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Abstract

Kidney disease is one of many severe chronic disease that a person can have. Early
detection of this disease can be pivotal for proper treatment. Different neural net-
works have proven to be useful in disease prediction in the progression of modern
science. In this paper, we have proposed a segmentation based kidney tumor clas-
sification using Deep Neural Network (DNN). We have done our work in two Steps.
Firstly, we have segmented kidneys using a manual segmentation technique and
trained UNet along with SegNet for kidney segmentation. Then, for the classifica-
tion task, the modified MobileNetV2, VGG16 and InceptionV3 was trained on the
segmented kidney data. CT KIDNEY DATASET: Normal-Cyst-Tumor and Stone
dataset(published in Kaggle) was used to train our models. Finally, the classifica-
tion models MobileNetV2, VGG16, InceptionV3 scored with 95.29%, 99.21% and
97.38% accuracy on test set. We found that the modified VGG16 model has the
best accuracy and the highest sensitivity and specificity.

Keywords: Kidney Tumor, Computed Tomography (CT), VGG16, Segmentation,
Classification, Deep Neural Network (DNN).
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Chapter 1

Introduction

Human body due to the complex nature of its functionality, performs hundreds
of chemical reactions every second. These reactions happen in the individual cell
of the body creating toxins and other wastes which are then discarded into the
bloodstream. Kidney is responsible for filtering all the impurities, toxins and extra
amount of fluids present in the blood. The pure blood then flows in the main blood
system and the waste products are discharged from the body through urination.
Prolonged exposure towards unhealthy habits such as nicotine, drug and alcohol
abuse increases the chances of kidney disease by many folds. Long term disease
such as diabetics and high blood pressure account for many new cases of kidney
diseases. Also, people with kidney problems in near relatives are more likely to suffer
from the same problem. Considering the nature of the problem, kidney diseases are
categorized into 5 parts:

• Chronic Kidney Diseases (CKD): It is a long term disease that does not
improve over time or treatment. Main reasons causing CKD are high blood
pressure and diabetes. Kidney transplant and dialysis prove to be very effective
in treating this line of disease [1].

• Kidney Stones: The function of a kidney is to filter the blood of impurities.
Just as many other materials minerals are also present in the bloodstream.
When these minerals crystallize, it is called kidney stones.

• Glomerulonephritis: It is a small but very important part of the kidney.
It is mainly responsible for the filtration. Glomerulonephritis occurs due to
infections, drug abuse and congenital abnormalities which occur during birth.

• Polycystic Kidney Disease: It is mainly a genetic disorder which is respon-
sible for the growth of many cysts in the kidney. Not only can it be painful
but it can cause kidney failure.

• Urinary Tract Infections: These are mainly bacterial infections which can
attack any part of the urinary system. They are easily treatable and with
proper treatment, do not cause much harm or pain.

Kidney tumor is a very common chronic kidney [2] disease. Not all tumors that
form on the kidney are fatal. Tumors found forming on kidneys are sectioned into
three: benign, indolent, malignant. A benign tumor is not cancerous; indolent ones
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are cancerous but not proliferative; malignant ones are cancerous and proliferative.
Several types of kidney cancers include:

• Renal Cell Carcinoma (RCC): The most common type of adult kidney
cancer comprising 85% of all the cases diagnosed. These grow in proximal
renal tubes. They make the kidney filtration system.

• Urothelial Carcinoma: It accounts for 5% to 10% of the kidney cancers
that forms in the renal pelvis. This is also knows as bladder cancer.

• Sarcoma: It forms on the capsule of the kidney which is the soft tissue cover
the kidney. It is rare and is treated with surgery.

• Wilms Tumor: Consisting of only 1% of the diagnosed kidney cancers it is
commonly found in children. Radiation combined with surgery prove to be
effective in treating this.

• Lymphoma: Enlarges the lymph nodes across the body such as necks, armpits,
chest along with enlarged kidneys. The swollen lymph nodes need to be biop-
sied for the confirmation of cancer.

Renal cancer and related kidney illnesses claim many people’s lives each year. A
report was published in 2017 [3] which estimated the overall number of deaths related
to kidney diseases worldwide from 1990 to 2017. According to the report, more than
130 thousand people died annually on average worldwide. The report also showed
that the estimated number of deaths in 2017 was around 10 million. It was almost
17 percent of all deaths in that year. According to the study, Uruguay had the
highest cancer age-standardized death rates, while Bangladesh had one of the lowest.
Another report published by WHO [4] stated that in 2018, Bangladesh had about
17,000 deaths while the neighboring countries India and Pakistan had mortality of
over 250 thousand and 28 thousand. Western Countries such as the United States
and United Kingdom had over 66 thousand and 4 thousand deaths. So, we can
see that kidney diseases are one of the major global problems, which causes many
people’s deaths and affects millions of lives worldwide.

1.1 Problem Description

Diagnosing kidney problems is a time-consuming procedure. Before using ultra-
sound (UT), Magnetic Resonance Imaging (MRI), or CT (Computed Tomography)
scans, diagnosis comprised of urine and blood tests. The kidney is responsible for
maintaining multiple hormones such as [5] creatinine, albumin, eGFR (estimated
glomerular filtration rate) etc. If these hormones are produced at an abnormal
level, they should be detected when a urine test is done. But many factors can alter
the level of accuracy that is needed for a kidney disease to be diagnosed. Hence,
the next reliable test is applied to the patient which is a blood test. Depending on
which testing procedure is conducted on the blood sample, it is necessary for the
donor patient to fast for at least 12 hours before the blood sample is provided or to
adhere to specific limitations concerning food and medication [6]. The more sophis-
ticated the procedure is used to diagnose kidney problems,the greater the chances of
human error. To increase the level of accuracy, image-based approaches were taken
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for proper diagnosis of kidney diseases which also involved different methods such
as UT, MRI, and CT scan.
The first step is a CT scan, performed in a clinic. The report takes time to print.
After the patient receives the CT scan report, the doctor and radiologist work to-
gether to diagnose the disease. Sometimes, even though it depends on the situation,
the total process takes days worth valuable time. The patient’s health deteriorates
by the day. In certain situations, he or she endures agonizing pain due to the kid-
ney’s failure to operate properly, which is an important element in performing any
physiological function. In addition to the lengthy process, sometimes kidney tumors
are misdiagnosed or recently diagnosed. About 48% of the patients are diagnosed
with the disease after it has reached an advanced stage [7]. In this paper, we will
detect kidney tumors from CT images which will be cost efficient, time saving and
also yields more accuracy.

1.2 Research Objectives

This work aims to use artificial intelligence (AI) to detect the kidney tumor without
the supervision of any human eye involved. The accelerated process would reduce
the total time needed starting from getting a CT report to getting proper treatment.

The goal of this research is listed below:

• To better understand CT reports and how DNN works.

• To deeply understand how DNN can be applied to segment kidney and classify
kidney tumor from CT images.

• To evaluate the applied models.

• To provide recommendations for enhancing the models’ performance.

1.3 Thesis Overview and Orientation

In the following segments, we have divided the work we have conducted into chapters
and discussed our whole work process in detail.In, chapter 2 we have discussed the
previous related research on neural networks and kidney disease prediction done by
other researchers and how they have implemented their research in their studies.
Then, in chapter 3, we have talked in depth about the model we have proposed to
conduct our research. Following that, we have shown our system overview and data
preprocessing methods. The chapter also includes our segmentation methods and
gives an overview of the CNN models. After that, we have discussed the results and
discussion from our research in chapter 4. This chapter also gives us the output for
the various training models and graphs from the training. Finally, in chapter 5, we
concluded our work and discussed our plans for future work.
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Chapter 2

Literature Review

In terms of mortality, cancer is one of the worst illnesses known to humanity. The
detection of cancer plays a huge role in not only curing the illness but also to take
necessary precautions beforehand. Medical research has come a long way in cancer
and lesion diagnosis in recent years. In their research, Yan et al. (2018) [8] discuss
how images from the deep lesion dataset can be used to advance research in var-
ious sectors. A triplet network has been discussed to model the lesions according
to type, location, size. Their dataset consists of 32K lesions. To simulate the close
connection in type, position, and size, the lesion embeddings are taught using a
triplet network. The framework can also have various uses, including search engine,
classifier, and matching tools. After further annotation and processing, the datasets
can be used for future research and innovations.

In the paper, Lung et al.(2021) [9] have talked about how to detect lesions from
computed tomography scans Using ROSNET. Automatic lesion detection utilizing
CT scans has become popular in recent years. However, the vast amount of inconsis-
tent data creates problems during lesion detection. Scale variance, unbalanced data,
and prediction stability are examples of these issues. The authors of this work rec-
ommended that the ROSNET paradigm be implemented to overcome these issues.
The experiments are conducted on a vast dataset showing that the ROSNET out-
performs the competition by 3.95 percent at MICCAI 2019. The proposed technique
includes a three-part one-stage detector: a nested structural feature pyramid, a real-
istic data-sensitive re-weighting module, and a shift-variant down-sampling strategy
. The layered structure feature pyramid can provide more information about lesions
at different scales. To address the problem of unstable prediction in CNN-based
models, they developed a detector that can obtain strong semantic information at
all levels.

Yan et al.(2018)[10] have discussed how to use a 3D context-based CNN to take
data from 3D images generated from 2D images by creating an enhanced region-
based CNN named as 3DCE. They have developed an algorithm to find the lesions
with one framework. After generating the 3D image data and crossing out the er-
rors, the algorithm can be used for future studies. For their research, the deep lesion
dataset has been used, consisting of 32K 2D annotations of various types of lesions.
A universal lesion detection algorithm has been developed to find lesions of all sorts
with one unified framework. 3DCE is memory-friendly, comprehensive, and effort-
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less to use. When used as an initial screening tool, it can transmit the detection
result to other systems, which may then be utilized to identify other sorts of lesions.

In their study, Alnazer et al.(2020)[11] have assessed all the techniques and meth-
ods to calculate and predict CKD by using different Diagnostic tools like MRI,
Ultrasound and CT scans. After discussing the various techniques and tools, they
have talked about how AI can be used in Renal Segmentation. Their research has
first summarized the various medical imaging modalities to check for CKD. After
that, they have shown AI ability to lead renal function assessment from classifica-
tion to disease diagnosis. Different types of Segmentation methods like, DeepMedic,
ScaleNet, VNet and HighRes3dNet etc. can be used by researchers to predict CKD
and advance the current knowledge of modern medicine.

Yang et al.(2019)[12] published a study in which they discuss the use of SCNN for
the assessment of kidney tumors. After creating the network structure and Pyramid
parsing module, it is possible to employ a two way segmentation technique to find
out more data. After calculating the Loss function, different sorts of algorithms
have been used for classification, such as VGG16, ResNet and so on.

Ren et al.(2018)[13] have talked about predicting multiple diseases using electronic
health records. There are typically two parts in an EHR. These are the physical
signs as well as the textual description. The authors of the paper have proposed
using a neural network model to investigate the topic of predicting renal disease in
hypertensive patients. At first, the prediction problem is modelled as a job of binary
classification. After that, a hybrid NN can be used to fully capture EHR informa-
tion.BiLSTM and Autoencoder networks have been used for the aim of predicting
kidney disease too.

The data collected from the studies conducted till now and the advancements in
technology has paved the way for people of any level to research on their own and
present their findings. Such as, Hadjiyski (2020)[14] has specified in his works on how
to stage kidney cancer from CT scans using AI and neural networks. By using the
cropped images from the CT scan and establishing a method for using DLNN(Deep
Learning Neural Network), he has proposed that in the future, doctors will be able
to use these techniques and research for easier kidney cancer staging.

Kidney cancer detection and neural networks have been associated together for
a while now, and much research has shown that by using these methods, people
can detect cancer and therefore prevent it much earlier than in the past. In their
research, Chen et al. (2020)[15] have proposed using an AHDCNN for the early de-
tection of kidney disease. With their proposed way of using the IoMT platform, one
can use DCNN for advanced detection. To detect renal cancer, which is considered
one of the most dangerous and aggressive sorts of cancer, researchers have started
using different imaging techniques.

Shehata et al. (2021)[16] have proposed a CAD system that uses the textures from
the CT scan of patients, and then with the system, they try to classify tumors into
sub-types. Their proposed system has three steps: take the grey area from the CT
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images, extract the discriminating features and use a two-stage classification system.
Their purpose is to create a high accuracy CAD system in order to Diagnose kid-
ney diseases and prevent further advancement of undetected Kidney Cancer. Their
method has showed accuracy on the collected dataset, but they need to test it on a
bigger range of tumors to improve it further.

Many research in medical science use algorithms on CT images for lesion and cancer
detection. Zhang et al.(2019)[17] have attempted to address the issue of low accuracy
and inadequate detection methods in the detection of kidney lesions using CT im-
ages. They suggest utilizing a cascaded CNN model to detect kidney abnormalities
in CT scans with precision and reliability. Two kinds of morphological operations
were used in their research. To generate varied levels of feature maps for location
and categorization, a six layer FPN was developed. Lastly, a four IoU(Intersection
over Union) threshold cascade RCNN was created to achieve high precision detec-
tion. Further study and wider testing should be provided in order to overcome the
model’s limitation on polycystic kidneys. Furthermore, the model has a number of
difficulties with intricate lesions that must be resolved before it can be employed in
current detection.

Covid is one of the most dangerous outbreaks in human history. The recent pan-
demic has caused distress all over the world. Researchers have been working to figure
out the cause of the disease, the pattern of its transmission, and how to combat it
since the beginning. One of the critical signs of the covid infection is an attack on
the lungs. Saood and Hatem(2021)[18] have researched this topic where they talked
about a few possible ways to detect infected lung tissue using SegNet and U-NET
from Lung CT images. This research can be used for Covid research.but can also
be useful for other sectors of research.

Liu et al.(2021)[19]have discussed using artificial intelligence to detect tumors from
CT images. AI and CNN are used for categorization of images. Their research
proposes an idea of CT Image segmentation which uses Artificial Intelligent medical
equipment. Their study collected the data from 120 patients which were divided
as Grade A(58 cases) and Grade B(62 cases). The CT scan was found to be more
sensitive to liver metastases in their study. Hepatocellular carcinoma is less com-
mon than hepatocellular carcinoma, and the KMC algorithm outperforms the RG
technique.

In their paper, Skalski and Jakubowski(2016)[20]have discussed a kidney segmen-
tation method For CT scans from kidney cancer patient data using elliptical shape
limitations, based on Hybrid Level Set approach. Using RUSBoost and decision
trees, they have created a classification of renal regions using an automated method.
The effectiveness of their technique in the Dice coefficient was about 0.85±0.04. The
proposed categorization model has a 92.1 percent overall accuracy. Their research
tries to tackle the challenges faced from kidney segmentation like imbalanced classes,
features value range, number of observations etc. They have stated that it is the
first solution that allows the division of the kidney into multiple sections including
cortex, column, medulla and pelvis.
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Again, Muller and Kramer(2021)[21] have proposed using the MIScnn to create
a rapid and easy way to set up CNN and deep learning models. The adequate
pre-operative plan based on image diagnostic data is the major issue of imaging
approaches. In their paper, they have stated that with the use of MIScnn, it may be
possible to construct a complete pipeline for preprocessing, information augmenta-
tion, patch slicing, and batch creation which can be trained on medical image data.
Their research has shown that using the MIScnn, an open-source python library,
people can successfully cross-validate kidney image segmentation. Researchers can
use it to develop a complete medical image segmentation pipeline with just few lines
of code. Thus further research on the topic can create a better system for imaging
in medical science.

Many researchers have used deep learning-based methods for medical image seg-
mentation in recent years. In their paper, Mu et al.(2019)[22] have discussed using
multi-resolution 3D V-net networks to segment kidney and renal tumors in CT scans.
In particular, they have proposed to adopt two resolutions and offer a customized V-
Net model for both resolutions dubbed VB-Net. Their strategy reduces the overall
load on the GPU and with a high accuracy rate for kidney segmentation in disease
detection. Their proposed model can localize the organs in the CT images and ac-
curately define the boundary of each organ. They have used collected the CT scans
for training and testing from the KiTS Challenge Dataset for their research. After
processing the data, VB-Net was used for accurate organ segmentation. Although
their results were positive, there were still problems related to tumors or cysts with
uneven densities. To solve the problem, they optimized the post-processing algo-
rithm to make corrections.

In their paper, Marsousi et al. (2014)[23] proposed automated kidney segmentation
using Ultrasound imaging of Morison’s pouch in three dimensions. They have used
a kidney segmentation approach based on form. For their research, they created a
probabilistic kidney shape model using previously acquired data. The primary goal
of the algorithm they utilized was to find a kidney shape in the binarized model.
The primary concept of kidney segmentation is to start with the PKSM. The model
voxels on a 3-D grid into a scalar value. They used a quick preprocessing to create
binarized volume for the next part. After that, they used PKSM to search for 3D
correlation for match position. The probabilistic kidney shape model was created
using four manually segmented kidneys. The results from their experiments confirm
that it is superior compared to MRF-AC.

Yan et al.(2018)[24]have talked about how to use the massive amount of medi-
cal data to create a large-scale image lesion dataset. Their study yielded a dataset
of 32,735 lesions on 32,120 CT slices from 10,594 studies involving 4,427 different
individuals. Deep lesion has also been utilized to train a universal lesion detector.
This allows them to detect a wide range of lesions using a single framework. Us-
ing bookmarks in PACS which are already tagged by radiologists, they highlighted
crucial picture results that may be used as a reference for future investigations. In
their paper, they have created a paradigm to harvest the lesion annotations.

Using a median filter, Obaid. J Ahmed(2020) [25] discusses a kidney tumor de-
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tection approach that is very effective. After the filtration, the images are made to
be mostly noise-free. Following that, the images are segmented using the K means,
clustering them for segmenting data and dividing them into similar classes based on
similarity. Principal Component Analysis is further taken, which narrows down the
huge number of groups to find the most optimal ones. The images then go through
Probabilistic Neural Networks that create output images that detect the tumor.
The images used for the experiment are obtained from the tumor dataset. After
the testing is completed, the parameters based on the confusion matrix are used to
acquire information on the tumor’s functionality. After this, the performance matrix
is analyzed based on precision, recall, accuracy and sensitivity.

In their paper, Dziekiewicz and Markiewicz(2018)[26] have talked about a novel
technique for detecting kidneys on CT images. They have used shape analysis of
the object’s boundary and figured out the geometrical coefficients for the final de-
tection stage. The accuracy of detecting the renal border is around 84 percent. This
study employs Canny’s edge identification algorithm, which is based on co-efficient
geometric form computation. In addition, their method also has the advantage
of identifying other organs. Their method enables a fast and effective way to de-
tect neoplastic changes in kidneys. Their paper talked about Kidney recognition
& brightness correction, image segmentation, calculation of geometric coefficients,
and complete kidney algorithm recognition. For their testing, they have used 59 CT
images collected from a verified source.

Distorted and noise filled images can create problems while conducting research.
Many times, the image quality hinders the whole result of the research. To tackle
this problem, researchers have tried to develop various ways to reduce the noise
and create better quality images using a method like CNN. In their paper, Yu et
al.(2019)[27] have talked about a cascading trainable segmentation model known as
crossbar-net to complete two goals. The first goal is to create two orthogonal non-
squared patches that can acquire both global and local appearance knowledge. The
second goal is to train two sub-models in a cascading matter. In the end, the models
can complement each other to create self-improvement. They have validated their
research with data collected from 94 patients with 3,500 CT images. They have
shown with their research that Crossbar-Net has a range of use, even in cardiac and
breast mass segmentation.

Yan et al.(2019) [28] have talked about a solution for radiologists to read and an-
notate medical images deep learning modules. They began by developing a deep
learning module to extract relevant semantic components from radiology reports of
lesion images. They then proposed utilizing LesaNet, which is built on a multilabel
CNN, to learn all of the labels. On LesaNet, they’ve also added a simple score prop-
agation layer. According to their tests, LesaNet can annotate lesions with an AUC
of 0.9344 utilizing an ontology of 171 fine-grained labels. In their paper, they have
tried to find a solution for the problem of radiologists. A radiologist could identify
and annotate various lesions and other abnormalities from CT scan images using
their research. Their paper’s main contribution is proposing an automatic learning
framework with the least effort required. This algorithm can text-mine relevant
labels, Presenting LesaNet, Leveraging Ontology-based medical info to incorporate
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label relations in LesaNet.

In their paper, Osowska-Kurczab et al. (2020)[29] have talked about developing
a new way of recognition of different variants of renal cancer based on CT scans.To
achieve this, they have used two methods of investigation. The first employs texture
descriptors to determine diagnostic features, which are then combined with support
vector machines for recognition and classification. The second method employs deep
learning for various CNN configurations. From the datasets, their method was able
to reach 90 percent accuracy. They have offered a complete method for construct-
ing an automatic medical image analysis system as a result of their research. The
results of their study could help the studies in medical practice. Implementation
of their research can create such a system that improves overall diagnosis process,
ultimately leading to better treatment and care. However, the limited variety of
tumor cases in the dataset, as well as the tiny size of the lesion region and inter-
patient variability, can cause problems with accurate results. Their method can be
further improved on by using CNN models to get better information from the images.

Aljouie and Patel(2018) [30] have talked about predicting kidney function with
cross-validation and cross-study validation. They gathered data from 110 cases and
controls of KICH for kidney chromophobe cell carcinoma for their kidney cancer
research. They next did quality checks on the SNPs they had collected and graded
them accordingly. Their top-rated SNPs showed support vector machines to get an
accuracy of 71%(with 10) and 72% (with 20 SNPs). Their findings indicated that a
kidney papillary dataset might predict kidney chromophobe carcinoma better than a
random classification. Two kidney cancer datasets were also retrieved from the NCI
GDC dataset as part of their study. Their research also shows that using a linear
SVM, and SNPs can be used to predict cases and controls of kidney chromophobe
carcinoma with a 66 percent accuracy.

In their writing, Simonyan and Zisserman(2015)[31] have talked about large scale
image recognition and the impact of the CNNmodel on image identification accuracy
on a huge scale. In their study, they describe how they evaluated increasing-depth
networks using a convolution filter architecture with small (3x3) convolution filters.
The finding was based on their ImageNet Challenge of 2014. During the testing
phase, the CNN was applied to the entire image, therefore there was no need for
multiple crops. Simultaneously, using a huge set of crops could improve accuracy.
In comparison to a fully convolutional net, the outcome was a finer sampling of
the input image. Their application was based on the C++ Caffe toolbox, but they
also modified it. Their paper has shown that their representations could be used
in datasets as well. For future research, their two best-performing ConvNet models
have been made publicly available.

To overcome the limitations of earlier research and make additional progress in
the relevant fields, we describe how to employ segmentation approaches to create a
more accurate and clearer model for gathering data. This solves the probability of
getting wrong information from distorted images. Later on, the segmented image
can be used by the classification models to classify the kidney tumors accurately.
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Chapter 3

Proposed Model

Figure 3.1: System Overview.
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This section illustrates how we have used our segmentation based tumor classifica-
tion model to classify kidney tumors. The above diagram 3.1 shows all the steps that
we have used to classified kidney using both segmentation and classification tech-
niques. Firstly, the specified data are gathered from the CT KIDNEY DATASET:
“Normal-Cyst-Tumor and Stone” from Kaggle. CT images are typically acquired as
jpg images. Then kidneys are annotated from the collected dataset and are fed as
the input of the SegNet and UNet for segmentation. After that, the predicted and
manually segmented images are fed into the MobileNetV2, VGG16 and InceptionV3
for classification in which random kidney images are used as test subject to get the
desired result i.e. whether the kidney has a tumor or not.

3.1 Data Collection

We took our dataset from “CT KIDNEY DATASET: Normal-Cyst-Tumor and
Stone” from Kaggle [32]. It contains four labels with images. It contains 12,446
unique data, within which 3,709 are cyst, 5,077 are normal, 1,377 are stones, and
2,283 are tumors, which is shown in the figure 3.2. For our research, we have taken
only normal and tumor data from the dataset. All the images in our dataset are in
jpg format.

Figure 3.2: Different Labels in Dataset.
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3.2 Data Pre-processing

3.2.1 Annotation

Annotation is the act of identifying and describing the subject matter of a picture.
We learned the process of annotating the kidney CT images from a radiologist, then
performed the annotation independently. We got the annotated images reviewed by
the radiologist and only after his approbation we continued with our work. This is
done to ensure the integrity of our research.

Figure 3.3: Annotated data.

We have used the software VOTT (visual object tracking tool) (version 2.3) from
GitHub, an open-source, user-friendly annotation and labeling tool that helped us
annotate the images. Rectangular boxes of appropriate shapes, as required, were
used as bounding areas to mark the normal and tumor kidneys. Accordingly, we
labeled the marked area as either “normal” or “tumor”. Manually, we annotated
around 80 percent of the data. VOTT can also export the images with annotation
information in CSV (comma-separated values) format. The CSV format is used
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because it’s easier to read the labels from the CSV spreadsheet file. There are six
columns in each row of the CSV file and they are, Filename, Xmin, Ymin, Xmax,
Ymax, and label. The figure 3.3 shows annotated data which is done by VOTT
tool.

3.2.2 Mask

A mask is a technique for altering a bigger picture by defining a tiny portion of a
larger one.

Figure 3.4: Mask with Orginal Image.

Masked images have non-zero and zero intensity values in different parts of the
picture. In our research, we have created a python script to make masks of the
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grayscaled kidney CT images. The bounding box values of the masks are obtained
from the CSV file. For each image, two masks are created for the two co-responding
kidneys, where each of the rectangular white areas in the mask represents a kidney
area as shown in the figure 3.4. These masks are used to train the segmentation
models Segnet and Unet to perform segmentation. We have created a mask of 70
percent of our selected data.

3.2.3 Segmentation

We have used both manual and model based kidney segmentaion to segment kidney
from CT images.

Manual Kidney Segmentation

In the first part of segmentation, we have segment kidneys using our annotated
bounding box by a python script. The values of bounding boxes are taken from
the CSV file. The bounding box has Xmin, Ymin, Xmax, Ymax. We have segment
kidneys of all annotated CT images. Figure 3.5 shows manual kidney segmentation
result.

Figure 3.5: Manual Kidney Segmentation.
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Kidney Segmentation using Model

In the second part of segmentation, we have used our 70 percent of the greyscaled
kidney CT images with their corresponding masks to train both UNet and SegNet
models. The output of the segmentation models is a predicted mask. Then we took
the best model to create a mask of 30 percent of our remaining data. Using this
mask, we have segmented the kidney from kidney CT images properly. We trained
the segmentation model in such a way that if we add more data for further kidney
segmentation in our future work, it can be done very efficiently and be exactly
similar to the way it is done manually.

U-Net

There are many semantic segmentation architecture and U-Net [33] is a popular one
among them.

Figure 3.6: UNet Architecture.

The “U”, the architecture of UNet is divided into three parts: contraction, bottle-
neck, and expansion. There are several contraction blocks in the section on con-
traction. Contracting paths follow the common architecture of a convolutional net-
work, which consists of two 3x3 convolutions, each followed by a rectified linear unit
(ReLU), a 2x2 max pooling operation with stride 2 for downsampling, followed by a
rectified linear unit (ReLU), a 2x2 max pooling operation with stride 2. The num-
ber of feature channels doubles with each downsampling step. A 2x2 convolution
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(“up-convolution”) that divides the number of feature channels in half is applied
after each upsampling of the feature map in the expansive path, followed by two
3x3 convolutions, each followed by a ReLU. Then, the correspondingly cropped fea-
ture map from the contracting path is added. Every convolution loses pixels from
the boundary, therefore the image has to be cropped. As a final step, each of the
feature vector’s 64 components is mapped to the required number of classes using
a 1x1 convolution. In all, the network has 23 convolutional layers. Convolution
layers are applied to each input, followed by a 2X2 maximum pooling. For the sake
of learning complicated structures, the number of kernels or feature maps doubles.
Figure 3.6 represents the architecture view of U-Net where input size is 128x128x1
and predicted output size is 128x128x1.

SegNet

The second semantic segmentation model we have used is SegNet [34]. There is
a pixel-by-pixel classification layer, an encoder network, and a decoder network in-
cluded in this design. VGG-16’s 13 convolutional layers are replicated in the encoder
network design of this encoder. The decoder comprises a total of 13 layers, with
each encoder layer having a corresponding decoder layer. For each pixel, the final
decoder output is sent into a softmax classifier that generates class probabilities.
At the deepest encoder output, the higher-resolution feature maps are retained by
discarding the completely linked layers. Decoder networks convert low-resolution
encoder feature maps to full input resolution for per-pixel classification, and this
is what they do. While the number of parameters in the SegNet encoder network
dramatically decreases (from 134M to 14.7M), the number of parameters in other
current designs is not. Using lower-resolution input feature maps, SegNet has a
distinct advantage in decoding. It is necessary for the decoder to use the encoder’s
max-pooling step in order to carry out non-linear upsampling in the decoding pro-
cess. Figure 3.7 represents the architecture view of SegNet where input size is
128x128x1 and predicted output size is 128x128x1.

Figure 3.7: SegNet Architecture.
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In both the segmentation models we have used ‘Sigmoid’ as activation function.
This function is commonly used mathematical function which has an output similar
to an S-shaped curve. The sigmoid function has several variations: logistic function,
hyperbolic tangent, and arctangent. Nevertheless, for neural networks, it is defined
as an activation function used to limit the output from 0 to 1 regardless of the input
data provided into the function. It can also be used in applications where an actual
number needs to be converted into a probability. We have applied it at the last layer
of our models which can calculate the output as probability score between 0 and 1
that is much easier to work with. Besides this, Stochastic Gradient Descent (SGD)
and Adaptive Moment Estimation(Adam) were used for cost function. In addition,
We have chosen Binary Cross Entropy as loss function.

3.2.4 Target Labeling

We have labelled the segmented kidney which was found from manual kidney seg-
mentation and segment model. One of the kidney labels is “Normal” and other is
“Tumor”. After this we stored them in two different directories for two classes.

3.3 Classification

For kidney tumor classification we have used MobileNetV2, VGG16 and Incep-
tionV3.

3.3.1 MobileNetV2

MobileNetV2 [35] is a type of CNN architecture designed to execute efficiently on
mobile devices. This model is a predecessor of MobileNetV1 and uses inverted bot-
tleneck blocks and residual connections, which was not present in MobileNetV1. It
is about 35 percent faster compared to MobileNetV1. It is created based on an in-
verted residual architecture in which the bottleneck layers have residual connections
in between them. MobileNetV2 is based on the ideas from MobileNetV1 and uses
depthwise separable convolution as efficient building blocks. But, Version2 adds
2 new features to the architecture. Bottlenecks in the layers’ linear connections,
and bottlenecks in the connections between the bottlenecks. the model’s capacity
to transition from lower-level ideas such as pixels to higher-level descriptors such
as picture categories must be encoded, and this must be done by the model’s bot-
tleneck and the model’s inner layer. Non-linearity is introduced into the model
at the intermediate expansion layer by use of lightweight depthwise convolutions.
Initial convolution layer with 32 filters is followed by 19 bottleneck layers in the
MobileNetV2 architecture. 300 million multiply-adds are required to process the
main network (width multiplier 1, 224x224) and 3.4 million parameters. It requires
7 multiply-adds up to 585M MAdds for the network to compute, while the model
size ranges from 1.7M to 6.9M parameters.
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Figure 3.8: MobileNetV2 architecture.

There are two types of blocks: the residual block with a stride of 1 and the block
with a stride of 2 used for downsizing. There are three layers for each type of block.
The first layer is 1x1 convolution with ReLU6 and the second is the depthwise con-
volution. The third layer is 1x1 convolution without any non-linearity. Figure 3.8
represents the architecture view of MobileNetV2.

3.3.2 VGG16

In various deep learning approaches for image classification [36], the VGG-16 ar-
chitecture is a simple, powerful, and widely used Convolutional Neural Network
(CNN). It has 16 convolutional which is of uniform architecture.The VGG-16 has 16
layers, which means it can categorize pictures into 1000 different object types. 3x3
filter with stride one, same padding and maxpool layer as 2x2 filter stride 2 used
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for convolution layers. Throughout the whole design, the convolution and max pool
layers are arranged in this manner. The design concludes with two FC (completely
connected layers) and a softmax. There are 138 million parameters in this massive
network. Thirteen levels of convolution are included in VGG16, along with five Max
Pooling layers and three Dense layers for a total of 21 layers. Still, there are only
sixteen weight layers, or learnable parameters, in this algorithm. 224x244 is the
input tensor size for VGG16, which has three RGB channels. But, we have modified
the input tensor size to 128X128X3.Since it has so many nodes that are all linked,
VGG is over 533MB in size. VGG delivery is made more difficult because of this.
Figure 3.9 represents the architecture view of VGG16.

Figure 3.9: VGG16 architecture.
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The 16 layers of VGG16:

1. Convolution layer 1 with 64 filters

2. Convolution layer 2 with 64 filters + Max pooling

3. Convolution layer 3 with 128 filters

4. Convolution layer 4 with 128 filters + Max pooling

5. Convolution layer 5 with 256 filters

6. Convolution layer 6 with 256 filters

7. Convolution layer 7 with 256 filters + Max pooling

8. Convolution layer 8 with 512 filters

9. Convolution layer 9 with 512 filters

10. Convolution layer 10 with 512 filters+Max pooling

11. Convolution layer 11 with 512 filters

12. Convolution layer 12 with 512 filters

13. Convolution layer 13 with 512 filters+Max pooling

14. Fully connected layer with 512 nodes

15. A Dropout layer with value of 0.5

16. Output layer with Sigmoid activation with 2 nodes

3.3.3 InceptionV3

This CNN model is used [37] for image analysis and object detection belongs to
the Inception family of networks. For example, InceptionV3 includes a batch nor-
malization for layers at the sidehead, which employs label Smoothing, factorized
7x7 convolutions, and an auxiliary classifier to transfer label information down the
network. It has a reduced error rate than its predecessors, it has 42 layers. The
InceptionV3 is the most recent and most effective model of the InceptionV1. The
network of the InceptionV3 model is optimized using a variety of strategies. It’s
more efficient than the previous version. The InceptionV3 model features a deeper
network and is quicker than the V1 and V2 models. It has less computational com-
plexity and uses auxiliary Classifiers as regularizes. The network has been trained
to categorize photos into 1000 different item categories.
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Figure 3.10: InceptionV3 Architecture.

Figure 3.10, The Network uses a 299-by-2 image scale to display its images. “Multi-
level feature extraction” is what the first module is attempting to do by calculating
11, 33 and 55 convolutions in a single module of the network. When layered with
channel measures, the output from each of these filters is then added to the next
layer of the network, which may have recently been fortified with more information.

The role of the activation function in an artificial neural network is to define the
output of a node when given an input or set of inputs to that node. Sigmoid func-
tion was used in the classification model’s last layer so that the output probability
score between 0 and 1. We have set lr=0.00001 in the adam optimizer. Moreover,
Categorical crossentropy was used for loss function of our classification models.
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Chapter 4

Result and Discussion

4.1 Implementation

As a deep neural network-based work that needs a high configuration PC to imple-
ment, we have used Nvidia RTX 2060 GPU, 24 GB ram, Ryzen 5 3600x with six
core and 3.8 GHZ clock speed. Python version 3.9.7, Tensorflow version 2.7.0 and
Keras version 2.7.0.

In order to save time, we decreased the images to 128x128 from their original 512x512
resolution. These CT slices were sent to several CNN architectures for segmentation
and classification training after they have been processed. Besides this, the rest CT
slices were used to test the accuracy. In the image 4.1 below, a few CT slices are
shown.

Figure 4.1: CT slies of patiens.

We fed the mask and original data to the segmentation models (UNet, SegNet).
After that, we passed the segmented kidney data to the classification models (Mo-
bileNetV2, VGG16, InceptionV3) for classification. Using five different CNN archi-
tectures, we have been able to get some results and analyze them further.
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4.2 Result

We calculated the accuracy using different epochs for different models and took the
highest accuracy. For segmentation, we took 70 percent of our annotated data as a
train set and 30 percent as a val (validation set). Rest 30 percent of non annotated
data as a test set. On the other hand, 75 percent of the total segmented kidneys as
a train set, 15 percent as a val and 10 percent as a test set for classification.

4.2.1 UNet

Figure 4.2: UNet Train/Val Accuracy.

In the beginning, training accuracy was about 97% and validation accuracy was also
above 82%, as shown in the figure 4.2. Then gradually, train accuracy increased,
though val accuracy had ups and downs in the graph. After 42 epochs, the train and
val accuracy were the same, around 98% and both the lines intersected each other.
At the finishing point, the training accuracy remained slighty above the training
accuracy.

4.2.2 SegNet

From the figure 4.3 we can see that at the starting point, the training accuracy
was around 94% and validation was 96%. Then gradually both train accuracy and
val accuracy increased. At 2 epoch, the train and Val accuracy were almost the
same, around 97% . After 11 epochs both lines started to slowly move apart from
each other with the train accuracy increasing at a declining rate and val accuracy
decreasing at a declining rate. At the finishing point, both reached their highest
peak point with training accuracy stopping at 98 percent and val accuracy stopping
at 97 percent.
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Figure 4.3: SegNet Train/Val Accuracy.

4.2.3 MobileNetV2

Figure 4.4: MobileNetV2 Train/Val Accuracy.

From the figure 4.4, we can see that the graph produced about 69% accuracy for the
training accuracy and about 97% for the validation accuracy at 0 epochs. After 22
epochs, the validation accuracy reached its lowest point with an accuracy of about
34%. On the other hand, the training accuracy rose proportionally with time. After
89 epochs, the accuracy and training validation reached similar results and fell upon
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each other on the graph. In the end, both the accuracy lines had similar values of
almost 99% that converged with one another on the graph.

The training loss was about 77% and the validation loss was about 12% at the begin-
ning of the training. After going through many epochs, the training loss gradually

Figure 4.5: MobileNetV2 Train/Val Loss.

fell while the validation loss first rose and then fell. After 17 epochs, the validation
loss peaked at about 150%. According to the final results, the training loss was
around 3 percent and the validation loss was approximately 4 percent shows in the
figure 4.5.

In the figure 4.6 is a confusion matrix which shows that there are two possible classes
predicted by the model from the dataset under which the kidneys fall either into the
category of “ true positive”, “ true negative”, “ false positive” and “false negative”
where “true negative” indicates kidney that is actually normal and also predicted
as normal by the model, “false positive” indicates kidney that is actually normal
but predicted as tumorous by the model, “false negative” indicates kidney that
is tumorous but predicted as normal by the model and “true negative” indicates
kidney that is actually tumorous and also predicted as tumorous by the model.
MobileNetV2 made a total of 382 predictions(i.e. category outcome of 382 kidney
images are predicted), and out of these 382 predictions, 256 are made from normal
kidney image class and 126 are predicted from the class which has tumor category
kidney images. Out of the 256 images from the normal kidney image class 252 are
predicted as “true negative”, while 4 are predicted as “false positive”. On the other
hand, out of the 126 images from the tumorous kidney class, 112 are predicted as
“true positive” and 14 are predicted as “false negative”.
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Figure 4.6: MobileNetV2 Confusion Matrix.

4.2.4 VGG16

Figure 4.7: VGG16 Train/Val Accuracy.

We notice that the training accuracy was at it’s lowest point of about 78% in the
start of the training in the figure 4.7. Throughout the training phase, the valida-
tion accuracy remained quite constant and was about 98% initially. The validation
accuracy gradually rose as the training continued and after 25 epochs, it reached
its highest point. At the completion of the training, the training and validation
accuracy rates were both over 99 %.
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Figure 4.8: VGG16 Train/Val Loss.

The training loss of the model was about 47%, and the validation loss was about
7% at the start of the training, which we found in the figure 4.8. The training loss
gradually went down as the training continued, while the validation loss remained
almost consistent with slight ups and downs. After 13 epochs, the validation loss
peaked at about 5%, and after 23 epochs, it peaked at about 4%. At the end of the
training, both training loss and validation loss lines had similar values of about 1%.

Figure 4.9: VGG16 Confusion Matrix.
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The confusion matrix of VGG-16 model which classified kidney images into “ true
positive”, “ true negative”, “ false positive” and “false negative” where “true nega-
tive” indicates kidney that is actually normal and also predicted as normal by the
model, “false positive” indicates kidney that is actually normal but predicted as
tumorous by the model, “false negative” indicates kidney that is tumorous but pre-
dicted as normal by the model and “true negative” indicates kidney that is actually
tumorous and also predicted as tumorous by the model. It classified 382 images,
out of which 256 are from normal kidney image class and 126 are predicted from
the class which contains tumor images of the kidney. Among the 256 images from
normal kidney image class, 255 are predicted as “true negative”(true normal), while
only 1 is predicted as “false positive” (false tumor).Out of the remaining 126 images
from the tumorous kidney class 124 are predicted as “true positive”(true tumor),
and 2 are predicted as “false negative”(false normal) as shown in figure 4.9.

4.2.5 InceptionV3

Figure 4.10: InceptionV3 Train/Val Accuracy.

We see in the graph 4.10 that the training accuracy was about 64%, and the vali-
dation accuracy was about 96% at the start of the training. Both the training and
validation accuracy gradually rose as the training went on. Throughout the training,
the validation accuracy was mostly above the training accuracy. After 60 epochs,
they start to have similar values, and the lines overlap. In the end, both the training
and validation accuracy reaches over 99% accuracy.
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Figure 4.11: InceptionV3 Train/Val Loss.

In Figure 4.11, the training loss starts at about 67%, and validation loss is about
18%. Both the training and validation loss goes down as the training continues with
slight ups and downs. After 16 epochs, they start to get similar values, and the
graph lines overlap. At the end of the training, the validation and training loss get
similar values, with the validation loss being almost 4% and training loss being 3%.

Figure 4.12: InceptionV3 Confusion Matrix.

In figure 4.12 confusion matrix shows the statistics same as the previous two models
where kidney images are classified as “ true positive”, “ true negative”, “ false
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positive” and “false negative” by the model from the given kidney image dataset
where “true negative” indicates kidney that is actually normal and also predicted
as normal by the model, “false positive” indicates kidney that is actually normal
but predicted as tumorous by the model, “false negative” indicates kidney that is
tumorous but predicted as normal by the model and “true negative” indicates kidney
that is actually tumorous and also predicted as tumorous by the model. Total 382
images are classified from which 256 are from normal kidney image class and 126 are
from tumor kidney image class. The 255 out of the 256 normal kidney images are
classified as true negative and only 1 as false positive. In contrast, the 117 images
out of the 126 tumor kidney images are classified as true positive and 9 as false
negative.

4.3 Discussion on Segmentation Result

Figure 4.13: Test performance of segmentation models.

For kidney segmentation, we have segmented 70 percent data manually and then for
rest of the 30 percent we have used both UNet and SegNet models. Though their
performance is almost the same and quite similar with our manual segmentation
result, we have chosen UNet as it provides better accuracy than SegNet. The test
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accuracy is 97.58% for UNet and 96.38% for SegNet. Here is the figure 4.13 which
shows the output for both the models. As we can see, we have created a mask for
one kidney, but our trained models created the mask for both kidneys and using
this mask we have segmented the rest of the kidneys.

4.4 Discussion on Classification Result

Table 4.1: Train Classification Accuracy of different models

Train Accuracy
Epochs MobileNetV2 VGG16 InceptionV3
1 68.85 77.96 64.06
5 83.21 95.35 83.42
10 87.21 98.71 88.92
15 89.92 99.21 92.89
20 91.85 99.57 94.93

The table 4.1 shows the compared accuracy of three different models that have been
used for training accuracy. For each model, a specific epoch value gave the highest
accuracy.
In the figure, the contrast of different models yields different accuracy levels. For
1st epoch values, InceptionV3 attains the lowest accuracy of 64.06% and VGG16
achieves the highest accuracy. Nevertheless, the scenario changes for all three models
as we increase the epoch values. For epoch value 5, the accuracy of VGG16 jumps
to 95.35%. However, InceptionV3 and MobileNetV2 have a close resemblance of
83.42% and 83.21%. As we increment the epoch values, we get more accuracy levels.
For epoch 10, MobileNetV2 has 87.21%, VGG16 has 98.71%, and InceptionV3 has
88.92% accuracy. As we can see, in the case of epoch 10, VGG16 also has the upper
hand over all other models. Incrementing again, for epoch 15, MobileNetV2 has
89.92%, VGG16 has 99.21%, InceptionV3 has 92.89% of accuracy. And for epoch 20
MobileNetV2, VGG16 and InceptionV3 has 91.85%, 99.57% and 94.93% of accuracy
respectively. The highest epoch accuracy has been acquired by VGG16, which is
99.57%.

Table 4.2: Validation Classification Accuracy of different models

Validation Accuracy
Epochs MobileNetV2 VGG16 InceptionV3
1 96.88 97.92 96.35
5 83.07 99.22 94.27
10 64.84 99.22 95.31
15 43.23 99.22 95.83
20 40.89 99.48 97.92

Each model’s validation accuracy is shown in Table 4.2, along with its behavior at
various epoch values. For just epoch one of all three models give us impressive ac-
curacy results, which are 96.88%, 97.92% and 96.35% respectively. But as the value
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of the epoch increases, VGG16 and InceptionV3 have a significant rise in accuracy,
but MobileNetV2 has exactly the opposite reaction. For the fifth epoch, VGG16
and InceptionV3 have 99.22% and 94.27% accuracy, but MobileNetV2 has 83.07%
accuracy, which is significantly lower than the first epoch. For epoch 10, VGG16
has 99.22%, and InceptionV3 has 95.31% accuracy, but MobileNetV2 has 64.84%.
For epoch 15, VGG16 and Inception have 99.22% and 95.83%, but MobileNetV2
has 43.23%. And lastly, for epoch 20, VGG16 gives the highest accuracy, which is
99.48% and the lowest is MobileNetV2, which is 40.89%.

Table 4.3: Test Performance of Different Classification Models

MobileNetV2 VGG16 InceptionV3
Accuracy 95.29 99.21 97.38
Loss 15.0 4.75 17.03
Sensitivity 88.89 98.41 92.86
Specificity 98.44 99.61 99.61
F1 score 95.0 99.0 97.0

Table 4.3 was used to assess the accuracy, loss, sensitivity, specificity and F1 score of
the three models, which were compared to each other using the following criteria. For
example, MobileNetV2, VGG16, and InceptionV3 all function differently depending
on the situation. Before getting the idea of how these three models have performed
in different cases, we need to know what these cases are, which means what is meant
by accuracy, loss, sensitivity, specificity and F1 score.

Figure 4.14: Test Performance of Different Classification Models.

The explanation of “accuracy” is straightforward - it is the ratio of correctly pre-
dicted classifications to the total number of predictions made [38]. The “Loss” value
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indicates how badly a model performs in making the right predictions for a single
instance. If the model’s prediction is perfect, then the loss is zero [39]. Testing’s
“sensitivity” measures how well a test can detect the presence of a disease in a given
sample of people. Testing’s “specificity” is defined as the ability of a test to correctly
identify those who do not suffer from the disease. The “F1 score” is generated using
the precision and recall of the models, and it indicates how accurate the model is
on the kidney dataset. There are four factors involved in calculating the following
four terms:

• True Positive (TP): The patient has the tumor, and the model predicts it as
positive.

• True Negative (TN): The patient does not have the tumor, and the models
prediction is also negative.

• False Positive (FP): The patient does not have the tumor, and the models
prediction is positive.

• False Negative (FN): The patient has the tumor and the test is negative [40].

Sensitivity=Recall =
TP

TP + FN
(4.1)

Specificity =
TN

TN + FP
(4.2)

F1 Score=Dice Score =
2.P recision.Recall

Precision+Recall
(4.3)

Among all the three models, VGG16 has the highest accuracy level, which is 99.21%,
followed by InceptionV3 97.38% and MobileNetV2 95.29%. Consequently, VGG16
has the least loss, which is 4.75%, then comes MobileNetV2 with 15% and Incep-
tionV3 with 17.03%. Here, we can see a slight discrepancy, as MobileNet has the
least accuracy, so its loss function should also be higher than the rest, but In-
cpetionV3 tops it. The reason is, MobileNetV2 is a lightweight model with fewer
parameters. So in the case of predicting loss function, it also has fewer parameters to
work with and thus yields a lower score [41]. For sensitivity, VGG16 has the highest
score, which is 98.41%. The rest two follow behind with InceptionV3 92.86% and
MobileNetV2 88.89%. In calculating specificity, it is a tie between VGG16 and In-
cpeitonV3, both scoring 99.61% and MobileNetV2 with 98.44%. Even for F1 Score,
VGG16 model has the highest score of 99.0% while the MobileNetV2 scores 95.0%
and InceptionV3 scores 97.0% respectively. The bar chart 4.14 is the representation
of similar quantities.
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Figure 4.15: ROC MobileNetV2.

The ROC curve shows the performance of the classification model’s sensitivity (or
TPR) and specificity (1 - FPR). Classifiers that create curves that are closer to
the top-left corner indicate better results. There was a Random classifiers which
supposed to provide points that fall along the diagonal (FPR = TPR). The ROC
space’s 45-degree diagonal axis of rotation is closer to being intersected by a curve
as a test’s accuracy drops. In the calculation we mark tumor as positive and normal
as negative.

Figure 4.16: ROC of VGG16.
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Figure 4.17: ROC of InceptionV3.

Figure 4.15, 4.16 and 4.17 shows that the roc graph behaves differently on different
models. Among these three graph, there is a good chance that the VGG16 roc score
is near to 0.99. In contrast, the MobileNetV2 roc value is close to 0.90, which is the
lowest of all the roc scores. In addition, InceptionV3 holds the middle position and
the value is close to 0.93.
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Chapter 5

Conclusion

Prediction and diagnosis of renal disease are major topics in scientific research.
Machine learning, neural networks, genetic algorithms, and other techniques are
being used to improve and speed up data processing. As a result, sifting through
the many approaches to discover the most effective one has become critical. We
compared the outcomes of several neural networks used to identify renal illness in
this paper. Our major objective was to demonstrate which of the networks could
deliver the best outcomes with the supplied data. We did this by dividing the kidney
dataset into two distinct categories for comparison. A manual segmentation and
segmentation models were used to preprocess the CT slices. The segmented kidney
are fed into our three classification models: MobileNetV2, VGG16 and InceptionV3.
According to the data, VGG16 is the most accurate, with sensitivity and specificity
higher than other models.

5.1 Future Work

The results of our proposed model, which looked at the segmented kidney and then
identified it with a high accuracy rate, are particularly applicable to real-life cir-
cumstances. This is not the end of this work, We will utlize this model with a huge
dataset. It is possible to have a better understanding of this approach’s position
by comparing it to other current techniques based on criteria such as accuracy, effi-
ciency, and practicality. This strategy can be useful to generate computer software
which will quickly help doctors in better classifying kidneys than ever before. A
larger range of issues allows for more work to be completed and more accurate data
to be obtained while discussing this topic. Adding mode data to our model elim-
inates the need to manually annotate data. Everything will be taken care by our
segmentation model. Finally, for future work we will classify the types of tumor
using DNN if we can manage a big dataset.
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