
BanglaBait: Using Transformers, Neural Networks & Statistical
Classifiers to detect clickbaits in New Bangla Clickbait Dataset

by

Motahar Mahtab
18301023

Monirul Haque
18301055

Mehedi Hasan
18301052

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2022

© 2022. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

MD. Motahar Mahtab
18301023

Mehedi Hasan
18301052

Monirul Haque
18301055

i

Approval
The thesis titled “BanglaBait: Using Transformers, Neural Networks Statistical
Classifiers to detect clickbaits in NewBangla Clickbait Dataset” submitted by

1. MD. Motahar Mahtab (18301023)

2. Mehedi Hasan (18301052)

3. Monirul Haque (18301055)

Of Fall, 2021 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science and Engineering on January 16,
2021.

Examining Committee:

Supervisor:
(Member)

Mujtahid Al-Islam Akon
Lecturer

Department of Computer Science and Engineering
BRAC University

Co-supervisor:
(Member)

Moin Mostakim
Lecturer

Department of Computer Science and Engineering
BRAC University

ii

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
BRAC University

iii

Abstract
The art of luring us to click on certain content by exploiting our curiosity is recog-
nized as clickbait. Clickbait might be aggravating at times because it is misleading.
Several studies have worked on the detection of clickbait in online platforms as we
transition from the Information Age to the Age of AI. Nonetheless, predicting click-
bait in Bengali new articles is still a work in progress. Here, we use deep learning,
the process of extracting pattern or feature from data using neural networks, to
determine whether an online Bengali article is clickbait or not. We scrape data
from online Bengali news articles, manually annotate them and employ deep neru-
ral network architectures like CNN, Bi-LSTM,Bi-GRU and pre-trained fine-tuning
language representation approaches –i.e. BERT, BanglaBERT, M-BERT to provide
inputs for various types of classifiers. Finally, we evaluate the classifiers’ outputs
and choose the best outcome to predict clickbait in Bengali news articles.

Keywords: Clickbait; Deep Learning; Bengali; Online News; Prediction; Binary
Classification; BERT;

iv

Acknowledgement
Firstly, all praise to the Great Allah for whom our thesis have been completed with-
out any major interruption.
Secondly, to our supervisor Mr. Mujtahid Al-Islam Akon sir and co-supervisor Mr.
Moin Mostakim sir for their kind support and advice in our work. They helped us
whenever we needed help.

v

Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Aims and Objectives . 2

2 Related Work 4

3 Problem Statement 7

4 New Dataset for Detecting Bengali Clickbait News 8
4.1 Data Collection . 8
4.2 Annotation Process . 9
4.3 Exploratory Data analysis . 10

5 Approach 14
5.1 Linguistic Features . 14
5.2 Word embedding . 14
5.3 Statistical Classifier Models . 16
5.4 Neural Network Models . 16

5.4.1 CNN . 17
5.4.2 LSTM . 17
5.4.3 BiGRU . 20

5.5 Transformer Models . 20

vi

6 Experimental Setup 24
6.1 Dataset Preprocessing . 24
6.2 Experimental Setup . 24
6.3 Results and Analysis . 27

6.3.1 Statistical Classifier Models 27
6.3.2 Neural Network Models . 31
6.3.3 Transformer Models . 34

7 Conclusion 37

Bibliography 37

vii

List of Figures

4.3.1 KDE of title length and punctuation, digit frequency 11
4.3.2 KDE of content length and punctuation, digit frequency 11
4.3.3 comparison of title and body similarity between clickbait and non

clickbait . 12
4.3.4 Token frequency of title and content (training data) 13

5.2.1 How word embeddings are passed into model 15
5.2.2 Comparison of word embeddings . 16
5.4.1 CNN architecture . 18
5.4.2 BiLSTM architecture . 19
5.4.3 Attention weights of an input clickbait title 20
5.5.1 Transformer based model’s architecture 23

6.3.1 Best results from statistical classifier models 30
6.3.2 Confusion Matrix of the best model (SVM with Unigram) 30
6.3.3 Accuracy comparison among Neural Network models 32
6.3.4 F1 Score comparison among Neural Network models 32
6.3.5 BERT models Score summary . 36

viii

List of Tables

1.1 Clickbait news titles and their categories. 2

4.1 List of websites with the number of news that have been scraped. . . 9
4.2 Number of news in each category in dataset 10

5.1 All features extracted from dataset 17

6.1 Clickbait classification report of Logistic Regression 27
6.2 Clickbait classification report of Decision Tree 28
6.3 Clickbait classification report of Random Forest 28
6.4 Clickbait classification report of Gaussian Naive Bayes 28
6.5 Clickbait classification report of K-nearest Neighbour 29
6.6 Clickbait classification report of SVM 29
6.7 News-title clickbait classification report of Neural Network models . . 31
6.8 Best result from Neural Network models 33
6.9 Results on Finetuning Transformer models on title and content com-

bined . 35
6.10 Results on Finetuning Transformer models on title 35
6.11 Results on Features Extracted from Transformer models on title . . . 36

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

BERT Bidirectional Encoder Representations from Transformers

CNN Convolutional Neural Network

DT Decision Tree

GNB Gaussian Naive Bayes

GRU Gated Recurrent Units

KNN K-nearest Neighbour

LR Logistic Regression

LSTM Long short-term Memory Network

POS Part of Speech

RF Random Forest

SVM Support Machine Vector

x

Chapter 1

Introduction

Due to the widespread usage of the internet over the last two decades, the news
industry has progressively evolved into an online news industry. The business
paradigm of today’s internet news sector differs from that of print media. While
headline writing has traditionally been regarded as a skill, a new term has emerged
to describe online journalism in the internet world: clickbait. The explosion of click-
bait titles in recent years has not gone unnoticed. According to Murtha [1], for three
posts a week, Slant (Q&A site for product recommendation) offers its writers $5 for
every 500 clicks along with $100 per month. In this regard, Slant is not alone to
follow this economic strategy, rather it is becoming more widespread. It would be a
mistake to believe that Bengali news publishers are far behind in this competition.
Although most reputable Bengali newspapers, TV media and online news portals
offer a subscription system, the majority of people are likely to read news online
without paying a subscription cost. As a consequence, advertisements continue to
be one of the most important sources of revenue for news providers. Now, the more
people that click and visit their website, the more traffic they receive, resulting in an
increased ads revenue. Therefore, they create enticing and intriguing headlines that
include exaggerated information rather than actual content to get readers to click
titles. Visitors appear to be disappointed because the news does not provide the
information promised in the headline. The phrase ”clickbait” is frequently used as a
derogatory phrase; however, the reality is more complicated. Moreover, the concept
of clickbait can be a little hazy to grasp. Thus, the classification of clickbait is a
highly subjective endeavour. In a research paper, Biyani et al. [2] utilized article
informality to conduct a study on detecting clickbait in news streams. The study
defines and categorizes eight different types of clickbait. Table 1.1 displays several
examples of clickbait news titles and their categories.

To find clickbait headlines, we created automation scripts to collect raw data from
online Bengali newspaper sites, TV news sites, online news portals and manually
labelled the dataset into two categories - clickbait and non-clickbait. After that, we
used pretrained word embeddings such as fastText, Glove, bnwiki, self-trained word
embedding and n-gram word & character techniques to extract features from our
dataset. To classify news we employed statistical classifier models such as Logistic
Regression, Decision Tree, Random Forest, Gaussian Naive Bayes, SVM, deep neural
network architectures such as CNN, Bi-LSTM, Bi-GRU and transformer models like

1

BERT[3], RoBERTa[4], Distilbert[5], ELECTRA[6], XLM-RoBERTa[7] etc to find
the best performing model for detecting clickbaits.

Category Reason Title

Wrong Factually wrong headline. মা ১ রােত পা ফাটা ও পােয়র েগা-
ড়ািল ফাটা েথেক মুি !

Teasing Title creates a suspense by
teasing.

২৩ বছের ১১ িশশুর মা, িনেত চান
১০০ স ান!

Formatting Overuse of punctuation
mark.

বুবলীর স ােনর বাবা েক? েজেন িনন
একু্ষিন!

Inflammatory Title presents inappropriate
words.

চািচর েগাসেলর ছিব তেল য্াকেম-
ইল কের ভািতজার িনয়িমত শারীিরক
স কর্ !

Inflammatory Indication of vulgar title. ে ম পরবত েমিডেকল ছা ীর কােছ
অনয্ িকছ চাওয়ায় পুিলিশ অয্াকশন!

Ambiguous Title without context. আজ িব ট েখেয়েছন েতা?

Exaggeration Exaggerating title. জােমরসে েয িতনখাবার েখেল হেত
পাের মৃতয্ও

Ambiguous Confusing or unclear title. 'আে ালন, আে ালন, আে ালন'

Table 1.1: Clickbait news titles and their categories.

• We release an annotated dataset of ≈ 14k Banlgla articles for clickbait detec-
tion which will propel future researches on it.

• We investigate different statistical models, deep neural networks and trans-
former models like BERT [3], RoBERTa [4], Distilbert [5], ELECTRA [6],
XLM-RoBERTa [7] etc to find the best performing model for clickbait detec-
tion.

Following is a breakdown of the paper’s structure - i.Following section lists various
similar works/literature review for identifying clickbait headlines that are currently
available. ii.The problem statement is clearly stated in Section 3. iii.Data collection,
processing, and analysis are discussed in Section 4. iv.The proposed mechanism
for detecting clickbait articles is presented in Section 5. v.Section 6 describes the
preprocessing and experimental setup. vi. Section 7 analyzes the results vii. Section
8 draws the conclusion and contains some proposals about future research work

1.1 Aims and Objectives
There is an estimated 11.4 million internet users in Bangladesh1 who receive their
daily news mostly fromonline news portals. But there has been no researchconducted
on how to tackle the increasing amount ofclickbaits that appear on these portals
and other newswebsite. The goal of this paper is to design an efficient model that
can determine whether or not a Bengali online news title is clickbait. Although
there are several researches on clickbait, most of them are done on languages other

1https://www.cia.gov/the-world-factbook/countries/bangladesh/

2

than Bengali. Thus, our core objective is to train and tune multiple models to see
what works best for detecting clickbaits. To accomplish the objective, we aim to
appropriately preprocess and represent the raw data so that they can be validated
using deep learning classification methods. Besides, comprehending the various
attributes is also required in order to achieve greater precision in the results. After
we complete all of our objectives, we can construct a good predictive model.

3

Chapter 2

Related Work

Automatic classification of clickbaits in Bengali language is essentially important
to limit the astounding growth of clickbait contents in Bengali news sources. The
origin of clickbait is rooted in tabloids which have been in journalism since 1980’s
[8]. During 2015-2017, the first substantial researches on clickbait identification were
conducted which relied on handcrafted linguistic features to train different classifiers
like SVM, Gradient Boosted Decision Trees, Naive Bayes etc [2], [9]–[12]. For exam-
ple, an in depth analysis of semantic features such as unresolved pronouns, effective
language & action words, climactic language, and excessive use of numerals, syntax
features such as forward reference and reverse narrative, and image features such
as image placement and emotional content in news articles were conducted by re-
searchers in [9] but did not provide automatic classification. Both researchers Chen
et al. [9] and Zheng et al. [10] incorporated user behaviour analysis as a feature
but only Zheng et al. [10] provided automatic classification via Gradient Boosted
Decision Trees (GBDT).

Clickbait detecting features can be obtained from 3 different origins: the clickbait
teaser phrase or the post text, the attached article that post text wants the user to
click, and metadata for both [13]. Apart from the post text which is used by most to
identify clickbait, Potthast et al. [12] and Biyani et al. [2] also considered the linked
article and the metadata. Potthast et al. [12] aimed to detect Twitter clickbaits
using bag-of-words, image tags, sentiment polarity, readability, length, contractions
and punctuation use of a tweet. They also included several metadata features like
whether a tweet contains media, gender of the user etc. They compared different
classifiers like Logistic Regression, Random Forest, Naive Bayes and the Random
Forest classifier proved to be the most effective among all.

Biyani et al. [2] used textual similarity between TF-IDF characteristics of headline
and the top five sentences of the article, informality features (amount of informal
language used in article), forward reference features, URL features of the web page.
To categorize clickbaits according to their characteristics, they developed a Gradient
Boosted Decision Trees (GBDT).

However, handcrafted feature dependent models are not useful when it comes to
non-English settings as the linguistic parameters would be changed. Furthermore,
engineering these features require much time, domain-specific knowledge and corpus-

4

specific features like Twitter metadata will also become unusable when working on
a different corpus. Nonetheless, deep learning algorithms can reduce the need for
feature engineering by identifying relevant characteristics from unstructured text
data automatically, Collobert et al. [14] suggests.

Potthast et al. [15] suggested that instead of a binary classification challenge,
clickbait detection should be a regression problem as the former provides a way
to actually measure how much clickbait is in the teaser message. They built the
first large scale annotated clickbait corpus (Webis Clickbait Corpus 2017) and there
were 338,517 tweets from 27 major news organizations in the United States. Follow-
ing this, the Webis clickbait challenge 2017 was formed by them to boost research
activity in clickbait detection giving rise to some highly effective and flexible deep
learning techniques. In this challenge, the teams had to construct a regressor that
calculates the degree of clickbait in a post on twitter from the Webis Clickbait Cor-
pus 2017.

For clickbait challenge 2017, Zhou [16] first used self-attentive RNN to select the
important words for clickbait detection and created a bi-GRU network to encode
the contextual information. Glenski et al. [17] proposed another model for clickbait
challenge 2017 where it was hypothesized that additional performance gain can be
achieved by incorporating tweet text, image and linked article content. They used
linguistically infused neural network architectures like Convolutional Neural Net-
work (CNN) and Long Short-Term Memory (LSTM) that include a max-pooling
layer, two 1-dimensional convolution layers and an embedding layer. Similar to
the idea of Glenski et al. [17], Thomas [18] also incorporated article content to an
LSTM model for the clickbait challenge. For text preprocessing, they used a simple
whitespace tokenizer and converted them word embeddings, which are inserted into
the LSTM unit. They used batch normalization and dropout between the individual
neural network layer for their model.

For the same challenge, Omidvar et al. [19] experimented on “postText”, “tar-
getDescription”, and “targetTitle” of twitter corpus and found that evaluation on
only postText gives the best result. They compared bidirectional simple recurrent
units [20], bidirectional GRU, and bi-directional LSTM and found bi-GRU as the
most effective design for detecting clickbait. For word embeddings, they used 50,
100, 200, 300 dimensional GloVe word embeddings [21]. To reduce overfitting, they
employed Drop out technique for forward GRU, Embedding and backward GRU
layers and used mini batched gradient descent of size 64 for training.

In a research paper Anand et al. [22] created a browser add-on that could in-
form users about the likelihood of a headline being a clickbait or not in various
media sites. To build their model, they used LSTM and GRU models with word
and character embeddings as feature inputs. Although, they only considered the
headings, they classified clickbaits with an F1 score of 98 percent.

Rony et al. [23] used continuous skip-gram model [24] to learn the generate the
word embeddings of clickbait title. The average of the word embeddings are used to
create the concealed depiction of every sentence. A linear classifier is trained using

5

these sentence depictions specified in [25].

Indurthi et al. [11] first inquired the application of transformer regression mod-
els in clickbait detection and achieved first position in clickbait challenge. They
used ELMo [26], Universal Sentence Encoder [27], transformer encoders like BERT
[3], RoBERTa [4] and OpenAI’s GPT2 [28] for word and sentence embedding repre-
sentations. Then they insert these vector representations to regression models like
Linear Regression, Ridge Regression, Gradient Boosted Regression, Random For-
est Regression, Adaboost Regression and choose the best model using MAE (mean
squared error) as scoring metric. ���

Wu et al. [29] used four types of weighted summation to classify clickbaits. They
used Transformers to assign a score to clickbait headline and body according to their
representations. Then they used a co-attention network to compute the contextual
similarity between headline and article body and assigned a title-body matching
score. They also computed a title stylistic score learned from a character-level
transformer.

Hossain et al. [30] created the first Bengali newspaper dataset for Bengali fake
news detection containing an annotated dataset of 50K Bangla news. But there
hasn’t been any research to our knowledge to tackle the ever-increasing clickbaits in
our news outlets and media.

6

Chapter 3

Problem Statement

In this study, we define clickbait detection as a supervised binary classification
problem where the set of categories, C = {clickbait, non_clickbait}. Given a set
of article titles T = {t1, t2, t3, ..., tN}, and their bodies B = {b1, b2, b3, ..., bN}, our
goal is to predict a label Y = {y1, y2, y3, ..., yN} for these articles where yi = 1, if
title i is clickbait and yi = 0, if it is not clickbait. In order to represent the corre-
spondent (head/title, body/content) pairings, we utilize a collection of tuples P =
{t1, b1), (t2, b2), (t3, b3), ..., (tN , bN)} and in case of only title, P = {(t1, t2, t3, ..., tN}.
Our model includes three main segments- i. Statistical models taking linguistic fea-
tures,ii. Word embeddings passed to Deep Neural Network Models,iii. Transformer
Networks

7

Chapter 4

New Dataset for Detecting
Bengali Clickbait News

4.1 Data Collection
As there was no previous research on Clickbait Detection in Bengali News, there was
no publicly available dataset. The existing news datasets like Patrika1 which con-
sists of 320,000 news articles contain data from popular news portals like Jugantor,
Jaijaidin, Ittefaq, Kaler Kontho etc. which do not contain a lot of clickbaits. Their
dataset was mainly created to facilitate automatic headline classification of articles.
That is why we had to create a completely new dataset for detecting Bengali Click-
bait News. As we wanted to create our dataset using latest data, we scrapped news
articles from web. So, to perform web scraping operations we utilised the Python Se-
lenium module in creating automation scripts separately for each website to invoke
the chrome webdriver. We scraped notorious websites that frequently use clickbait
headlines. In order to incorporate news that most people daily encounter, we also
incorporated news from the most popular Bengali news portal websites. This will
also provide future researchers with the means to investigate clickbait practices in
these popular news medium. We collected news headlines along with the main news
contents and dates. Table 4.1 represents the list of websites we have scraped from
and the number of news we have scraped from each site to create the dataset for
our research. After removing duplicate news we got 11,826 unique news headlines
along with content in our dataset. All our news articles were from scrapped in date
1 to date 2 time period.

We also took advantage of the already available Banfake Dataset [30], consisting
of 48,000 authentic news fetched from popular, reliable Bangla online news portals.
As stated in that paper, the articles that were scraped for the authentic news were
pulled from the top 22 online news portals of Bangladesh according to Alexa rank-
ing. Besides, the 2,000 fake news that were added in the dataset includes misleading,
clickbait and satire news. Although these articles are labelled, there were overlaps
among satire, clickbaits and misleading lables. So, we manually labelled these arti-
cles into clickbait and non clickbait to maintain the consistency of labelling through-
out articles. After adding all the clickbait news from that dataset, our dataset has
grown with total 13,460 unique news. Lastly, we constructed our corpus from the

1https://data.mendeley.com/datasets/v362rp78dc/2

8

https://data.mendeley.com/datasets/v362rp78dc/2

News Portal Web Address No. of News
Somoy TV Online www.somoynews.tv 436
RTV News Online www.rtvonline.com 1,090
Newzcitizen www.newzcitizen.com 986
Topdhaka www.topdhaka.com 1,930
CityNewsZet www.citynewszet.com 986
twentyfourbd www.twentyfourbd.com 2,801
AuthorityNewz www.authoritynewz.com 971
nbtimes24 www.nbtimes24.com 990
NewzAuthority www.newzauthority.com 613
TheBaseNewz www.thebasenewz.com 2,153
Kaler Kantho www.kalerkantho.com 321
NewsHolder21 www.kalerkantho.com 479

Total 11,826

Table 4.1: List of websites with the number of news that have been scraped.

dataset we assembled. We intend to make our dataset publically available when we
finish collecting 40k news articles for any future research on Bengali Clickbait News
Detection.

4.2 Annotation Process
As we wanted to run supervised machine learning algorithms, the data corpus we
constructed needed to be annotated. So, we added an extra column in our data
corpus and manually labelled all the data with either “clickbait” or “non-clickbait”
following the categories of clickbait shown by Biyani et al. [2]. We marked clickbaits
as numeric value 1 and non-clickbaits as numeric value 0. The process of annotating
is one of the most difficult tasks of this research as there is a lot of gray area
when to comes to distinguish between clickbait and non clickbaits. Also it is one
of the most important tasks of this project as annotating normal news titles as
clickbaits may result in more false positives which we are trying to avoid. All the
annotations were done by ourselves where we followed a strict criteria to annotate
titles as clickbaits. Most common clickbaits titles that create a knowledge gap that
entice readers to click and see their content. But this is a broad category and
many normal titles may contain some amount of knowledge gap in them as all titles
basically want to attract reader’s attention. In order to differentiate between the
two, we judge whether the held out information could be easily associated inside
title to determine whether knowledge was held out deliberately. For example, ‘আিম
ধানমি েত, ‘আ ু-আ ু পুরান ঢাকায়’ creates a curiosity inside reader’s mind about
who quote this title. As the name of the person who quote this title could be easily
included within the title, knowledge was deliberately withheld and this is a clickbait.
Second form of clickbaits exaggerate their titles and their content under delivers. For
example,সালমােনর ী হে ন েসানাক্ষীই! title’s content says that the addressed event
is only in a movie, not in real life. These type of titles are time consuming to detect
as the content has to be addressed to judge the title’s validity. The main difference
between these type of clickbaits and fake news is that if the title and content convey

9

the same information, even if it is incorrect or totally fake, it is non clickbait. But
if the title and content differs in their messaging, then it is taken as clickbait. But
there are many other types of clickbaits that may not fall under these two broad
categories and thus consistency among annotations is important. As we set out to
separately label our dataset, our inter annotator agreement should be satisfactory.
At first, each of us labelled 200 news articles where we received a Fleiss Kappa
Interrater Agreement score of 0.472 which is moderate. For exmples, Cilckbait
Challenge Dataset [15] which is the benchmark dataset for clickbait detection in
English articles had an inter annotator Fleiss Kappa score of 0.36. Clickbait titles
are most frequent when in Entertainment type titles. If the dataset is skewed to
a specific type of news, models will face problems to detect clickbaits from low
prevalent classes. Based on the current headline distirbution of articles, we decide
which type (Entertainment, National, Sports etc) of articles to collect. As headlines
between sites differ, we employ an automatic headline classification model which is
similar to the Bangla News Headlines Categorization model2 except bi-LSTM was
used instead of GRU network. Furthermore, we trained our model on a Patrika
dataset3 which contains 320,000 news articles from 8 categories each containing
40,000 articles. Our model achieved 95% accuracy on this dataset which we used
to automatically create headline category for our news titles. After finishing the
annotation process we have got 8813 non-clickbait and 4647 clickbait news. Table
4.2 illustrates number of news in each category in our dataset.

Category News count
Entertainment 5112
National 2283
International 2246
Sports 1504
Education 767
Science & Technology 702
Economy 606
Politics 240

Table 4.2: Number of news in each category in dataset

4.3 Exploratory Data analysis
Clickbait titles are mischievous in nature and most of the time hide critical infor-
mation, present misleading information and exaggerate news with their raunchy
titles. We aim to analyze whether any stylistic distinction can be made between
the clickbait and non clickbait in terms of title length,content length,frequency of
punctuation and title-content similarity. If title length is a trait for distinguishing
between clickbait and non clickbait titles, then their distribution will look different.
The same can be said about content/body length. Furthermore, as there is a ten-
dency of using more punctuation marks such as ’!’,’?’ and digits in clickbait titles,
it can also be a contributing factor.

2https://github.com/eftekhar-hossain/Bangla-News-Headlines-Categorization
3https://data.mendeley.com/datasets/v362rp78dc/2

10

https://github.com/eftekhar-hossain/Bangla-News-Headlines-Categorization
https://data.mendeley.com/datasets/v362rp78dc/2

Figure 4.3.1: KDE of title length and punctuation, digit frequency

Figure 4.3.2: KDE of content length and punctuation, digit frequency

11

We create KDEs of title character, word usage and punctuation,digit usage to an-
alyze whether the distributions look different. From Figure 4.3.2, we can see that
clickbait titles tend to be slightly longer than non clickbaits as they have more char-
acters and words than non clickbaits. In case of punctuation and digit, non clickbait
titles have less punctuation than clickbaits. Figure 4.3.2 shows that content charac-
ter, word and punctuation usage do not differ much from non clickbait titles. Thus,
it is evident that title is statistically more significant than content for detecting
clickbait news.
Clickbait titles often exaggerate the details in their title while their actual contents
under deliver. So, similarity between the title and content might be an indicator of
clickbaits. Word embeddings are dense representation of texts that contain semantic
and linguistic properties of words.Different types of word embedding used by us is
described in section 5.2. Each title and content instance has to be converted into
their own vector representation to compute the cosine similarity between them. We
use Doc2Vec [31] algorithm to create embeddings for title and content. We train a
Doc2Vec model via the gensim [32] framework on the whole dataset. After training
we have four document vector arrays: clickbait title, clickbait content, non clickbait
title and non clickbait content in both models each containing a single embedding
for each sequence. The cosine similarity of title-content vectors of both clickbaits
and non clickbaits are plotted into a kernel density map to figure out the differences
in their distribution.

Figure 4.3.3: comparison of title and body similarity between clickbait and non
clickbait

From that figure4.3.3, we can see that similarity scores are slightly higher in non
clickbait titles. That is why we can conclude that clickbait titles appear to be more
disjoint from their content than non clickbaits. That is why we can conclude that
experiments incorporating content should be conducted to detect clickbaits.

12

Figure 4.3.4: Token frequency of title and content (training data)

13

Chapter 5

Approach

5.1 Linguistic Features
As we saw that clickbait and non clickbait titles have semantic and syntactic differ-
ences, we collect different semantic and lexical features from the title and content.
Firstly, we experiment with character n-grams of size 3-5 and word n-grams of size
1-3 with weighting scheme term frequency-inverse document frequency (TFIDF).
Previously, we saw in our exploratory data analysis part in section 4.3 that clickbaits
have a slightly higher punctuation and digit frequency. We include the frequency of
punctuation and digits as a feature. We also noticed that clickbait websites are often
unpopular, unheard websites that stand low in alexa ranking. So, we incorporate
the normalized value of alexa ranking of the domain as a feature in our dataset. In
order to capture useful syntactic information, we incorporate parts of speech tag
(POS) as feature.We use the POS tagging tool created by Sarker [33]- a pretrained
conditional random fields (CRF) model trained on nltr [34] dataset of 2997 sen-
tences. We used the normalized frequency of different parts of speech tags like as
a feature for each document. We also extract the named entities from our dataset
using the same bnlp toolkit and use the normalized frequency as feature.

5.2 Word embedding
Word embedding is a word representation technique that allows similar meaning
words to have similar representations. They transform words to dense word vectors
containing tens or hundreds of dimensions. Inside these vectors, the semantic and
linguistic properties of words are contained. Various ways of generating word em-
beddings are: Word2Vec [24], Neural Probabilistic Language Model [35],GloVe [21],
LexVec [36], Fasttext [37], dependency-based embeddings (DepVec) [38], ELMo [26]
etc. We use distributed word and sub-word embeddings to capture the semantic
meaning within our text.
Word2Vec generates word embeddings via pre-training tasks like skip gram and
continuous bag-of-words approach (CBOW). Stanford NLP researchers, Penning-
ton et al. [21] found that by calculating the singular value decomposition (SVD)
of word-word co-occurance matrix, they can generate the same weight matrices of
Word2Vec. As they considered global co-occurances of words, they named it Global
vectors for word representation or GloVe.In GloVe vector space, distance between
two word vectors equal to the ratio of the logarithm of their co-occurrence prob-

14

ability. Furthermore, Word2Vec uses back propagation which is time consuming
whereas GloVe is guaranteed to produce the best optimized word vectors in less
time with smaller corpus. Researchers in Facebook [37] found that sub-words can
mitigate the problem of not finding suitable embedding for rare words. In this new
approach, each word is broken into character trigrams and the skip-gram model
predicts the context subwords instead of whole words.
We use pre-trained Bengali Word2Vec, fastText, GloVe word embeddings created
by Sarker [33]. Their Word2Vec and fastText embedding is trained on Bangla
Wikipedia dump with embedding size of 100 and 300 respectively. The GloVe
embedding is trained on wikipedia and crawled newspaper articles and have an
embedding size of 300. We had 53.8 percent coverage on Word2Vec, 55.8 percent
coverage on fastText and 54.1 percent coverage on GloVe.

Figure 5.2.1: How word embeddings are passed into model

Figure 5.2.1 shows the process of how input sequence is converted to word em-
beddings and passed to neural network models. We let the vocabulary size of
our corpus=|V | and embedding vector size=emb and create an embedding matrix
W |V |emb. Every word wi has a corresponding word vector wvi and every entry of
word matrix is mapped to the word vector following this equation: wvi = W viemb.
This mapping is done via Embedding layer, the first layer of all our neural network
models. The Embedding layer takes an embedding matrix as weights which has the
word embeddings for all the indexes. All the input sequences have fixed token size
which is achieved via padding and truncating depending on input size. We exper-
iment with either keeping these pre-trained word embeddings fixed or train with
with the network via the Embedding layer.
Apart from these pre trained word embeddings, we also train our own embeddings
from scratch via the gensim framework [32]. To train our own embeddings, we
preprocess the text according to the preprocessing section 6.1 and tokenize the
preprocessed texts. We can compare the word embeddings from the figure 5.2.2. The
figure shows that word2vec embeddings carry more generalized meanings than self

15

(a) Word embedding of ঐিতহািসক (word2vec)(b) Word embedding of ঐিতহািসক (self
trained)

Figure 5.2.2: Comparison of word embeddings

trained embeddings as word ঐিতহািসক has nearest neighbours like পুরাতাি ক. But
self trained embeddings are more datast biased asঐিতহািসক has nearest neighbours:
িমশের and ইরািন where the relation seems less obvious than word2vec embeddings
ans seems location based. Gathering more data may lead to better generalization
of our word embeddings. Table 5.1 lists out all the features that we extracted from
our dataset after preprocessing.

5.3 Statistical Classifier Models
The features in listed in table 5.1 are passed onto various statistical classifier mod-
els like Logistic Regression binary classifier, Random Forest classifier, Decision Tree
classifier, K-nearest Neighbors, Support vector machines (SVM) with linear and
Radial Basis Function (RBF) kernel and Gaussian Naive Bayes. These classifier
models require several hyper-parameters according to different kind of problems
and datasets. So, Grid Search algorithm is used to identify best parameters for
each type of features and are validated using Stratified K-fold cross validation as
our dataset do not have equal amount of clickbait and non-clickbait news. After
that full train set is passed to the statistical classifier models to predict test set and
measure metrics and scores ultimately.

5.4 Neural Network Models
Given enough data, neural network models can outperform generic regression models
without the need of handcrafted linguistic features. These models perform excel-
lently in variety of text classification, generation and translation tasks. We primarily
experiment with CNN, Bi-LSTM [39], Bi-GRU models where the word embedding

16

Feature names (extracted from title
and content) Feature Description

Unigram(u) TF-IDF of Word unigrams
Bigram(b) TF-IDF of Word bigrams
Character trigram (char3) TF-IDF of character trigrams
Character 4-gram (char4) TF-IDF of character 4-gram
Character 5-gram (char5) TF-IDF of character 5-gram
Word embedding bnwiki(bw) Embedding trained on bnwiki dump

Word embedding fasttext(ft) Embedding trained on Bengali fast-
Text_wiki

Word embedding GloVe(gv) Embedding trained on Bengali GloVe
Wordvectors

Self Trained embedding Embedding trained on the dataset

Table 5.1: All features extracted from dataset

features from table 5.1 are passed to the models as described in Figure 5.2.1.

5.4.1 CNN
Convolutional Neural Networks have the ability to encode reliable features from
short and long texts and thus used heavily in text classification. We create a multi-
channel CNN model that is similar to the model demonstrated by Kim [40]. Multi-
channel CNN models use different size kernels that convolve other the text vectors.
So, this model can process documents at different levels of n-gram groups like un-
igram, bigram and tigram group. Then the model learn how to integrate these
various n-gram combinations to generate the best features. Although Kim [40] ex-
perimented with two channels one having dynamically updating embeddings and
one static or unchanged embeddings, we keep our word embeddings static through-
out the experiment. We use kernel size of 1-4 with 256 hidden units for each kernel
size and activation function ReLU [41].
After each convolution operation, we perform a maxpooling 1D operation [42] over
the token sequence axis as shown in Figure 5.4.1. This maxpooling operation chooses
the most important feature from each kernel output. These outputs from 4 different
kernel sizes are concatenated and passed onto a dense layer of 512 units to extract
rich features. Before the dense layer, we insert a Dropout layer which randomly
drops out a percentage of the hidden units during forward propagation coming from
the previous dense layer. This way our model does not become dependent on some
combination of hidden units and is able to generalize better. Finally the probability
of being clickbait is calculated with an one unit sigmoid activation layer. We will
experiment with pre-trained CNN architectures to see if transfer learning helps us
achieve better results than this model.

5.4.2 LSTM
One big limitation of CNN is that due to filter or kernel size, CNN can only learn
dependencies between words within the kernel size. So, in long texts where outcome
at the end of a sentence may depend on the starting of the sentence, CNN fails to

17

Figure 5.4.1: CNN architecture

capture this relationship. This is crucial in clickbait detection as many clickbait titles
bait users by describing an incident and then keep users guessing about its outcome.
In these cases, CNN might fail to learn this connection. LSTM has memory cells
that help it preserve past information and learn encodings of sequential information
efficiently. It has input gate, output gate and forget gate with each gate having
specific functionality. Forget gate decides what to remember from past sequences or
what to forget, input gate decides which portion of the current token’s value should
be added to current time state and output gate decides how much of current state
should be passed to the hidden output. Bi-LSTM extends on LSTM and can encode
both left to right and right to left dependencies. LSTM can encode how much past
information can effect future state but cannot do the reverse whereas Bi-LSTM can
encode both.
One caveat of LSTM is that even it can also be forgetful in very long sentences.
LSTMs can be thought of as an encoder that creates an encoded representation of
the whole input sequence into a fixed sized vector. But for very long sentences, it is
harder to encode all important information of that long sentence into a fixed sized
vector which may make LSTM forget about the past information in the sentence.
According to Bahdanau et al. [43], attention mechanism allows a model to choose
which part of the encoder hidden state is more important for correct classification.
This prevents forgetfulness as the encoder does not have to produce an encoded
vector that contains all the information because attention mechanism will help in
choosing which part of the sequence is important. Figure 5.4.2 shows the archi-
tecture of our bi-LSTM model with attention head which is similar to the model
demonstrated by Zhou et al. [44]. The only difference between our LSTM and GRU
model is that the LSTM units are replaced with GRU. We stack two LSTM layers
of hidden units size =256 and add a Dropout layer between them. The encoded

18

Figure 5.4.2: BiLSTM architecture

output is sent to the attention head which generates the context vector C. We let
H ∈ RbTxu to be the encoder output where b=batch size, Tx is the length of the
input sequence and u=hidden units size. H is the hidden output of the stacked
LSTM for each input token. E ∈ RbTxu is the associated energy vector of attention
weight vector A ∈ RbTxu. These three vectors are computed in the following way:

eij = wTH

aij =
exp (eij)∑Tx

k=1 exp (eik)

ci =
Tx∑
j=1

aijhj

aij is the attention weight that is given to the encoder output hj of H by the attention
head. This is derived via softmax function so that all the attention weights equal
to one. The softmax function is applied over the associated energy vector E which
is a feed forward network with weights wT being updated via backpropagation.
This feed forward network determines via backpropagation how much weight should
be assigned to each input hj. The final output or context vector C is just the dot
product between the Attention A and input H. In order to visulaize how the attention
layer is prioritizing some input texts over others, we plot the attention weights output
after training the bi-LSTM model. In Figure 5.4.3, we plot a clickbait title tokens
in the x-axis and attention weights on the y-axis of input আপনার বয় ে আেছ
িকনা জবােব যা বলেলন জা াতল ঐশী . From this we can see that the model is giving
more priority to জবােব যা বলেলন জা াতল .This words are clickbaity as they are
increasing users’ curiosity about something someone said and our model is giving
more attention weights to these clickbait defining words.
We also experiment with another attention head called additive attention or Bah-
danau Attention by Bahdanau et al. [43]. This is called additive attention because
the attention weights not only depends on the encoded output H but also the cell

19

Figure 5.4.3: Attention weights of an input clickbait title

state C of the last input token. Here as we are implementing bi-LSTM, we concate-
nate the state of the first and last input token to build C. This is passed as Query
vector Q ∈ Rb1u where u=hidden units size and b=batch size. The calculation of
the context vector C is provided below-

E = wT (tanh(wT
1 Q+ wT

2 H))

A = softmax(E)

C = dot(A,H)

where w ∈ Rbu1, w1 ∈ Rbuu, w2 ∈ Rbuu,E ∈ RbTx1, A ∈ RbTx1 and C ∈ Rbu. The
output of the attention layer is passed onto a single sigmoid activation layer to
generate the predictions.

5.4.3 BiGRU
Gated Recurrent Unit (GRU) is very similar to LSTM. It can also be said the a
lighter version of LSTM and in some cases, GRU seem to perform similar to LSTM
as well. The reset gate vector and the update gate vector are same in GRU and are
calculated the same way as LSTM.

5.5 Transformer Models
Transformer models [45] took self attention mechanism described in previous sec-
tion to a new height. Instead of complex recurrent and convolution techniques
used previously in encoder-decoder models, the researchers were able to prove that
self attention mechanism sufficed to learn language context given enough training
data. Since their inception, transformers and its variants have performed superior

20

to other CNN and LSTM based models in GLUE [46], SuperGLUE [47] and SQuAD
The Stanford Question Answering Dataset (SQuAD) provided by Rajpurkar et al.
[48] benchmarks that constituted different tasks like sentiment analysis, semantic
textual similarity, natural language inference, question answering etc. Similar to Im-
age based models where transfer learning is standard, Transformer models ushered
the era of transfer learning in natural language processing. Bidirectional Encoder
Representations from Transformers (BERT) [3] constructed their training process
in such a way that the same pre-trained model can be fine tuned using a small task
specific model head without changing the main model architecture. When trained
on enough data, BERT can act as a zero shot classifier as it can perform on par
with other models without fine tuning. We use pre-trained models that were either
multi-lingual or pre-trained specifically on Bengali data. We use the following BERT
models for our task:

1. mBERT: is a multilingual version of BERT that supports 104 languages includ-
ing Bangla trained on Wikipedia corpus data and available on HuggingFace’s
transformer library.1

2. Bangla BERT Base: Same architecture as Bert model and available on Hug-
gingFace’s transformer library.2 and pretrained on Bangla Wikipedia Dump
dataset and Bangla commoncrawl corpus dataset from OSCAR.

3. Indic-BN-BERT: Available on HuggingFace’s transformer library.3 and pre-
trained on 3GB of multilingual corpus from OSCAR dataset.4

Roberta [4] pre-trains BERT with larger batch size of 8k and on a larger dataset of
160GB of text and only on a new dynamically changing masked language modelling
training objective. The Roberta model we used is Indic-BN-RoBERTa avialable
on Huggingface’s Transformers library.5. Distilbert [5] uses knowledge distillation
[49] method to reduce orignal Transformer size by 40% while maintaining similar
performance with 60% faster inference time. We used the following Distlbert models
for our task:

1. Indic-BN-Distilbert: Avialable on Huggingface’s Transformers library6 and
pretrained on OSCAR dataset7.

2. Distilbert-multilingual: Available on Huggingface’s Transformers library 8 and
pretrained on Wikipedia data of 104 different languages.

ELECTRA [6] pre-trains the transformer encoder in a discriminative style where
the encoder tries to predict whether the masked token came from a generator model
or was actually part of the original text rather than generating the original text.
It produces much better encoded representations than BERT with less pre-training
time. The ELECTRA models we used are as follows:

1https://huggingface.co/bert-base-multilingual-cased
2https://huggingface.co/sagorsarker/bangla-bert-base
3https://huggingface.co/neuralspace-reverie/indic-transformers-bn-bert
4https://oscar-corpus.com/
5https://huggingface.co/neuralspace-reverie/indic-transformers-bn-roberta
6https://huggingface.co/neuralspace-reverie/indic-transformers-bn-distilbert
7https://oscar-corpus.com/
8https://huggingface.co/distilbert-base-multilingual-cased

21

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/sagorsarker/bangla-bert-base
https://huggingface.co/neuralspace-reverie/indic-transformers-bn-bert
https://oscar-corpus.com/
https://huggingface.co/neuralspace-reverie/indic-transformers-bn-roberta
https://huggingface.co/neuralspace-reverie/indic-transformers-bn-distilbert
https://oscar-corpus.com/
https://huggingface.co/distilbert-base-multilingual-cased

1. Bangla-Electra: Avialable on Huggingface’s Transformers library9 and pre-
trained on OSCAR10 and Bangla Wikipedia dump11

2. CSENLP-BanglaBert: Available on Huggingface’s Transformers library 12 and
pretrained on Bangla Natural Language Inference (NLI) dataset.13

XLM-RoBERTa [7] is a multilingual Roberta model pretrained on 2.5TB of filtered
CommonCrawl data for 100 different languages which performs better than other
multi-lingual models. The XLM-RoBERTa used for our task are:

1. Indic-BN-XLM-RoBERTa: Available on Huggingface’s Transformers library14

and pre trained on 3GB of multilingual corpus from OSCAR dataset.15

2. XLM-RoBERTa Large: Available on Huggingface’s Transformers library16 and
pretrained on commoncrawl corpus dataset.

For our clickbait detection task, we experiment with two different approaches 1. ar-
ticle title 2. article title and content combined
This is because clickbait content often underdelivers what is promised in the title.
The Transformer models can encode relationship between sequence pairs in their
special [CLS] token which might be useful to detect clickbaits. So, when using
title and content both, we pass title and content pair as input to the model. The
Transformer models output encoded vector for each token of the sequence. The
first token is the special [CLS] token. Although, it does store whole sequence’s
information and discriminative information between sequence pairs, it is not entirely
effective. That is why we take the average of all the encoded vector instead and
pass it to a classifier head. The classifier head is only a dropout layer followed by a
binary classifier. The Transformer encodings contain rich semantic and contextual
information of sequence and works good as features. We also use Transformers as
features extractors where the hidden states from previously fine tuned Transformer
models are passed to an bi-LSTM model with the same architecture as the previously
described bi-LSTM model in section 5.4.2 as embeddings and trained separately.
Throughout this paper, we address the Transformer models that are finetuned as
Transformer finetuning and Transformer models whose features are passed to an
LSTM model as Transformer feature extractors. The entire model architecture is
described in figure 5.5.1

9https://huggingface.co/monsoon-nlp/bangla-electra
10https://oscar-corpus.com/
11https://dumps.wikimedia.org/bnwiki/
12https://huggingface.co/csebuetnlp/banglabert
13https://huggingface.co/datasets/csebuetnlp/xnli_bn
14https://huggingface.co/neuralspace-reverie/indic-transformers-bn-xlmroberta
15https://oscar-corpus.com/
16https://huggingface.co/docs/transformers/model_doc/xlmroberta

22

https://huggingface.co/monsoon-nlp/bangla-electra
https://oscar-corpus.com/
https://dumps.wikimedia.org/bnwiki/
https://huggingface.co/csebuetnlp/banglabert
https://huggingface.co/datasets/csebuetnlp/xnli_bn
https://huggingface.co/neuralspace-reverie/indic-transformers-bn-xlmroberta
https://oscar-corpus.com/
https://huggingface.co/docs/transformers/model_doc/xlmroberta

Figure 5.5.1: Transformer based model’s architecture

23

Chapter 6

Experimental Setup

6.1 Dataset Preprocessing
There were many instances where the words in title and content had punctuation -
mostly apostrophe (’) in between letters which might cause many embedding-based
approaches to perform poorly. Such as example is - নামাজ পড়েত সম’সয্া হওয়ায়
অিভনয় ছা’ড়েলন নািয়কা মুি ..! here সম’সয্ ছা’ড়েল, have apostrophes inside words.
We get rid of these unwanted punctuation. Punctuation removal is important as
many news portals with mostly clickbait news, insert punctuation marks in the
middle of words to avoid getting detected by the ad services. There were also
unnecessary text like ২৪ ঘ াআেগ,আেরা পরুন which does not contribute to clickbait
detection and were removed. The Normalizer [50] module was used for unicode
normalization, removing HTML tags, URL links,the newline escape sequences (\n),
emojis which are necessary after scraping texts from websites. The punctuation was
preserved as punctuation can be considered as features in the model. Duplicate title
and contents were removed from the dataset and the publication time was converted
into datetime variable type for better data exploration using dateparser1 module.
After removing duplicate news articles, our dataset had 13,460 news articles of which
8813 were non clickbait and 4647 were clickbaits.

6.2 Experimental Setup
We split our dataset in 90:10 ratio of training-to-test. We experimented on three
combinations of the data: title+content, only title and only content.
For our statistical classifier models, we use Grid Search Algorithm to with Strat-
ified 5-fold cross validation to tune hyper-parameters in statistical models for our
train set. As, our text classification task is not a linear task, we need to rely on
a Logistic Regression solver method which provides the least error for our text
classification problem. There are several solver methods such as Newton’s Method,
Limited-memory Broyden–Fletcher–Goldfarb–Shanno Algorithm(L-BFGS), Library
for Large Linear Classification (LIBLINEAR), Stochastic Average Gradient (SAG),
SAGA etc. We use LIBLINEAR for our classification problem as our dataset is
fairly large. Also, to avoid overfitting we use regularization method in our Logis-
tic Regression such as l1, l2 and elasticnet. We are using l2 regularization method

1https://dateparser.readthedocs.io/en/v0.3.1/

24

https://dateparser.readthedocs.io/en/v0.3.1/

for this problem as LIBLINEAR is compatible with l2 regularization and l2 penal-
izes shrinking a factor not eliminating it so that we do not completely lose any
coefficients while minimizing error. According to Grid Search result, the value for
hyper-parameter Inverse of Regularization Strength for Unigram, TF-IDF character
level-3,4 5 should be 10, for Bigram 1000 and for word embeddings 1. Decision Tree
model can run on two different criterion function that measures thequality of splits
in tree, which are gini and entropy. the TF-IDF character vectorization feature
extractions gave better results on gini criterion and other feature extractions gave
better results on entropy criterion. Decision Tree model can run on two different
criterion function that measures the quality of splits in tree, which are gini and
entropy. the TF-IDF character vectorization feature extractions gave better results
on gini criterion and other feature extractions gave better results on entropy crite-
rion. Random Forest can on two different criterion function similar to decision tree
model. But we did not use Grid Search Algorithm to determine criterion as it takes
very long time to train on entropy criterion function. We tuned hyper-parameters
maximum depth, maximum number of features to consider, number of trees in the
forest and Bagging of Random Forest Classifier model using Grid Search model for
every language features extractions. Gaussian Naive Bayes model is a simple clas-
sification model that requires less hyper-parameters tuning than the other models
used here. For our classification problem we did not set any prior probabilities but
we tuned variance of the distribution of our Gaussian Naive Bayes model according
to the best results from Grid Search Algorithm for each of the feature extraction
method we used. Our variance hyper-parameter varies from 1e-6 to 1. K-nearest
Neighbour creates cluster for our texts to classify them and it can run on different
algorithms to create those clusters such as Ball Tree, KD Tree and Brute Force. In
our clickbait classification problem we set auto for the algorithm choosing part and
so, our model finds the best algorithm itself after checking the train set. Also, It re-
quires various hyper-parameters such as number of neighbours, weight function, leaf
size of clusters, distance metric and power parameter for that distance metric. We
used minkowski metric and used Grid Search algorithm to find out the best power
parameter of minkowski metric for our train set, which we found out to be either
1 or 2 as per the features. Then we again used Grid Search algorithm to find out
the best weight function, leaf size and number of neighbors, which were different for
every feature. Support Vector Machine(SVM) also creates cluster to analyze pro-
vided dataset but unlike other models, to acquire the best categorization results for
any particular classificaion problem, numerous hyper-parameters must be specified
appropriately for SVM. Although SVM runs on various kernals such as linear, poly,
rbf, sigmoid and precomputed, text classification problems run better on either rbf
kernal of linear kernal and so we we ran Grid Search algorithm for these two choices.
After setting the best kernal we set the kernal co-efficient to auto as linear kernal do
not require any kernal co-efficient but rbf kernal does. Then we used Grid Search
algorithm again to find out the best regularization parameter for our features which
ranges from 1 to 20.

Figure 4.3.4 shows the token length of title and content of our training data. We
choose token length =10 for title and token length = 750 for our content. Title and
content less than this length was padded with zero and greater than this length was
truncated. This fixed size tokens were passed to the Embedding layer to generated

25

corresponding embeddings that were passed as features to CNN and LSTM models.
For CNN and LSTM model, we perform Hyperband search on different parameters
shown by Li et al. [51]. Firstly for CNN, the search is performed on the kernel size
1-10 for all four different kernel channels. We also search for the optimum number
of hidden units of each layer and dropout ratio before the penultimate layer. For
CNN, kernel sizes of 1-4, dropout ratio of 0.5 and 256 hidden units for all kernel
work best. For LSTM, we performed the search on hidden units of LSTM layer
and dropout ratio between two LSTM layers. Hidden units of 256 and dropout
ratio of 0.5 works the best in this case for both the LSTM and GRU model. We
used Adam optimizer [52] where we specify early stopping on F1-score of fake class
with patience=3 and decrease learning rate by 90% if the validation loss does not
decrease for 2 epochs. We use binary cross entropy as the loss function to minimize.
In order to prevent gradient vanishing or explosion, we clip the gradients at value
2 but this will require more fine tuning. We perform 5 fold stratified cross valida-
tion with epoch=20 for each round. For the attention layer, we will check whether
normal attention or additive attention performs better. We will experiment with
word2vec, GloVe, fastText and self trained embeddings to evaluate which performs
best in our case and whether these embeddings should be trained along with the
network or kept fixed. As LSTM learns long range dependencies and CNN short
term dependencies, we will check whether concatenating these two layers’ output
can lead to better results.
The Transformer models can be quickly fine tuned as they are already pre trained.
When title and content were passed in pairs, their total length was truncated to
maximum 512 tokens for all models except XLM-RoBERTa models. For XLM-
RoBERTa models, the tokens were truncated to 256 tokens to save memory. Mini
batch size for title was 16 and for title,content pair 8 except for XLM-RoBERTa
models where batch size was 4 for because of GPU memory constraints. The atten-
tion dropout probability, hidden layer dropout probabiltiy of Transformer models
was 0.3 . For Transformer finetuning models, dropout between last layer of Trans-
former and classification head was 0.3 . For all training, we split the dataset into
80:10:10 fashion for training,validation,test splits respectively. The held out test set
was used for the final result of all the models. Weight initialization and learning
rate seems to have a great effect on training metrics. We experiment with different
random seeds,learning rate and use EarlyStopping(patience=3) on validation F1-
Score to terminate bad trials. Based on this,learningrate = e− 5 and best random
initialization was used to train the model. For Transformer finetuning models, we
used Hugginface’s AdamW [53] optimizer with AdamW’s betas parameters (b1, b2)
= (0.9, 0.999), epsilon = 1e−6 and weight decay = 0.01. We checked the validation
F1-Score after every thousand training steps and saved the best model based on
that. The Transformer feature extractor LSTM model has all the same parameters
as the Bi-LSTM model. But to prevent overfitting, we decreased the LSTM hidden
layer size to 64 and set the dropout to 0.5 between two LSTM layers. Categorical
cross entropy loss was used in both Transformer finetuning and feature extractor
approaches. The four experiments - Transformer Finetuning (title, title+content)
and Transformer feature extractors (title, title+content) were repeated five times
and the average accuracy (overall), precision, recall, f1-score of clickbait class on
test data were reported.

26

6.3 Results and Analysis
6.3.1 Statistical Classifier Models
After extracting features (unigram, bigram, TF-IDF character level-3, TF-IDF char-
acter level-4, TF-IDF character level-5, word embedding using fastText GloVe word
vector models, vectorized bnwiki dump and self trained word embedding) from train
set we put use Grid Search algorithm with Stratified 5-fold cross validation to tune
hyper-parameters for our statistical classifier models. Then we pass full train sets to
the statistical classifier models with the best parameters found in Grid Search cross
validation.
In Logistic Regression, we got the best result after using Unigram features where we
got 76.97% accuracy, 68.32% precision, 62.15% recall and 65.09% f1 score. Accu-
racy remains almost same on every preprocessings for Logistic Regression. Results
of Logistic Regression are shown in table 6.1.

Preprocessing Accuracy Precision Recall F1 Score
0 unigram 76.97 68.32 62.15 65.09
1 bigram 73.63 64.40 52.90 58.09
2 char_3 74.81 65.00 58.71 61.69
3 char_4 75.78 67.42 57.85 62.27
4 char_5 75.50 62.93 57.03 59.84
5 word_bnwiki 70.95 61.14 43.66 50.94
6 word_fasttext 70.51 60.49 42.15 49.68
7 word_glove 71.99 62.57 47.10 53.74
8 word_self_trained 71.55 67.67 33.76 45.05

Table 6.1: Clickbait classification report of Logistic Regression

In Decision Tree, we got the best accuracy after using Bigram features where we got
70.28% accuracy, 58.76% precision, 46.88% recall and 52.15% f1 score. However, we
got the best f1 score after using TF-IDF character level-3 features where we chieved
68.35% accuracy, 53.92% precision, 57.63% recall and 55.72% f1 score. Results of
Decision Tree are shown in table 6.2.

In Random Forest, we got the best result after using Unigram features where we got
77.6% accuracy, 75.31% precision, 52.47% recall and 65.09% f1 score. Classification
report of Random Forest is illustrated in the table 6.3.

In Gaussian Naive Bayes, we got the best accuracy after using TF-IDF charac-
ter level-5 features where we got 72.25% accuracy, 58.59% precision, 45.31% recall
and 51.10% f1 score. However, we got the best f1 score after using bnwiki word
embedding where we found 65.08% accuracy, 49.62% precision, 70.97% recall and
58.41% f1 score. Classification report for Gaussian Naive Bayes classifier is illus-
trated in the table 6.4.

27

Preprocessing Accuracy Precision Recall F1 Score
0 unigram 68.42 54.13 56.34 55.22
1 bigram 70.28 58.76 46.88 52.15
2 char_3 68.35 53.92 57.63 55.72
3 char_4 67.16 52.25 57.42 54.71
4 char_5 67.00 48.61 54.69 51.47
5 word_bnwiki 65.23 49.68 49.68 49.68
6 word_fasttext 63.52 47.35 49.89 48.59
7 word_glove 64.93 49.25 49.46 49.36
8 word_self_trained 61.66 44.65 45.81 45.22

Table 6.2: Clickbait classification report of Decision Tree

Preprocessing Accuracy Precision Recall F1 Score
0 unigram 77.64 75.31 52.47 61.85
1 bigram 70.43 84.54 17.63 29.18
2 char_3 77.04 75.32 49.89 60.03
3 char_4 76.00 74.65 46.24 57.10
4 char_5 76.75 77.78 38.28 51.31
5 word_bnwiki 74.37 72.39 41.72 52.93
6 word_fasttext 74.07 71.01 42.15 52.90
7 word_glove 72.81 70.54 36.56 48.16
8 word_self_trained 70.21 64.81 30.11 41.12

Table 6.3: Clickbait classification report of Random Forest

Preprocessing Accuracy Precision Recall F1 Score
0 unigram 59.81 44.85 71.18 55.03
1 bigram 62.78 47.51 73.98 57.86
2 char_3 57.88 43.48 73.12 54.53
3 char_4 68.35 53.89 58.06 55.90
4 char_5 72.25 58.59 45.31 51.10
5 word_bnwiki 65.08 49.62 70.97 58.41
6 word_fasttext 63.37 47.94 70.11 56.94
7 word_glove 63.30 47.91 71.40 57.34
8 word_self_trained 53.57 38.92 60.43 47.35

Table 6.4: Clickbait classification report of Gaussian Naive Bayes

In K-nearest Neighbour classifier, we got the best accuracy after using Unigram
features again where we got 73.11% accuracy, 67.22% precision, 43.23% recall and
52.62% f1 score. However, we got the best f1 score after using TF-IDF character
level-4 features where we achieved 72.50% accuracy, 58.57% precision, 63.23% recall
and 60.81% f1 score. Classification report for K-nearest Neighbour classifier model

28

is illustrated in the table 6.5.

Preprocessing Accuracy Precision Recall F1 Score
0 unigram 73.11 67.22 43.23 52.62
1 bigram 66.94 52.36 47.74 49.94
2 char_3 71.99 63.17 45.38 52.82
3 char_4 71.84 58.57 63.23 60.81
4 char_5 72.50 60.23 41.41 49.07
5 word_bnwiki 71.32 61.13 46.67 52.93
6 word_fasttext 70.65 56.89 62.15 59.40
7 word_glove 68.05 53.37 59.57 56.30
8 word_self_trained 64.71 48.11 27.31 34.84

Table 6.5: Clickbait classification report of K-nearest Neighbour

In SVM classifier, we got the best accuracy after using Unigram features again
where we got 78.01% accuracy, 71.28% precision, 60.86% recall and 65.66% f1 score.
Classification report for SVM classifier model is illustrated in the table 6.6.

Preprocessing Accuracy Precision Recall F1 Score
0 unigram 78.01 71.28 60.86 65.66
1 bigram 72.81 61.81 55.70 58.60
2 char_3 76.45 70.44 54.84 61.67
3 char_4 76.52 71.35 53.55 61.18
4 char_5 74.00 59.84 57.03 58.40
5 word_bnwiki 70.43 56.94 59.14 58.02
6 word_fasttext 73.18 64.77 49.03 55.81
7 word_glove 73.63 66.87 46.88 55.12
8 word_self_trained 68.72 78.95 12.90 22.18

Table 6.6: Clickbait classification report of SVM

From the classification reports of the experiments conducted via statistical clas-
sifier models we have found out that different model had better score on different
features but most of the models gave good scores for Unigram features. Also, the
best scores were attained from SVM classifier after using unigram features where
we got 78.01% accuracy and 65.66% f1 score. Figure 6.3.1 demonstrates the best
results achieved from statistical classifier models. Also, figure 6.3.2 illustrates the
confusion matrix of the best model among the statistical classifiers, which is SVM
after using unigram features.

29

Figure 6.3.1: Best results from statistical classifier models

Figure 6.3.2: Confusion Matrix of the best model (SVM with Unigram)

30

6.3.2 Neural Network Models
For neural network models, we worked on with CNN, LSTM and BiGRU. Here, we
experimented with three types of word embeddings named word2vec, fast-text, and
GloVe and tried to evaluated their performance for different neural network models.
The best outcome has been show in Table 6.8 for all three models detecting clickbait
on news title.

Method Preprocessing Accuracy Precision Recall F1 Score
CNN word2vec (wv) 74.81 65.22 58.08 61.43

fasttext (ft) 75.11 65.78 52.28 61.8
GloVe (gv) 77.19 70.15 59.14 64.18

LSTM word2vec (wv) 72.14 59.53 60.43 59.98
fasttext (ft) 73.48 60.98 64.52 62.7
GloVe (gv) 73.25 61.10 62.15 61.62

LSTM (Attention) word2vec (wv) 74.37 63.7 60.00 61.79
fasttext (ft) 72.51 60.30 59.78 60.04
GloVe (gv) 75.63 66.91 58.28 62.30

BiGRU word2vec (wv) 74.44 63.47 61.29 62.36
fasttext (ft) 74.15 62.91 61.29 62.09
GloVe (gv) 74.00 63.10 59.57 61.28

BiGRU (Attention) word2vec (wv) 75.41 65.88 59.78 62.68
fasttext (ft) 73.55 61.72 61.72 61.72
GloVe (gv) 75.93 66.67 60.65 63.51

Table 6.7: News-title clickbait classification report of Neural Network models

The Table 6.7 illustrates the accuracy, precision, recall and f1 score of CNN model
for detecting clickbait news-title for both of the word embeddings word2vec, fast-
text and GloVe. Here for CNN, both word2vec and fast-text performs almost equally
with very less difference in each of the sections and generates approximately 75%
accuracy, 66% precision, 58% recall and 62% f1 score. However, GloVe embedding
performs better with approximately 77% accuracy, 70% precision, 59% recall and
64% f1 score.

Above Table 6.7 further describes the accuracy, precision, recall and f1 score of
LSTM model for detecting clickbait news-title for the word embeddings word2vec,
fast-text and GloVe. Here for LSTM, both word2vec and fast-text performs similar
to CNN. However, GloVe gives approximately 75%, 67%, 68%, and 62% as accuracy,
precision, recall and f1 score respectively.

Furthermore, the Table 6.7 describes the accuracy, precision, recall and f1 score of
BiGRU model for detecting clickbait news-title for the word embeddings word2vec,
fast-text and GloVe. Here for BiGRU, both word2vec and fast-text performs similar
to CNN and LSTM, however, GloVe gives approximately 75%, 65%, 60%, and 62%
as accuracy, precision, recall and f1 score respectively.

31

Figure 6.3.3: Accuracy comparison among Neural Network models

Figure 6.3.4: F1 Score comparison among Neural Network models

32

Method Accuracy Precision Recall F1 Score
CNN 77.19 70.15 59.14 64.18
LSTM 74.48 61.10 64.52 62.70
LSTM (Attention) 75.63 66.91 60.65 62.30
BiGRU 74.44 63.47 61.29 62.36
BiGRU (Attention) 75.93 66.67 61.72 63.51

Table 6.8: Best result from Neural Network models

From the Table 6.8 we can see that, even though CNN, LSTM, and BiGRU seem to
perform equally for the best cases, CNN is better by a very slight margin.

33

6.3.3 Transformer Models
Table 6.10 shows all the results performed on article title and table 6.9 shows all the
results when title and content are passed as sentence pairs. Indic-BN-Bert performs
the best on title and reports 72.37% F1-Score and 80.08% accuracy. Indic-BN-
Distilbert performs the best on title-content combined and reports 72.13% F1-Score
and 79.79% accuracy. All Feature extractor Transformer models degrade the per-
formance of Transformer finetuning models. The best performing model there was
Indic-Roberta which reported 64.37% F1-Score. According to these results, Trans-
former models outperform the best models from statistical classifier and Deep Neural
network models (CNN,Bi-LSTM,Bi-GRU). This is because Transformer networks
can learn the contextual and syntactical information of text better than these mod-
els.But unlike other Transformer based models, XLM-Roberta multilingual model
fails to detect any clickbaits. This might be the case of pretraining with common-
crawl data that are crawled from different web sources and may have not seen many
news articles or that we need more data to see any performance from XLM-Roberta
model. Huge models like XLM-Roberta require quite a lot of data to show their
actual performance. This is not the calse always as Indic XLM-Roberta model per-
forms well on titles. So, the issue might lie in their pre training process. All the
transformer models trained on only titles except Indic Distilbert outperform their
title-content combined counterpart. This proves the fact that title plays a very sig-
nificant role in identifying clickbait. That is why there should be more emphasis on
the stylistic cue of titles to improve these model’s metrics. The Transformer Feature
Extractor models are trained on only clickbait titles and their results are shown in
6.11. All of the models’ performance worsen when the finetuned transformer em-
beddings are passed into LSTM network. Thus, the models are not trained on
title-content combined. This proves that the attention mechanism is Transformer
network is sufficient to encode the inter dependency between sequence tokens. Fig-
ure 6.3.5 shows the full results of three best performing models from each section.
Indic-Distilbert is the best performer as its gives the best performance when title
and content are combined and also performs similarly with Indic-Bert model on ti-
tle. So, we can conclude that Indic-Distilbert model can be deployed into real world
to detect clickbaits in Bengali news articles.

34

Model Accuracy F1-Score Precision Recall Loss
mBERT 0.736998514 0.675603 0.594548552 0.750537634 0.5492
Bangla Bert
Base

0.756315 0.67002 0.62949 0.716129 0.643

Indic Bert 0.768945022 0.661588683 0.669603524 0.653763441 0.6427
Indic Roberta 0.746656761 0.682790698 0.601639344 0.789247312 0.5567
Distilbert
multilingual

0.757800892 0.66322314 0.638170974 0.690322581 0.73813

Indic Distil-
bert

0.797919762 0.721311475 0.688845401 0.756989247 0.74684

Bangla Elec-
tra

0.741456166 0.669201521 0.599659284 0.756989247 0.54799

CSEBuetNLP
Bangla Bert

0.783803863 0.706357215 0.66539924 0.752688172 0.64815

XLM-
ROBERTA
Large

0.654531947 0 0 0 0.65485

Indic XLM-
ROBERTA

0.777117385 0.678111588 0.676659529 0.679569892 1.1499

Table 6.9: Results on Finetuning Transformer models on title and content combined

Model Accuracy F1-Score Precision Recall Loss
mBERT 0.757800892 0.666 0.636007828 0.6989 0.556323051
Bangla Bert
Base

0.791233284 0.6881 0.711009174 0.667 0.633811712

Indic Bert 0.80089153 0.7237 0.695049505 0.7548 0.4733271
Indic Roberta 0.775631501 0.7022 0.64845173 0.7656 0.558732808
Distilbert mul-
tilingual

0.754829123 0.6771 0.621184919 0.7441 0.536099553

Indic Distil-
bert

0.799405646 0.7199 0.695390782 0.7462 0.531267524

Bangla Electra 0.762258544 0.6708 0.642998028 0.7011 0.509521484
CSEBuetNLP
Bangla Bert

0.790490342 0.7087 0.681908549 0.7376 0.52011174

XLM-
ROBERTA
Large

0.654531947 0 0 0 0.648890674

Indic XLM-
ROBERTA

0.772659733 0.7018 0.64171123 0.7742 0.503365397

Table 6.10: Results on Finetuning Transformer models on title

35

Model Accuracy F1-Score Precision Recall Loss
mBERT 0.754437864 0.479733527 0.599704146 0.452324599 0.5109
Bangla Bert
Base

0.773668647 0.592722595 0.619723856 0.641251028 0.528

Indic Bert 0.776627243 0.628307939 0.637813449 0.686376452 0.48167
Indic Roberta 0.773668647 0.643769383 0.647745788 0.709847867 0.48103
Distilbert
multilingual

0.770710051 0.582766235 0.627542973 0.601704717 0.4893

Indic Distil-
bert

0.78550297 0.641640604 0.644012392 0.706635654 0.6100

Bangla Elec-
tra

0.780325472 0.555520058 0.661932945 0.545139492 0.4944

CSEBuetNLP
Bangla Bert

0.790680468 0.633271515 0.634601295 0.69742173 0.45718

XLM-
ROBERTA
Large

0.653846145 0 0 0 0.66373

Indic XLM-
ROBERTA

0.763313591 0.630877197 0.61349678 0.718624949 0.52128

Table 6.11: Results on Features Extracted from Transformer models on title

Figure 6.3.5: BERT models Score summary

36

Chapter 7

Conclusion

We present the first labeled clickbait detection with 13,460 news articles with va-
riety of information like article publish time, publisher, title and content to enable
researchers to use this dataset to build state of the art clickbait detection models. As
this is the first research in clickbait detection in Bengali news artilces, we provide a
baseline for future researchers by conducting comprehensive study on linear models,
deep neural networks and Transformer models. Our key finding is that Transformer
models outperform linear and deep neural network models by capturing title and
content context. To further increase the performance, we think that Pre training
should be done focused on Bengali news articles to facilitate these Transformer mod-
els with the difficult to detect stylistic pattern of clickbait titles. Furthermore, more
emphasis should be given to find novel methods on how to incorporate content with
the titles to detect those sneaky titles that would be hard to detect without looking
at their contents. We wish to extend our dataset size to 40k and publicly release it.
We hope our dataset will provide researchers to innovate new methods for detecting
clikcbaits in Bengali news articles.

37

Bibliography

[1] J. Murtha, “What it’s like to get paid for clicks,” Columbia Journalism Review,
Jul. 13, 2015. [Online]. Available: https://www.cjr.org/analysis/the_mission_
sounds_simple_pay.php (visited on 06/03/2021).

[2] P. Biyani, K. Tsioutsiouliklis, and J. Blackmer, “” 8 amazing secrets for getting
more clicks”: Detecting clickbaits in news streams using article informality,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[4] Y. Liu, M. Ott, N. Goyal, et al., “Roberta: A robustly optimized bert pre-
training approach,” arXiv preprint arXiv:1907.11692, 2019.

[5] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, Distilbert, a distilled version
of bert: Smaller, faster, cheaper and lighter, 2020. arXiv: 1910.01108 [cs.CL].

[6] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, Electra: Pre-training
text encoders as discriminators rather than generators, 2020. arXiv: 2003.10555
[cs.CL].

[7] A. Conneau, K. Khandelwal, N. Goyal, et al., Unsupervised cross-lingual rep-
resentation learning at scale, 2020. arXiv: 1911.02116 [cs.CL].

[8] S. E. Bird, “Tabloidization,” The International Encyclopedia of Communica-
tion, 2008.

[9] Y. Chen, N. J. Conroy, and V. L. Rubin, “Misleading online content: Recog-
nizing clickbait as” false news”,” in Proceedings of the 2015 ACM on workshop
on multimodal deception detection, 2015, pp. 15–19.

[10] H.-T. Zheng, J.-Y. Chen, X. Yao, A. K. Sangaiah, Y. Jiang, and C.-Z. Zhao,
“Clickbait convolutional neural network,” Symmetry, vol. 10, no. 5, 2018, issn:
2073-8994. doi: 10 . 3390/sym10050138. [Online]. Available: https : //www.
mdpi.com/2073-8994/10/5/138.

[11] V. Indurthi, B. Syed, M. Gupta, and V. Varma, “Predicting clickbait strength
in online social media,” in Proceedings of the 28th International Conference
on Computational Linguistics, 2020, pp. 4835–4846.

[12] M. Potthast, S. Köpsel, B. Stein, and M. Hagen, “Clickbait detection,” in
European Conference on Information Retrieval, Springer, 2016, pp. 810–817.

[13] M. Potthast, T. Gollub, M. Hagen, and B. Stein, “The clickbait challenge 2017:
Towards a regression model for clickbait strength,” arXiv preprint arXiv:1812.10847,
2018.

38

https://www.cjr.org/analysis/the_mission_sounds_simple_pay.php
https://www.cjr.org/analysis/the_mission_sounds_simple_pay.php
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/1911.02116
https://doi.org/10.3390/sym10050138
https://www.mdpi.com/2073-8994/10/5/138
https://www.mdpi.com/2073-8994/10/5/138

[14] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,
“Natural language processing (almost) from scratch,” Journal of Machine
Learning Research, vol. 12, no. 76, pp. 2493–2537, 2011. [Online]. Available:
http://jmlr.org/papers/v12/collobert11a.html.

[15] M. Potthast, T. Gollub, K. Komlossy, et al., “Crowdsourcing a large corpus
of clickbait on twitter,” in Proceedings of the 27th international conference on
computational linguistics, 2018, pp. 1498–1507.

[16] Y. Zhou, Clickbait detection in tweets using self-attentive network, 2017. arXiv:
1710.05364 [cs.CL].

[17] M. Glenski, E. Ayton, D. Arendt, and S. Volkova, Fishing for clickbaits in
social images and texts with linguistically-infused neural network models, 2017.
arXiv: 1710.06390 [cs.LG].

[18] P. Thomas, Clickbait identification using neural networks, 2017. arXiv: 1710.
08721 [cs.CL].

[19] A. Omidvar, H. Jiang, and A. An, “Using neural network for identifying click-
baits in online news media,” in Annual International Symposium on Informa-
tion Management and Big Data, Springer, 2018, pp. 220–232.

[20] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2,
pp. 179–211, 1990.

[21] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), 2014, pp. 1532–1543.

[22] A. Anand, T. Chakraborty, and N. Park, “We used neural networks to detect
clickbaits: You won’t believe what happened next!” In European Conference
on Information Retrieval, Springer, 2017, pp. 541–547.

[23] M. M. U. Rony, N. Hassan, and M. Yousuf, “Diving deep into clickbaits: Who
use them to what extents in which topics with what effects?” In Proceedings of
the 2017 IEEE/ACM international conference on advances in social networks
analysis and mining 2017, 2017, pp. 232–239.

[24] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed rep-
resentations of words and phrases and their compositionality,” arXiv preprint
arXiv:1310.4546, 2013.

[25] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, Bag of tricks for efficient
text classification, 2016. arXiv: 1607.01759 [cs.CL].

[26] M. E. Peters, M. Neumann, M. Iyyer, et al., “Deep contextualized word rep-
resentations,” arXiv preprint arXiv:1802.05365, 2018.

[27] D. Cer, Y. Yang, S.-y. Kong, et al., “Universal sentence encoder,” arXiv
preprint arXiv:1803.11175, 2018.

[28] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019.

[29] C. Wu, F. Wu, T. Qi, and Y. Huang, “Clickbait detection with style-aware
title modeling and co-attention,” in China National Conference on Chinese
Computational Linguistics, Springer, 2020, pp. 430–443.

39

http://jmlr.org/papers/v12/collobert11a.html
https://arxiv.org/abs/1710.05364
https://arxiv.org/abs/1710.06390
https://arxiv.org/abs/1710.08721
https://arxiv.org/abs/1710.08721
https://arxiv.org/abs/1607.01759

[30] M. Z. Hossain, M. A. Rahman, M. S. Islam, and S. Kar, “Banfakenews: A
dataset for detecting fake news in bangla,” arXiv preprint arXiv:2004.08789,
2020.

[31] Q. V. Le and T. Mikolov, Distributed representations of sentences and docu-
ments, 2014. arXiv: 1405.4053 [cs.CL].

[32] R. Rehurek and P. Sojka, “Software framework for topic modelling with large
corpora,” in IN PROCEEDINGS OF THE LREC 2010 WORKSHOP ON
NEW CHALLENGES FOR NLP FRAMEWORKS, 2010, pp. 45–50.

[33] S. Sarker, Bnlp: Natural language processing toolkit for bengali language, 2021.
arXiv: 2102.00405 [cs.CL].

[34] abhishekgupta92, Abhishekgupta92/banglapostagger: Pos tagger for bangla lan-
guage based on conditional random fields, Jul. 2012. [Online]. Available: https:
//github.com/abhishekgupta92/bangla_pos_tagger.

[35] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic
language model,” The journal of machine learning research, vol. 3, pp. 1137–
1155, 2003.

[36] A. Salle, M. Idiart, and A. Villavicencio, “Matrix factorization using window
sampling and negative sampling for improved word representations,” arXiv
preprint arXiv:1606.00819, 2016.

[37] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learning word
vectors for 157 languages,” arXiv preprint arXiv:1802.06893, 2018.

[38] O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), 2014, pp. 302–308.

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

[40] Y. Kim, Convolutional neural networks for sentence classification, 2014. arXiv:
1408.5882 [cs.CL].

[41] A. F. Agarap, Deep learning using rectified linear units (relu), 2019. arXiv:
1803.08375 [cs.NE].

[42] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,
Natural language processing (almost) from scratch, 2011. arXiv: 1103 .0398
[cs.LG].

[43] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly
learning to align and translate, 2016. arXiv: 1409.0473 [cs.CL].

[44] P. Zhou, W. Shi, J. Tian, et al., “Attention-based bidirectional long short-
term memory networks for relation classification,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Berlin, Germany: Association for Computational Linguistics,
Aug. 2016, pp. 207–212. doi: 10 . 18653/v1/P16 - 2034. [Online]. Available:
https://aclanthology.org/P16-2034.

[45] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” arXiv
preprint arXiv:1706.03762, 2017.

40

https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/2102.00405
https://github.com/abhishekgupta92/bangla_pos_tagger
https://github.com/abhishekgupta92/bangla_pos_tagger
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1103.0398
https://arxiv.org/abs/1103.0398
https://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/P16-2034
https://aclanthology.org/P16-2034

[46] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Glue: A
multi-task benchmark and analysis platform for natural language understand-
ing,” arXiv preprint arXiv:1804.07461, 2018.

[47] A. Wang, Y. Pruksachatkun, N. Nangia, et al., “Superglue: A stickier bench-
mark for general-purpose language understanding systems,” arXiv preprint
arXiv:1905.00537, 2019.

[48] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions
for machine comprehension of text,” arXiv preprint arXiv:1606.05250, 2016.

[49] G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural
network, 2015. arXiv: 1503.02531 [stat.ML].

[50] T. Hasan, A. Bhattacharjee, K. Samin, et al., “Not low-resource anymore:
Aligner ensembling, batch filtering, and new datasets for Bengali-English ma-
chine translation,” in Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Online: Association for Com-
putational Linguistics, Nov. 2020, pp. 2612–2623. doi: 10.18653/v1/2020.
emnlp-main.207. [Online]. Available: https://www.aclweb.org/anthology/
2020.emnlp-main.207.

[51] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hy-
perband: A novel bandit-based approach to hyperparameter optimization,”
Journal of Machine Learning Research, vol. 18, no. 185, pp. 1–52, 2018. [On-
line]. Available: http://jmlr.org/papers/v18/16-558.html.

[52] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017.
arXiv: 1412.6980 [cs.LG].

[53] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, 2019.
arXiv: 1711.05101 [cs.LG].

41

https://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2020.emnlp-main.207
https://doi.org/10.18653/v1/2020.emnlp-main.207
https://www.aclweb.org/anthology/2020.emnlp-main.207
https://www.aclweb.org/anthology/2020.emnlp-main.207
http://jmlr.org/papers/v18/16-558.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Aims and Objectives

	Related Work
	Problem Statement
	New Dataset for Detecting Bengali Clickbait News
	Data Collection
	Annotation Process
	Exploratory Data analysis

	Approach
	Linguistic Features
	Word embedding
	Statistical Classifier Models
	Neural Network Models
	CNN
	LSTM
	BiGRU

	Transformer Models

	Experimental Setup
	Dataset Preprocessing
	Experimental Setup
	Results and Analysis
	Statistical Classifier Models
	Neural Network Models
	Transformer Models

	Conclusion
	Bibliography

