can convert a triangulation with n vertices into a canonical
triangulation through at most 2n2 − 14n + 24 diagonal flips. Later, Negami and
Nakamoto proves that a triangulation can be transform into another triangulation
with not more than 2n2 diagonal flips. For converting a triangulation G1 into another
triangulation G2, first, we have to convert G1 to a canonical triangulation ∆n. Then
if we reversely operate all the flips that are required for converting G2 into ∆n, then
canonical triangulation G′1 will transform into G2. Thus G1 is converted to G2.

2.2.1 Converting to a Dominant Vertex:

Here AHGE is a quadrilateral shown in Figure 2.7 (part of a triangulation).

Figure 2.7: Triangulation To Canonical Triangulation Conversion

To convert a triangulation to a canonical triangulation we can follow the given steps:

1. We select a triangular face as outer face and nominate 2 of its vertices to be
dominant vertices.

2. We need to check whether the nominated vertices are dominant or not. In
Figure 2.8 suppose, we choose face ABC as outer-face and A, C are nominated
as the dominant vertices. Next we need to check if A and C are adjacent to
all other vertices.
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3. If A is not a dominant vertex, then there will exist a triangle, where two of its
vertices are adjacent of A but one is not. Here EGH is a triangle where E,H
are adjacent of A but G is not.

4. If the triangle AEH is a face, with a single flip we can increase the degree of
A. We will flip EH to AG and thus G will be adjacent of A. We will continue
this process until A is adjacent to all the vertices and become the dominant
vertex.

Figure 2.8: Diagonal Flip to make a Canonical Triangulation

5. If AEH is not a face, then we cannot increase the degree of A in a single step.
As AEH is a triangle any vertices that exist inside can not be adjacent of G.
Now we will increase the degree of G such that, G is adjacent to any of the
vertices inside AEH. Then we will start again from step-3.

As this is a finite graph, after certain repetition of these steps eventually A will be
adjacent to all the vertices. Next we need to do the same for C. When A and C
will become dominant vertex, the graph will convert to a canonical graph.

2.3 Komuro’s Bound

In Wagner’s result, there was a problem of quadratic in the number of vertices
on the diameter of the flip graph. Komuro showed that [14] the diameter of the
flip graph was linear by showing upper and lower linear bound to them. By using
Wagner’s approach, Komuro came up with an idea to transform a triangulation into
a canonical triangulation by decreasing the linear upper bound. Let G = (V,E) be
a triangulation with n vertices and we want a and b to be dominant vertices. As
every vertex in a triangulation has at least 3 edges and each dominant vertices have
n − 1 edges. So we can say that to make both vertices dominant we need at most
2n−8 flips, if there is an increment in the flip then the degree of deg(a) or deg(b) will
increase at least by 1. But this scenario is not practical. In the Figure 2.9, we can
see that, deg(a) or deg(b) does not increase with a single flip. Komuro introduced
a function such as: dG(a, b) = 3deg(a) + deg(b) and stated that, there always exist
either one edge flip where dG(a, b) increases at least by 1 or 2 edge flips where dG(a, b)
increases at least by 2. In some cases, there might be a necessary edge flip which
will decrease the degree of b by one, but the next flip will increase the degree of a.
As a result the value of dG(a, b) will increase 2 after 2 flips, which satisfies his claims.
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As the dominant vertices has degree of n − 1, so dG(a, b) ≤ 4n–4. and we can get
an upper bound which is: 4n− 4− dG(a, b) to make a and b dominant vertices.

Figure 2.9: No single edge flip can increase the degree of a or b

Definition 2.24 (Separating Triangle) Given a graph G = (V,E), if removal of
a triangle abc (Figure 2.10) disconnects one or more vertices from the graph, then
it is called a separating triangle. Here abc separates w1 from the graph.

Figure 2.10: Separating Triangulation

Lemma 2.25 Given a graph G = (V,E) is a triangulation with n vertices, we can
make G a canonical triangulation ∆n where a and b are the dominant vertices with
at most 4n− 4− dG(a, b) edge flips where dG(a, b) = 3deg(a) + deg(b).

Proof: We know every vertex of a triangulation have at least 3 edges. Let uab be a
face of G. Here we have two scenario.

• deg(u) = 3 or

• deg(u) > 3

At first lets consider the 2nd case. In Figure 2.11 a, b, w1, w2 be the 5 consecutive
neighbours of u in counter-clockwise order. Now if b is not adjacent of w2 then,
flipping uw1 will increase the degree of b by one and thus dG(a, b) will also increase
by one. And now a, b, w2 and x1 are the new four consecutive neighbours of u
in counter-clockwise order and we can do the same operation again to increase the
deg(b).
Now consider In Figure 2.12. If b adjacent of w2 then ubw2 is a separating triangle
which separates w1 form rest of the graph. If we flip ub it will decrease deg(b) by 1
and increase the deg(a) by 1. As a result dG(a, b) will increase by 2.
Now let us consider case no. 1. Here deg(u) is 3. Let u1 be the unique vertex, which
is adjacent to a, b and u. Now we can consider 3 different case.
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Figure 2.11: One single flip increases the degree of b

Figure 2.12: One edge flip decreases degree of b but increases degree of a

• deg(u1) = 3

• deg(u1) ≥ 5

• deg(u1) = 4

In Figure 2.13 deg(u1) = 3 and the graph is isomorphic to K4 which is ∆4.

Figure 2.13: isomorphic to ∆4

Now consider Figure 2.14. Here deg(u1) ≥ 5, then let a, u, b, w1 and w2 be the
5 consecutive neighbours of u1 in counter-clockwise order. If b is not adjacent to
w2, then flipping edge u1w1 will increase the deg(b) by 1 and this will also increase
dG(a, b) by 1.
In Figure 2.15 b is adjacent to w2 and u1bw2 is a separating triangle which separates
w1 form rest of the graph. Now we will flip u1b at first and then flip uu1. this will
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Figure 2.14: One edge flip increases the degree of b

decrease deg(b) by one but increase deg(a) by 1. As a result dG(a, b) will increase
by 2 in two flips. This also satisfy komuro’s claim.

Figure 2.15: 2 edge flips increases dG(a, b)’s value by 2

And finally if deg(u1) = 4 then, there exist another unique vertex u2 which is
adjacent to a, b and u1. For u2 we can again consider the same 3 cases of u1.
And we will repeat the same process until we reach un−1 and then a and b will be
dominant. Since in every scenario dG(a, b) is increased by at least 1 in each edge
flip, we do not need to do more that 4n− 4− (3 ∗ deg(a) + deg(b)).

2.4 Mori et al.’s Bound

Mori, Nakamoto and Ota [19] have improved Komuro’s bound for converting a
triangulation into a canonical triangulation down to 6n − 30 where the number of
vertices n ≥ 6. For example, if we have 6 vertices, then we need at most 6∗6−30 = 6
edge flips to convert any triangulation into a canonical triangulation.

Definition 2.26 (Hamiltonian cycle) A Hamiltonian cycle is a cycle where ev-
ery vertex of the graph occurs exactly once.

In Figure 2.16 notice that, the red marked border is the Hamiltonian cycle.
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Definition 2.27 (Hamiltonian Triangulation) If a triangulation contains a Hamil-
tonian cycle then it is called Hamiltonian triangulation. If the triangulation has n
vertices then the length of the cycle is n.

Figure 2.16: Hamiltonian Triangulation

Mori et al. [20] followed only two steps to convert a Hamiltonian triangulation into
a Canonical triangulation. In the first step, using the Hamiltonian cycle, we decom-
pose the Hamiltonian triangulation into two outerplanar graphs. Both outer planar
graphs contains the Hamiltonian cycle and the left part of the cycle creates one
outer planar graph. Similarly the right part of the Hamiltonian cycle creates an-
other outer planar graph. Mori et al. [20] also proved that in a maximal outerplanar

Figure 2.17: Decomposing into two outerplanar graphs.

graph, any vertex v on n vertices can be made dominant by at most n− 1− deg(v)
edge flips. This property is used in the second step. For example, in Figure 2.17
there are two outerplanar graphs G1 and G2 which have been decomposed using a
Hamiltonian cycle. In G1, to make vertex 1 a dominant vertex, we need at most
6 − 1 − 4 = 1 flip. Similarly in G2, to make vertex 2 a dominant vertex, we need
at most 6 − 1 − 5 = 0 flip. So by following the steps, two dominant vertices have
created. Here in Figure 2.18, we can see that G1 has been converted into G′1 by flip-
ping (5, 3) edge to edge (1, 4) in quadrilateral (4, 3, 1, 5). Here (1, 4) edge increases
the degree of vertex 1 which makes vertex 1 a dominant vertex. Similarly, we follow
the same method to make vertex 2 dominant in G′2. Finally by merging the two
outerplanar graphs G1′ and G2′ , we get a Canonical Triangulation in Figure 2.19.
Again Mori, Nakamoto and Ota [1] proved that any Hamiltonian Triangulation of n
vertices which consists a Hamiltonian cycle, can be converted into Canonical trian-
gulation by at most 2n−10 edge flips. For example, in Figure 15 we have 6 vertices.
So to convert this Hamiltonian Triangulation into Canonical Triangulation we need
at most 6 ∗ 2 − 10 = 2 flips. They also proved that any two triangulation on n

12



Figure 2.18: Making One vertex dominant from each graph.

Figure 2.19: Hamiltonian Triangulation to Canonical Triangulation

vertices can be converted into each other by at most 6n − 30 flips. He also added
that a triangulation of n vertices where n≥6, flipping any edge of a separation trian-
gulation will remove the separating triangulation. After flipping the edge no other
separating triangle will be created if the selected edge belongs to multiple separating
triangle or all the edges of separating triangle not belong to any separating triangle.

2.5 Cardinal et al’s Theorem

Cardinal et al. [25] showed that transforming one triangulation into a Canonical
Triangulation can be done requiring no more than 5n − 23 edge flips on a graph
of n number of vertices where n ≥ 6. In Section 2.4, we discussed how Mori et
al. transformed a Hamiltonian triangulation into a canonical triangulation. As
every 4-connected triangulation is Hamiltonian, Mori et al. first transformed the
triangulation into 4-connected triangulation. Bose et al. [23] added that with at
most (3n− 9)/5 edge flips any triangulation can be transformed into a 4-connected
Triangulation.
Cardinal et al. improved the upper bound of Bose et al. by using the fact that we
don’t necessarily need to transform a triangulation into a 4-connected one to make it
Hamiltonian. Cardinal [25] proved that a triangulation can directly be transformed
in to a Hamiltonian triangulation with less or at most equal amount of edge flips
that is required to transform a triangulation to a 4-connected triangulation.

We start with some few definitions:

Definition 2.28 Interior Edge: Given a plane graph G = (V,E), if an edge is
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not on the outer face then it is called Interior Edge.

Definition 2.29 Separating Triangle: Given a triangulation G = (V,E), if re-
moval of a triangle disconnects one or more vertices from the graph, then it is called
a separating triangle.
In (Figure 2.10) abc is such a triangle, that deleting abc will separate w1 from the
graph.

Definition 2.30 Hamiltonian Triangulation: If a triangulation contains a Hamil-
tonian cycle then it is called Hamiltonian triangulation. If the triangulation has n
vertices then the length of the cycle is n.

Figure 2.20: Matching

Definition 2.31 Matching: Given a graph G = (V,E), matching M is a set of
edges such that no two edges in M are incident to the same vertex.
In Figure 2.20 graph G1 has 2 edges M1 = {{1, 3}, {5, 4}} which creates a matching
for graph G1. Here M1 has 2 edges with 4 unique vertices. Note that if a matching
of a graph have all the vertices then it is called Perfect Matching. In Figure 2.20
matching of graph G2 is edge set M2 = {{ 1, 5}, { 6, 4}, { 3, 2}}. Here all 6 vertices
of G2 is present in M2. So M2 is a perfect matching of G2.

Definition 2.32 Adjacent Face: Given a graph G = (V,E), if two of its faces
share a common edge then they are called adjacent faces. In Figure 2.21 face A and
B are adjacent as they have a common edge (3, 4).

Figure 2.21: Adjacent Face
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Definition 2.33 4-connected Graph: Given a graph G = (V,E) if it cannot be
made disconnected by removing up to 3 vertices then the graph is called 4−connected.

Note that, as there exists no such case in 4-connected graph that removing 3 vertices
will disconnect the graph, so in a 4-connected graph, there also does not exist any
separating triangle.

Definition 2.34 Dual Graph: Given a triangulation G = (V,E), G′ is a dual
graph of G when every node of G′ represent the faces of G and there is a connection
between 2 nodes if their represented faces are adjacent to each other.In Figure 2.22
G′(Green colored) is the dual graph of graph G.

Figure 2.22: Dual Graph

The current best algorithm to transform a triangulation of n vertices into a canonical
∆n using sequential flips showed that, using 2 steps all triangulation is able to
transformed into a canonical triangulation ∆. First of all, no more than [(3n−9)/5]
flips are required to get a 4-connected triangulation and after that additionally no
more than 2n − 15 flips are required to transform a 4-connected to a canonical
triangulation [25]. Altogether on the diameter of flip graph it has an upper bound
of 5.2n − 33.6 [23]. The upper bound for the second state is tight. So Cardinal
focused on the first step. Cardinal at al. [25] proved that, a shorter number of
flips are required to assure a Hamiltonian triangulation rather than a 4-connected
one. In order to do so, at first he introduced dummy flip. And then he some certain
cases, he used this dummy flip to reduce 3 normal flips to 2 normal flips.

Definition 2.35 Dummy Flip: Given a triangulation G with n vertices where
n ≥ 4, let T be a facial triangle. To make a dummy flip, we will put a dummy
vertex v inside of T . Then with v, we will connect all the vertices of T . We will flip
every edge of T . As a result the degree of v will increase from 3 to 6. This operation
is called Dummy Flip.

In Figure 2.23 we can see a subgraph of a triangulation and T = ace is a face. We
added v in the interior of T and added av, cv, ev. Now we will flip all the edges of
T{ac, ae, ce} to complete the dummy flip operation.
Later we will see that using this dummy flip we can reduce the number of required
flip.
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Figure 2.23: For T = aec, to make a dummy Flip, we added vertex v and flipped
all the edges of T

4-Block Decomposition:

Definition 2.36 4-Block tree: Given a triangulation G = (V,E), we create a
4-Block tree in such way that every node of that tree represents a sub graph of G
and every node is also 4-connected. Let g1 and g2 be two nodes of 4-block tree. If
the outerface of g2 is an interior face of g1 then, g1 is the parent of g2.

Figure 2.24: A Triangulation with some Separating Triangle.

We apply the 4-block decomposition on the original graph to obtain its corresponding
4-block tree. To achieve this we find the largest separating triangle of the triangula-
tion, remove that triangle and make it a child of the current node. We will continue
this process until every node becomes a 4 connected sub graph of the main graph.
In Figure 2.24 we have a triangulation with many separating triangles. Then Fig-
ure 2.25, it shows how to remove all the separating triangle and add them in their
child and get the 4-block tree B in Figure 2.27. Here we denote Gi as a node of
4-block tree, Ti is the outer face of Gi and STi is the list of all the separating triangle
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Figure 2.25: 4-Block Decomposition

17



inside of Gi.

Definition 2.37 Checkerboard: Given a 4-block Gi from a 4-block tree B, if
every interior edge of Gi belongs to exactly one separating triangle from STi then it
creates a checkerboard.

Algorithm
Note that in every checkerboard, there exist at least 1 face F such that, every edge
of F is part of different separating triangles. There will also exist another face H
such that H is adjacent to the outerface, but is not adjacent of F .

Figure 2.26: Checkerboard

At first we will choose a Gi at penultimate level (such a node which is not a leaf but
every child of this node is a leaf). Now we will check if the triangles of STi forms
a checkerboard or not. If it is not a checkerboard, then we need a 4-connector of
Gi. 4-connector of Gi is a set of edges, that if we flip them then it will merge Gi

with all of its child and there will be no separating triangle. Meaning it will make
Gi a leaf. To find a 4-connector at first we need a dual matching of Gi(matching of
dual graph of Gi) such that there exist exactly 1 edge from every triangle in STi.
Now if we flip these edges it will merge all the child of Gi with Gi. If STi forms
a checkerboard, then there will exist such a face f that all of its edges are part of
different triangles of STi. Now we will do a dummy flip in f (this will be replaced
by at most 2 normal flips later). We will also need the 4-connector of Gi, but we
will remove 3 edges which are incident of 3 separating triangles adjacent of f . Now
the child of Gi are merged with Gi and Gi is no longer at a penultimate level, in
fact Gi is now a leaf. We will continue this process till all the nodes of 4-block tree
B merge together and becomes a single node. And the resulted triangulation G′ is
a Hamiltonian triangulation.
With this dummy flip operation, we can avoid at least 1 extra flip. Usually for
every separating triangles we need 1 edge flip. But this dummy flip will destroy 3
separating triangles at a time.

2.5.1 Remove dummy flip with normal flips

At this point we have a Hamiltonian triangulation G′ obtained from G, but this
triangulation has dummy vertices and we want to remove them. For that at first we
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Figure 2.27: 4-Block Tree

will select a Hamiltonian cycle c′ in G′. In c′ There will always be two edges who
are adjacent to vertex v (the new vertex we added for the dummy flip operation).
Let uv and wv are such two edges. We can see that the dummy vertex can only
connect with 6 vertices. So u and w have to be in those 6 vertices and they will
create 3 cases based on their position. Our goal is to remove the dummy vertex and
still have the Hamiltonian cycle. Here if we remove v and with some flips we can
connect u and w then we can accomplish our goal.
Case 1:

Figure 2.28: Remove dummy flip: Case 1

In Figure 2.28 u and w are in the opposite side (difference of 2 vertices). Here ABC
is a facial triangle of G and dotted edges are the part of G. Notice that u and C are
actually the same vertex. In this case either uv or wv will always intersect an edge
of ABC. In Figure 2.27 edge AB and vw intersect. So in our main triangulation G
we will flip the edge AB and it will connect v and w.
Case 2:
In Figure 2.29 u and w are adjacent to each other. In this case u and w are already
connected. So there no flip is required in this case.
Case 3:
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Figure 2.29: Remove dummy flip: Case 2

Figure 2.30: Remove dummy flip: Case 3

In Figure 2.30 u and w are 1 edge away from each other. If u ∈ ABC and v ∈ ABC
then they are already connected. If not, then uv and wv each will intersect 1 edge
from ABC. We just need to flip those edges sequentially to connect u and w.

Now by doing all these operations, we can get a Hamiltonian triangulation where
separating triangulation does not exists. Then according to Mori, Nakamoto and
Ota [19], Hamiltonian Triangulation can be transformed into a caninical triangula-
tion by at most max 2n− 10, 0 flips. Also if a Graph G is 4-connected then at most
max 2n− 11, 0 flips needed.

Previously we described these steps in the Mori et al.’s bound. Here in [19], they
talked about a term called Apex. A vertex is called apex if it is connected to all the
other vertices of a graph. Using Hamiltonian cycle, Graph G decomposed into two
sub graph G1 and G2. In G1 we try to find a vertex which has degree 2 and name it
v. Then in Graph G2, the degree of v has to be deg(v) ≥ 3 by the 3-connectedness
of graph.

If there is a triangular face vxy in G2 with xy, then xy can be switched into vz in
the quadrilateral vxyz formed by two triangular faces vxy and xyz in G2, without
breaking the simpleness of the graph. Now G2 can be transformed into maximal
outer plane graph with apex v by at most n−4 diagonal flip. Then from G1, we will
remove vertex v. The maximum outer planer graph G1 will thus have precisely n−1
vertices. Then we can transform this Triangulation into a Canonical Triangulation.
So these are the algorithms we have covered so far. And the time complexity of the
algorithms is:
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Figure 2.31: Time Complexity Table
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Chapter 3

Implementation

3.1 Wagner’s algorithm implementation

The notion of transforming a triangulation into a canonical triangulation comes
from Wagner’s Theorem. Wagner’s algorithm requires O(n2) edge flips to transform
a triangulation into a Canonical triangulation.

Our full implementation can be found in GitHub at https://github.com/mukit136337
/Transform-a-triangulation-with-edge-flips link which has a piece of code that con-
tains 2 classes. We have implemented this by using SageMath and python as pro-
gramming language. In the code one is triangulation class that works like a data
structure. It creates and stores triangulation. We need to pass a cyclic list and
external face to its constructor and it will create all the necessary properties. For
example in a Triangulation object we store all the edges, faces also edge to face map
(stores which edge is connected to which faces) etc. For the cyclic list, we used a
map where every vertex is mapped to a list which represent the cyclic order of all
the vertices in counter clockwise. For external face, any edge will work, and the
given edge will be in the outerface.

Figure 3.1: Driver Code

In the figure 3.1 we have given a example of the driver code and in figure 3.2 shows
how our triangulation graph looks like.

Our another class contains the implementation of Wagner’s theorem. Here 2 triangu-
lations are passed in the constructor (t1 and t2). The method ”show transformation()”
shows a list of flips that is required to transform t1 into t2 using Wagner’s algorithm.
In figure 3.2 shows the required flips using Wagner’s algorithm. Here we can see
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Figure 3.2: Output: Showing 2 triangulations

Figure 3.3: Flip Sequence using Wagner’s theorem
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that 6 flips were required for transforming t1 into t2. But according to Wagner’s
theorem the upper bound is 2n2− 14n+ 24 = 24, however in practical we need only
6 flips.

3.2 Identifying and removing Separation Trian-

gulation

Identifying and removing separating triangulation is a very important part of our
thesis. For identifying and removing separating triangulation, we have reviewed
some theorems. Then we came to our own conclusion which is kind of similar to
H. De Fraysseix, J. pach and R. Pollack’s theorem for identifying the separating
triangulation and using Cardinal et al. [25] theorem we have removed the separating
triangulation.

In the De fraysseix,J Pach, and R. Pollack’s theorem they mainly talked about fáry
embedding. They demonstrate that on the 2n− 4 by n− 2 grid, any planar graph
having n vertices got a straight-line embedding or Fáry embedding, and they pro-
vide an O(n) space, O(n log n) time approach to achieve this embedding. It was
unknown in the past whether somebody can always find a polynomial-sized grid to
accommodate such an embedding. On the contrary, they prove that every set F
with cardinality at least n + (1 − o(1))

√
n may support a Fáry embedding of any

planar graph of size n, which solves a Mohar issue.

Theorem 1. Any plane graph with n vertices has a Fáry embedding on the 2n-4 by
n-2 grid.

According to the theorem of I. Fáry [3] in the Fáry embedding, the points in the
plane are the vertices and straight line segments are the edges. At first in the paper
of Tutte, there have been numerous algorithms presented for constructing a Fáry
embedding [4], [8], [10]. However, all of these publications have certain flaws, such
as it requiring high precision real arithmetic in relation to the graph’s size, and
vertices prefer to pack together with the idea that the ratio of the smallest to the
biggest distance is unnecessarily little.
Also, it is not clear that every planar graph of size n has a Fáry embedding on
a grid of side length bounded by nk for some fixed k. These Questions is related
about how compactly graphs can be embedded on grids are related to the problems
of VLSI layout design ( [7], [9], [6]). Theorem 1 of De fraysseix, J. Pach and R.
Pollack’s gives an good answer to this question and its proof provides an algorithm
constructing such an embedding.

So these are the main ideas of De Fraysseix, J. Pach and R. Pollack’s theorem.

In our algorithm implementation, we used same kind of implementation like DE
FRAYSSEIX, J. PACH and R. POLLACK’s theorem for identifying separating tri-
angulation.

Here in figure 3.4, we can see a Triangulation where ABC is the outer face. For
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Figure 3.4: Identifying Separating Triangulation

vertex A, the cyclic order is (C,M,G,D,B) where B and C is in the outer face.
For identifying the separating triangulation, we will ignore the outer vertices for
this case. So now we are considering M,G,D vertices. Cyclic order for vertex
M is (C,B,L, J,G,A), for vertex G is (M,J, I,H, F,D,A) and for vertex D is
(G,F,E,H,B,A). Now we can see only vertex M has connection with all the outer
vertices. And in the cyclic order of A vertex, vertex B and vertex M has a edge
connection. So ABM creates a separating triangle in the ABC Triangulation.

After identifying the separating triangles, we can easily remove them by following
the steps explained in 2.5.1.

3.3 Transforming Non Hamiltonian into Hamilto-

nian

In 2.5, we discussed we can make a non Hamiltonian Triangulation a Hamiltonian
Triangulation without making the triangulation 4-connected. This improved the
minimum required flip from (3n− 9)/5 to 5n− 23. Figure 3.5 shows the flow chart
of how the code segment works for this transformation. We used recursively 4-Block
Decomposition and created a 4-Block Tree. Here B0 is the root which has the same
outerface of the main triangulation. We will run a main loop, where we will take
an arbitrary node Gi from the 4-Block Tree at the penultimate level. Then we will
get the 4-connector of Gi, and flipping every edge of the 4-connector will merge Gi

with all of its child. It means Gi has no more separating triangles in it. We will
update the 4-Block Tree and in the updated 4-Block Tree, Gi will become a leaf
node. There is a chance that Gi might form a checkerboard. In that case we put
a dummy vertex on face F and perform a dummy flip which destroys 3 separating
triangles with at most 2 normal flips. If a checkerboard appears we delete 3 edges
in 4-connectors which are responsible for breaking the separating triangles adjacent
to face f. This loop will continue until all the child are merged to B0 and in the
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4-Block Tree there exists only one node. Then the root B0 is a triangulation which
is a Hamiltonian Triangulation.
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Figure 3.5: Flow Chart for Transforming non Hamiltonian triangulation to Hamil-
tonian Triangulation
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3.4 Transforming Hamiltonian triangulation into

Canonical Triangulation

In Section 2.4, we discussed using Hamiltonian cycle we can transform a triangu-
lation to Canonical triangulation. Figure 3.6 shows the flow chart of how the code
segment works. We decomposed The graph G into 2 sub-graph G1 and G2 consid-
ering HC (Hamiltonian Cycle) as the outer cycle. On each sub-graph we created
an apex vertex v. As the sub-graphs were strictly divided by the HC, a flip on
sub-graph G1 will not change anything on sub-graph G2 and vice versa. By using
this algorithm we can a Hamiltonian Triangulation to a Canonical Triangulation by
at most 2n− 10 flips [19].
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Figure 3.6: Flow Chart for Transforming Hamiltonian triangulation to Canonical
Triangulation
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Chapter 4

Result

There are many algorithms on transforming one triangulation into another with
edge flips in Graph Theory. But there are no readily available implementation for
investigating the performance of these algorithms for transforming different triangu-
lation.While the existing algorithms talk about the worst case, not much information
is available on the number of flips needed for the average case. So, for this reason
we showed the following in this thesis:

• We implemented the Wagner’s algorithm and showed the flip sequence that is
generated by Wagner’s algorithm

• We implemented the current best known algorithm in sequential flips (cardinal)
for transforming triangulation.

• We want to observe the number of flips required for this algorithms in average
case to transform one triangulation into another.

So far we have learned some of the famous algorithms which use sequential edge
flip to transform one triangulation to any other triangulation of the same number
of vertices. We learned the following algorithms:

• Wagner’s algorithm

• Komuro’s algorithm

• Mori et al.’s algorithm

• Cardinal et al’s algorithm

We described our own thoughts on these algorithms in Chapter 2. In order to im-
plement the algorithms, we used SageMath application. In SageMath we are using
python to write our code. We have implemented a class to represent a triangula-
tion.SageMath has a built-in function for finding the right vertices’ positions whilst
the graph can be a planar graph. We need to provide a clockwise cyclic order and
external-face(outer-face) and the class will plot an embedding of the triangulation
and store it in a global variable. But the most important part of this class is the
function which can flip an edge. This function checks if the edge is flippable or not
and if it is flippable, then this function flips the edge and updates all the related
information. This function is very crucial as every algorithm will use this function.
So we are trying to make this function as optimal as possible.
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We have implemented Wagner’s algorithm. We can successfully follow the steps of
wagner’s algorithm and show the sequence of edge flip that is required to transform
one triangulation to another.
We also worked on the algorithm of Cardinal et al. [25] which is known as the best
algorithm for using sequential edge flips.
An important task for our thesis is to compute the sequence of flips for the algo-
rithm. We also want to heuristically measure the performance (quantity of flips
required) of different random triangulation transformations from one to another.
Then we want to analyze the data and show how much better it performs on the
average case than the theoretical worst case.

In Figure 4.2 the line graph shows the required flips for worst case and average case.
Here X-axis is the number of vertices (n) and in the Y-axis we put the required flips
to convert a n-vertices Triangulation to another n-vertices Triangulation.
In Figure 4.1 we showed the data set we got (form 7 to 20). For the worst case we
computed the required flip by the equation 5n − 23. And for the last column we
showed the average flips required in the 1000 iteration.

Figure 4.1: Worst Case VS Average Case Table

In order to get the result of average case, we run 1000 iteration on every single
vertex(7 to 60). And for every iteration, we generated 2 random triangulation and
transformed one into another. We stored the numbers of required flip for every
transformation and then we compute the average required flip for every vertex.

In Figure 4.2 green line is a straight line which represent how much flips we need
in the worst case. And the orange line represent the required flips on average case.
Notice that although the orange line segments together appears as a straight line,
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Figure 4.2: Line Graph of Worst Case VS Average Case

it is not. That is because we used 1000 iteration for every vertices, as a result the
increase of required flip for n to n+1 is almost equal for every vertex. Orange line
is strictly below green line, as it is supposed to because, average is always less than
worse case.
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Chapter 5

Analysis

In our thesis, we are mainly implementing some algorithms to transform one trian-
gulation into another. In this process, we have learned about different algorithms
which we reviewed in Chapter 2. We have implemented Wagner’s algorithm so far
and now we are in the process of implementing the algorithm of Cardinal et al. [25].
Also, we have gone through some papers [5], [13], [15] to see the run-time of the
implementation of the algorithm 4-Connected graph, duel perfect matching, 4 block
tree. While studying their algorithm, we noticed the following observation:

Observation 5.1 According to Cardinal et al., in triangulation we can remove all
the separating triangles in two ways. They are Dummy flip operation and another
one is 4-Connector. We can only perform Dummy flip operation when there is
a checkerboard in the triangulation. Otherwise we will perform 4-connector. But
we observed that in some cases, we can perform dummy flip operation even if the
triangulation is not a checkerboard. And it performs better than the 4-connector.

Although we still do not know if this will decrease the upper bound, but the chances
of using dummy flip operation will surely increase as we can use dummy flip opera-
tion without having a Checkerboard. Here is an example for better understanding.

Figure 5.1: A Triangulation without Checkerboard

According to the Cardinal et al.’s theorem if a triangulation has a Checkerboard
only then we can perform the Dummy flip operation to remove all the separating
triangles. Otherwise we will perform 4-connector. In Figure 5.1, it shows a Tri-
angulation which has no such 4-block that contains a Checkerboard. So we are
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performing 4-connector in every step according to the Cardinal’s theorem.
In Figure 5.2, we selected a 4-block {20,21,22} from the triangulation which con-

Figure 5.2: 4-Connector

tains all the separating triangles. From this 4-block we find {{a,z}, {b,m}, {d,i},
{c,e}, {g,j}, {f,h}, {l,k}} as dual matching and we will flip the edges of the sepa-
rating triangles which contains the dual matching. So we flip {{8,4}, {6,10}, {4,7}}
edges to remove all the separating triangles. So it clearly shows that 4-connector
will require 3 edge flips to remove all the separating triangles. But if we use dummy

Figure 5.3: Dummy Flip Operation

flip operation in Figure 5.3, according to 2.5.1 these 3 separating triangles can be
removed by at most 2 flips.
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Chapter 6

Conclusion

Edge flipping is one of the very important topics in graph theory. We have reviewed
Wagner’s theorem, Komuro’s bound, Mori et al.’s theorem and Cardinal et al’s
thorem in this research so far. Using edge flips, here we have showed the simulation of
Wagner’s theorem in Sagemath as there is no step by step simulation of the process.
Also there is no such instances where it shows what is the actual cost(required edge
flip) for the transformation of one triangulation into another. So, we computed how
many flips it actually requires for the transformation and leave a clear difference
between practical result and academical upper bound of edge flips. We have also
implemented Cardinal et al.’s algorithm. Thus, it will help the researchers, students
and others (who are interested in these field) to learn about these algorithm perfectly
and can have better visualization. it also shows how the algorithm works.
In the future, if more vertices can be simulated then we might find a better result.
The fact that, the occurrence of a Triangulation without Hamiltonian cycle is very
low in lower number of vertices the cardinal’s algorithm almost performs at 4n− 20
for a triangulation of n vertices. So if further simulation can be done on more
than 100 vertices which may increase the chance of appearance of non Hamiltonian
triangulation. Another possible scope for further work can be comparing multiple
algorithms average case. We only simulated the current best known algorithm and
showed the difference. But other algorithms simulation might have a different result
where the average case is much closer the the worst case or even much further from
the worst case. This leaves an open field for further research.
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