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Abstract

2D computer vision and activities related to medical image analysis are remark-
ably guided with the help of Convolutional Neural networks (CNNs) in recent years.
Since a chief portion in the available clinical imaging data is in 3D, we are inspired
to further develop 3D CNNs for seeking the advantage of greater spatial context.
Despite the fact that many FCNs are previously worked on and built by using var-
ious approaches, current 3D approaches still rely on patch processing due to the
utilization of GPU memory, which limits the incorporation of bigger context infor-
mation for improved performance. Using efficient 3D FCNs in MRI images without
any data loss would result in more efficient disease detections. In this paper, we
propose an approach to an efficient 3D U-net segmentation technique for MRI Im-
ages using a lossless preprocessing of an MRI image dataset. Our proposal has the
advantage of an impressive reduction of the required GPU memory for 3D Medical
Image processing activities and that too, with an enhanced performance which is
evaluated by the IoU (Intersection over Union) evaluation metric. Comprehensive
experiment results performed with MICCAI BraTS’20 exhibit the viability of the
presented strategy.

Keywords: 3D CNN, FCNs. 3D-Unet, segmentation, volumetric medical images,
3D medical image processing, Brain 3D MRI.
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Chapter 1

Introduction

1.1 Overview

Convolutional Neural Networks or CNNs, are recently taking advantage in solving
problems within the fields of Computer-Vision along with Medical Image Analysis
[1]. In the arena of medical image computing, CNNs have been used in an increasing
number of applications during the past few years. Despite such acceptance, most
of the techniques are just capable of processing 2D images, in spite of the fact that
the great majority of medical imaging data obtained is in 3D. Data obtained from
3D imaging modalities such as (micro-CT or X-ray) Micro-Computed Tomography
, (CT) Computed Tomography , or (MRI) Magnetic Resonance Imaging scanners
are labeled with 3D image segmentation to extract regions of interest. Thus, they
can profit from greater geographical context, by increasingly developed 3D CNNs
[2] [3] [1]. (CNNs) Convolutional Neural Networks can be considered as a strong
tool in terms for discovering visual representations from pictures, often consisting of
several layers of nonlinear processes along with a huge portion of parameters that
are trainable [4]. Despite the fact that immediate measurement as well as analysis
of 3D pictures are possible for some cases, segmented-images form the foundation
for the majority of 3D Image analysis. The extraction of a region of interest’s geom-
etry by 3D picture segmentations allow 3D model conversions, allowing viewing and
measurement of the topics that are scanned . Further, the virtual examinations of
these model, such as through simulations in computer, or even creating a physically
represented subject via 3D printing, all necessitate the completion of segmentation
on the 3D pictures.

A prejudiced hierarchical characteristic is noted when CNNs were trained [3].[5]
depicts a survey done on GPU-based Medical Image computation techniques like
segmentation, visualization and registration. It discussed how the GPU’s computa-
tion speed has significantly grown, allowing the provision of a significant acceleration
for many computationally-intensive tasks as compared to the traditional GPU-based
computing frameworks. Because of its huge processing capabilities, GPU has re-
cently emerged as a competitive platform for higher performance in computing [5].
Due to the constraints from GPU memory as a result of a complete conversion to
3D, the state-of-the-art approaches rely on patch-processing / sub volume. The
patch to be inputted is usually smaller in size if no specialized version of hardware
is used along with plenty of GPU memory, which limits the synthesized large con-
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text information for a reasonable performance [2]. In the following paper, we are
proposing an approach to an efficient segmentation technique for MRI Images using
an efficient 3D-unet model after a thorough data preprocessing to minimize the data
loss. Our approach is beneficial for proportionally reducing the memory of GPU for
3D Medical Image processing activities without losing any kind of informative data.

1.2 Motivation

Artificial intelligence (AI) advances, more individuals are attempting to use AI ap-
proaches to the automated-segmentation of the brain tumors in MRI image datasets.
A (CNN) convolutional neural network is a kind of Artificial Neural Network used to
interpret visual images in deep learning. Contrary to popular belief, most convolu-
tional neural networks are merely equivariant to translation, rather than invariant.
They’re used in recognition of image and video, recommendation systems, image
processing,[6] image classification and segmentation, medical image analysis, NLP,
brain-computer interfaces and financial series data.CNNs (convolutional neural net-
works) are a sort of deep learning model [7][8] that may operate on original dataset
directly. [9] In some past years, (CNNs) Convolutional Neural Networks have been
used to drive 2D computer-vision and activities connected to medical image analysis.
[10] We are inspired to continue developing 3D CNNs in order to gain the positive re-
sult of more spatial context, because a large amount of the accessible clinical imaging
data is in 3D. Two-dimensional convolutional neural networks or CNNs that pre-
dict the segmentation maps for MRI images in a single unique anatomical plane.
Whereas, 3D-CNNs solve this problem by predicting segmentation for a volumetric
region of a scan using 3D convolutional kernels. Fully convolutional networks are
regarded as some higher class models addressing many pixel wise tasks. [11] FCNs
are reviewed as the networks that do not contain dense layers like CNNs, rather
they contain 1 x 1 convolutions and work like fully connected layers. In recent days,
FCNs for semantic segmentation highly improved the accuracy by transfers of pre-
trained classifier weights, layer representations, fusing different as well as learning
end-to-end on entire data images models.Using efficient 3D FCNs in MRI images
without any data loss would result in more efficient disease detections. Therefore,
We present an approach to an efficient 3D U-net segmentation technique for MRI
images employing a lossless preprocessing of the MRI image dataset in this paper.
Our aim is to offer the benefit of a significant decrease in the amount of GPU RAM
required for 3D Medical Image processing operations, as well as improved perfor-
mance.

1.3 Problem Statement

In the medical field it is greatly important to be accurate when diagnosing or detect-
ing something unusual from the volumetric images of different organs of a patient.
Segmentation of volumetric images in [12] like 3D CT (Computed Tomography)
images and MR (Magnetic Resonance) images are greatly important in case of di-
agnosis and treatment procedure. Medical Image analysis is generally the science to
solve or analyze medical problems that are on the basis of several imaging modali-
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ties and digital images analyzing procedures. If not properly segmented everything
might go wrong in the treatment of the patient and the patient might even lose
their life. On the other hand, when the segmentation is highly accurate it helps in
precise diagnosis and surgical planning as well as ensuring a fast and better surgical
procedure[2].That is, it ensures a better treatment. Automated volumetric medical
image segmentation is not something easy at all, because various organs have vari-
ous shapes, sizes, and structures which we call inter-patient anatomical variability.
Keeping the accuracy problem in our obvious consideration, we required something
that would save time as well, causing no delay of treatment of any patient. That’s
why the segmentation technique needed to be efficient as well, and which can be
done better using an efficient 3D U-net model. We already know convolutional neu-
ral networks or CNN already play a great role in [12], especially in 2D medical image
segmentations. While 3D images are still a problem for segmentation due to organ
structure and shape variance and for the process being complicated in case of 3D
ones.

Therefore, 3D Fully Convolutional Networks could be used for an efficient segmenta-
tion of the volumetric images to solve these problems. This is generally a sequential
down shuffling operation by 3D convolutions with lower resolution. As stated, our
approach also has an advantage which will cause the 3D image processing task to
significantly reduce the data loss. Since the loss of data is a great disadvantage in
detecting a disease. During our research and experimentation, we are also going
to get answers on our own for questions like how effective the performance of our
approach would be using our approach in 3D medical image segmentation and if it
is more accurate and better compared to most other previously introduced methods.

1.4 Aims and Objectives

The aim for our research is to propose an efficient segmentation technique for MRI
images. Making the use of a 3D U-net model, to meet the purpose by systematically
lowering the amount of GPU memory required for processing tasks on 3D medical
images. Reducing the data loss through preprocessing, then using it as an input to
make it go through subsequent FCN and so on for the volumetric image analysis.
The objectives of the research are-

• To process a highly accurate segmentation technique.

• To reduce the GPU memory that is generally demanded for 3D medical images.

• To compare the experiment results with the previously done research papers.

• To declare an efficient procedure for 3D image analysis with an improved
performance.
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Chapter 2

Background And Related Works

Glioma, a form of brain tumor that is highly common and makes for around 33% of
all brain tumors. They mainly affect the central nervous system. And it is a deadly
disease, a kind of cancer with a very terrible prognosis along a survival rate much less
than about 2 years.Segmenting, or can be said defining the pixels that correspond
to the tumor is an important diagnostic procedure. It’s usually done manually by
a professional radiologist, but it takes a long time, and manual segmentation is im-
practical if we have a large number of patients and want to do anything like a meta
analysis or something. So, in order to supplement a radiologists’ efforts, a Volumet-
ric image segmentation, like 3D CT (Computed Tomography) and MR (Magnetic
Resonance) images, that can successfully separate gliomas can be quite beneficial to
us. Magnetic resonance imaging, often known as MRI, Magnetic Resonance, or MR
imaging, is commonly used to monitor patients of Brain Tumours. Medical image
analysis is a science that focuses on using a variety of imaging techniques and digital
image analysis technologies to solve or assess medical diagnosis. As a result, rather
than acquiring a single image, volumes are generally recorded. MR image volumes,
also known as MRI image volumes, are routinely acquired. MRI is a non-invasive
imaging technology that does not employ ionizing radiation like most other imaging
techniques. If medical images are not properly segmented anything might go wrong
in the treatment of the patient and the patient might even lose their life. On the
other hand, when segmentation is very accurate, it aids in precise diagnosis and
surgical planning, as well as assuring a faster and more effective surgical operation.
In other words, it ensures a better outcome.

[13] proposed a deep network that has learned to do volumetric dense segmenta-
tion from sparsely annotated volumetric images. It requires 2 Dimensional anno-
tated slices for training. It can relevantly be applied to densify a sparsely annotated
dataset, also to learn from sparsely annotated datasets to generalize to a new one.
It is supported by an earlier U-net architecture which was 2 Dimensional in na-
ture, while the network proposed here only carries 3 Dimensional volumes because
the input and processes them with adapting 3 Dimensional procedures, specifically
3 Dimensional convolutions, 3 Dimensional max-pooling and 3 Dimensional up-
convolutional layers. Since each picture contains repetitious structures with the
related difference, this biomedical application needs only a few images to coach.
The information for the structure is 132 × 132 × 116 voxel tiles of a picture with
three channels and output is 44 × 44 × 28 voxels respectively in X, Y and Z axial
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paths. The dataset used to teach the structure is Xenopus kidney, tiles stitched
using XuvTools, used Slicer3D for manual annotation of orthogonal slices in each
volume. The experiments were done on down-sampled editions of the initial reso-
lution by an element of two in every dimension. So, the info sizes utilized in the
trials are 248 × 244 × 64, 245 × 244 × 56 246 × 244 × 59 in X, Y, Z volumes.
70,000 training iterations were done on an NVIDIA TitanX GPU and it carried 3
days for training. This network used an end-to-end technique for understanding
the semi-automatically and the fully-automatically done segmentation of a 3 Di-
mensioned volume from a limited annotation. Even for highly variable structures
within the given image, it gives an accurate segmentation. The common IoU of 0.863
was achieved in three-fold cross-validation experimentation for the semi-automated
format and within the fully-automated setup, there was an operation increase of
the 3 Dimensioned architecture to constant 2 Dimensional implementations. The
structure here is unoptimized and coaching from the beginning with no pre-training.

[14] introduce a three dimensional (CNN) for segmenting the brain tumors from the
multimodal MR datasets of the brain. The model is a revised form of the well-known
three dimensional U-net design, which accepts multi-modal MR data of the brain
as input, evaluates those data at different scales then outputs a complete accurate
multiclass tumor segmentation. A compensated (CCE) loss of function has been
used to train the model from start to finish using the BraTS 2018 Training dataset.
They use BraTS 2018 datasets to construct a revised version of the classic three
dimensional U-net design for segmentation of tumor of the brain. Several medi-
cal diagnostic segmentation operations, including segmentation of organ and lesion,
segmentation of retinal surface , and so on, have been effectively implemented using
the U-net design. The three dimensional U-net is trained on BraTS 2018 train-
ing sample using the (CCE) loss of function, and a training on the class weights
that is used to rectify unbalance problem. On the BraTS’ 18 test and data vali-
dation, authors obtained successful performance with the Dice values for the test
data and validation dataset for expanding tumor and entire tumor area. Researchers
selected reversed convolution over regular upsampling because it permits the model
to learn an appropriate approximation function rather than a predefined approxi-
mation function. After that, instance leveling and Dropout with a probability of
0.05 are applied once again. Finally, Two three dimensional convolutions with k
multiply 2n filters of size 3x3x3 are performed. Each convolution layer uses the
Rectified linear component as a non-linearity parameter. C filters make up the last
layer, with C denoting the entire classifier. SoftMax nonlinearity comes after that.In
the pre-processing stage, Isotropic, co-registered and skull-stripped MR volumes are
included in the BraTS test. Then the author next proceeds to several pre-processing
processes. The luminosity of the dimensions was re-scaled from 0 to 1 divided by
the standard deviation, using mean subtraction, and cropped to 184x 200 x152.
The findings show that the suggested technique operates well on entire tumors and
tumor cores, but has a lesser performance for augmenting tumors. That is to be
anticipated, as enhancing tumors depend significantly on T1c imaging and appear
in the same way as other enhancements upon these pictures. Different methods aid
in the segmentation of other tumor subtypes. However, their technique performed
poorly on the test dataset of Enhancing Tumors Tumor Core categories.
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[15] In this paper the author discusses all about the U-net. U-net is part of the
neural network system for an image segmentation. They can do 2 ways, one is the
analysis path and another one is the expansion path . Author say Ronneberger
create a huge impact on U-Net improvement .author inform that U-Net is faster
for train other segmentation because of context based learning.Firstly Auther state
Base U-net architectures in this U-Net architectures there are two stage of U-Net
segmentation .first one is contracting path and second stage is expansive path. In
stage one it uses 3 x 3 convolutions by the Rei.U activation unit with max-pooling
level . They duplicate those processes as much as the process needs. And in stage
two U-Net uses 2 x 2 up-convolution for up samples.then it crops and adjusts by
double 3 x3 convolution and Relu activation. After that 1 x 1 convolution is applied
to maintain balance and give expected image outcome.after that writer gives the
knowledge of 3D U-Net . Here all the 2D structures are removed and 3D struc-
tures are introduced. This 3D model mostly applies in the field of medicine to find
out the illness of a patient. Then the author writes about Attention U-Net . In
this architecture they use attention gates to focus on a specific region . They use
an attention gate to find out what part of the image is needed.additive attention
gate can give the best accuracy rate. In the list the author states about Incep-
tion U-Net. Most of the structure uses an exact size of image filter . but in most
images inner objects have different dimensions . for this model to need high level
information for the image process. In this method they use 3 x 3 convolution two
times to get more detailed information . In the queue Author next explains about
Residual U-Net model . if more layers are present it can give more accurate results
but overload of layers also can damage the data and more valuable data can be
lost . But ResNet can reduce this problem by bypassing some connections where
feature maps take data from one layer to the next layer. They skip connections
in between their convolutional layers. Author also state that for complex image
residual U-Nets will give good accuracy .Writer also discuss about RECURRENT
U-NET, -NET++,,ADVERSARIAL U-NET, ENSEMBLE U-NET, . he also add
About MRI,CT,RETINAL FUNDS IMAGING, DERMOSCOPY,ULTRASOUND,
X-RAY,MICROSCOPY,DERMOSCOPY and other image mode.then they brief us
about U-Net network statistics and its limitations. In this paper the writer wanted
to show the way for those people who are willing to discover U-Net.

[16] suggested DeepCut which is a technique for deriving pixel wise object segmen-
tations from a dataset of image with poor labeling, in this context bounding boxes.
This incorporates machine learning into the famous GrabCut technique by building
a neural network classifier from the annotation of the bounding box . To get pixel
wise object segmentations, authors structure the task as a power reduction problem
over a fully linked unsupervised field and repeatedly modify the goal of training. In
addition, they suggest DeepCut variations and compare them to a simple approach
to convolutional neural network training with little supervision. They put it to the
test on a difficult resonance dataset of fetal magnetism to see if it can tackle the
segmentation of brain and lung challenges, and the findings are promising in terms
of effectiveness.Consumer given bounding boxes are a basic common annotation
type which has been widely utilized to initialize object segmentation systems in the
computer vision. Bounding boxes provide a benefit over other types of annotations
in that they allow the problem to be properly confined (i.e., the item should be
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unique to the bounding box region completely enclosed inside it). Bounding boxes
may be constructed in practice using two corner positions, allowing for quick placing
(about fifteen times quicker than pixel wise segmentations and minimal storage of
data. DeepCut is part of a group of recurrent optimization algorithms that includes
a famous GrabCut method. Both techniques have two main stages such as label up-
dating and model estimation.Researchers purposefully picked a database with a lot
of diversity in the imaged structure to see if a basic network design is enough for the
segmentation of bounding box object challenges. They prevent learning attributes
for the full picture space by limited learning background regions from the halo H,
allowing for quicker training. They found that the results of segmentation of the
brain are more accurate than lung segmentation results for all internally compared
approaches. There are various reasons that contribute to these discrepancies, and
they affect all of the compared approaches in the same way. The brain’s regular
form can be better represented with a bounding box than the lungs. This reduces
the number of initial false-positive targets, making the CNN training easier.Second,
as the brain is often surrounded by hypo-intense muscular tissue, the context con-
trast is higher in the brain. DeepCut can segment both the lung and brain from
an image data with a wide range of anatomy and is easily consistent with similar
problems on medical data. In terms of accuracy, the proposed technique outper-
forms the competition to a model being trained under strict observation and at the
same time considerably decreases the amount of annotation time needed for analysis.

In [17], the researchers used a network for doing semantic segmentation, for the
brain tumor segmentation of 3D MRIs. They used an NVIDIA Tesla V100 32GB
GPU for the model. They used the BraTS 2018 dataset, which has 285 cases. They
cropped the size to a 160x192x128 size to make sure that it contained all the neces-
sary contents. They divided the data into 2 parts and validated with 66 cases and
the testing with 191 cases. They used CNN architecture with an encoder-decoder-
based approach, which had an asymmetrical encoder for extracting the features of
the image. As the dataset size was limited, the auto-encoder branch was used for
more guidance and regulations. The encoder part used ResNet blocks with an addi-
tive identity skip connection. As the batch size was small, group normalization was
used. All the input images were normalized so that it can achieve zero mean with a
std unit. A random intensity shift and scale were applied per channel for the images
too. A random axis mirror flip was also used. Using the common CNN approach
of progressive downsampling and also increasing the feature size by 2 at the same
time. The encoder endpoint was 256x20x24x16, which is much smaller than the
input image. The decoder structure was built similarly to the encoder, with minor
exceptions. The decoder levels began by reducing the feature by 2’s factor and mak-
ing the spatial dimension double. The decoder ended up with an image of the same
size as the pre-processed image. They used the Adam optimizer to progressively
decrease it. L2 norm regularization with a weight of 1e 5 was used on the kernel
parameters. Also, a random mirror flip on all 3 axes was applied with a probability
of 0.5. To draw input images in random orders, they used a batch size of 1. Using
the high gpu size of 32 GB, the number of features were doubled in the process.
The VAE branch which regulated shared encoding improved the performance of the
method and helped it have good accuracy for any random initializations.
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Firstly, in [18] the writer describes brain tumors and how they grow in the human
body . The objective of this writer is to create a 3D (CNN) for brain tumor di-
vision from 3D MRIs and give an instability measure to evaluate the certainty of
the model’s future predictions. brain cells are tiny in size so they show in graphs
of ET,NCR and ED. In image pre-processing writers apply Random Flip of fifty
percent and they use 90 degree angle on 2 axes. Author uses patch for sampling
strategy . The author uses a dual way for patch size. First one is Binary related and
another is random tumor related . After that they used the Dice score coefficient
and modified that they took the Number of N number of voxels . The writer uses 3
networks in this paper and they use ADAM optimizer. If writer’s model validation
loss is not satisfied within 30 epochs then they get the help of GDL loss.author
discusses the V-Net for 4 output paths. For training writers use a 96 x 96 x 96
size patch and shuffle the tumor strategy which is called random tumor distribution
strategy. Writer also explains that the U-NET symmetric Encoder has been used
here for network architecture. Author changed individual normalization into group
normalization.writer use an extra step so that even smallest part can be detect
.writer is sharing that they wanted to run the prediction model more than 100 times
and in final output their average and they will be put it in model for prediction.The
last expectation and vulnerability maps are processed after similar systems as in the
epistemic vulnerability.. Writer claiming they work with data set in pytorch. Fi-
nally When an ensemble of the suggested models is made , the simplest leads to the
validation set are achieved. Writers can make use of every model’s biases, but still
an extended way from this state . Results could be a consequence of poor training
approach during which the sampling technique fails to represent the proper label
distribution, leading to a better number of erroneous detections. And the author
states that there are more ways are open to develop this model .

[3] addresses the Compact nature, Efficient nature, and about Representation of
3D Convolutional Networks and planned a highly minimized network design for the
division of fine constructions in volumetric pictures. Thus the basic and adaptable
components of modern convolutional networks needed to be contemplated, such as
enlarged convolution and remaining association. The majority of the current net-
work designs followed a completely convolutional downsample-upsample pathway.
So, a 3D engineering that consolidates high spatial goal highlight maps all through
the layers, that could be prepared with a wide scope of responsive fields was sug-
gested in this approach. In this paper, the network got authenticated with the
difficult errand of computerized brain division into one fifty five constructions from
T1-weighted MR pictures, and the proposed network, with numerous occasions less
boundaries, accomplished cutthroat division execution contrasted and best in class
structures. The notable AlexNet and VGG net were prepared on the ImageNet
dataset. The prepared network was the initial move towards a broadly useful volu-
metric image representation and it conceivably gave an underlying model to move
learning other volumetric image division undertakings. In this work, the strategy
required around sixty seconds to foresee an average volume with 192×256×256 vox-
els. To reach better division results and scale the weakness, ten Monte Carlo trials
of the misfit model were required. The whole interaction required somewhat over
ten minutes, altogether. Nonetheless, the run time of Monte Carlo examination at
trial time, just the misfit layer and the last expectation layer were randomized in the
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mentioned paper. The attainability of voxel-level vulnerability assessment utilizing
Monte Carlo trials of the proposed network with misfit on trial time was exhibited.
Contrasted with the current volumetric division organizations, the compact network
has less boundary communications, and in this manner possibly accomplished better
vulnerability gauges with less samples.

In [19] paper the authors are using Lesion Priority to Optimize three-dimensional
U-Net in case of tumor segmentation of the brain. They are using a lesion prior
and a three-dimensional U-Net to optimize the segmentation of a brain tumor using
a viable method. To begin, they create heatmaps of different sorts of lesions using
ground-truth of the brain tumor lesions from a sample of medical patients. The
volume-of-interest (VOI) map, which incorporates previous data on brain tumor le-
sions, is created using these heatmaps. In this paper they mentioned that there are
two phases in the described lesion before fusion method: First, From the ground-
truth of the tumor of the brain lesions, they construct a volume-of-interest (VOI)
map, which is then combined with the several different modes of MR images and fed
into a three-dimensional U-Net for the brain tumor segmentation. The incorpora-
tion of the lesion prior toward a three-dimensional U-Net design, which increases the
segmentation of tumor performance of the three-dimensional U-Net, is the paper’s
key contribution.They used a Multimodal Brain Tumor Image Segmentation Bench-
mark (BraTS) 2017 [2–4, 14] dataset which includes 285 training subjects and 46
validation subjects.For the purpose of data pre-processing. Normalizing intensity
is a way of transferring data from various MR images onto a common scale, and
this is a key step in eliminating early biases and enhancing the network’s perfor-
mance. This paper’s suggested network architecture is built on three-dimensional
u-nets with a three-dimensional convolutional layer.Spontaneously sliced regions of
size 128 128 128 blocks and packet size Two are used to train the suggested struc-
ture. Expanded input region collects more from the brain’s relevant data. A clipped
region is arbitrarily taken from each participant at the end of each period. The
model was trained for 300 iterations in total. To get the anticipated lesion mask,
they fed the complete picture of size 240 240 155 blocks inside the trained three di-
mensional U-Net for every patient during testing. Both training and testing do not
need data augmentation.Their suggested lesion before fusion technique increases the
performance of three dimensional U-Net, especially for ET’s DSC which is 3.5 per-
cent, for H95 which is 2.56, and entire tumor is 2.39. Additionally, their developed
lesion before fusion strategy increases the segmentation of tumor effectiveness of the
assemblage of five three dimensional U-Nets, especially for the DSC of ET which
is 2.1 percent and tumor core segmentation which is 1.7 percent . The metrics of
the ET heatmap have had the most importance when we build the VOI map, which
is why the VOI map has the biggest boost on the ET.Furthermore, the suggested
lesion prior fusion approach may be simply combined with various network designs
to improve segmentation efficiency even further.

[20] introduce us to a Computed Tomography image method .Firstly they talk about
two image methods. First one is Carvalho et al. and second one is that discussion
is based on 2D convolutional neural networks and 3D-based methods.their network
can learn more feature information than two-dimensional networks by fully using
three-dimensional spatial data. They restrict the size while losing the effectiveness
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by using 3D-UNet. They face some issues when they bring more layers when trying
to bring better results.They solve that problem by using residual network (Resnet).
Author added more channels in Res2Net to make it 3D-Res2Net. It is the quantity
of component features with scale = 4 so the element map shipped off this design is
changed over to eight channels after the 1 × 1 × 1 convolution.They are announc-
ing a training method that if we group the channels and then train them we can
bring out better result than non group train data set. They alter the weight of
every channel after every convolution. They also consider the speed of the network
. In the dataset they divided the dataset into three sections .Seventy percent of the
whole data was utilized for the training part, twenty percent for the testing part,
and ten percent for verification. author’s data set including two files with the suffix
zraw and mhd. The U-net guarantees the size of the element map while adequately
fixing the vanished important information . The strategy of their paper was tried
on the LUNA16 public dataset,The analysis initially looked at the capacity of 3D-
Res2UNet and the first organization to section and fit lung knobs. where the dice
coefficient record arrived at 95.30% and the review rate came to 99.1%. Few pic-
tures whose segmentation isn’t exceptionally precise. This is on the grounds that
the state of such lung nodules is not the same as most lung nodules.The suggested
network performed well in the segmentation of lung nodules and made significant
progress in the segmentation of tiny nodules.

[21] proposed a segmentation framework which is based on deep learning that incor-
porates CNN. They are fine-tuning either supervised or unsupervised images specif-
ically to make an adaptive CNN model for them. The training was done on one
node of Emerald cluster3 with two 8-core E5-2623v3 Intel Haswell’s and a 128GB
memory K80 NVIDIA GPU. The dataset used for the training is BRATS2015 which
included 274 scans from many different patients. For different organs and modalities,
a bounding box was used which takes standard deviation of the region and mean
value as input values. Fine-tuning-based Segmentation is used. Their proposed
CNN takes the content of the bounding box as inputs and outputs for binary seg-
mentation. For the testing phase, a bounding box and their segmentation technique
extract the specified region in the bounding box and feed it to the CNN to obtain
an initial segmentation. For the 2D images, they adopt P-NET to get the bounding-
box-based segmentation. The proposed network contains six blocks with a 181 ×
181 receptive field. The first five boxes contain dialative parameters which capture
features at different scales. These features are then fed into a block6 classifier. For
the 3D images, the network is extended. It has an 85×85×9 anisotropic receptive
field. In the testing stage, the trained model was implemented on a MacBook with
16 GB RAM and an Intel Core i7 CPU running at 2.5GHz. For user interactions
on images, they used Matlab GUI and a PyQt GUI. For the evaluation, The seg-
mentation results by an Obstetrician and a Radiologist were used. For quantitative
evaluations, they used the ground truth and the Dice score between the segmen-
tations. Through their framework can be applied to different CNNs, this research
mainly focuses on the interactive segmentation where the memory efficiency of the
network and short inference. This also helps to work on low GPU machines. The
end results show that the segmentation performance is improved by image-specific
fine-tuning. Though the fine-tuning helps correct some mis-segmentations, the per-
formance of the model is satisfactory. It leads the model to under-perform when
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dealing with various complex cases.

Classical deep CNNs for completely autonomous brain tumor segmentation include
limitations such as spatial data lost due by both repetitive pooling and inadequate
capacity of multi-scale lesion processing, according to authors of [22] . Authors
employ a three dimensional atrous-convolution with a singular stride to substitute
pooling establish the backbone for feature learning to solve their first difficulty.
A three dimensional atrous-convolution feature triangle is built appended to the
end of the backbone for the second challenge. This structure increases the overall
model’s discriminating capacity to separate tumors of varied sizes by adding contex-
tual data. Authors employ every hierarchical feature map created by the backbone
system to accurately forecast tumors, taking into consideration the multi-scale fun-
damental feature of hierarchy in DCNNs. They construct a feature triangle linked to
the backbone system for combining multi-scale context characteristics with lesions
in order to deal with malignancies of various sizes. They claim that their system
can sparsely relay complicated data flows from several hierarchies without sacrificing
any feature data. The studies show that the suggested technique just not fixes the
issue of data loss that is caused by typical DCNNs’ pooling operations, moreover
accurately segments malignant lesions of various sizes.In this article, they choose a
size of the data that is greater than the receptive areas of DCNNs, causing the final
softmax layer to yield many predictions at the same time . All forecasts are equally
reliable as DCNNs’ receptive area can encompass entire data without padding. This
can prevent repeating convolving in the overlapping patches of the very same voxels
, lowering the computational cost and storage burden significantly.Authors evaluate
the segmentation performance obtained by the proposed model to the state-of-the-
art methodologies on the BRATS 2013, 2015, and 2018 benchmarks to legitimize the
efficacy and reliability of their method. They can see that the proposed approach
has a superior impact in segmenting tumor’s components, for example the enhanc-
ing core and tumor core . Their observations on various data demonstrates that
the suggested system is capable of distinguishing lesion features from several other
tissues, particularly when equipped with the three dimensional atrous-convolution
feature triangle. The key reason is that the network’s planned structure, which is
formed using three dimensional atrous-convolution and the atrous rate for every
hierarchy, allows it to hierarchically collect characteristics without losing any data
during data flow propagation.

In [23], the authors worked on a 3D U-net-based architecture with encoder-decoder.
They tried to segment the tumor. They tried measuring the overlap region between
the two regions. For that purpose, the function of soft dice loss was used. Then
the focal loss was used to balance the samples from negative and positive, which
is done by tuning the weighted parameters. NVIDIA Quadro K5200 and Quadro
P5000 GPUs were used for this research. They used the Brats 2019 dataset for their
research, which contains 293 HGG and 76 LGG pre-operative scans. The network
inputs are done in patches of 64x64x64 from four modalities of the dataset. For the
preprocessing of the data by de-noising and Z-score normalizing the individual MR
sequences, Then the data is augmented by flipping around the vertical axis of the
patches. Images in patches of size 64x64x64 are then trained on the focal loss and
dice loss functions. Then the dataset is run on 610 epochs of this dataset with a
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batch size of 1. The post-processing is done by analysing the connected component
to remove the tumor which has less than a thousand voxels and enhance the tu-
mor in the surrounding necrosis. By applying this technique in the post-processing,
the achieved false-positive voxels of the segmentation are removed. The proposed
network fails while segmenting the tumor from some LGG and HGG images. The
failure is observed by the small size of the tumor, necrosis and the absence of enhanc-
ing tumor. When the proposed network fails to segment necrosis , all the features
are marked by the feature extractor except age as zero considering the absence of
necrosis. The paper also informs us about the fact that the gender of the patient
from whom the image is coming can improve the accuracy of the system in the cases
of post-operative treatment. Though the network outperforms some of the ensemble
approaches, it fails if the tumor size is too small or too big.

In [1], the volumetric CNN executes segmentation on some prostate volumes of
MRI. They augmented the image dataset through a randomized variation in differ-
ent training iterations. Using V-net on MRI volumes, the prostate was depicted.
They evaluated the performance of the applied process in regards to the Dice coeffi-
cient, Hausdorff distance of the predicted description to the original annotation. By
using the Caffe framework in python, training and testing were run. The method
was trained on fifty MRI volumes and their related various true annotations. The
results were the optimization of the training. The model’s dice loss layer was highly
improved during the imbalance of the background and the foreground pixels. Then
improvement of both the results and convergence time were done.

Segmentation for medical images that are very small are quite difficult, because
they have a low contrast and are anatomically variable in size and shape. Focus-
ing on the small organs and accuracy of their segmentation the recurrent saliency
transformation network is described in [24]. It is based on a previous paper on the
same coarse-to-fine strategy containing 2 stages that are instructed exclusively, but
with some advanced strategies consisting of multi-staged visual cues in optimiza-
tion. Here, 2 Dimensional networks are instructed for 3 Dimensional segmentation
by slicing the 3 Dimensional volume along the 3 axes and each axis is sent to train in
a particular 2D-Fully Convolutional Network on a 16-layered VGGNet. Two FCNs
are trained, firstly for the segmentation of coarse-scaled and secondly for the segmen-
tation of fine-scaled and these two are optimized jointly as a consequence of the key
innovation of the proposed approach, the module for saliency transformation that
often transforms the segmentation’s probability-map from the previously done iter-
ations as spatial weights and applies those weights to the recent most iteration. The
DSC loss term is computed on each probability map for minimization of the overall
loss. The training phase mainly aims to minimize the loss function. The entire NIH
pancreas segment dataset is filled with eighty two enhanced contrast abdomen CT
volumes and are split and trained using standard cross validation strategy and the
DSC value for everyone of the sample is measured along the average and standard
deviation over all of those eighty two cases. It gives an average accuracy of 84.50%
which is greater than the previously introduced fixed-point model where two stages
were calculated individually without joint optimization. Again, a case-by-case study
shows it reports a higher accuracy number of 67 out of 82 cases with the largest
advantage of +17.60% and largest inadequacy of a simple -3.85%. The model is re-
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occurring, allowing fine and scaled segmentation that’s updated iteratively, as well
as cropping the input images for focusing on the prominent regions, resulting in
improved segmentation accuracy. The output achieved shows 78.23% accuracy in
the coarse stage, 82.73% just after the first sequence and after completion of the en-
tire testing phase the accuracy report scales towards 84.80%. This approach, when
applied to 2 datasets at once for the pancreas the segmentation method and the
multi organ segmentation method, crucially outperformed in the- state-of-the-art.

Tiled CNNs used tiling schemes to concurrently appreciate the advantage of fun-
damentally lessening the quantity of absorbable boundaries while furnishing with
the calculation adaptability to learn different uniforms.In this paper, unaided pre-
training was introduced to be specifically utilizing an adjustment of Topographic
ICA (TICA) to master arranging highlights in a geographical guide by pooling
groups of related features together and [25] showed that TICA could be used produc-
tively to pretrain Tiled CNNs using nearby symmetry. The subsequent Tiled CNNs
referred in the paper with TICA were undoubtedly ready to learn uniform repre-
sentations, with pooling units that were strong to both scaling and turn. Tracking
these down improved order execution, empowered Tiled CNNs to be serious with
recently distributed outcomes on the NORB and CIFAR-10 datasets. In the men-
tioned paper, CNNs also had been effectively applied to numerous acknowledgment
tasks. Such as digit acknowledgment from MNIST dataset, object acknowledgment
from NORB dataset and common language preparing. The outcomes showed that
the loosening loads are valuable for order execution. As a result of variable out-
comes for a simple change in exceptional instance, k a completely tied model, a
naive approach to deal with getting familiar with the channel loads was to straight-
forwardly train the main layer channels utilizing little fixes (e.g., 8x8) arbitrarily
tested from the dataset mentioned in the paper, with a technique like ICA. In this
paper, The naıve approach brought about fundamentally diminished arrangement
precision acquiring 51.54% on the demonstrated set, while pre-training with TICA
accomplished 58.66%. These outcomes affirmed that improving for paltriness of the
pooling units brought preferred highlights over na¨ıvely approximating the main
layer loads. A characteristic decision of the tile size k is to set it to the size of
the merging locale p, which for this situation was three. Here, each pooling unit
consistently joined straightforward units which were not tied. The Tiled CNN just
required unlabeled information for preparation, which could be acquired efficiently
and fundamental outcomes on networks pre-trained utilizing 2,50,000 unlabeled im-
ages from the small image dataset showed that presentation increments as k goes
from one to three, leveling out at k = four. This prompted that when there was
adequate information to keep away from overfitting, mounting k = p can be a gen-
erally excellent decision. Moreover, in the paper it was presented that Tiled CNNs
as an expansion of CNNs that help both unaided pretraining and weight tiling.
[26] states the primary Convolutional Neural Network qualifies for real-time SR of
1080p tapes on one K2 GPU. Here, a CNN architecture is introduced, which ex-
tracts the characteristic diagrams within the LR space and a profitable sub-pixel
convolution coating that is competent of learning a collection of upscaling filters to
upscale the ultimate LR form, mapping to the HR outcome. This approach sug-
gests increasing the result from LR to HR only at the very end of the structure and
super-resolve HR data from LR characteristic maps which removes the necessity
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to execute maximum of the SR procedure within the far enormous HR resolution.
For this goal, a further profitable sub-pixel convolution layer is applied to find out
the upscaling strategy for picture and video superresolution. During this structure,
upscaling is dealt with by the previous layer of the hierarchy which suggests each
LR image is immediately employed to the structure and extraction arises through
the nonlinear convolutions in LR space. This hierarchy is prepared for discovering
reasonable LR to HR mapping distinguished to single cured filter upscaling at the
very early layer which ends in more increases within the reconstruction exactness of
the classification. The primary dataset used for this method is the Timofte dataset
which is widely employed in SISR, it contains 91 training pictures and two trial
datasets named Set5 Set14 with 5 14 images respectively. Then, Berkeley seg-
mentation dataset BSD300 and BSD500 with 100 and 200 pictures for testing are
additionally used including the super textured dataset that comes with 136 texture
pictures. Lastly, for training ultimate prototypes, 50000 random images are selected
from ImageNet. For every upscaling factor, a particular network is trained. For
video operations, 1080p HD videos are used from the Xiph database1, which con-
tains 8HD videos together with the Ultra Video Group database that contains seven
videos. Within the training phase, sub-images are taken out from the training basis
reality images I HR. The training takes approximately 3 hours on a K2 GPU on
91 images, and seven days on images from ImageNet for an upscaling component of
three. PSNR is employed as the execution metric to gauge the models. This method
accomplished a surprising regular speed of 4.7ms for super-resolving 1 single image
from Set14 on a K2 GPU and achieved state-of-art performance because the results
are better compared to the simplest SRCNN 9-5-5 ImageNet model. It’s approxi-
mately a sequence of magnitude quicker than earlier announced methods on images
videos at the time of publishing the paper.

For attaining pixel-level accuracy in semantic segmentation, [27] presents the de-
sign of a dense upsampling convolution (DUC) which is conversant with captur-
ing and decoding very particularized information as well as a hybrid dilated con-
volution framework or a HDC framework for the encoding phase. The proposed
model is named ResNet-DUC-HDC and it is trained and tested using three datasets;
Cityscapes dataset, KITTI dataset and the PASCAL VOC2012 dataset. For start-
ing the ResNet-101 or ResNet-152 networks are primed on the ImageNet dataset.
Here, MXNet is used to train the models as well as to evaluate them on NVIDIA
TITAN X GPUs. Cityscapes is a large dataset containing about 5000 images anno-
tated with 30 categories. DeepLab-V2 ResNet-101 framework is utilized in terms of
training the model’s base line. The network is then primely trained, for 20 number
of epochs and achieved a mIoU of 72.3% on the experimental validation set. The
efficacy from DUC on the baseline network is examined by only changing the shape
of the topmost convolution layer. The combined ResNet-DUC network is trained
for twenty number of epochs and achieved a mIoU of 74.3% that is, a 2% increas-
ing validation compared to the baseline network. The ResNet-DUC-101 model is
then experimented with several HDC modules and then replacing a deeper model,
ResNet-152 with the ResNet-101, a further better performance was acquired. The
output here is, the ResNet-DUC-HDC model achieved 77.6% mIoU using the fine
datas only. Adding the coarse data helped achieve 78.5% mIoU, which after updating
the network after retraining reached to 80.1% mIoU. The KITTI road segmentation
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activity having 289 number of training images and 290 number of testing images was
also used for experimenting on the ResNet-101-DUC model without any application
of CRFs for post processing. The result was highly impressive, as the average pre-
cision was 93.88% and highest maximum F1-measure was 96.41%. Again, PASCAL
VOC2012 segmentation benchmark dataset was used for experimentation with the
ResNet-DUC-152 model. That dataset contains about 1464 numbers of images for
training, 1449 numbers for validation and 1456 numbers for testing. Then after
completion of the experiment, the model ended up achieving mIoU of 83.1% on the
test set just using a simplified sole model without any type of model ensembles or
multiscale testing application, which was considered the best and effective method
at the time being.

An effective strategy for volumetric clinical picture segmenting is introduced in [12],
which is a notable testing issue in clinical picture analysis. In their paper, they de-
scribed a 3 Dimensional profoundly regulated system for computerized segmentation
of volumetric clinical pictures. One principal difficulty of saddling CNNs for clinical
picture analysis tasks was, contrasted and common image applications, medical ap-
plications as a rule had restricted preparing information. Albeit the clinical picture
datasets mentioned in the paper are utilized in the two solicitations in the approach
were not extremely huge in subject-level, they accomplished cutthroat execution
to the best in class strategies. In the mentioned paper they offered 3 Dimensional
DSN with two testing division tasks; here was broadly approved by the authors,
i.e., liver segmentations from midsection 3 Dimensional CT sweeps and heart seg-
mentations from 3 Dimensional MR pictures, by partaking two notable difficulties
held related to MICCAI. To approve the proposed strategy on the utilization of
liver segmentation, in the paper the SLiver07 (Heimann et al., 2009b) dataset was
utilized, which was from the segmentations of the Liver Competition held related to
MICCAI’ 07, and the terrific test stayed open subsequently. The dataset completely
comprised thirty CT filters with twenty preparings and ten testings. Furthermore,
To approve the proposed technique on using the heart segmentation, the dataset of
MICCAI’ 16 Challenge was utilized on Whole-Heart and Great Vessel division from
3 Dimensioned Cardiovascular MRI in Congenital Heart Diseases, also for short, the
HVSMR challenge what’s mentioned in the paper. The dataset generally consisted
of twenty axial, cropped pictures with ten training and ten testings. Next, envision-
ing the middle-of-the-road consequences of the neural networks that are trained on
the liver segmentation dataset, to approve the viability of the profound oversight on
rapid layers in the training interaction. The test results depicted, the CRF was ac-
commodating to improve the liver segmentation results. Notwithstanding, the heart
picture segmentation didn’t acquire incredible upgrades from this post-handling. It
was hard to sort out a universal arrangement of frameworks that make enhancements
for both myocardium and blood pool. At long last, based on the top-notch score
volumes acquired from 3 Dimensional DSN, in the paper they utilized a CRF model
to refine the segmentation results and broadly approved the proposed 3 Dimensional
DSN on two unmistakable solicitations also, the outcomes exhibit the adequacy and
speculation of the offered network.

A dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network
for the challenging task of brain lesion segmentation is introduced in [28]. Firstly, an
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architecture was established in the field of in-depth experiments with the boundary
of a network related to it. According to the belief that expert intelligence and expe-
rience are very much needed to get accurate results in segmentation, the proposed
method has included two main points. First one was to get light version segmenta-
tion maps with an FC (fully connected) 3 Dimensional CRF and the other one was
final hard segmentation labels. A baseline was set and the dense training was done
on image segmentations as well as class balance. It was claimed that the method in
that stage was a merged idea between mostly used training on individual patches
and the heavy training idea on a full image. The proposed method was compared
with two other commonly used methods, of which, one was a common scheme that
trains on 173̂ patches that’s extracted uniformly from the brain regions and the other
one was a scheme that samples the patches equally from the lesion as well as the
background class. The model was created by doubling the nine layers of ‘deep+’ and
merging two concealed layers. Also introduced “BigDeep+”, which has eleven layers
and “DeepMedic”, which has the same numbers of the parameters. “DeepMedic”,
changed over to 2 Dimensional by reshuffle 3rd measurement of every single bit to
one and a productive and successful thick preparation conspiracy was formulated
which joined the preparation of adjoining picture patches into one pass through
the organize whereas consequently adjusting to the inalienable course awkwardness
displaying within the information. In order to consolidate both neighborhood and
bigger relevant data, a double pathway design was utilized that formed the input
pictures at numerous scales at the same time. For the next stage of the process of
the network’s light version segmentation which is also known by soft segmentation,
a fully 3 Dimensional connected CRF environment was used which viably expelled
wrong positives. The Our pipeline is broadly assessed on three issue errands of in-
jury division in the multi channel MRIs understanding information with the brain
tumors, traumatic brain wounds, and ischemic stroke. The approach made strides
on the-state-of-the-art for all of the three applications, with the beat positioning
execution on the open benchmarks, BRATS 2015 and ISLES 2015.
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Chapter 3

Methodology

3.1 Model Architecture

3.1.1 CNN

A convolutional neural network (CNN) is a pattern of artificial neural network
that collects information employing perceptions, which is a machine learning unit
method. Image processing, NLP, and other specific components can all be applied
to CNNs [28]. CNNs are multilayered perceptions that have been standardized and
made up of many layers of artificial neurons. Multi - layered perceptions often refer
to networks that are completely linked, meaning that each neuron inside one layer
is linked to all neurons in the next layer.The Convolutional Neural Network (CNN)
[29] is used for image recognition and detection. CNNs are incredibly efficient, and
picture detection requires just a little amount of computer resources. CNN’s working
procedure is quite simple, and it uses layers of neurons to perform its detection.

Figure 3.1: Convolutional Neural Network (CNN)

3.1.2 FCN

Fully convolutional networks are regarded as some higher class models addressing
many pixel wise tasks. [11] FCNs are reviewed as the networks that do not contain
dense layers like CNNs, rather they contain 1 x 1 convolutions and work like fully
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connected layers. In recent days,[30] The semantic segmentation highly improved
the accuracy by the transfer of pre-trained classifier-weights, fusing different layers
of representations, as well as learning the end-to-end on entire images [16]. FCNs
generally have a primary architecture like below, though the shape varies for different
models.

Figure 3.2: FCN Model Architecture

Fully convolutional networks are efficient and can learn to make denser predictions
for per-pixel approaches. The FCNs used in this network are-
1. 3D U-net
2. 3D V-net

3.1.3 3D U-Net

Depending on the work type and use models are created and used. U-net is designed
for semantic segmentation. It is simply called U-net because of its architecture. It
has excelled in a number of tasks, and it is still one of the most widely used end-to-
end structures in the domain of semantic segmentation [18].

O. Ronneberger, P. Fischer, and T. Brox initially proposed 3D-UNet in their article
[13] [31]. We host a 3D-UNet version modified for the brain tumor segmentations
done by Fabian I. et al. 3D-UNet enables seamless segmentation of 3D volumes
with excellent accuracy and performance, and it may be modified to tackle a wide
range of segmentation challenges.The first portion of the U shape is a contraction
or a down-sampling operation the path is called the encoder path and the other half
is the expansion or the up-sampling operation while the path is called the decoder
path.The operations or path is concatenated which is a reason we get localized in-
formation making it possible for us to get a semantic segmentation. Here, The input
image dimension we provide is 128 x 128 x 128. We perform a standard combination
of the 3D convolution operation, followed by 3D max pooling operations.
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Figure 3.3: 3D U-Net Model Architecture

In the architecture, each layer contains two 3×3×3, 3D convolutions each followed
by a ReLU, and afterward a 2×2×2, 3D max pooling with steps of two in each
aspect. In the blend way, each layer comprises an up-convolution of 2×2×2 by steps
of two in each aspect, trailed by two 3×3×3 convolutions each followed by a ReLU.
Easy route associations from layers of equivalent goal in the investigation way give
the fundamental high-goal elements to the amalgamation way. In the last layer,
a 1×1×1 convolution diminishes the quantity of result channels to the quantity of
marks. The group standardization is done before each ReLU.

3.1.4 3D V-Net

F. Milletari, N. Navab, and S. Ahmadi originally introduced V-Net in [1] . V-Net
provides for seamless 3D image segmentation with great accuracy and performance,
and it may be modified to tackle a wide range of segmentation challenges. V-Net is
made up of a contractive and expanding path that seeks to create a bottleneck in its
center using a mix of convolution and down sampling. Following this bottleneck, the
picture is rebuilt using convolutions and up sampling. Skip connections are inserted
to aid the backward flow of gradients in order to improve training.
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Figure 3.4: 3D V-Net Model Architecture

It is like U-Net, yet with certain distinctions. The left half of the organization is
partitioned in various stages that work at various goals. Each stage includes one to
three convolutional layers. The contribution of each stage is utilized in the convo-
lutional layers and handled through the non-linearities and added to the result of
the last convolutional layer of that stage to empower learning a remaining capac-
ity. The convolutions acted in each stage while down sampling utilized volumetric
pieces having size of 5×5×5 voxels. The size of the subsequent element maps is split,
with comparative reason as pooling layers. Furthermore, the quantity of element
channels pairs at each phase of the pressure way of the V-Net. Supplanting pooling
activities with convolutional ones assists with having a more modest memory im-
pression during preparing, because of the way that no switches planning the result of
pooling layers back to their bits of feedback are required for back-spreading. Down
sampling assists with expanding the open field. PReLU is utilized as non-linearity
actuation work. (PReLU is proposed in PReLU-Net.) The organization separates,
includes and grows the spatial help of the lower goal highlight maps to accumulate
and gather the essential data to yield a two-channel volumetric division. At each
stage, a deconvolution activity is utilized all together to increment the size of the
information sources followed by one to three convolutional layers, including a large
portion of the quantity of 5×5×5 bits utilized in the past layer.
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3.2 System Architecture Of Our Proposed Model

We start the work through data collection, and we find the data of 3D MR Images.
For our data pre-processing we focus on our data being lossless. Then the pre-
processed data is then divided into two portions keeping the largest portion to train
on the 3D Unet model for an efficient segmentation and the other for validation.
The data to be trained is then trained in the model, data is then extracted and
segmented for model testing with the help of the testing data. The result obtained
is then analyzed and compared to other procedures of approaches.

21



Figure 3.5: Workflow Diagram Of Our Proposed Model
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To summarize, the methodology proceeds by these following steps:

1. Data Collection (3D MRI)

2. Data Pre-processing (Lossless)

3. Data Separation

(a) Data Training

i. Data Extraction

ii. Data Segmentation

(b) Data Testing

4. Model Testing

5. Result Analysis

3.3 Dataset and Preprocessing

3.3.1 Dataset Description

The dataset used is BraTS’20 MICCAI [32] [33] [34] [35]. The data provided went
through a great journey before reaching BraTS’20. The previous datasets prepared
by this source differed in each publication of data. The BraTS’17 was very differ-
ent from the previous ones and so was the others. BraTS’17-’20 had similarities
with the BraTS’12-’13 images and annotations as they were manually annotated
by the clinical experts. The data used in the BraTS’14-’16 which were from the
The Cancer Imaging Archive were discarded for a mixture of pre and post operative
scan descriptions and also because their ground truth labels were annotated using
fusion of segmentation results from algorithms that ranked high during BraTS’12
and ’13. Expert neurologists are said to have radiologically assessed the complete
original The Cancer Imaging Archive glioma collections as well as categorized scans
of pre- or post- operative scans in a great precision. The Cancer Imaging Archive
glioma collections had a TCGA-GBM of n=262 and TCGA-LGG with n=199. All
the pre-operative The Cancer Imaging Archive scans with 135 GBM and 108 LGG
were then annotated subsequently through a manual process for various glioma sub-
regions and included in this year’s BRaTS datasets, that is BRaTS’20.

The multimodal scans found here are saved as ‘.nii.gz’ files, that is in NIFTI mode.
In the dataset there are annotated brain tumor images. It contains 369 folders of
images for training and 125 image folders for validation purposes well arranged.
The training images describe 5 ‘.nii’ files each, namely T1 which are explained as
native, T1Gd explained as post contrast T1=weighted images, T2-weighted, T2-
Flair referred as Fluid Attenuated Inversion Recovery volumes and seg while the
Validation folders include the same except the ‘seg.nii’ files which a training model
should come up with. It also includes information data sheets of ‘name mapping’
and ‘survival info’. Here the TCGA-GBM and TCGA-LGG collections are made
available through The Cancer Imaging Archive. The date-defined overall survival
(OS) data is contained in a comma-separated values (.csv) file and the result matches
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the pseudo-identifier of the image data. The age of patients as well as their resection
status were noted in the following file as well. It also provides information about the
age of people whose MRI images were shown. All of this information was collected
from different sources. The source information was collected through different clin-
ical protocols and scanners, from about 19 institutions. Some images of the ‘.nii’
files from the data are demonstrated below.

Figure 3.6: T1 Image from the BraTS’20 MICCAI dataset

Figure 3.7: T2 Image from the BraTS’20 MICCAI dataset

Figure 3.8: T1ce Image from the BraTS’20 MICCAI dataset
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Figure 3.9: Segmented 3D Image from the BraTS’20 MICCAI dataset

The image dimensions are 240 × 240 × 155 for x× y × z. The voxel dimensions are
1× 1×1 mm. The images have an axial, a sagittal and a coronal view and here we
include sample images from our dataset where every image has their corresponding
tumor labeled with ground truth. Following the same annotation protocol, about
one to four raters segmented the data manually for training purposes. The anno-
tations were then approved by the neuro-radiologists. The annotations done shows
the GD-enhancing tumor (ET — label 4), then the peritumoral edema (ED — label
2) as well as the necrotic and non-enhancing tumor core (NCR/NET — label 1)
accordingly as described in the 2012-2013 TMI papers and latest summarizing pa-
pers from the same data source. All of them are co-roster for the same anatomical
templates that are inflated in the same resolution after skull-stripping.

3.3.2 Data Preprocessing

The data we used was BraTS’20 MICCAI and we needed to pre-process our data for
a lossless segmentation. In the dataset we got 4 channels of information, or could be
said four different volumes of the same region. T1 which is a bit bright and can be
easily detected, T1ce is the T1-weighted image which has a high contrast to make
it clear, T2-weighted and T2 flair in which we can see the structures clearer. We
took the T1, T1ce and the T2-weighted images. T1 images are greater in contrast
so we get more information from that. Other than the images inside the slices we
see a huge black region or area which is a waste of space and is not required. If
that is removed then we get a better view to train the data as well as an optimized
space. But since the black unlabeled volumes are different for different slices of the
3D image, we needed to deduct or crop the image in a way where there is no loss
of image information after cropping the image data. So, we made 5 list for the five
channels of information, passed and looped to get their cropped versions. Thus,
there was no data lost and the cropped slices were resized to the shape (128 x 128 x
128) we needed for our model, then were iterated further through a condition where
we separated and saved the slices which would be used and the ones that were not
sufficient with annotated data, less than a certain percentage or could not be used
were discarded. According to the dataset information, the pixels of value needed to
be 4 and so was then reassigned to 3 because of it being missing from the original
labels. We saved the data combining the T1, T2 and T1ce images into a single-multi
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channel volume from each folder into numpy arrays (npy) to use as our 3D input for
the proposed model in use. Because using single volumes would be less beneficial,
the combining procedure enhances the data more. Thus, our dataset was ready to
train and validate our proposed model. Since, fixed region cropping was not the best
lossless solution in this case so we chose to let our data be cropped by a bounding
box algorithm where the black portions of the image were bound outside of a box
letting us to clip it out. So that we do not lose even a single data from one of the
many slices, we decided to pre- process the data further, to keep all the parts of the
data except the label 0 or the blank region of the data. Thus, we plan to get more ac-
curate segmentation validation through the post proposed preprocessing of the data.

Here are several cropped versions of the data, as well as their prior versions, us-
ing the bounding box cropping algorithm.

Figure 3.10: Cropped versions of Data using Bounding Box Cropping algorithm
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3.4 Model Implementation

For our implementation we selected python and used the TensorFlow framework.
The training was performed in a desktop with 16GB ram DDR5 10TH Gen core i7
8GB RTX3060 Ti. The dataset we used to train and validate our proposed model
is BraTS’20 MICCAI with a dimension of 240 × 240 × 155 for x × y × z. After
preprocessing we got cropped data to feed our model as input. The cropped data
generated was of 128 x 128 x 128 dimension.

The architecture we chose to implement was a simplified 3D Unet model for an
enhanced semantic segmentation of our data. The model takes four parameters
namely, height, width, depth and no. of channel and gives us the segmented output
of the same dimension with its number of labels. The systematic 3D convolution
operations were done on the input images, followed by a drop operation and a 3D
max pooling operation for its down sampling part. The padding is kept the same
as the rectified linear unit to add extra pixels to the edges so that the final output
image dimension would remain the same as the input dimension. The convolution
operation is like a 3D matrix multiplication which in our case is 3 x 3 x 3 and as
it is a down sampling operation the dimension of the image will be multiplied by
half resulting it to be 64 from 128. We give a 10 percent drop for the data size
reduction. Then comes the 3d Max Pooling operation where the matrix of the input
data is compared to a specific matrix of 2 x 2 x 2 stride and the maximum selected
is taken. The same steps are continued till the image dimension reaches 16. Then
we started the up-sampling operation or the expansion part. Transpose operation of
3D convolution is done multiplying the dimension to be 32 as well as concatenating
the layer with the previous path layer before going for a 3D convolution operation
followed by a drop out and another convolution operation. Thus, we keep repeating
the steps until we get the original dimension back. The final output we get is 128 x
128 x 128 for x, y and z. We train the model on our preprocessed data and predict
the data for validating it.

3.5 3D U-Net Model Training

The preprocessed data is loaded to the directory for training the data that we de-
fined and saved as npy files. For this we customized an image loader to list out
all the training images and masks saved in npy method. The data dimension used
to train is 128 x 128 x 128 dimension so we select a lower batch size to load less
volume. With a batch size of two we iterate our image generator which would filter
the data image and load 2 x 128 x 128 x 128 x 3 with a mask of 2 x 128 x 128 x 128
x 4. We further implanted the dice loss and IoU score functions inside to evaluate
the accuracy of the segmented data we come up with, through our proposed model.
We take the steps per epoch and validation per epoch into consideration and train
the data accordingly for 100 epochs.
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Figure 3.11: 3D U-Net Model Training
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Chapter 4

Result Analysis and Comparison

4.1 Result Analysis

The mean IoU score and data loss we find through the model surpass many other
models we came across that were previously done. The validation accuracy we re-
ceived on average was a mean IoU value of 80.63%, with a maximum average IoU
score of 83.96% and with a minimum of 64.60%. That means we have more maxi-
mum IoU scores for the validation purpose since the minimum number was 64.60%
but yet we received a mean score of 80.63%, which is pretty near to the maximum
value. The accuracy metrics were calculated using the IoU score calculation and
the Dice coefficient calculation method. Here the IoU or the Intersection over Union
score was calculated to be the quotient of the Overlapping Area over the Union Area
i.e.,

IoU = The Overlapping Area/The Union Area

While the Dice coefficient was formulated as, two times the area of overlapping over
the total number of pixels in length in both the images. i.e.,

Dice coefficient = (2 * (the area of overlapping/ the total no. of pixels in length in
both the images))

Through these we can achieve our accuracy metrics and IoU score metrics. Now we
can see the training and validation comparisons based on the accuracy metric we
used and explained here.
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Figure 4.1: The Training vs Validation Loss Graph

Figure 4.2: The Training vs Validation Accuracy Graph

Here, in the first image we can see the validation loss is quite greater than the train-
ing loss, also in the second image we see the training accuracy quite larger compared
to the validation accuracy. These perimeters prove that our training procedure is a
lot efficient. For the bounding box implementation in our data preprocessing part
we get a very optimized data set prepared to pass our model for more accuracy. The
validation accuracy after rises to 94% as well as the IoU score changes in a good
direction. The data preprocessing using a bounding box results in the following
optimization as we saw in the data preprocessing.

30



Figure 4.3: The BraTS’20 dataset Data

Figure 4.4: The Pre-processed Data

4.1.1 Observation

In our approach we highly focused on the data loss reduction and tried building
a model more efficiently. We achieved more than half of the goal and compared
to many previous models got an efficient model to train and validate. We show
a few plotted prediction accuracies for some image files after the prediction with
comparison as follows.

31



32



33



Figure 4.5: Comparison between Testing Label and Prediction on Test Image

We clearly can see here in few consecutive outcomes, the testing label and prediction
on test image are quite similar with each other along with minimal difference in
between. And here we can also see very few data loss in the segmentation outcomes.

4.1.2 Result Comparison

If we observe our result and compare it with other papers and approaches we get
the following table.

Table 4.1: Comparison of Results

Approach Name Accuracy (Mean Value) Validation Accuracy
Mehta, R., & Arbel, T. [14] 78.8% 82.5%
Kao, P.-Y., Shailja, [19] 74.9% 89.7%
Rajchl, M., Lee,[16] 74.3% 82.9%
Zhou, Z., He, Z., & Jia, Y.[22] 78.5% 86.5%
Our Approach 80.6% 83.96%

From the table above we can see the following comparison where the mean average
value of our approach was maximum. Again, the validation accuracy can be seen as
a bit less compared to few approaches. Right below we include the Mean IoU score
graphical demonstrations along with the validation accuracy graph.
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Figure 4.6: Result Comparison of IoU score (Mean Value)

Figure 4.7: Result Comparison of Validation Accuracy

The graphical representations depict a clear difference among the values we achieved
and the other approaches achieved. Our validation accuracy was a bit lower com-
pared to the other approaches, but the mean accuracy of ours is much more compared
to every other paper. That is, from our approach evaluation we got a validation ac-
curacy of 83.96%. Though it is not better than [19], [22]. But our approach has
a better IoU mean value than the others at 80.6%. It implies that our method is
efficient at generating better results on average than many other proposed methods.
Still to gain the highest of it we need more work to do on it. Also, it demonstrates
quite well that, by applying our approach we will have no loss of information about
the data.
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Chapter 5

Conclusion and Future work

5.1 Future work:

For our future work, we want to make a more efficient version of this model where we
can both optimize the data loss and get more accurate segmentation. The training
model needs more work to maximize our validation accuracy, decreasing the amount
of validation loss. We want to work further with 3D Vnet using our dataset for
the semantic segmentation with a different approach. We also are looking forward
to working further on GPU reduction while segmentation of data, making a large
patch network augmenting our 3D Unet model with other networks and models for
a proper segmentation. We want to see if the 3D tiling feature learning approach
can be augmented with our approach making a dense downsampling operation. We
would also like to add a dense upsampling feature to that, making sure of a proper
and balanced downsampling and upsampling operation for helping in segmentation
procedures. We plan to experiment more with 3D data and their segmentation in
the time ahead.

5.2 Conclusion:

In our approach we used an optimizing FCN model for semantic segmentation and
the FCN processed here is a 3D Unet model. Due to organ structure and shape
and space variance and also for the process being complicated for the 3D models,
it is a critical process to segment the 3D images. In our model, our focus was to
increase the accuracy and the optimization by applying a bounding box algorithm
to augment with Fully Convolutional Networks. With evidence and strong support
from the data that has been gathered and arranged through observations from our
recently done experimentation by the researchers we were required to conduct our
experimentation. Therefore, we worked to validate and increase the accuracy of
our model by using a large dataset like MICCAI BraTS’20 through the use of an
advanced and powerful GPU. We already achieved more than half from what we
wanted to implement but our model requires further work on it to achieve the
maximum result.
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