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Abstract

Cryptocurrencies are the new form of trade that has revolutionized how we look
into our financial institutions. Bitcoin dominates the industry with the highest
market share among the hundreds of other cryptocurrencies. However, high energy
consumption leading to increasing carbon emission, prioritizing high-value trans-
actions, and long waiting times are some of the flaws preventing it from reaching
its full potential. Due to the block rewards getting halved every four years, min-
ers and researchers are fearful that this would be the breaking point of Bitcoin’s
success. One of the ways to tackle and hopefully reduce this problem while bring-
ing wider adaptability is by ensuring faster transactions. Currently, Bitcoin has an
average block size of 1MB, which many researchers and enthusiasts believe is insuf-
ficient. To tackle these limitations, we have proposed two different ideas. Our first
concept proposes an industry 4.0 compliant next-generation Bitcoin architecture by
introducing a dynamic and sustainable block concept. Using our improved knapsack
algorithm, a priority-based 0/1 knapsack and advanced priority-based 0/1 knapsack,
we can ensure a balanced transaction selection, quicker verification, higher transac-
tion throughput, reduced carbon emission, and increased earnings for the miners.
Moreover, with the addition of only one of our proposed sustainable blocks, we can
cut down verification times by 50% and increase throughput by 2.56 times. We can
also reduce carbon emissions per transaction by 62.318%, which would help reduce
Bitcoins’ large carbon footprint, enabling us to approach greener digital transac-
tions.
In the second concept, we further try to improve the block sizes using the help
of machine learning and artificial intelligence. Our proposed model analyzes the
network’s activity, such as incoming transaction frequency and other aspects, to
adjust block sizes. The model can predict block sizes with 61.12% accuracy, and we
can see a positive change in the amount of fees earned by miners (9.3%), transaction
count and transaction per second (66.75%). With the help of our model, Bitcoin
would be able to dynamically change the block size based on the transaction activity,
resulting in shorter wait times, thus increasing wider adaptability and sustainability.

Keywords: Bitcoin, Blockchain, Knapsack, Sustainability, Machine Learning.
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Chapter 1

Introduction

1.1 Background

Cryptocurrencies are rapidly gaining popularity throughout the world. To date,
there are 10,846 cryptocurrencies globally with a total market capitalization of
$1,388,386,220,001, where Bitcoin and Ethereum hold the first and second positions
with 45.1% and 17.7% shares, respectively [23], [29].
Along with bitcoin, industry 4.0 is the latest buzzword that is changing the way we
look into the use of technology in the industry. In summary, it refers to the fourth
industrial revolution that is enabling gradual convergence between industries and
information and communication technologies (ICT), including big data analytics,
Internet of Things (IoT), and cloud computing platforms. The recent integration
of Bitcoin technologies with Industry 4.0 is advancing the digital transformation of
industries further and enabling unprecedented horizontal and vertical connectedness
and collaboration across the global value chain [4]. Therefore, cryptocurrencies like
Bitcoin are a vital part of industry 4.0 as it has paved a new path for a decentral-
ized financial system. One of the targets of industry 4.0 is to make the industry
connected to ensure sustainable development goals (SDG) [18], [21], [22]. Unfortu-
nately, Bitcoin cannot comply with such goals due to its existing architecture. For
example, a single block generation in Bitcoin emits 191 tons of CO2, which is 15
times more intensive than the equivalent amount of gold (in dollars) [39], [40]. So
clearly, this needs to be managed as 2759 transactions (per block on an average)
should not have such a significant impact on the environment [17], [39].
Bitcoin has other limitations, such as, on average, it takes 10 minutes for a transac-
tion to be validated and added to a block [45]. However, a total of six (average 60
minutes) confirmations ensure that the transaction is entirely valid and would not
be removed or tampered with [35]. Currently, Bitcoin can process 4.6 transactions
per second (TPS), which is significantly less compared to its competitors, such as
Visa, which can process 1700 transactions/second [17], [25]. Furthermore, in his
paper [1] creator of Bitcoin, Satoshi Nakamoto mentioned that Bitcoin would no
longer be generated when it has reached the 21 million threshold [1]. This gradual
stopping of Bitcoin production is done by a process called halving, where every four
years (since the starting of Bitcoin), the block fee would be halved. For example, in
2019, block rewards were 12.5 BTC, and currently, in 2022, it is 6.25 BTC. However,
as the block rewards decrease and if the price of Bitcoin does not rise, at some point
in time, there would not be enough miners to validate transactions [26] as it would
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not be profitable for them. The only way to make it sustainable is to tackle such
situations through transaction fees. However, the number of verified transactions
produced every 10 minutes approximately is not enough to even balance out the
resources used by the miners [31], [37], [38]. So researchers are working on finding
ways to make Bitcoin sustainable even after reaching the 21 million mark.

1.2 Research Objective

To tackle the barriers mentioned earlier, we have proposed two different ideas in
chapter 4 and 5. Both ideas have the same goal of making Bitcoin sustainable in
the long run. The objectives of the research work are as follows:

Boost wider adoption of Bitcoin: There are numerous issues afflicting Bitcoin
and its growth. Some are very obvious, like high energy consumption, and some are
not so apparent from a high-level perspective. Among them, we have inclinations
toward high-value transactions and long transaction verification times. These are
creating a significant barrier to broader adoption. Miners earn from both the block
reward and the transaction fees. As the process is very resource heavy, they focus
on larger, more hefty transactions as it has more fees associated with them. As a
result, we do not see smaller transactions in the network. Furthermore, due to this
biasness, these transactions have to wait a very long time to get accepted, pushing
people further away from using Bitcoin as other financial services seem more conve-
nient.

Lowering energy consumption: It is no secret that Bitcoin’s biggest problem
is its high energy consumption. To tackle this, we need to change the core technolo-
gies being used in Bitcoin, namely the proof of work consensus algorithm. Many
researchers have even proposed different ways to handle this energy consumption
issue, but Bitcoin is still reluctant to incorporate those. So we need a different
strategy to lessen this energy consumption and reduce carbon emissions.

Adaptability and modularity: This reluctance to adopt better ideas to the Bit-
coin network is understandable as doing so would bring considerable changes to the
protocol. So the target of our work is to propose a system that does not change the
core ideas and technologies of Bitcoin and keeps the protocol untouched. Also, our
objective is to make the ideas adaptive so that based on demand/congestion, they
can scale up or down and bring modularity to the system.

1.3 Research Methodology

This research work would be able to make the world’s largest cryptocurrency sustain
in years to come, even after reaching the 21 million Bitcoin milestone. The proposed
methodologies are not only making it sustainable in the adoption space but also
addressing some environmental problems. To prove the system’s capabilities, we
needed real-world Bitcoin data flowing through different parts of the structure. Due
to the nature of Bitcoin, data was readily available for anyone to use. The trans-
parency aspect of Bitcoin even ensures that anyone can see transactions occurring
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in real-time.
Luckily, we had access to a Bitcoin data dump which enabled us to collect the nec-
essary data. A simple automation script helped to collect transaction information,
mempool conditions, and all past block data generated every day [46]. These 1893
days of data assisted us in understanding the long-term behavior of Bitcoin, how
the transactions navigate through the network, their types, sizes, patterns, and how
they impact the block generation process.
The first proposed concept is based on the century-old knapsack algorithm. This
algorithm is famously used for resource allocation, which is one of our targets as
we want to have a balanced usage of the blocks. We had to tweak the algorithm
accordingly to fit the Bitcoin network. For the second idea, we used 12 different
widely used machine learning algorithms to see how they compare when predicting
block sizes in real-world conditions.

1.4 Research Contributions

To achieve our goals and solve all the aforementioned problems, in chapter 4, we
propose a sustainable Bitcoin model (SBM) and a balanced transaction selection pro-
cess derived from a modified knapsack algorithm called priority-based 0/1 knapsack
(PBBK) and advanced priority-based 0/1 knapsack (APBBK). Combined, three of
these ideas can increase transactions throughput/TPS and reduce wait times. The
proposed model can also make a balanced transaction selection, breaking the usual
preference for high-value transactions, resulting in broader acceptability. Another
remarkable outcome of the idea is its ability to reduce carbon footprint per transac-
tion, thus making Bitcoin greener. One of the strengths of the model is its ability to
adapt. It can change based on how the network or the moderators decide, meaning
the network can use as many proposed sustainable blocks (SB) as they require. Even
with the addition of only one SB, we see improvements all across the board. The
key contributions of this research are:

• This research introduces an industry 4.0 compliant sustainable and dynamic
block that ensures a balanced transaction selection.

• The proposed sustainable blocks (SB) use insignificant resources compared to
the number of resources it takes to create the original block (OB) in the existing
Bitcoin model. Thus significantly reducing carbon emissions for processing
transactions.

• Modified knapsack algorithms are proposed to ensure quicker transaction ver-
ification and higher transaction throughput.

• This model enables the miners to earn more than the current network archi-
tecture due to the dynamic nature of the model.

Furthermore, we have also proposed another distinct idea in chapter 5, combining
Bitcoin architecture with machine learning (ML) to predict the ideal block size. In
this concept,
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• The proposed model minimizes Bitcoin’s long wait times by forecasting the
optimal block size based on network congestion and adjusting it to demand.
All while maintaining the same resource usage and ensuring blockchain-level
security.

• With the adaptive block sizes recommended to miners on every block creation
cycle, Bitcoin’s crippling transaction throughput has increased, assuring higher
profits for miners.

• Our proposed methodology addresses the lack of Adaptability in Bitcoin during
peak hours by examining nine distinct data points and dynamically adjusting
block sizes.

To summarize, both of the ideas would be able to bring a positive change to Bitcoin
in the years to come.

1.5 Research Limitations

Among the many issues afflicting Bitcoin, we focus on some specific sectors of it.
In doing so, we have faced some limitations. The first one is the lack of complete
data for training and testing the model. The data we collected to understand the
network’s congestion and flow did not have the information for every block creation
time. Instead, it had an average for the day, which we had to match and create
a one-to-one relationship. Some features had considerable missing values to the
point that it was not feasible to do preprocessing on them. If we had access to the
complete data from the start of Bitcoin, we possibly could have much more accurate
results. Moreover, because both proposed ideas are novel, there is not enough work
in this space, especially when incorporating machine learning into Bitcoin, as most
of these papers focus on price prediction and security.
Keeping our objectives in mind, we would not be modifying or replacing the current
Bitcoin protocol as that does not fall within the scope of our work. Furthermore,
another massive issue plaguing Bitcoin, the high transaction fees, is also beyond the
scope of this research.

1.6 Document Outline

The first concept is organized in the paper as follows: in section 4.1, we elaborate
SBM’s architecture. We then move to section 4.2, focusing on the different trans-
action selection processes and their related findings. In section 4.3, we combine our
transaction selection processes and ideas to generate the final model. Section 4.4
discusses our findings regarding the model with respect to actual data. Then we
talk about the features and accomplishments of our model in section 4.5, and the
following section discusses our limitations and future work.
The second proposed idea is organized as follows: in Section 5.1, we talk about our
proposed model and the collected data. Section 5.2 shows the results for all of the
prediction models and comparison between them. The following Section 5.3 shows
us the results using real-world transaction data. In sections 5.4 , we discuss our
limitations and future work.
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Chapter 2

Contemporary Bitcoin
Architecture

Bitcoin started back in 2009 as the first digital cryptocurrency with the creation of
the genesis block. It uses a decentralized system, meaning no central entity con-
trols the flow of transactions [1], [25]. This is how cryptocurrencies like Bitcoin and
Ethereum differentiate themselves from other fiat currencies by removing interme-
diaries, as shown in Fig 2.1.

Figure 2.1: Comparison between centralized financial system (fiat currency) and
decentralized system (Bitcoin).

Bitcoin uses blockchain technology which refers to a P2P distributed ledger that
keeps track of transactions between participants in the network by storing the infor-
mation in a sequence of blocks [41]. Blocks have their own hash value and contain
the hash value of their previous blocks, which helps them keep connected [8]. These
blocks contain information that is validated and protected through encryption mech-
anisms. [28]. Blockchain uses a unique data structure called the Merkle tree that
helps to keep the history of all the transactions added to blocks.
The Bitcoin protocol uses the proof of work (PoW) consensus algorithm for mining
coins which is the most widely used consensus algorithm in public blockchains [26].
This mining process can be done individually by a miner or collectively using a pool
where multiple miners join together to solve the puzzle. The puzzle’s difficulty is
changed based on the mining capacity of the whole network and altered every 2016

5



block using the following formula,

Tnew = Tprev ·
Pactual

Bc ∗BTavg

(2.1)

Here, Tprev represents the target value of the previous 2016 blocks, and Pactual repre-
sents the actual generation time of the previous 2016 blocks. Tnew is the new target
value that will be used to generate the following 2016 blocks. Furthermore, Bc

represents the number of blocks (2016) before the difficulty is adjusted, and BTavg

represents the average block creation time.
A Miner adds values (nonce) to the hash to check if the hash value is below the
threshold. If it is, then s/he is the winner; if not, the process goes on. When a
miner creates a new candidate block, s/he adds a coinbase transaction to the top of
the block. A coinbase transaction is a unique transaction considered as the block
reward for the winning miner. Currently (2021), the coinbase transaction is 6.5
BTC. After solving the puzzle, at least 51% of nodes in the chain have to verify
that it satisfies equation (2.2) [8], [25], [38]. Here, Boutputs, Binputs and Breward refer
to the block outputs, block inputs, and the block reward the miner is getting for
solving the puzzle, respectively. If any block does not comply with the equation,
that means there are invalid transactions inside the block that a mischievous miner
passed. Suppose such a situation occurs; this block is not propagated further and
thus, not added to the chain.∑

Boutputs ≤
∑

Binputs +Breward (2.2)

Bitcoin transactions work similarly to traditional cash payments. In simple terms,
the users transfer and receive BTC using software-based wallets. Here they mention
the input, which is the amount they are giving, and the outputs are the cost of the
service or product and the amount in return. Finally, the fee and related Bitcoin
addresses are mentioned. The system follows eq (2.3) to calculate the fees.∑

Binput −
∑

Boutput = Tfees (2.3)

One of Bitcoins’ most prominent issues is scalability, as the system cannot adapt
based on the demands such as increased transaction processing. Moreover, even
though the average is 10 minutes, it does not ensure that the transaction is inside
the next block. As the miners also earn from the transaction fees, they would first
take the more significant transactions. This is making Bitcoin biased towards larger
transactions. As a result, we rarely see small transactions in Bitcoin, whereas other
competitions like banks regularly see all sizes of transactions.
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Chapter 3

Related Work

Research has been going on to address the slow transaction verification, more bal-
anced transaction selection, and increasing security in Bitcoin. Many blockchain-
based consensus algorithms have addressed the problems with PoW and proposed
their own such as proof stake (PoS), proof of activity (PoA), proof of capacity (PoC).
Some cryptocurrencies are using them and have seen the light of success. Bitcoin’s
direct competitor is Ethereum, a second-generation cryptocurrency that also uses
the concept of decentralization and an account-centric blockchain model. One of the
key differentiating factors of Ethereum is that the block intervals take on an average
of 15s and the transaction speeds are almost double of Bitcoin [11], [23], [24].
To tackle the faster transaction verification problem in 2021, Chris Larsen and Jed
McCaleb introduced Ripple (XRP), a closed cryptocurrency ecosystem. Ripple is
similar to the very famous Swift network used in Banking today as it can make
transactions within roughly 4 seconds. Ripple has gone out of the traditional way
of using PoW and PoS; instead, they use a consensus protocol to validate account
balances and transactions on the system, which has the same goal of preventing
double-spending and increasing integrity [34]. Currently, XRP holds the 7th position
in market capital, costing 0.941$ per coin [30]. Furthermore, they are focusing on
going public with their coin, marketing the concept of sustainability.
Using the concepts of XRP and PoS, researchers in their paper [6] proposed their own
coin, which addressed the round trip time(RTT) to ensure transactions are validated
within 3 seconds. They use their proposed algorithm known as Random checker
proof of stake (RCPoS), which selects validators at random to ensure security. One of
the critical features of their implementation is that every second a block is validated.
Unlike PoS, where the amount of coin the miner holds determines who would validate
the block, the system gives equal chances for all the nodes. P coin uses a 65%
threshold, meaning at least 65% of the network has to agree that the block is valid.
RCPoS selects checkers (validators validate the block and get the reward, checkers
validate the newly created block) based on random bits, enabling them to undertake
the 51% attack problem.
To benefit the miner’s authors in paper [7] proposes a multi-leader multi follower
scheme based on the Stackelberg game model. Their paper focused on increasing
rewards for the miners (leaders and followers) and having a better resource distribu-
tion. They have also proven their theory by comparing it with the current mining
pool strategies and outperforming them in simulated environments.
Authors in paper [16] discuss the optimal block size when we reach the 21,000,000
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Bitcoin limit. According to them, the miners do not go out of their way to cheat
the system as the resources and likeness of them winning is very low; however, when
there would not be any block fees, miners are more likely to try to cheat the system.
They give us a game-theoretic approach to a miner’s payoff based on the block size.
Due to how the system is designed, there can be multiple solutions for the puzzle,
and there can be cases where two miners find the solution to the same problem at
the same time, which can lead to forks. Which does not mean that the network will
hold off on transactions until this gets fixed. Miners choose one of the branches and
move on. The result is the longest branch wins, whereas the other gets reverted, and
the transactions get pushed back into the mempool. However, the biggest concern
is the size and propagation speed of the block. The bigger the size, the more time
it would take to propagate. Now think of it in this way, if 2 deliver persons have
to send an item to the same location, but one is 10kg, and the other is 100kg. The
person carrying the 10kg load would do it faster. So increasing the block size to
get more rewards and, most importantly, getting the consensus depends on the size
and the number of transactions inside. The authors come to the agreement that
block subsidiaries are the key to ensuring proper security. And, with the help of
game theory, they recommend that a block size of 4MB would be ideal to avoid
mischievous behaviors in the network [16].
Earning more from block creation has always been the goal of miners and researchers
alike. In order to achieve higher transaction throughput while reducing confirmation
times, payment channels have been proposed in the past that work on top of the
main chain/layer. This reduces the stress on the network but also keeps the process
safe. The payment channel concept was proposed to solve the scalability problem
of bitcoin. They are focused on high frequency, and smaller transactions in general
which can also be marked as micropayments or streaming payments [25].
In the paper [31], the authors discuss different ideas proposed by others on increasing
block sizes to improve TPS. They conclude that going through this approach would
result in larger block sizes requiring increased time to propagate throughout the
network, causing an increase in forks. They propose using directed acyclic graphs
(DAG) to address such problems and introduce parallelism to the system. They
ensure that the original chain and the consensus protocol are not affected when
such structures are implemented. They propose a smaller block with more relaxed
puzzle requirements and variable rewards for the miners. As a result, this reduces
the dependency on mining pools. Their implementation also reduces latency, thus
increasing faster consensus and higher TPS.
RepuCoin is another proposed cryptocurrency that is resilient to 51% attacks as
it relies on a miner’s reputation, which they earn overtime. So it is basically how
much validation work a miner has done in the network, and its regularity, which the
authors named ”miners integrated power.” They also have safety guards in place in
the sense that if a miner deviates from the typical system, his/her reputation will
take a hit, ensuring that even powerful miners are kept on a leash. Their method
increases security and increases transaction throughput to 10k/second, which is
much higher than VISA or Mastercard. One of the critical features of RepuCoin is
that as time goes on, the network becomes more secure [20].
With the introduction of the SegWit protocol, block size increased due to the re-
moval of signature data from transactions. Digital signatures accounted for nearly
65% space of a single transaction. As the bulk of the information was separated from
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the blocks, it opened up space for more transactions. This protocol upgrade’s goal
was to ensure the sustainability and higher levels of security of the Bitcoin network
as it was gaining popularity. This upgrade theoretically increased the size to 2MB
[34] however, in real life, that is not the case.
In the paper, [3] the authors discuss how different block sizes impact the perfor-
mance and stability of the Bitcoin network. They initially show us previous works
suggesting different methods proposed to change the block size and their impacts,
such as increasing transactions to 8MB as soon as 75% of the miners agree. The
author shows that increasing block sizes increase delays in the end-to-end transmis-
sion, which grows linearly depending on the block size. They also prove that larger
block sizes have more chances of splits that would cause the consensus protocol to
ditch a large number of blocks and also introduce scalability problems.
In another paper [13], the authors suggest changing the transactions information by
removing wasteful and redundant transaction data to carry more transactions per
block. The author reduced the output index to 1 byte and transaction hash infor-
mation to 5 bytes from 4 and 32 bytes, respectively, ensuring a total size reduction
of 11-16%.
Authors in paper [33] incorporate ML methodologies to increase the security in the
Bitcoin network. Their research shows us the impact this model would have on the
miner resource. Their testing on real-world data in their prototype testing environ-
ment shows that semi-supervised ML models perform worse than supervised ones,
and logistic regression performs the best, impacting the lowest mining rate.
We have seen multiple papers using ML methodologies to predict Bitcoin prices.
These studies compare ML models like the convolutional neural network, long short
term memory, gated recurrent unit, generalized linear model, boosting, linear, lo-
gistic regression, and others. These price prediction papers show us that different
aspects impact the price of Bitcoin, such as the network activity and daily trends
[12] . Even attributes that do not seem prominent include tweets posted in the
context of bitcoin [14], price of crude oil, stock market [44].
These studies have assured that people are concerned about the fate of Bitcoin, and
research is going on to make it sustainable by various means while keeping its core
features intact. However, throughout all these works, we see sacrifices to reduce
the size to increase speed and vice versa or proposing new consensus algorithms.
Moreover, no one addresses that the Bitcoin network is biased towards high-value
transactions. Our models are developed, taking all these ideas and limitations into
consideration. For the first concept shown in chapter 4 we have made the system
dynamic to the point where it can go back to the current method without significant
changes. Furthermore, we have not changed block size but were able to address both
the long wait time and biasness issue, enabling our paper to be a novel idea. On
the other hand, in chapter 5 we combine ML models to generate the ideal block size
on every block creation based on the network activity. We have kept in mind the
ideas and limitations of large block sizes and propagation speeds and generate the
optimal block size every cycle, thus also making this a novel idea.
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Chapter 4

A Sustainable Bitcoin Model for
Industry 4.0

4.1 Proposed Sustainable Bitcoin Model (SBM)

The core idea of our proposed model is to make Bitcoin sustainable in the years to
come while complying with industry 4.0 standards. As previously mentioned, Bit-
coin is biased towards high-value transactions. As a result, we do not see its usage
in typical transactions such as grocery shopping. These low-value transactions take
a prolonged time to get accepted into the blockchain. So we propose a model that
handles different types of transactions in their specific blocks. The OB structure
would be handling large transactions with a miner-focused/fee-driven selection sys-
tem. On the other hand, the proposed SB would be handling minor transactions
where the customers/users require quick confirmations while maintaining the same
chain. All of this is achieved while not increasing energy consumption.

4.1.1 SB Generation Process

One of the visions of our model is to keep the core features and ideas of Bitcoin
intact while introducing a better sorting mechanism and creating specialized blocks.
Currently, an OB is generated every 10 minutes on average, and they mostly contain
very high-value transactions. Along with OB, we propose adding SBs in the middle
based on a specific duration TSB. The block creation threshold Btime would be
between 1 to 9 minutes. We would have a 1-minute gap, so the block correctly
propagates throughout the network, thus reducing the chances of orphan blocks.
The interval is calculated using equations (4.1) & (4.2). Here CSB refers to the count
of SBs fixed by the network. Twindow is calculated based on the subtracted value
from average block creation time BTavg and the propagation threshold Pthreshold.

TSB = Twindow/CSB (4.1)

Where

Twindow = BTavg − Pthreshold (4.2)

If we look into an example concerning Fig. 4.1, we are targeting to create 3 SBs so
CSB=3. As previously discussed the propagation threshold would be Pthreshold = 1
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Figure 4.1: An example of integrating SB’s

minute and the average block creation time is considered as BTavg = 10 minutes.
If we plug these values into equation (4.1) & (4.2), we will get 3 minutes or 180
seconds as the interval period of each SB creation. After the first OB is created
(OB 1), three new SBs are created having a 3-minute interval. After the creation
of SB 3, there is a 1 minute propagation time, and at the 20-minute mark, another
OB is created. This process would continue unless the network decides the number
of SBs would increase or decrease. Furthermore, due to the introduction of SBs, we
have updated the mining fee process. Now only SBs would give the miners a block
fee rather than OBs, ensuring that SBs are never skipped by miners, which would
go against the whole concept of making it sustainable. A detailed description of
transaction fees is discussed in section 4.1.4.

4.1.2 SB Architecture

As previously discussed, SBs would contain more user-focused transactions than
focusing on the miners’ benefits. However, integrating SBs into the blockchain
requires a minor tweak in the header structure. The current Bitcoin header structure
is shown in table 4.1 [5]. This header structure does not have any way to show what
the next block is. This is obvious as the next block has not been created yet; thus,
there is no hash value. We propose to change this structure to as shown in table
4.2.

Table 4.1: Current block header structure

Field Size Data
Version 4 bytes Little endian

Previous block hash 32 bytes Big endian
Merkle root 32 bytes Big endian

Time 4 bytes Little endian
Bits 4 bytes Little endian
Nonce 4 Bytes Little endian

In table 4.2, we can see that the block header has an extra section, ‘Next SBs block
hash’ (this new attribute would also be added into OB’s header structure). The
change is implemented so that when the miners create their candidate OB, they
would simultaneously create an SB that would be added after the OB. This enables
the winning miner to add the following block hash to the OB header information as
s/he has already created the block. The process above will have two consequences.
Firstly, the miner has locked the SB candidate block, meaning it would not take any
new transactions as that would change the hash. The second one is that it would
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Table 4.2: SB block header structure

Field Size Data
Version 4 bytes Little endian

Previous block hash 32 bytes Big endian
Next SBs block hash 32 bytes Big endian

Merkle root 32 bytes Big endian
Time 4 bytes Little endian
Bits 4 bytes Little endian
Nonce 4 Bytes Little endian

prevent any other miners from creating an SB as only the winning miner would
have the candidate SB with the correct hash value. After a specific time, TSB the
miner would propagate the candidate SB which would be verified by the network
and added to the blockchain. However, before propagating, the next SB would be
created whose hash value would be added to the concerned SB (for our case SB
1). After the block is verified and added, the winning miner would receive his/her
reward. If the miner after 2*TSB has not created any SB, the OB block would be
considered invalid, and the network would remove it and create a new OB. For our
previously discussed example, we would have 3 SBs. After creating an OB, it has
connected both ways to its previous and future next block. For the last SB block,
in our case, the 3rd SB would have null for the ‘Next SB’s block hash’ representing
this is the last SB to be created in the cycle. Thus, not hampering the OB creation
process. This structure ensures that the correct miner is always rewarded. Due to
the network having full control over how many SBs will be created, they can choose
not to create any SBs. In that scenario, the block structure of OB would be the same
as the current one. SBs are constantly created, and we would have a fail-safe if they
are not generated in time. Fig. 4.2 can assist in visualizing the proposal (the above
explained ideas) where we can see a diagram of how the blocks are connected. Here
OB2, OB3, SB1, SB2 have the new header, and SB3 has the old header structure.

Figure 4.2: Connection between different blocks

4.1.3 SBM Workflow

If we look into the flow diagram in Fig. 4.3, we can see how the whole mining process
works from start to finish. Every miner takes transactions from the mem-pool and
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creates a candidate OB and SB. After the candidate block is created, miners start
the mining process using PoW on OB. The miner who solves the puzzle first adds
the OB to the blockchain. In the metadata of OB, s/he adds the hash of the SB
candidate block, and in the SBs, metadata adds the OBs hash, which creates a
double bond between them. Before propagating the SB, if there are more SBs
to be made in the cycle, then the next SB is generated. Its hash is added to the
SB to create the double bond. The SB block is added to the chain and propagated
through the network after TSB time has passed. The process goes on until the last
SB is created. When another new OB is created, the cycle repeats.

Figure 4.3: Work-flow diagram of the proposed SBM

4.1.4 Miners Earnings

In terms of transaction fees, the miners would earn much higher than the current
approach due to the introduction of SB’s. After an OB is created, the mem-pool
(MP ) would adjust the transactions based on the equation (4.3). Here, all the
transactions that are added in the newly created OB are individually removed from
MP . The same procedure is also followed for all the transactions located inside SB as
they share the same pool, shown in equation (4.4). The total fee (Tf ) accumulated
for all the transactions the miner has added in both the OB and SB’s is the sum of
their amount, which can be seen in equation (4.5).

Mp = Mp −
n∑

i=1

TOB[i] (4.3)

Mp = Mp −
s∑

i=1

TSB[i] (4.4)

n∑
i=1

Tf [i] +

CSB∑
j=1

(
s∑

k=1

Tf [k]) (4.5)

As mentioned before in section 4.1.2, the most significant difference from the current
approach is that OB blocks would no longer give miners any block fees. Instead, the
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fees would be divided among the SB’s following equation (4.6).

RSB =
BR

CSB

(4.6)

Here each block reward is represented by RSB, and the current block fee is repre-
sented by BR. Looking into the current reward structure, we can see that the miner
would be earning the following amount (based on the example mentioned in Fig.
4.1). RSB=6.5/3=1.167 BTC for each block. If 3 SB’s are created, when a miner
generates an SB, he would be given 1.167 BTC as a reward. Failure to create SBs
would mean that the miner would lose earnings for finding the nonce for the OB, as
previously discussed. To summarize, the total final earning of the miner is the sum
of all the transaction fees from both SB and OB and the block reward.

4.2 Transaction Selection

Transaction selection is the prerequisite for candidate block creation. Miners can
select and add any transaction they see fit as long as the block has space for it. Even
though the situation mimics the 0/1 knapsack problem, it can not be appropriately
mapped due to the data format. In our testing, we have used the transactions of
block 642120 and limited the block size to 500kb instead of the average one MB
size limit for faster block creation. Due to the block being nearly 1.3 MB with its
1790 transactions, limiting it to 1 MB would not make sense. The results could not
be generated even after running the algorithm for an hour (Ryzen 2600x, 16GB of
ram, IDE: eclipse). Investigating the matter, we found out that the issue was with
the data. Due to the dynamic programming nature of 0/1 knapsack, the problem is
broken down into smaller portions to ensure faster results. In our case, the size is
broken down into tiny portions such as 0.001, 0.002, and 0.003 MB, resulting in a vast
number of columns. The result might be generated at some point; however, when
miners try to create their candidate blocks, they want the results within seconds.
This is due to the limited time they have to solve the nonce. So, the more time a
miner is taking in selecting transactions, the fewer chances they are getting to solve
the puzzle; as a result, the 0/1 knapsack approach is not suitable.

4.2.1 Proposed PBBK Model

We propose assigning values to transactions from 0 to 2 based on the fee and the
fee to size ratio to solve the previously mentioned problem. These values are called
fee-based priority PFB and ratio-based priority PRB , respectively. Firstly, we sort
the transactions in ascending order based on the fees. The transactions belonging
to the 25 percentile are assigned 0, ones in the 75 percentile get 2, and the rest are
assigned 1. This is because we want to see the priority of the transactions. People
who want their transactions to be added to the block quicker pay a good amount
of fees. Even though the Bitcoin wallets suggest the minimum fee needed for the
transaction to be added to the block, if the user pays more, it ensures a higher
possibility of getting picked up by miners quicker. So lower the fee, the lower the
priority value. The same logic goes for the fee to size ratio. The concept is simple;
a person has limited space to rent. As a result, they will offer the space to the
person who would give them the most benefits. After this value assigning process is
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complete, these values are multiplied with one another to generate the final priority
value PT shown in equation (4.7). Thus, we would see 4 as the highest possible value
and 0 as the lowest. Each transaction now has a non-fractional value which solves
our initial problem.

PT = PFB ∗ PRB (4.7)

The second issue is that we cannot use the block size as our sack size because the
transactions have fractional size values. So when we subtract the transaction size
from the block size, it would again generate a fraction that deviates from our goal.
To solve this matter, we assign a priority limit value instead of a block size which
has the same concept as a typical sack size. Originally we subtracted the weight of
the picked item from the sack then calculated for the others. Likewise, the priority
value PT of each transaction would be subtracted from the total priority capacity
mimicking the original algorithm, as more significant transactions would cut a large
portion from the capacity.

Formulation For PBBK

PBBK’s end goal is to ensure the miners earn the highest possible fees which is
explained using equations (4.8), (4.9) and (4.10). Here n refers to the total amount
of transactions inside the mem-pool. Each transaction size is referred to by TWi,
and its corresponding fee is indicated using TFi. Adding transactions is a binary
option represented by Xi. Individual transactions would have their priority value
which is represented by TPi. The maximum size of the block is defined by BW ,
Finally, the priority value limit is refereed by Bp which would be traversed from
BPmin = 500 to a network decided limit BPmax.

max
n∑

i=1

TFi.Xi (4.8)

s.t

n∑
i=1

TWi.Xi ≦ BW (4.9)

n∑
i=1

TPi.Xi ≦ BP (4.10)

The total fees earned in each Bp would be calculated based on Algorithm 2.
After going through Algorithm 2, it would generate transaction fees for each Bp.
The system would then compare the results to select the ideal Bp, and based on
that; the transaction would be chosen for the candidate block.

Numerical Analysis

In tables 4.3 and 4.4, we see different priority limit values generate different results
(the transactions are sorted based on the priority value). The red and orange high-
lights represent the highest and second highest values, respectively. Due to the value
of BP being very irregular, no patterns could be recognized from this.
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Algorithm 1: Transaction selection using PBBK

Data: Transactions in the mem-pool
Result: Total fees for each Bp

for each Bp in BPmin to BPmax do
create an array PBBK[n, Bp]
for j from 0 to Bp do

for i from 0 to n do
PBBK[i, j]=0

end

end
for i from 1 to n do

for j from 1 to Bp do
PBBK[i,j]= max{PBBK[i-1,j], (TFi + PBBK[i-1, j-TPi)}

end

end
Bp=Bp+100;

end

Table 4.3: Results for block 642120

Priority limit Total earnings Block size (KB)
500 7072.664327 980.457999
600 7470.319025 1016.982999
700 7706.710632 1025.650999
800 7557.184024 1024.645999
900 7557.184024 1024.645999
1000 7690.26343 1024.025999
1100 7683.222833 1024.930999
1200 7663.739728 1027.683999
1300 7579.118024 1024.090999
1400 7557.184024 1024.645999

On further inspection, we realize that our algorithm does not perform well compared
to the greedy approach and the most beneficial technique ratio-based approach. In
the greedy approach, the miners pick the most significant transaction, see if it fits,
or not then move to the next one. The more significant fee to size ratio transactions
are picked on the second approach. This approach generates the best earnings as
the transactions are picked to provide the most benefit per byte. The results are
shown in tables 4.5-4.10.
As mentioned before, using the greedy approach (table 4.6), we see a significant
focus on large transactions. We see that transactions in the 75th percentile (based
on fee) are all selected, whereas the low-fee transactions are not even touched. This
situation is seen throughout all the blocks being tested. On the other hand, the
most rewarding ratio-based strategy (table 4.7 and 4.8) has a somewhat balanced
approach towards the selection. However, this still focuses on high fee transactions,
which results in the most earnings among all the other approaches.
Even though our knapsack approach (table 4.9 and 4.10) has the worst performance
among all the approaches, it does ensure that 100% of the low-fee transactions
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Table 4.4: Results for block 642265

Priority limit Total earnings Block size (KB)
500 7896.621228 1026.680999
600 7854.269625 1024.285999
700 4544.664505 693.164999
800 4999.517804 725.001999
900 8009.629214 1041.366998
1000 7902.958718 1024.712998
1100 7953.580615 1030.359998
1200 8041.904714 1040.834998
1300 7954.704714 1034.057998
1400 8009.629214 1041.366998

Table 4.5: Earnings and block size for the fee based greedy approach

Block Total earnings
Total

transactions
Size (KB)

642265 9815.777324 952 1024.025999
642120 8113.096298 837 1024.22
642267 11253.79042 982 1024.14
Average 9,727.55$ 923.67 1024.128

are accepted. Moreover, it is the most balanced among all the methods, thus coming
in second.
In another test scenario, we simulated a mem-pool containing nearly 72000 trans-
actions collected from multiple blocks. PFB and PRB values were assigned to them,
and the test data was run through the PBBK algorithm. For the result having the
priority limit from 500 to 1700, we get nearly 113$, whereas other approaches gen-
erate more than 10,000$. After looking into the transactions, we found that only
the small transactions were picked, and thus the whole block limit was occupied
with them. The reason behind such occurrences is that we have assigned PT =0
to low fee and low fee to size ratio transactions. During the transaction selection
process, the system checks the final matrix value for each transaction, goes through
the algorithm, and finds out if it is worth the space for benefits. The algorithm sees
that transactions with a matrix value of 0 are not reducing the sack size (due to the
priority value being 0) but generating benefits. So it considers these transactions
and reduces the available block size. Sadly when there are large amounts of such
small transactions with a PT of 0, they start filling up the block. This is not a good
approach for the miners as it brings them a negligible amount of earnings. On the
positive side, this ensures that small transactions are picked. For our case, the total
transaction for the block was above 3200.

Advantages Of PBBK

Even though PBBK is not the suitable path we are looking for, it still brings a few
benefits. They are,

• It Ensures 100% selection of small fee and small ratio based transactions. For
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Table 4.6: Transaction pick rate for the fee based greedy approach

Block 25th percentile 75th percentile In between

642265
0/305
(0%)

52/52
(100%)

899/1305
(68.89%)

642120
0/447
(0%)

447/447
(100%)

390/896
(43.5%)

642267
0/645
(0%)

638/638
(100%)

344/1266
(27.17%)

Average 0% 100% 46.52%

Table 4.7: Earnings and block size for the ratio based approach

Block Total earnings
Total

transactions
Size (KB)

642265 10316.54842 1327 1033.9279
642120 9309.443505 1583 1082.28
642267 12790.04 2385 1024.892
Average 10,805.34$ 1765 1047.03

example: paying for coffee should not require high fees, and the ratio would
not be very high. With our approach, these transactions would always be
added to the block.

• Making Bitcoin sustainable as smaller transactions are handled.

• A large number of transactions are put inside a block.

• Block size is close to the network decided limit.

If we look into the modified 0/1 knapsack approach from a social optimization
aspect, it ensures smaller transactions get accepted into the network, which is not
possible with the network’s current approach. On the other hand, from a classic
utilitarian perspective, it benefits the most people as multiple small transactions
are being accepted, thus increasing usability and helping Bitcoin be sustainable in
the long run.

4.2.2 Proposed APBBK Model

The drawback of PBBK is that it cannot generate benefits for the miners, thus mak-
ing them less interested in mining. Furthermore, it cannot handle people cheating
the system and paying less for more significant transactions. To solve this issue,
we need a better approach to selecting transactions. For this, we have made a few
changes to the process. This time we would look into the fee, fee to size ratio
and size of the transaction for assigning values.

Formulation For APBBK

First of all, we would look into the fee-based priority value. Here, the transactions
are sorted in ascending order then values are assigned. Fee priority values 1,2 and 3
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Table 4.8: Transaction pick rate for the ratio based approach

Block 25th percentile 75th percentile In between

642265
39/303

(12.871%)
50/52

(96.15%)
1238/ 1305
(94.866%)

642120
254/447
(56.82%)

441/447
(98.65%)

886/896
(98.89%)

642267
606/645
(93.95%)

610/638
(95.611 %)

1169/1266
(92.3%)

Average 54.55% 96.80% 95.35%

Table 4.9: Earnings and block size for the PBBK approach

Block Priority Total Earnings Total Transaction Size (KB)
642265 1100 9420.212903 1445 1038.121
642120 1700 7249.325088 1564 1024.99
642267 1600 10749.344 2029 1024.756
Average 9139.62733 1679.33 1029.289

are assigned to fees less or equal 25%, fees greater or equal 75%, and everything else,
respectively. The same goes for the fee to size ratio and size-based priority values.
After the assignment, we sum them together, generating values from 0 to 9. Table
4.11 can help better understand what these values represent.
After the process is complete, transactions having the final priority Value of 3 would
be assigned to the SB mem-pool & the others to the OB mem-pool. Both OB & SB
mem-pools are temporary and are created during candidate block creation, and this
ensures that large transactions are always inside their appropriate blocks. These
transactions would then be sorted based on the fee to size ratio concept discussed
previously. The workflow diagram in Fig. 4.4 shows the path transactions take from
the mempool to the final candidate block creation.

Figure 4.4: APBBK workflow
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Table 4.10: Transaction pick rate for the PBBK approach

Block Priority 25th percentile 75th percentile In between

642265 1100
303/303
(100%)

50/52
(96.15%)

1092/1305
(83.68%)

642120 1700
447/447
(100%)

307/447
(68.68%)

809/896
(90.29%)

642267 1600
645/645
(100%)

388/638
(60.81%)

996/1266
(78.7%)

Average 100% 75.21% 84.22%

Table 4.11: Explanation on APBBK value assignment

Value
(fee + size +
free-size ratio)

Meaning Examples

3 (1+1+1)
Low fee, small size,
low fee to size ratio

Small payments.
Example: grocery shopping.

9 (3+3+3)
High fee, large size,
high fee to size ratio

Large transactions.
Example: buying cars.

5 (2+1+2)
High Fee, small size,
high fee to size ratio

Emergency transactions.

Numerical Analysis

To test our new model with APBBK, we have collected a total of 20,000 transactions
from blocks 642120 to 642132. These transactions have gone through the sorting
process, giving us the following division.

• Low priority transactions (Low fee, small size, low fee to size ratio):
1668

• High priority transactions: 18332

As previously discussed, OB only takes high-priority transactions (HPT). On the
other hand, SB holds low priority transactions (LPT). The outcomes of APBBK
are shown in table 4.12 and 4.13. Sadly, having the limitation of SB’s only taking
LPT causes the block to be more than 50% empty due to the lack of transactions.
However, some transactions do not fall in the LPT criteria but should be eligible.
An example is shown in table 4.14.

Table 4.12: Earnings from OB using APBBK

Total Earned Space left Transaction count
21132.98357 0.106000394 2620

So to make the process more in line with our goal, we would use the PBBK method
in SB, and the OB remains the same because of its consistent performance. This will
ensure a higher fee for the miners and assure that more transactions are processed.
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Table 4.13: Earnings from one SB using APBBK

Total Earned Space left Transaction count
112.3758982 671.6429951 1668

Table 4.14: Example of a transaction from block 642122 that should be a part of
LPT

Attributes Values

Size (KB) 0.223
Fee ($) 0.4091

Fee/size ratio 1.8345
Priority fee 2
Priority size 1
fee/size ratio 2

Sum 5
LPT (3)

HPT (>=4)
HPT

4.3 The Integrated Model

Finally, to achieve our goal of sustainability and benefiting miners and users alike, we
have to take a different approach. The previous section shows that both PBBK and
APBBK bring a welcome change; however, they have flaws that can be eradicated
if merged. Below is a step-by-step block generation process using the combined
concept.

1. When an OB cycle starts the miner takes all the transactions inside his mem-
pool and sorts them based on fee to size ratio.

2. The sorted transactions go through the PBBK process.

3. The algorithm selects LPT to create the candidate SB.

4. The miner creates the candidate SB and removes these transactions from the
mempool.

5. The remaining transactions go through the APBBK process.

6. APBBK algorithm differentiates HPT and LPT from the remaining transac-
tions.

7. The miner uses HPT transactions and creates a candidate OB.

8. If all the HPTs are selected, and the OB still has space remaining, the miner
would fill the rest of the space with LPTs.

9. The miner does the puzzle-solving process and, if s/he wins, they propagate
the OB in the network with the hash value of the candidate SB (SB 1).

10. The miner removes the selected transaction in OB from the mempool.
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11. If there are more SBs to be created, then the updated mempool (with the latest
transactions coming in) goes through the PBBK process again. Otherwise, the
cycle repeats.

4.4 Results

The earning through OB and SB for the combined model using the same 20,000
data is shown in table 4.15 and 4.16. Considering the system is based on one SB
per cycle. The final tally would come to,

• Miner earning from fees: 22,307.87957$

• Total transactions approved: 7097

Table 4.15: Earnings from OB using SBM

Total earned Space used Transaction count
21132.98357$ 1,023.894 KB 2620

Table 4.16: Earnings from one SB using SBM

Total earned Space used Transaction count
1174.896$ 1024.009 KB 4477

Figure 4.5: Fee earning comparison between the greedy approach, ratio based ap-
proach and SBM

We can see in Fig. 4.5 that in the greedy method, the max earnings would have been
11,102.62138$, whereas using SBM with PBBK, this bumps up to 22,307.87957$,
and the number of transactions soared (Fig. 4.6). Even if we look at the average
block transaction numbers, they are roughly between 1500- 2200 transactions. How-
ever, in our case, with nearly the same amount of energy, we are getting increased
transactions and fees, thus reaching our goal.
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Figure 4.6: Transaction count comparison between the greedy approach, ratio based
approach and SBM

4.5 Features & Accomplishments

The proposed SBM proves that a tweak in the Bitcoin architecture and optimal
transaction selection positively impacts the cryptocurrency. To summarize, our
work has the following contributions in making Bitcoin sustainable.
Increase transaction count and earnings for the miners: Due to the design
of SBM, the network can decide on how many SB’s are ideal. From Fig. 4.6 we can
see that with the introduction of only one SB, the transaction count increased by
2.7 times compared to the current ratio-based transaction selection. Furthermore,
we can also see that with just one SB, TPS increased by 2.56 times shown in Fig.
4.7. Similarly, with just 1 SB, the increased fees the miner would be getting is just
a bonus with no increase in resource usage. As fees increase and block rewards
decrease, this would lead to sustainability.
Faster confirmations: With the proposed model, blocks quickly get confirmations
while maintaining blockchain-level security. Currently, transactions over 10,000$
dollars on an average require six confirmations, meaning 60 minutes of wait time.
However, if one SB is considered, it can be reduced to 30 minutes, and if 3 SBs are
considered, it can be done in 16 minutes which is a massive increase in performance.
Fig. 4.8 shows the gradual decrease in wait times with different numbers of SB’s.
Blockchain level security: SBM can maintain the same blockchain-level security
with two types of blocks without increasing resource usage. Due to the architecture,
no one except the winning miner can push the SB’s and get their reward. The
double bond concept ensures that SB’s hashes are incorporated even before they are
pushed. So it is almost impossible for others to match hash values and push their
own SB’s. Similarly, hackers can not hack the SB’s and change the content as it
would change the hash, thus breaking the bond and the OB creation cycle, alerting
the whole network. Now, mischievous miners might want to put larger transactions
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Figure 4.7: TPS comparison between current architecture and SBM

inside SB, thus defeating the purpose. To tackle such scenarios, the miners would
validate each transaction (same as the current approach). If they see any outliers
(calculated based on the transaction fees using the outlier formula) in SB, which
holds more than 10% of the total SB’s fee, they would mark the block as invalid and
not propagate. This would ensure miners do not cheat the system as it would make
all their created blocks (in the cycle) invalid, including the OB. Thus the miner will
not be receiving any rewards for solving the puzzle. Due to this, the network would
start a new OB creation cycle.
Reduced carbon emissions: As previously discussed in chapter 1 , every block
on an average contains 2759 transactions and generates 191 tons of C02 [17], [40].
Therefore, we can conclude that each transaction produces 0.069 tons of carbon
emissions on average. Whereas due to the dynamic nature of our model, this can be
easily reduced. As previously discussed, we can safely assume SB’s use insignificant
resources compared to the amount of resources it takes to create an OB. This is due
to not relying on any puzzle-solving process to generate SB’s. As a result, we can
ignore the cost/emissions for simplicity. Concerning the 10 minutes of average time
to create an OB, we generated 7097 transactions with 191 tons of CO2 in one OB
creation cycle for our previous example. Each transaction boils down to 0.026 tons
of CO2, which is 62.318% lower than the current implementation, as shown in Fig.
4.9. Furthermore, due to the nature of the model, it can increase or decrease but
would always be equal or better than the current Bitcoin architecture.

4.6 Limitations & Future Work

In the previous section, we see how well SBM performs in reaching our goal; however,
each proposed method has its own set of limitations. In terms of PBBK, we see the
following,

• Bp is not a fixed value, so checking multiple ranges is required.
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Figure 4.8: Gradual decrease in wait times for the 6th confirmation based on different
number of SB’s

• It is slower than the current methods.

• Does not provide enough transaction fee, especially when the mem-pool has a
lot of small transactions.

• It can be misused by users to pay less for large transactions and get selected.

To solve a few of the limitations of PBBK, we introduced an advanced version
that addresses some of the problems and brings in better transaction selection and
organization. However, it has its shortcomings such as,

• Some transactions are not properly differentiated as shown in table 4.14.

• Due to the above case, there is a lack of LPT, which causes SB to be partially
empty.

From above, we can see that both methods have their limitations and usefulness.
Our final model combines these ideas and shows how the integrated model can help
reach sustainability. However, the integrated model has its own challenges namely,
Increased processing: In the integrated model, we see the transactions going
through 2 levels of processing. Initially, the transactions go through the PBBK
algorithm, which identifies LPT to create SBs. Secondly, the remaining transactions
go through the APBBK process to differentiate the HPT and LPT. This ensures the
correct transactions are inside OB, and it is not empty if there are not enough HPT
to fill the block. This two-level processing is undoubtedly time-consuming, taking
away from the crucial puzzle-solving period.
Even though the time is negligible and every miner has to go through the same
process, we believe this is a place for improvement. To further reduce processing
time, both PBBK and APBBK selection algorithms should be combined so that the
ideal differentiation can be done by passing through one process.
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Figure 4.9: Comparison of carbon emission per transaction between the current
architecture and SBM

Reliant on the moderators/miners: We mention that the number of SB can be
changed by the network/moderators, enabling it to be dynamic. With more SBs, we
can see a positive change as we can scale up or down based on the traffic/scenario.
However, this relies on moderators and their judgement calls on the number of SBs
to be created, which leaves areas of human error.
An AI-based model can be created to analyze the network traffic and other network-
related attributes to select the ideal SB count and SB size, thus enabling it to break
free of any dependencies.
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Chapter 5

Predictive & Automated Dynamic
Block Size Adjustment In The
Bitcoin Network

5.1 Proposed Model & Data preparation

To keep Bitcoin alive in the following years, we need to ensure its sustainability.
One of Bitcoin’s limitations is, it can not adjust its rate dynamically based on the
transaction throughput (transaction coming in). This has led to delays during high
traffic, which is why Bitcoin is not as popular as other methods. An excellent
example of this is during Christmas time when transactions increase. Financial in-
stitutions like VISA can adapt to this due to already having a very high throughput.
However, Bitcoin can not adjust to this high traffic. As a result, someone buying
Christmas presents might have to wait 30+ minutes to get their first confirmation.
If they want to get the confirmation faster, they have to pay a large amount of fees.
Which further pushes people away from Bitcoin. We propose an idea where the
Bitcoin network can dynamically adjust itself to compete with others to tackle this
problem. We introduce an AI-based model that would adjust the block size based
on the network activity. In other words, if the network notices that the number of
transactions has increased, the block size will increase as well, ensuring that more
transactions are added to the chain. Figure 5.1 illustrates our proposal where during
candidate block creation, our model would suggest the miner the optimal block size
by analyzing multiple factors related to the Bitcoin network (factors are discussed
in section 5.1.2).

5.1.1 Data Collection

One of the advantages of working with cryptocurrency, especially Bitcoin, is its
transparency. Anyone on the internet can view blocks and the transactions associ-
ated with the block. However, that does not mean that the information related to
the sender and recipient is visible. Sadly, for our case, as we would be analyzing
the Bitcoin network, the process was not easy. As mentioned, getting the block
information is easy; however, getting the network state at the time of block cre-
ation is troublesome to find. We required the transaction per second (TPS) of the
Bitcoin network and the mempool stats for our case. To our surprise, a website

27



Figure 5.1: Workflow of the proposed model

contained these pieces of information. However, it contained the average value for
the day, whereas we required hourly or 10-minute interval data. Additionally, a few
dates were missing from different columns. Due to no other sources containing the
required data, we had to work with what we had and map this data accordingly.
To test our models, we have used the block data collected from June 14th, 2016, to
August 20th, 2021. A total of 5 tables were collected.

• Transaction rate per second (TPS): Refers to the number of transactions
added to the mempool per second [50]. The collected data showed how many
transactions came into the Bitcoin network every second on an average for a
day.

• Mempool transaction count: The total number of unconfirmed transac-
tions in the mempool [49]. As people make transactions through Bitcoin,
they pile up in the mempool. This table/data gives us the average count of
transactions in the mempool for the day.

• Mempool size: The aggregate size in bytes of transactions waiting to be
confirmed [47]. Similar to the table mentioned above, this data gives us the
average size of the mempool for a day.

• Mempool size growth: The rate at which the mempool is growing in bytes
per second [48]. Transaction rate differs based on time, exchange rate and
other factors. This table gives us the average rate of change of the mempool
size, giving us a deeper look into the network.

• Block data: Created and confirmed blocks from the mentioned time con-
taining all the related information [46]. As we are dealing with block size
prediction, we require previous block data. The block data table gives us all
the information related to the generated block, such as the id, hash, Merkle
root, size, weight etc.
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To better understand the data, we first need to understand the mempool concept.
Mempool is where all the unconfirmed transactions come in. Miners then take these
transactions, validate them and add them to their candidate block. These candidate
blocks go through the mining process, and if the miner can solve the puzzle first,
their block is added to the chain. Then the network verifies the added block and all
the transactions to ensure there was no wrongdoing. A large amount of transactions
in the mempool means that the transactions are piling up, resulting in congestion
in the network. This results in longer wait times and higher fees. To summarize,
the first four tables help us understand the network’s traffic. After merging the
tables based on their timestamps, we get a total of 280563 rows of data with 42
columns. Among them, the missing data count was

• TPS: 60132 rows

• Mempool size: 47735 rows

• Mempool count: 57735 rows

• Mempool growth: 65426 rows

To train our model, we need to handle these missing data issues, which is discussed
in the next section.

5.1.2 Data Preprocessing

As there are missing data, this had to go through some preprocessing to make it
perfect for our prediction models. The initial step was to run the data through an
imputation process. So in our case, we have used a total of 6 approaches.

1. Remove null rows

2. Imputation using mean

3. Imputation using median

4. Imputation using most frequent

5. Imputation using deterministic regression

6. Imputation using stochastic regression

Through our research, we realized that among these six approaches, imputation
using deterministic regression showed the best results. On the contrary, stochas-
tic regression showed the worst result. Further investigation showed us that the
randomness that stochastic regression brings was hurting the model’s accuracy.
One of the challenges we faced while preprocessing the data was initially not ap-
proaching the problem from a time-series perspective. Time series data is handled
differently compared to standard data. Keeping that in mind, we had divided our
complete data into two parts: train data and test data with a 75/25 split. We
have ensured that neither the test nor train data have past or future blocks, thus
removing data leakage. Table 5.1 is a quick summary of the data.
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Table 5.1: Test and train data stats

Test Data Train Data

Rows 70131 210432
Percentage 24.9965 75.0034
Date range 19/4/2020 - 20/8/2021 13/6/2016 - 18/4/2020

Then we ran the deterministic regression imputation method through each dataset
to ensure there is no null data and no leakage from the train to test. We have not
imputed the whole data as it would leak information to the test set, thus creating bias
and inaccurate results. Table 5.2 shows a sample of the final data using deterministic
regression imputation.
Now we need to set the target and feature for the models. As we are analyzing the
network traffic so we would only be looking into a total of 9 features given below.

1. TPS (TPS ): Refers to the number of transactions coming into the network ev-
ery second. The collection contains an average TPS for the day. An increase in
TPS refers to more transactions coming into the network, thus increasing con-
gestion. equation (5.1) shows the relationship between TPS (Tp) and network
traffic (Nt).

Tp ∝ Nt (5.1)

2. Mempool size (U mempool size): Refers to the average mempool size of the
miners. As previously discussed, mempool contains unconfirmed transactions.
Unconfirmed transaction increase is proportional to the mempool size.

3. Mempool count (U mempool count): Refers to the average mempool count
of the miners. Unconfirmed transaction increase is proportional to the mem-
pool transaction count, which is also proportional to mempool size.

4. Mempool growth (Growth): This refers to how fast the mempool grows over
time. Which, in turn, has an impact on network congestion. The higher the
growth, the more increase in the size is expected. equation (5.2) shows a rela-
tionship between mempool size (MPs), mempool count (MPc) and mempool
growth (MPg).

MPs ∝ MPc ∝ MPg (5.2)

5. Difficulty (difficulty): To solve a block, miners have to solve a puzzle with X
amount of difficulty. The difficulty changes every two weeks based on the net-
work’s hash rate and average block creation time. As the difficulty increases,
the miners spend more time and resources to solve the puzzle; however, the
reward is not increasing simultaneously. Thus the miners try to push more
transactions to the block to get increased fees.

6. Time (hour): Through our research, we realized that time has a relationship
with block size. We have seen that hours impact both network congestion and
block size. So we have extracted the hour information from the block creation
median time column.
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7. Fee per kilobyte (fee per kb): We came to realize that fees have a remarkable
impact on the size of the block. When the network becomes congested with
transactions during rush hours, people tend to give more fees than the wallet
suggested amount. This gives those transactions a higher chance to get picked
by the miners. This attribute is a good indication of the network’s activity,
which would help us make better predictions. equation (5.3) can further clarify
the relationship between network traffic and transaction fees (Tf ).

Nt ∝ Tf (5.3)

8. CDD Total (cdd total): CDD, also known as ”Coin Days Destroyed”, helps
us to measure the lifespan of coins that are transacted [43]. The CDD values
show the number of coin days destroyed each day. The higher the number, the
longer these coins accumulated prior to finally being spent. This would help
us to understand the upcoming network activity and congestion.

9. Fee per weight (fee per kwu): After the SegWit soft fork, Bitcoin now has
the concept of weight. Weight refers to the transaction base data along with
witness data. Currently, the Bitcoin block weight limit is 4MB. This feature
is similar to fee per kb as this shows us how much fee users are paying for each
transaction in terms of its weight, giving us an indication of the network’s
activity.

Moreover, as we would be predicting the size of blocks, the target is the Size
(b size MB) column. In Figure 5.2 we can see a heat map of the corresponding
rows. We have also used a recursive feature elimination (RFE) method which gives
us a ranking for the relevant features and eliminates the redundant ones, shown in
Table 5.3.

Table 5.3: Recursive feature elimination (RFE) ranking for the selected features

Column Name RFE Rank

U mempool count 1
fee total 1

fee per kwu 1
TPS 5

fee per kb 6
U mempool size 9

hour 16
Growth 18
difficulty 30
cdd total 34

The heatmap and RFE selected other features; however, they did not relate to the
network or the block size; therefore, we had to discard them, thus finalizing these 9
features.
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5.2 Models Used For Block Size Prediction

To reach our goal of finding the optimal block size based on the network activity, we
need to find the model that would give us the best possible result. To do that, we
have gone through multiple machine learning (ML) models. Due to the type of data
we are dealing with, we can not use any classifications models, and we are limited
to regression models only. We have gone through 12 algorithms, trained them, and
tested them to find the best prediction through our research. For calculating errors,
we have used metrics like mean absolute error (MAE), mean squared error (MSE),
root mean squared error (RMSE) and coefficient of determination (R2), which helped
us to pick the most efficient and accurate model. In the upcoming sections, we will
go through each model and its results and finally compare to select the best one.

5.2.1 Performance Measures

Performance of machine learning models needs to be evaluated. A definition of the
closeness between the desired value and the predicted value needs to be defined. This
metric is known as cost/loss function and guides the neural network towards the
desired outcome by estimating the closeness between the predicted and the desired
value. The cost function is calculated at the end of every training iteration after the
weights have been updated. The cost function that we used are known as mean
absolute error , which tries to minimize the average absolute error between the
desired output and the predicted output, given by equation 5.4

cost =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (5.4)

metric =
1

n

n∑
i=1

(
Yi − Ŷi

)2
(5.5)

5.2.2 Decision Tree

Decision tree is one of the most popular machine learning models for prediction. It
is a supervised model that uses a tree-like structure to reach the outcome. Each
node on the decision tree is a condition or a decision that helps the model reach
leaf nodes which are the results/predictions. Due to our data type, we have used a
continuous variable decision tree. The model was initially performing slightly worse
as decision trees are less appropriate for continuous attributes [32]. However, we
have tuned the model to have the following: max leaf nodes=2000, random state=1,
max features=3, min samples leaf=7, min samples split=6, which helped us to reach
the best possible outcome from it. The results for the decision tree are given in Table
5.4 where we see the that best R2 score comes when the tree depth is set to 1000.

5.2.3 Random Forest Regressor

Random forest is basically multiple decision trees that can take the average to
increase prediction accuracy. One of our reasons behind using random forest is that
it generally has high accuracy, fits the model better and is efficient for large datasets
such as ours [42]. To produce the best results we have tuned the model to have the
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Table 5.4: Decision tree results

Tree Depth MAE MSE RMSE R2

5 0.205491 0.086452 0.294028 -0.01834
50 0.169 0.067183 0.259197 0.208633
500 0.159102 0.061648 0.248291 0.27383
1000 0.155736 0.061175 0.247335 0.279407
1500 0.157153 0.062368 0.249736 0.265352
2000 0.155593 0.062889 0.250776 0.259221
2500 0.155484 0.063537 0.252066 0.251578
3000 0.155236 0.063669 0.252328 0.250025
5000 0.156064 0.065828 0.256569 0.224601

following parameters: random state=1,min samples leaf= 5, min samples split= 21.
The results in Table 5.5 shows that at tree depth=500, we get the best R2 score.

Table 5.5: Random forest regressor results

Tree Depth MAE MSE RMSE R2

5 0.119769 0.049301 0.222039 0.419269
50 0.115237 0.046806 0.216346 0.448665
100 0.115221 0.046536 0.215723 0.451838
250 0.115124 0.046529 0.215705 0.451928
500 0.115006 0.046415 0.215442 0.453265

5.2.4 Multiple Linear Regression

Multiple linear regression, also known as MLR, uses multiple independent variables
to predict the target variable. It is an extension of linear regression, which is limited
to just one variable [36]. MLR is used in many financial predictions, such as oil
price predictions, where multiple variables affect the forecast. Keeping it in mind,
we have tested this model as we have nine independent variables driving the block’s
size. Table 5.6 shows us the results.

Table 5.6: Multiple linear regression results

MAE MSE RMSE R2

0.202314 0.08359 0.28912 0.015368

5.2.5 Advanced Linear Regressions

To further test our data, we put it through some advanced linear regression models
such as Ridge, Elastic Net, and Lasso. Ridge regression is used when there are
independent variables that are correlated. In our case, we have TPS, mempool
count, and size, so Ridge regression was one of our picks. Lasso regression stands
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for Least Absolute Shrinkage and Selection Operator, which is a modified version
of linear regression [19]. It uses the concept of shrinkage, where the data is shrunk
towards the mean. Similar to Ridge, this is good for multicollinearity [15]. Ridge
penalizes the model for the sum squared value of the weights, and Lasso penalizes
for the sum of absolute values of the weights. Elastic net is a combination of both.
Table 5.7 shows us a comparison between the best results from each model.

Table 5.7: Best results from Ridge, Lasso and Elastic Net regression

Models Best results from each model

Alpha MAE MSE RMSE R2

Ridge 20000 0.20026 0.082795 0.287742 0.024734
Elastic Net 50 0.191484 0.080545 0.283804 0.051244

Lasso 50 0.193813 0.081377 0.285266 0.041442

5.2.6 Partial Least Squares Regression

PLS, also known as partial least squares regression, is used to find the relation
between X and Y. As the name suggests, it does a least-squares regression on a
smaller set of uncorrelated components. For our dataset, we have both correlated
and un-correlated components/attributes. So PLS can give us some insights. The
tuned results for PLS can be seen in Table 5.8

Table 5.8: Partial least squares regression results

N Components MAE MSE RMSE R2

7 0.198339 0.082059 0.286459 0.033412

5.2.7 Extreme Gradient Boosting

XGBoost is a decision-tree-based ensemble ML algorithm that uses a gradient boost-
ing framework. In this method, the residual of all previous weak learners is contin-
ually corrected by adding new weak learners, and the final prediction result is the
sum of multiple learners. When compared to other ML models, the XGBoost algo-
rithm offers a faster computation speed and higher model performance. To avoid
overfitting, tree model complexity is appended to the optimization objective as a
regularization component.
Assume that we have a set of observations (x11, x12, . . . , x1k, y1) , (xn1, xn2, . . . , xnk, yn),
n is the number of observations, xik(i = 1, . . . , n) are the predictor variables,
yi(i = 1, . . . , n) is the response variable, and anticipates the outcome using M
additive functions [2].

ŷi = ϕ (xi) =
M∑

m=1

fm (xi) , fm ∈ F (5.6)
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Table 5.9: XGBoost results

N Estimators MAE MSE RMSE R2
5 0.480129 0.261197 0.511074 -2.0767
50 0.158881 0.057815 0.240447 0.318986
500 0.112164 0.034562 0.185909 0.592882
1000 0.101416 0.032927 0.181459 0.612141
1500 0.099191 0.03313 0.182015 0.609758
2000 0.099269 0.033621 0.183361 0.603967

where F =
{
f(x) = wq(x)

} (
q : Rm → T,w ∈ RT

)
is the space of regression trees.

Here q represents the structure of each tree that maps an example to the corre-
sponding leaf index. T is the number of leaves in the tree. Each fk corresponds
to an independent tree structure q and leaf weights w. Unlike decision trees, each
regression tree contains a continuous score on each of the leaf, wi represents score
on i-th leaf. For a given example, the decision rules are used in the trees (given by
q) to classify it into the leaves and calculate the final prediction by summing up the
score in the corresponding leaves (given by w). The iteration process for XGBoost
algorithm is

1 ≤ m ≤ M; Fm+1(x) = Fm(x) + fm(i) (5.7)

with an objective function of:

L(ϕ) =
∑
i

l (ŷi, yi) +
∑
m

Ω (fm) (5.8)

where,

Ω(f) = γT +
1

2
λ∥w∥2 (5.9)

Here l is a differentiable convex loss function that measures the difference between
the prediction ŷi and the target yi. The second term Ω penalizes the complexity of
the model. From the previous equations we get:

L(ϕ) =
∑
i

l
(
ŷ(m−1) + fm (xi) , yi

)
+
∑
m

Ω (fm) + C (5.10)

According to the second order of Taylor Expansion, the objective function could be
transformed to:

M∑
j=1

[(∑
i∈Ij

gi

)
ωj +

1

2

(∑
i∈Ij

hi + λ

)
ω2
j

]
+ λT (5.11)

where gi and hi are the first order and second order derivatives respectively. And
they become constant in the t-th iteration. XGBoost algorithm starts from one node
and splits nodes continuously. In the process of splitting nodes, similarity score is
used to select appropriate feature variables and splitting points, so as to find the
appropriate tree structure. A learning rate of 0.11 was used. Hyperparameter
optimization was performed using grid search to obtain the best results which are
shown in Table 5.9 for different number of estimators.
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5.2.8 Other Boosting Algorithms

At its core, boosting algorithms attempt to improve predictions by converting weak
learners to strong learners. Boosting algorithms are very popular in modern data
science-based research works. Its vast popularity is due to outperforming typical
ML models like RFR. We have used three different types of boosting algorithms
other than XGBoost for our testing. To acquire the best result these models were
tuned using grid search. Tuning for each algorithm is shown below:

• Gradient Boosting Regressor (GBR):

n estimator=5, random state=1, min samples leaf= 26, learning rate= 0.7,
min samples split= 6, max depth=50

• LightGBM (LGBM):

n estimator=5, learning rate=0.25, random state=39

• ADABoost (ADAB):

n estimator=50, learning rate=0.06

We have compared all the boosting algorithms and the results are shown in Table
5.10. Here, we can see that XGB performs the best with a 61.21% score on R2,
whereas ADAB performs the worst, most likely due to poor model fitting.

Table 5.10: Best results from GBR, LGBM, XGB and ADAB

Models Best results from each model

N Estimator MAE MSE RMSE R2

GBR 5 0.126321 0.050778 0.225341 0.401868
LGBM 5 0.110082 0.035593 0.18866 0.580746
XGB 1000 0.101416 0.032927 0.181459 0.612141
ADAB 50 0.198656 0.076453 0.276502 0.099439

5.2.9 Long Short Term Memory

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network
capable of learning order dependence in sequence prediction problems. This is a
behavior best-suited in complex problem domains like ours. In this work, LSTM
cells are used as the nodes of recurrent neural networks (see Figure 5.3). In an
LSTM cell there are extra gates, namely the input, forget and output gate that are
used in order to decide which signals are going to be forwarded to another node. W
is the recurrent connection between the previous hidden layer and current hidden
layer. U is the weight matrix that connects the inputs to the hidden layer. C̃ is a
candidate hidden state that is computed based on the current input and the previous
hidden state. C is the internal memory of the unit, which is a combination of the
previous memory, multiplied by the forget gate, and the newly computed hidden
state, multiplied by the input gate.
The equations that describe the behavior of all gates in the LSTM cell are described
in the following equations (5.12), (5.13), (5.14), (5.15), (5.16), and (5.17).

38



Figure 5.3: Structure of an LSTM cell

it = σ
(
xtU

i + ht−1W
i
)

(5.12)

ft = σ
(
xtU

f + ht−1W
f
)

(5.13)

ot = σ (xtU
o + ht−1W

o) (5.14)

C̃t = tanh (xtU
g + ht−1W

g) (5.15)

Ct = σ
(
ft ∗ Ct−1 + it ∗ C̃t

)
(5.16)

ht = tanh (Ct) ∗ ot (5.17)

The way neural networks solve problems is not by explicit programming but rather
by “learning” the solution based on given examples. In this research, we are focusing
on supervised learning. At the end of the training, the neural network infers the
right outputs through generalization . A metric, cost/loss function, is calculated
at the end of every training iteration after the weights have been updated. It guides
the neural network towards the desired outcome by estimating the closeness between
the predicted and the desired value.

cost =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (5.18)

metric =
1

n

n∑
i=1

(
Yi − Ŷi

)2
(5.19)

In this work, normalization was performed before initializing the model, to rescale
continuous features that use different scales and ranges, for stable training. We have
used two LSTM layers and one dense output layer for a sequential model that
compiles with MAE and MSE as loss function and metric, respectively, using the
Adam optimizer. As the Keras regression metrics do not comprise the R2 score,
we opted for MSE, MAE, and RMSE (calculated from MSE) to compare with other
models. The model fits with a batch size of 128 and 50 epochs seemed to deliver
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the best result. Different rates for dropout layers have been tried out to avoid over-
fitting, and thus we settled on 0.2. KerasTuner was used for hyper-parameter
optimization. The results can be seen in Table 5.11 , where different dropout rates
have been compared.

Table 5.11: LSTM loss and metrics for discrete dropout rates

Dropout
Loss

(MAE)
Metric
(MSE)

Validation Loss
(MAE)

Validation Metric
(MSE)

0.2 0.1490 0.0608 0.2919 0.1166
0.5 0.1660 0.0714 0.2991 0.1194

5.2.10 Model Comparison

After comparing the models’ best results, we see that XGBoost has the highest
accuracy with 61.21%, whereas MLR has the lowest performance with 1.53%. In
terms of mean absolute error (MAE), we see that the lower performing models such
as MLR and LSTM have a very high error value than XGBoost, which has the
lowest coming in around 0.101416 MB. Similarly, the mean squared error is also
reasonable where XGB having 0.032927 MB and coming in a close second is LGBM
with 0.035593 MB. A side by side result comparison can be seen in Tables 5.12
and figure 5.4 to 5.7. The predicted block size values generated by the models are
fractional, as expected. However, when telling the miners the block size limit, we
cannot give them a fractional number, so to keep it consistent, we resorted to ceiling
the numbers to the closest multiple of 100. For example, we see predictions like
1.033 MB, 1.204 MB, 1.159 MB, which would be converted to 1 MB, 1.2 MB and
1.2 MB, respectively.

Table 5.12: Prediction model comparison

Model MAE MSE RMSE R2

DT 0.155736 0.061175 0.247335 0.279407
RFR 0.115006 0.046415 0.215442 0.453265
MLR 0.202314 0.08359 0.28912 0.015368
Ridge 0.20026 0.082795 0.287742 0.024734

Elastic Net 0.191484 0.080545 0.283804 0.051244
Lasso 0.193813 0.081377 0.285266 0.041442
PLS 0.198339 0.082059 0.286459 0.033412
GBR 0.126321 0.050778 0.225341 0.401868
LGBM 0.110082 0.035593 0.18866 0.580746
XGB 0.101416 0.032927 0.181459 0.612141
ADAB 0.198656 0.076453 0.276502 0.099439
LSTM 0.2991 0.1194 0.3455 N/A
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Figure 5.4: R2 score model comparison

Figure 5.5: MAE score model comparison

5.3 Results

The goal is to make Bitcoin sustainable by tackling some of its flaws that have cre-
ated a barrier for widespread adoption. Among them, we are trying to reduce wait
times by analyzing the network traffic and the miners’ situation to make the block
sizes dynamic. Our prediction models can predict the next ideal block with 61.21%
accuracy. For example, during Christmas week if people use Bitcoin for their trans-
actions, the flow in the network would be high, thus creating congestion and long
wait times. With the help of our model, it would analyze the features/attributes
such as the TPS, mempool growth and dynamically increase to create more room
for transactions. This ensures more transactions are verified and get their first con-
firmation thus reducing wait times. We can think of this as a bottleneck effect where
the bottle’s neck expands based on the traffic for higher transaction throughput.
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Figure 5.6: MSE score model comparison

Figure 5.7: RMSE score model comparison

To simulate real-world scenarios, we collected the transaction data from all the
blocks on 8th November 2021 and 13th November 2021 (10 am to 1 pm). These
dates have been picked keeping in mind the fluctuation of transactions and block
sizes during weekday and weekend start. We have also collected all the feature
information from blocks generated on that day to better compare and understand
the results. Blocks 708784 to 708786 were created on 8th November 2021 (Monday),
which starts a weekday. On the other hand, blocks 709511 to 709517 are created on
13th November 2021 (Saturday), starting a weekend. In Table 5.13 and Figure 5.8,
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we can see the comparison between the actual and predicted values.

Table 5.13: Comparison between actual size, predicted size and adjusted predicted
size

Block Number Actual Predicted Adjusted

708784 1.448054 1.159 1.2
708785 1.464258 1.143 1.1
708786 1.439841 1.027 1
709511 0.76545 1.05 1
709512 0.575538 0.898 0.9
709513 1.494906 1.033 1
709514 0.243604 1.204 1.2
709515 0.40711 0.242 0.2
709516 0.459791 0.947 0.9
709517 0.677498 1.036 1

Figure 5.8: Block size prediction comparison

MP =
n∑
i

Ti (5.20)

As mentioned, we have taken transactions from 10 AM to 1 PM from each relevant
blocks creation day. Then we have passed the block sizes (both actual and predicted)
through a greedy-based approach focusing on the fee to size ratio. As previously
discussed, the mempool (MP) contains all the unconfirmed transactions (Ti) (shown
in equation (5.20)). Initially, all the transactions inside the MP are sorted based on
the fee per KB in descending order. Then it goes through the greedy approach where
based on the systems specified block size CBs, it checks if the size of transaction
TSi fits inside the candidate block (CB). If it does, the transaction is added to
CB. Then its size is subtracted from the candidate block CBs, and the transaction
is removed from MP. This process goes on until all the transactions have been
traversed. Algorithm 2 can further clarify the logic behind the transaction selection
process for the candidate block.
Table 5.14 shows us that, as expected, sometimes our model generates higher fees
and counts, and sometimes it doesn’t. However, we do see an overall increase in the
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Algorithm 2: Transaction selection

Data: Transactions in the miners mempool
Result: Candidate block
Descending sort transactions based on fee per kb
foreach Ti in MP do

if TSi ⩽CBs then
CB = CB + Ti

CBs = CBs - TSi

MP = MP - Ti

end
return CB

Figure 5.9: Transaction count comparison

number of fees accumulated by the miners, the increase in transactions thus having
an impact on the TPS values (TPS is calculated assuming blocks are created every 10
minutes). We see a 9.3% and 66.75%, increase in fees and transaction count/
TPS, respectively. Figure 5.9 & 5.10 can further help visualize the results. Again
we need to keep in mind while going through the results that these are predicted by
analyzing the network’s activity and its related attributes.

5.4 Limitations & Future Work

One of the most significant limitations of our model is data. There are factors that
we discovered through different Bitcoin price prediction models [9], [10], [27] such
as unspent transaction count, average fee, and wallet users count. However, when
incorporating these into our initial dataset, we realized that the amount of missing
data for these columns was enormous. After merging the data, the total non-null
rows were 2.2% of the whole data. So we had to discard such features. Furthermore,
the data we used also had null values which was imputed to make it usable. The
prediction would be more accurate and reliable if the model is incorporated into the
Bitcoin network with more accurate data.
Finally, one of our realizations for not reaching a very high level of accuracy is
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Figure 5.10: Transaction per second comparison

that the block sizes do not follow any pattern. In the current implementation, the
mempool can be different for miners, their transaction picking can be very different,
and most importantly, miners do not care about the network’s activity. They do
not care how many transactions are piling up. They only take those transactions
that generate the most benefit and start the mining process. Due to this, the
patterns are almost non-existent. Our goal is to understand the activity and flow of
transactions, training the model using data that has no pattern and does not follow
network activity, is complex; thus, the results are not in the high thresholds.
In the future, we would also like to make the difficulty dynamic based on the network
traffic and the hash rate. So that when the traffic is high, miners can quickly generate
blocks while not compromising security.
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Chapter 6

Conclusion

For a few years, sustainability in Bitcoin has been a widely researched topic. Every-
one realizes the potential of this cryptocurrency and wants to make it a widespread
form of exchange. With our proposed SBM, we can ensure sustainability in Bitcoin
by addressing Bitcoin’s core problems. SBM ensures a good balance of transactions,
thus removing the biases towards more significant transactions ensuring Bitcoin’s
wider usage. With its combined transaction selection and new architecture, our
proposed model enables faster transactions verification while ensuring the miner is
not facing losses or creating a larger carbon footprint. Due to the SB count being
dynamic, it would always be beneficial no matter how many SB’s are generated in
the cycle. This ensures shorter wait times which is one of the biggest hurdles of
Bitcoin, thus guaranteeing wider acceptability. As previously discussed, research
works only focus on security or ensuring shorter wait times. However, our model
can address both wait times and the imbalance of transactions, thus making our
research novel.

On the other hand, in our second concept, we formed a path towards this sus-
tainability with ML models by creating the ideal block size by examining network
activity. We believe both these ideas combined can help Bitcoin reach its full po-
tential. Even though Bitcoin is the largest cryptocurrency, it would gradually lose
its value if the user count does not increase. Long wait time is the most significant
disadvantage Bitcoin faces. In our research, we have shown how, tweaks with the
architecture and with the help of ML, we can reduce the time, thus taking a small
step towards making this notable cryptocurrency reach the valuation it deserves.
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