NETWORK SECURITY AND
INTRUSION DETECTION
SYSTEM

Salman Zaman

Student ID 02201024

Department of Computer Science and Engineering
January 2007

BRAC
UNIVERSITY
XA

BRAC University, Dhaka, Bangladesh

Network Security And Intrusion Detection System

Thesis report prepared by

Salman Zaman ID 02201024

Under the supervision of

Mushfiqur Rouf
Lecturer
Department of Computer Science and Engineering, BRAC University

BRAC

UNIVERSITY

XA

Department of Computer Science and Engineering
BRAC University
Fall 2006

Foreword

The thesis report is submitted in partial fulfillment of the academic requirements
for the degree of Bachelor of Science in Computer Science and Engineering to the
Computer Science and Engineering department at BRAC University, 66 Mohakhali
Dhaka-1212, Bangladesh.

Salman Zaman ID 02201024

As the supervisor of the candidates I have approved this dissertation for submission.

Mushfiqur Rouf
Lecturer
Department of Computer Science and Engineering

BRAC University

Declaration

The whole dissertation, unless specifically indicated to the contrary in the text, is
our original work, and has not been submitted in part, or in whole for the degree or
diploma to any other university.

Salman Zaman
ID 02201024

il

Approval Sheet

The thesis report titled “Network Security And Intrusion Detection System”
has been submitted to the following respected members of the Board of Examiners
from the Faculty of Computer Science and Engineering in partial fulfillment of the
academic requirements for the degree of Bachelor of Science in Computer Science
and Engineering on January 07, 2007 by the following students and has been accepted
as satisfactory.

Salman Zaman ID 02201024

Mushfiqur Rouf
Lecturer
Department of Computer Science

and Engineering
BRAC University

il

Acknowledgments

At first my heartiest gratitude goes to Almighty ALLAH, without His divine
blessing it would not be possible for me to complete this project successfully. Then |
am eternally grateful to my parents for their constant support throughout our academic
work.

This was a group project and | am give my special thanks to my group members
Sarwar Alam and Rajib Rahman for working together with me and giving great support.

It's been a pleasure and an honor to show our respect to Mushfiqur Rouf,
Lecturer, Department of Computer Science and Engineering, BRAC University, who
has rendered continuous and encouraging guidance throughout the entire thesis period
with his kind advice. His generosity and zeal for this thesis is exemplary.

We want to thank all the honorable faculty members especially Risat Mahmud
Pathan, Lecturer, Department of Computer Science and Engineering, BRAC University,
for their feedback and inspiration that was really instrumental in shaping this thesis.

Finally we like to offer thanks to all of our friends and well-wishers for helping us

by rigorous reviews of this work and inspiring suggestion.

v

Table of Contents

Abstract
(@ = Vo] (T g 1 (0o [0 1o o PSP 1
Chapter 2 Intrusion Detection SyStem (IDS).......ccccvivurriireieeeeieceeecinrnrrereeeeeeeeeeessssssssssseseeseesseeens 3
2.1 Definition Of IDS.......oooiieeie ettt ettt e et e e st e e et ee e s ssaeeeenbeeeenraeeenssaaennns 3
2.2 NecesSIty OF IDS. ..ottt 4
2.3 TYPES OF IDS... ettt ettt et st et e be e sttt e be e et e e s 6
2.3.1 Network Based IDS.......cooeiiiiiiieeeee ettt e e e s e naaae s 7
2.3.1.1 Advantages of Network-Based IDS..........cccceiiiiiiiiiiiieieeeee e 8
2.3.1.2 Disadvantages of Network-Based IDS..........coccoiiiiiiiiiceceee 8
2.3.2 HOSt Based IDS... ..o 9
2.3.2.1 Advantages of Host Based IDS..........ccooiiiiiiiiiiie e 11
2.3.2.2 Disadvantages of Host Based IDS........cccccooiiiiimiiiiiiieeeeeeeeee e 11
2.3.3 Application-Based IDS...........coooiiiiiiiiiiiiieee e 12
2.3.3.1 Advantages of Application-Based IDS.............ccoooiiiiiiiiiiniiieeeeeeeeee 12
2.3.3.2 Disadvantages of Application-Based IDS..........cccceoviiiieiiiiiniieeeiieeeeeeee, 12
2.3.4 Signature-Based IDS...........oo i 13
2.3.4.1 Disadvantage of Signature-Based IDS............ccoooiiiiiiiiiiiiiiieeeeeee, 13
2.3.5 Statistical Anomaly Based IDS..........ccooiiiiiiiieeee e 14
2.3.5.1 Advantages of Statistical Anomaly Based IDS..........cccccoooiiiiiiiiiniiiiiieeeee, 14
2.3.5.2 Disadvantage of Statistical Anomaly Based IDS.............ccocciviiiiiinninnicene 15
Chapter 3 Threats in NEtWOIKS.c.ii i nane s 16
Bu1 POTE SCAN.c..eeeiiiiieee ettt ettt et e ettt e st e ettt e bt eenaraee s 17
3.2 S0CIal ENZINEETING. ... eeiiiiiiiiiieiiiee ettt ettt ettt et e sttt e e sate e e sbeeesabeeesaaeens 18
3.3 RECONNAISSANCE. ...ceouutieiuiiieeiiieeiiie ettt ettt e ettt e et e e eite e e bt e e s bt e e sttt e sab b e e s aabeeesbeeseabeeenanaeens 19
3.3.1 DUmMPSIET DIVINZ....ciiiiiiiiiiiiiiieiiiee ettt ettt ettt st e st e e sabae e saaeeeaee 19
3.3.2 EaVESATOPPING. .. .eeeitieeiiieeiieeeite ettt ettt et e sttt e st e st e e st e e s eabeeesabaeesneeenane 20
3.3.3 Operating System and Application FIngerprinting............cceccveeeveeneeenieeneeenneennne. 21
3.3.4 Bulletin Boards and Chats...........ccuiiiiiiiiieiiiiieccieeeee et 22
3.3.5 Availability of DOCUMENTATION.cccuviriiiiiinieeiiere e 22
3.3.6 Theft Of SEIVICE....ccuiiiiiieeiie ettt et e e st e e aee e s taeesnsaeeenaeeenns 22
3.4 ProtOCOL FIAWS....cciiiiiiiiei ettt e et e e e et e e e e et tae e e e e ensbaeeeeennnnnaeeaaens 23
3.4.1 Fragmentation AttaCKS......cceeeiiiiiiiieeciie ettt 23

3.5 TMPEISOMATION.eeiiuiiieiriiiieiitte ettt e et ee et e e ettt e e eibeeeeabte e ettt e e sttt e sstaeesnsbeeenaabeeseabaeesaaseeens 24

3.5.1 Authentication Foiled by GUESSING.......ccccceeiriiiiiiiiiiiiiie et 25
3.5.2 Authentication Thwarted by Eavesdropping or Wiretapping.........cccecceevvveenveeennne. 26
3.5.3 Authentication Foiled by AvOidance.............ccovuiiiiniiiieiniiiieinieeenieee e 26
3.5.4 Nonexistent AUthentiCAtION.cccvviieeriiiiee et ee e eree e e e e e e sare e e e e eeaeeas 27
3.5.5 Well-Known AuthentiCation...........ceovuiieiiiieeiiiie ettt e 28
3.5.6 Trusted AUtheNtICAION.vieieriiieeeeiieeeeeiieee e erireeeeee e e e et eeesebeeeeeennaraeeeeeanneeas 29
3.0 SPOOTIIIZ. ...ttt ettt ettt et et e nbe e st s ane 29
3.6.1 MaASQUETAAE..... oottt e 29
3.6.2 Sess10n HIJACKING.......eoiiiiiiiiiiiieieetee et e 30
3.6.3 Man-in-the-Middle AttacK.........cccueieriiiiiiiiiieiiiie e 31
3.6.4 TP SPOOTING. c..uitiiiiiiieeeiiteee ettt ettt e et e et eesabae e e 31
3.7 Message Confidentiality TRICAtS........ccevviiiriiieeiiieeeiiie et eesaeee s 32
BT MISAEIIVETY ...ceiiiiiiiiieeee ettt et ettt e e e baee e 32
372 EXPOSUTC.ccceeuiiiiiieeeeiiiiteeeeeeiiiteeeeeeeitteeeeesiateeesssastateeesesaabtteeesaansstaeeessnnnsaeeeesennssnaeeas 33
3.7.3 Traffic FIOW ANALYSIS.....cciiiiiiiiiiiieeeiiieeeitee ettt e eirte et e e s vee e s taeeesnbeee e aeeeesaeeeenns 33
3.8 Message INteZrity TRICALS......cccveiervieeiiieeiiee ettt ettt e e aae et e e eesaaee s 34
3.8.1 Falsification Of MESSAZES....ccvtiiruiieriiieeririeeiiieeerieeesireeesteeesaeeeeseeessaeeensseesnsseesenns 34
382 INOISC. ettt ettt ettt ettt ettt ettt sttt sttt sttt st e st e nabee e 35
3.8.3 Web Site Defacement........cc.eeiuiiiiiiiiiiiiiiiieeiceeceee e 35
3.8.3.1 BUFfEer OVEIrflOWS....coueiiiiiiiiiiiieieceee e 36
3.8.3.2 Dot-Dot and Address Problems............cooueeviieriiiiiinieiienieeeereeeeseeseee 36
3.8.3.3 Application Code EITOTS........ccoouiiiiiiiiiiiiiieiniieeeeiiee et 37
3.8.3.4 Server-Side INCIUde........cc.cooviiiiiiiiiiicee e 38

3.9 Denial Of SEIVICE....ccouuiiiiiiiiiiiieee e et st 38
3.9.1 Transmission Failure..........ccooiiiiiiiiiiiiiiiiiccccceeee e 39
3.9.2 Connection FIOOAING.......ccccoiiiiiiiiiiiiiiiieeiceeeeeee e 40
3.9.2.1 EChO-CRATZEN......cooiuiiiiiiiiiiiiieeiie ettt e e 41
3.9.2.2 PING Of Dath......ooiiiiiiiiiiieee e 41

3.9.3 SIMUIT ..ottt st et e 41
3.9.4 ScrIpt KIAAIES. ...coouviiiieiieeiieecee e e 42
3.9.5 SYN FIOOA...... it e 42
3.9.5 Traffic REAITECHON.cceiiiieeiiieciie ettt ettt e e et e e e aeeesaeeesnaeeeenns 44
3.9.6 DINS AACK ..ce ittt ettt ettt ettt 45
3.9.7 Distributed Denial of SEIVICE......ccccviieiiiiiiiiieeiiieeciee e 45
3.9.8 Land ATLACK......ceiieiiiiieeiiiee ettt e e e e e e et e e e s e e e e nbbaaeeeenaaeas 47
3.9.9 ICMP FIOOM. ... oottt st ettt e 47
3.9.10 UDP FLOOG. ... ettt ettt sttt sttt et e et esabeeeaes 47
3.9.11 Teardrop AACK........eiiiuieeeiiieeeiee et ettt e et te et e e e s beeesbaeeesnbeee e nbeeeesseeennns 48

vi

3.10 Threats to ActiVe OF MODIIE COAE.......coovvuueiiiiiiieeeeeeeeieeee ettt e e e eeaee e e eeaaas 48

BU10.T COOKIES. ...eeeiiieeiiieetee ettt ettt e et e et e e st e e st e e sabeessabeeesaseeenabeeenabeeens 48
BoL10.2 SCOIIPLS. c.veeenteeeiee ettt ettt ettt ettt ettt e st e sa e et san e e sar e s e e 49
3.10.3 ACHIVE COUC...cnnviieiiieeiiie ettt ettt st e et e et e e st eesabaeesaaeenane 51
3.10.3.1 JAVASCIIPL. ettt sttt s 51
BU10.3.2 ACHVEX ..ottt ettt ettt et e e e e et e sttt e s bt eeabeeeabeeeabeeebeeeabeeeabeesnneeennes 53

3.10.4 AUtO EXEC DY TYPC..uueiiiiiiiiiiiiieete ettt et 54

3.11 Building BIOCKS. ...coueiiiieiiieiiee et e e e 55
312 WEAK KBS ..ttt ettt 55
3.13 MathematiCal AtLACKS........uuiiiieiiiiiieeeiiiee e eeiiree e et ee e e e e e e e eeraeeeeeesnsareeeeesnnnnaeeeaens 56
3.14 Birthday ATACKSooiuiiiiieiie ettt 56
3.15 WAL DIIVINZ. ..ttt ettt e et sae e e st e e st e e e bbeeesaeaeens 57
3.16 War Dialing/Demon Dialing AttacK..........ccccueeeriuiieiiiiieeniieeeriieeeieeeeeveeesieeeeeveeesneeens 57
BU17 REPIAY ..t ettt 57
Top 14 network vulNerabilities......... .o i 58
Summary of Network VUIN@rabilities.cooueirierrieiiee e 59
Chapter 4 Developing our own Intrusion Detection System..........ccccceeeeeeciciiieeeeee e e e 62
4.1 CRAlIENEES. ...ttt ettt ettt et e st b et b e bt e sabe e b e ebeeae 62
4.2 Type of IMPIEMENtatiON.cccuiieiriieeeiiiieeiiieeeiieeeeiiee e et e e e teessbee e e s e aeesabeeesnseeesnanees 63
4.3 PIANNING. ... tiieiiiieeiiiee ettt et e ettt e e et e e eateeesabeeessaaeeensbeaeensseessseesansaeesssaeennsseesnsseesnnsnes 63
L 3 VU P BN T PSSR OPPRR 66
4.5 The IMPIEemMENtatiON.ccccviiiriieiiiieeriie et eeie e e et e et ee e et e e sebeeestaeesseeeensseessseeensseeennnees 67
4.5.1 Modularization and Work Distribution............cecceeeriiiiiniieiniiieniieeniieeeeeeeee e 67

4.5.2 Attack Signatures and AIZOTItRMSccceevviiiiiiiiiieiie e 68

4.5.3 PSEUAOCOAES.cceuiiieiiiiiiiiieetee ettt et e et e et e e et e e e e sbbee e abbeeenebeeennaees 70
4.5.3.1 EChO-CRArZEN.uviiiiiiieiiieeeiieeeete ettt sttt e et eesibaeesnareeenes 70

A.5.3.2 FLaZEIC...co it ettt et e et e e 70

A.5.3. 3 LAN ittt 71

4.5.3. 4 PING FIOO......ciiiiiiiiee e s 71

4.5.3.5 PING Of D@AtN...cccuiiiiiiiiiiiiieeee et 71

4.5.3.6 POIT SCAMN..cccciiiiiiieeeeiiitee ettt e e et e e e e rae e e e e esnssbeeeesssnnsaeeeeeasnssneaaeeans 72

A.5.3.7T SINUTE ..ottt ettt ettt st e st e e st e e e bt eeeeareeeeane 72
Chapter 5 Analysis and TeSTING......cuueeeerrreeriririeeeee e esee e s e e sssee s s sse e s s e e e s s esn e e s sne e e s s nneesnneeas 73
Chapter 6 Future Development and Related Studies..........cccvoeeeeeeeieccciieeiie e 76

vii

(@00 Y1 Lol [T o s TR 77

Y70 T T o [ol -3 PR 78
Appendix A User Manual...........cccooiiiiiiiiiiiiieiiccie ettt 78
ApPpPendix B SCrEENSNOLS.cccuiiiiiiiiiiieite ettt s 79

R (=T (=T o Lol LTSRS 81

viil

Abstract

Objective of this project is to study various ways network security could be
challenged, analyze the events that lead to vulnerabilities and hacking in remote
network manipulation method, learn methodologies used to compromise remote
systems, and developing a software that will detect this remote intrusion. It will be
oriented towards the study of network security as a whole, and the development of a

working Network Based Intrusion Detection System.

iX

Chapter 1 Introduction

In the growing use of Internet in todays business, corporate institutions and
almost everywhere in everyday life people are getting connected in the huge global
internetwork. Hence the risk from network related attacks are growing and becoming a
serious concern. Considering the importance of security, it is unwise to consider
Internet as not so dangerous means of vulnerability, instead the risk it poses should be
looked at thoroughly and security measures should be undertaken.

Network security is a very challenging work in todays world. Attackers are trying
to break the security protocol using various malicious means. Security for a network,
being similar in maintenance as Institution security, has many forms of solution to
tackle misuse of network protocol which includes gateway security, authentication,
encryption, monitoring routers, and firewalls. But most of them can be bypassed
despite their strength in protection. Only firewall and others are not enough to protect a
network, in addition to them we need some extra protection to protect our network. We
need a mechanism which can capture packets, analyze them and decide on the
behavior of a particular communicating host whether it could be considered malicious
or fair, and give alarm to the firewall or network system administrator as necessary.
Intrusion Detection System is the best technique for this purpose.

Intrusion Detection System or IDS is a software or hardware based protection
systems that monitor the events occurring or threats in a network, analyzing them for
signatures of security problems. The goal of IDS is to identify, preferably in real time,
unauthorized use, misuse, and abuse of computer systems from both internal and

external means from a networks point of view. As network attacks have increased day

by day in a alarming rate, Intrusion Detection Systems is becoming a necessary
addition to the security infrastructure (firewall) of most organizations. Developing an
Intrusion Detection System is a challenging work due to complex and immense nature
of computer internetwork which increases its connectivity day by day and gives greater
access of internal systems to the outsiders and makes it easier to attack and
compromise a computer of an institution. The principle behavior of an IDS will be to

distinguish an intruder from that of a legitimate user.

Chapter 2 Intrusion Detection System (IDS)

Our deepest acknowledgment goes to Charles P. and Shari Lawrence Pfleeger for their
book on “Security in Computing” from which major quotations were made when writing most
of the initial Introductory texts below which was part of our research phase.

2.1 Definition of IDS

Intrusion detection and response is the task of monitoring for evidence occurring
in a computer system or network and analyzing them for signs of intrusions, defined as
attempts to compromise the confidentiality, integrity, availability, or to bypass the
security mechanisms of a computer or network and responding to this evidence.
Response includes notifying the appropriate parties to take action against intruders
accessing the systems from the Internet, authorized users of the systems who attempt
to gain additional privileges for which they are not authorized, and authorized users
who misuse the privileges given them. IDS, therefore, is the detection of inappropriate,

incorrect, or anomalous activity.

IDS have two primary components:
» Creation and maintenance of intrusion detection systems (IDSs) and processes
for host and network monitoring and event notification

» Creation of a computer incident response team (CIRT) for the following tasks:

Analysis of an event notification

Response to an incident if the analysis warrants it

Escalation path procedures

Resolution, post-incident follow-up, and reporting to appropriate parties

IDS is a software or hardware product that monitors, analyze, and tracks
network traffic or host audit logs to determine whether any violations of an
organization’s security policy have taken place. IDS can detect intrusions that have
circumvented or passed through a firewall or that are occurring within the local area

network (LAN) behind the firewall.

IDSs perform a variety of functions:
» Monitoring users and system activity
 Auditing system configuration for vulnerabilities and misconfiguration
» Assessing the integrity of critical system and data files
» Recognizing known attack patterns in system activity
« Identifying abnormal activity through statistical analysis
» Managing audit trails and highlighting user violation of policy or normal activity
» Correcting system configuration errors

* Installing and operating traps to record information about intruders

2.2 Necessity of IDS

Intrusion detection system allows organizations to protect their systems from the
threats that come with increasing network connectivity and reliance on information
systems. IDSs have gained acceptance as a necessary addition to every organization’s
security infrastructure.

A fundamental goal of computer security management is to affect the behavior
of individual users in a way that protects information systems from security problems.

Intrusion detection systems help organizations accomplish this goal by increasing the

perceived risk of discovery and punishment of attackers. This serves as a significant
deterrent to those who would violate security policy.

Attackers, using widely publicized techniques, can gain unauthorized access to
many, if not most systems, especially those connected to public networks. This often
happens when known vulnerabilities in the systems are not corrected.

In an ideal world, commercial software vendors would minimize vulnerabilities in
their products, and user organizations would correct all reported vulnerabilities quickly
and reliably. However, in the real world, this seldom happens thanks to our reliance on
commercial software where new flaws and vulnerabilities are discovered on a daily
basis.

Intrusion detection can represent an excellent approach to protecting a system.
IDS can detect when an attacker has penetrated a system by exploiting an uncorrected
or uncorrectable flaw. Furthermore, it can serve an important function in system
protection, by bringing the fact that the system has been attacked to the attention of the
administrators who can contain and recover any damage that results. This is far
preferable to simply ignoring network security threats where one allows the attackers
continued access to systems and the information on them.

When adversaries attack a system, they typically do so in predictable stages.
The first stage of an attack is usually probing or examining a system or network,
searching for an optimal point of entry. In systems with no IDS, the attacker is free to
thoroughly examine the system with little risk of discovery or retribution. Given this
unfettered access, a determined attacker will eventually find vulnerability in such a

network and exploit it to gain entry to various systems.

The same network with an IDS monitoring its operations presents a much more
difficult challenge to that attacker. Although the attacker may probe the network for
weaknesses, the IDS will observe the probes, will identify them as suspicious, may
actively block the attacker's access to the target system, and will alert security
personnel who can then take appropriate actions to block subsequent access by the
attacker. Even the presence of a reaction to the attacker’s probing of the network will
elevate the level of risk the attacker perceives, discouraging further attempts to target
the network.

IDSs verify, itemize, and characterize the threat from both outside and inside
organization’s network, assisting you in making sound decisions regarding your
allocation of computer security resources. Using IDSs in this manner is important, as
many people mistakenly deny that anyone (outsider or insider) would be interested in
breaking into their networks. Furthermore, the information that IDSs give you regarding
the source and nature of attacks allows you to make decisions regarding security
strategy driven by demonstrated need, not guesswork or folklore.

When IDSs run over a period of time, patterns of system usage and detected
problems can become apparent. These can highlight flaws in the design and
management of security for the system, in a fashion that supports security

management correcting those deficiencies before they cause an incident.

2.3 Types of IDS

There are several types of IDSs available today, characterized by different
monitoring and analysis approaches. Each approach has distinct advantages and
disadvantages. The most common approaches of IDS are statistical anomaly detection

(also known as behavior-based) and signature-based (also known as knowledge-based

or pattern-matching) detection. IDSs that operate on a specific host and detect
malicious activity on that host are called host-based IDSs. IDSs that operate on
network segments and analyze that segment’s traffic are called network-based IDSs.
Because there are pros and cons of each, an effective IDS should use a combination of
both network- and host-based IDSs. A truly effective IDS will detect common attacks as

they occur, which includes distributed attacks.

2.3.1 Network Based IDS

The majority of commercial IDSs are network based. Network-based IDSs
reside on a discrete network segment and monitor the traffic on that segment. They
usually consist of a network appliance with a network interface card (NIC) that is
operating in promiscuous mode and is intercepting and analyzing the network packets
in real time. Listening on a network segment or switch, one network-based IDS can
monitor the network traffic affecting multiple hosts that are connected to the network
segment, thereby protecting those hosts.

Network-based IDSs often consist of a set of single-purpose sensors or hosts
placed at various points in a network. These sensors can only see the packets that
happen to be carried on that particular network segment, monitor network traffic,
performing local analysis of that traffic and reporting attacks to a central management
console. As the sensors are limited to running the IDS, they can be more easily
secured against attack. Many of these sensors are designed to run in “stealth” mode, in

order to make it more difficult for an attacker to determine their presence and location.

Packets are identified to be of interest if they match a signature. Three primary types of
signatures are as follows:
» String signatures—String signatures look for a text string that indicates a
possible attack.
* Port signatures—Port signatures watch for connection attempts to well known,
frequently attacked ports.
» Header condition signatures—Header signatures watch for dangerous or

illogical combinations in packet headers.

2.3.1.1 Advantages of Network-Based IDS

+ A few well-placed network-based IDSs can monitor a large network.

e« The deployment of network-based IDSs has little impact upon an existing
network. Network-based IDSs are usually passive devices that acquire data and
review packets and headers on a network without interfering with the normal
operation of a network. Thus, it is usually easy to retrofit a network to include
network-based IDSs with minimal effort.

* Network-based IDSs can be made very secure against attack and even made
invisible to many attackers.

« |t can also detect denial of service attacks.

2.3.1.2 Disadvantages of Network-Based IDS

* Network-based IDSs may have difficulty processing all packets in a large or
busy network and, therefore, may fail to recognize an attack launched during
periods of high traffic. Some vendors are attempting to solve this problem by

implementing IDSs completely in hardware, which is much faster. The need to

analyze packets quickly also forces vendors to both detect fewer attacks and also
detect attacks with as little computing resource as possible which can reduce
detection effectiveness.

 Many of the advantages of network-based IDSs don’t apply to more modern
switch-based networks. Switches subdivide networks into many small segments
(usually one fast Ethernet wire per host) and provide dedicated links between hosts
serviced by the same switch. Most switches do not provide universal monitoring
ports and this limits the monitoring range of a network-based IDS sensor to a single
host. Even when switches provide such monitoring ports, often the single port
cannot mirror all traffic traversing the switch.

. Network-based IDSs cannot analyze encrypted information. This problem is
increasing as more organizations (and attackers) use virtual private networks.

* Most network-based IDSs cannot tell whether or not an attack was successful;
they can only discern that an attack was initiated. This means that after a network-
based IDS detects an attack, administrators must manually investigate each
attacked host to determine whether it was indeed penetrated.

+ Some network-based IDSs have problems dealing with network-based attacks
that involve fragmenting packets. These malformed packets cause the IDSs to

become unstable and crash.

2.3.2 Host Based IDS

Host-based IDSs use small programs (intelligent agents) that reside on a host
computer. These IDSs operate on information collected from within an individual
computer system. This vantage point allows host-based IDSs to analyze activities with

great reliability and precision, determining exactly which processes and users are

involved in a particular attack on the operating system, writing to log files, and
triggering alarms. Furthermore, unlike network-based IDSs, host-based IDSs can “see”
the outcome of an attempted attack, as they can directly access and monitor the data
files and system processes usually targeted by attacks. Host-based systems look for
activity only on the host computer; they do not monitor the entire network segment.
Host-based IDSs normally utilize information sources of two types, operating

system audit trails, and system logs. Operating system audit trails are usually
generated at the innermost (kernel) level of the operating system, and are therefore
more detailed and better protected than system logs. However, system logs are much
less obtuse and much smaller than audit trails, and are furthermore far easier to
comprehend. Some host-based IDSs are designed to support a centralized IDS
management and reporting infrastructure that can allow a single management console
to track many hosts. Others generate messages in formats that are compatible with
network management systems. In particular, host-based IDSs have the following
characteristics:

» They monitor accesses and changes to critical system files and changes in user

privileges.

» They detect trusted insider attacks better than network-based IDS.

» They are relatively effective for detecting attacks from the outside.

» They can be configured to look at all network packets, connection attempts, or

login attempts to the monitored machine, including dial-in attempts or other non—

network-related communication ports

10

2.3.2.1 Advantages of Host Based IDS

* Host-based IDSs, with their ability to monitor events local to a host, can detect
attacks that cannot be seen by network-based IDS.

* Host-based IDSs can often operate in an environment in which network traffic is
encrypted, when the host-based information sources are generated before data is
encrypted and/or after the data is decrypted at the destination host.

* Host-based IDSs are unaffected by switched networks.

 When these IDSs operate on OS audit trails, they can help to detect Trojan
Horse or other attacks that involve software integrity breaches. These appear as

inconsistencies in process execution.

2.3.2.2 Disadvantages of Host Based IDS

» Host-based IDSs are harder to manage, as information must be configured and
managed for every host monitored.

» Since at least the information sources (and sometimes part of the analysis
engines) for host-based IDSs reside on the host targeted by attacks, the IDS may
be attacked and disabled as part of the attack.

* Host-based IDSs are not well suited for detecting network scans or other such
surveillance that targets an entire network, because the IDS only sees those
network packets received by its host.

* Host-based IDSs can be disabled by certain denial-of-service attacks.

* When host-based IDSs use operating system audit trails as an information
source, the amount of information can be immense, requiring additional local

storage on the system.

11

* Host-based IDSs use the computing resources of the hosts they are monitoring,

therefore inflicting a performance cost on the monitored systems.

2.3.3 Application-Based IDS

Application-based IDSs are a special subset of host-based IDSs that analyze
the events transpiring within a software application. The most common information
sources used by application-based IDSs are the application’s transaction log files. The
ability to interface with the application directly, with significant domain or application-
specific knowledge included in the analysis engine, allows application-based IDSs to
detect suspicious behavior due to authorized users exceeding their authorization. This
is because such problems are more likely to appear in the interaction between the

user, the data, and the application.

2.3.3.1 Advantages of Application-Based IDS

» Application-based IDSs can monitor the interaction between user and application,
which often allows them to trace unauthorized activity to individual users.

» Application-based IDSs can often work in encrypted environments, since they
interface with the application at transaction endpoints, where information is

presented to users in unencrypted form.

2.3.3.2 Disadvantages of Application-Based IDS

» Application-based IDSs may be more vulnerable than host-based IDSs to attacks
as the applications logs are not as well-protected as the operating system audit

trails used for host-based IDSs.

12

» As Application-based IDSs often monitor events at the user level of abstraction,
they usually cannot detect Trojan Horse or other such software tampering attacks.
Therefore, it is advisable to use Application-based IDS in combination with Host-

based and/or Network-based IDSs.

2.3.4 Signature-Based IDS

In a signature-based IDS or knowledge-based IDS, signatures or attributes that
characterize an attack are stored for reference. Then, when data about events is
acquired from host audit logs or from network packet monitoring, this data is compared
with the attack signature database. If there is a match, a response is initiated. This
method is more common than using behavior-based IDSs. Signature-based IDSs are
characterized by low false alarm rates (or positives) and, generally, are standardized

and understandable by security personnel.

2.3.4.1 Disadvantage of Signature-Based IDS

* A weakness of the signature-based IDS approach is the failure to characterize
slow attacks that extend over a long period of time. To identify these types of
attacks, large amounts of information must be held for extended time periods.
Another issue with signature-based IDSs is that only attack signatures that are
stored in their database are detected.

« The IDS is resource-intensive. The knowledge database continually needs
maintenance and updating with new vulnerabilities and environments to remain

accurate.

13

» Because knowledge about attacks is much focused (dependent on the operating
system, version, platform, and application), new, unique, or original attacks often go

unnoticed.

2.3.5 Statistical Anomaly Based IDS

Statistical anomaly or behavior-based IDSs dynamically detect deviations from
the learned patterns of “normal” user behavior and trigger an alarm when an intrusive
activity occurs. Behavior-based IDSs learn normal or expected behavior of the system
or the users and assume that an intrusion can be detected by observing deviations
from this norm.

With this method, an IDS acquires data and defines a “normal” usage profile for
the network or host that is being monitored. This characterization is accomplished by
taking statistical samples of the system over a period of normal use. Typical
characterization information used to establish a normal profile includes memory usage,
CPU utilization, and network packet types. With this approach, new attacks can be

detected because they produce abnormal system statistics.

2.3.5.1 Advantages of Statistical Anomaly Based IDS

» The system can dynamically adapt to new, unique, or original vulnerabilities.

« This IDS is not as dependent upon specific operating systems as a knowledge-
based IDS.

» They help detect abuse-of-privileges types of attacks that do not actually involve

exploiting any security vulnerability.

14

2.3.5.2 Disadvantage of Statistical Anomaly Based IDS

 Statistical anomaly based IDSs are not detect an attack that does not significantly
change the system-operating characteristics, and it might falsely detect a non-
attack event that caused a momentary anomaly in the system.

» High false alarm rates. High positives are the most common failure of behavior-
based ID systems and can create data noise that can make the system unusable or
difficult to use.

» Activity and behavior of the users of a networked system might not be static
enough to effectively implement a behavior-based ID system.

» Network may experience an attack at the same time IDS learning the behavior.

15

Chapter 3 Threats in Networks

Most computer attacks only corrupt a system’s security in very specific ways.
Attacks against network resources are common in today’s Internet-dependent world.
Attacks are launched for a variety of reasons, including monetary gain, maliciousness
(as a challenge), recognition for their activities, fraud, warfare, ideology, and to gain an
economic advantage. Despite the varied capabilities of computer attacks, they usually
result in violation of only four different security properties: availability, confidentiality,
integrity, and control. These violations are described below.

» Confidentiality: An attack causes a confidentiality violation if it allows attackers
to access data without authorization (either implicit or explicit) from the owner of the
information.

* Integrity: An attack causes an integrity violation if it allows the (unauthorized)
attacker to change the system state or any data residing on or passing through a
system

» Availability: An attack causes an availability violation if it keeps an authorized
user (human or machine) from accessing a particular system resource when,
where, and in the form that they need it.

» Control: An attack causes a control violation if it grants an (unauthorized)
attacker privilege in violation of the access control policy of the system. This

privilege enables a subsequent confidentiality, integrity, or availability violation.

16

Attacks are directed at compromising the confidentiality, integrity, and availability

of networks and their resources and fall into the following four general categories:

* Modification attack—Unauthorized alteration of information

* Repudiation attack—Denial that an event or transaction ever occurred

» Denial-of-service attack—Actions resulting in the unavailability of network
resources and services, when required

» Access attack—Unauthorized access to network resources and information

3.1 Port Scan

An attacker can use scanning software to determine which hosts are active and
which are down to avoid wasting time on inactive hosts. A port scan can gather data
about a single host or hosts within a subnet (256 adjacent network addresses). A scan
can be implemented using the Ping utility. After determining which hosts and
associated ports are active, the cracker will initiate different types of probes on the
active ports. By port scanning an attacker can know about three features:

* Which standard ports or services (such as e-mail, FTP, and remote logon) are
running and responding on the target system

» What operating system is installed on the target system

» What applications and versions of applications are present

This information is readily available for the asking from a networked system; it
can be obtained quietly, anonymously, without identification or authentication, drawing

little or no attention to the scan.

17

Types of port scans include:
* Vanilla - An attempt to connect to all ports (there are 65,536)
« Strobe - An attempt to connect to only selected ports (typically, under 20)
» Stealth scan - Several techniques for scanning that attempt to prevent the
request for connection being logged
 FTP Bounce Scan - Attempts that are directed through an File Transfer Protocol
server to disguise the cracker's location
» Fragmented Packets - Scans by sending packet fragments that can get through
simple packet filters in a firewall
* UDP - Scans for open User Datagram Protocol ports

* Sweep - Scans the same port on a number of computers

3.2 Social Engineering

Social engineering attack uses social skills to obtain information such as
passwords or PIN numbers to be used against information systems. For example, an
attacker may impersonate someone in an organization and make phone calls to
employees of that organization requesting passwords for use in maintenance
operations. The following are additional examples of social engineering attacks:

» E-mails to employees from a cracker requesting their passwords to validate the
organizational database after a network intrusion has occurred

» E-mails to employees from a cracker requesting their passwords because work
has to be done over the weekend on the system

» E-mails or phone calls to an official who is conducting an investigation for the

organization and requires passwords for the investigation

18

» Improper release of medical information to individuals posing as doctors and
requesting data from patients’ records
» A computer repair technician convincing a user that the hard disk on his or her
PC is damaged and unrepairable and installing a new hard disk for the user, the
technician then taking the original hard disk to extract information and sell the
information to a competitor or foreign government
Because the victim has helped the attacker, the victim will think nothing is wrong
and not report the incident. Thus, the damage may not be known for some time. An
attacker has little to lose in trying a social engineering attack. At worst it will raise
awareness of a possible target. But if the social engineering is directed against
someone who is not skeptical, especially someone not involved in security
management, it may well succeed. We as humans like to help others when asked

politely.

3.3 Reconnaissance

Reconnaissance is the general term for collecting information. In security it often
refers to gathering discrete bits of information from various sources and then putting
them together like the pieces of a puzzle. Commonly used reconnaissance techniques

are dumpster diving & eavesdropping.

3.3.1 Dumpster Diving

Dumpster diving involves the acquisition of information that is discarded by an
individual or organization. In many cases, information found in trash can be very
valuable to a cracker. Discarded information may include network diagrams, technical

manuals, security device configurations, password lists, system designs and source

19

code, telephone numbers, and organization charts. It is important to note that one
requirement for information to be treated as a trade secret is that the information be
protected and not revealed to any unauthorized individuals. If a document containing
an organization’s trade secret information is inadvertently discarded and found in the
trash by another person, the other person can use that information because it was not

adequately protected by the organization.

3.3.2 Eavesdropping
Eavesdropping attacks occur through the interception of network traffic. This
situation is particularly prevalent when a network includes wireless components and
remote access devices. By eavesdropping, an attacker can obtain passwords, credit
card numbers, and other confidential information that a user might be sending over the
network. Examples of the various manners of eavesdropping include the following:
» Passive eavesdropping—Unauthorized, covert monitoring of transmissions
» Active eavesdropping—Probing, scanning, or tampering with a transmission
channel to access the transmitted information
* Inductance—BYy this process an intruder can tap a wire and read radiated
signals without making physical contact with the cable. A cable's signals travel only
short distances, and they can be blocked by other conductive materials. The
equipment needed to pick up signals is inexpensive and easy to obtain, so
inductance threats are a serious concern for cable-based networks. For the attack
to work the intruder must be fairly close to the cable; this form of attack is thus

limited to situations with reasonable physical access.

20

3.3.3 Operating System and Application Fingerprinting

The port scan supplies the attacker with very specific information. For instance,
an attacker can use one to find out that port 80 is open and supports HTTP, the
protocol for transmitting web pages. But the attacker is likely to have many related
questions, such as which commercial server application is running, what version, and
what the underlying operating system and version are. Once armed with this additional
information, the attacker can consult a list of specific software's known vulnerabilities to
determine which particular weaknesses to try to exploit.

How can the attacker answer these questions? The network protocols are
standard and vendor independent. Still, each vendor's code is implemented
independently, so there may be minor variations in interpretation and behavior. The
variations do not make the software non compliant with the standard, but they are
different enough to make each version distinctive. For example, each version may have
different sequence numbers, TCP flags, and new options. To see why, consider that
sender and receiver must coordinate with sequence numbers to implement the
connection of a TCP session. Some implementations respond with a given sequence
number, others respond with the number one greater, and others respond with an
unrelated number. Likewise, certain flags in one version are undefined or incompatible
with others. How a system responds to a prompt (for instance, by acknowledging it,
requesting retransmission, or ignoring it) can also reveal the system and version.
Finally, new features offer a strong clue: A new version will implement a new feature
but an old version will reject the request. All these peculiarities, sometimes called the

operating system or application fingerprint, can mark the manufacturer and version.

21

3.3.4 Bulletin Boards and Chats

The Internet is probably the greatest tool for sharing knowledge since the
invention of the printing press. It is probably also the most dangerous tool for sharing
knowledge. Numerous underground bulletin boards and chat rooms support exchange
of information. Attackers can post their latest exploits and techniques, read what others
have done, and search for additional information on systems, applications, or sites.
Remember that, as with everything on the Internet, anyone can post anything, so there

is no guarantee that the information is reliable or accurate.

3.3.5 Availability of Documentation

The vendors themselves sometimes distribute information that is useful to an
attacker. For example, Microsoft produces a resource kit by which application vendors
can investigate a Microsoft product in order to develop compatible, complementary
applications. This toolkit also gives attackers tools to use in investigating a product that

can subsequently be the target of an attack.

3.3.6 Theft of Service

In a wireless network many hosts run the Dynamic Host Configuration Protocol
(DHCP), by which a client negotiates a one-time IP address and connectivity with a
host. A small number of IP addresses can be shared among users. Essentially the
addresses are available in a pool. A new client requests a connection and an IP
address through DHCP, and the server assigns one from the pool. This scheme admits
a big problem with authentication. Unless the host authenticates users before assigning
a connection, any requesting client is assigned an IP address and network access.

(Typically, this assignment occurs before the user on the client workstation actually

22

identifies and authenticates to a server, so there may not be an authenticable identity
that the DHCP server can demand.) The situation is so serious that in some
metropolitan areas a map is available, showing many accepting wireless connections.
A user wanting free Internet access can often get it simply by finding a wireless LAN

offering DHCP service.

3.4 Protocol Flaws

Internet protocols are publicly posted for scrutiny by the entire Internet
community. Each accepted protocol is known by its Request for Comment (RFC)
number. Many problems with protocols have been identified by sharp reviewers and
corrected before the protocol was established as a standard.

But protocol definitions are made and reviewed by fallible humans. Likewise,
protocols are implemented by fallible humans. For example, TCP connections are
established through sequence numbers. The client (initiator) sends a sequence number
to open a connection, the server responds with that number and a sequence number of
its own, and the client responds with the server's sequence number. Suppose
someone can guess a client's next sequence number. That person could impersonate
the client in an interchange. Sequence numbers are incremented regularly, so it can be

easy to predict the next number.

3.4.1 Fragmentation Attacks

A fragmentation attack is used as a method of getting packets around a packet
filtering firewall. In a basic fragmentation attack, packets are broken into fragments with

the first packet containing the complete header data. The remaining packets do not

23

contain any header information. Because some routers filter packets based on this
header information, the remaining packets without header data are not filtered and

pass through the firewall.

Two examples of fragmentation attacks follow:

» A tiny fragment attack occurs when the intruder sends a very small fragment that
forces some of the TCP header field into a second fragment. If the target’s filtering
device does not enforce minimum fragment size, this illegal packet can then be
passed on through the target’s network.

» An overlapping fragment attack is another variation on a datagram’s zero-offset
modification (similar to the teardrop attack). Subsequent packets overwrite the initial
packet’s destination address information, and then the second packet is passed by
the target’s filtering device. This action can happen if the target’s filtering device

does not enforce a minimum fragment offset for fragments with non-zero offsets.

3.5 Impersonation

Impersonation is a more significant threat in a wide area network than in a local
one. Local individuals often have better ways to obtain access as another user; they
can, for example, simply sit at an unattended workstation. Still, impersonation attacks
should not be ignored even on local area networks, because local area networks are
sometimes attached to wider area networks without anyone's first thinking through the
security implications. In an impersonation, an attacker has several choices:

» Guess the identity and authentication details of the target.
* Pick up the identity and authentication details of the target from a previous

communication or from wiretapping.

24

» Circumvent or disable the authentication mechanism at the target computer.
» Use a target that will not be authenticated.

» Use a target whose authentication data are known.

3.5.1 Authentication Foiled by Guessing

Many users choose easy-to-guess passwords. Many worms tried to impersonate
each user on a target machine by trying, in order, a handful of variations of the user
name, a list of common passwords and, finally, the words in a dictionary. Sadly, many
users' accounts are still open to these easy attacks.

A second source of password guesses is default passwords. Many systems are
initially configured with default accounts having GUEST or ADMIN as login IDs;
accompanying these IDs are well-known passwords such as "guest" or "null" or
"password" to enable the administrator to set up the system. Administrators often forget
to delete or disable these accounts, or at least to change the passwords.

In a trustworthy environment, such as an office LAN, a password may simply be
a signal that the user does not want others to use the workstation or account.
Sometimes the password-protected workstation contains sensitive data, such as
employee salaries or information about new products. Users may think that the
password is enough to keep out a curious colleague; they see no reason to protect
against concerted attacks. However, if that trustworthy environment is connected to an
untrustworthy wider-area network, all users with simple passwords become easy
targets. Indeed, some systems are not originally connected to a wider network, so their
users begin in a less exposed situation that clearly changes when the connection

occurs.

25

Dead accounts offer a final source of guessable passwords. Now the attacker
uses social engineering on the system administration. Alternatively, the attacker can
try several passwords until the password guessing limit is exceeded. The system then
locks the account administratively, and the attacker uses a social engineering attack. In

all these ways the attacker may succeed in resetting or discovering a password.

3.5.2 Authentication Thwarted by Eavesdropping or Wiretapping
Because of the rise in distributed and client-server computing, some users have
access privileges on several connected machines. To protect against arbitrary
outsiders using these accesses, authentication is required between hosts. This access
can involve the user directly, or it can be done automatically on behalf of the user
through a host-to-host authentication protocol. In either case, the account and
authentication details of the subject are passed to the destination host. When these
details are passed on the network, they are exposed to anyone observing the
communication on the network. An impersonator can reuse these same authentication

details until they are changed.

3.5.3 Authentication Foiled by Avoidance

Obviously, authentication is effective only when it works. A weak or flawed
authentication allows access to any system or person who can circumvent the
authentication.

In a classic operating system flaw, the buffer for typed characters in a password
was of fixed size, counting all characters typed, including backspaces for correction. If

a user typed more characters than the buffer would hold, the overflow caused the

26

operating system to bypass password comparison and act as if a correct authentication
had been supplied. These flaws can be exploited by anyone seeking access.

Many network hosts, especially those that connect to wide area networks, run
variants of Unix System V or BSD Unix. In a local environment, many users are not
aware of which networked operating system is in use; still fewer would know of, be
capable of, or be interested in exploiting flaws. However, some hackers regularly scan
wide area networks for hosts running weak or flawed operating systems. Thus,
connection to a wide area network, especially the Internet, exposes these flaws to a

wide audience intent on exploiting them.

3.5.4 Nonexistent Authentication

If two computers are used by the same users to store data and run processes
and if each has authenticated its users on first access, one may assume that computer-
to-computer or local user-to-remote process authentication is unnecessary. These two
computers and their users are a trustworthy environment in which the added
complexity of repeated authentication seems excessive.

However, this assumption is not valid. In Unix, the file .rhosts lists trusted hosts
and .rlogin lists trusted users who are allowed access without authentication. The files
are intended to support computer-to-computer connection by users who have already
been authenticated at their primary hosts. These "trusted hosts" can also be exploited
by outsiders who obtain access to one system through an authentication weakness
(such as a password guessing) and then transfer to another system that accepts the

authenticity of a user who comes from a system on its trusted list.

27

An attacker may also realize that a system has some identities requiring no
authentication. Some systems have "guest" or "anonymous" accounts to allow
outsiders to access things the systems want to release to anyone. A user can log in as
"guest" and retrieve publicly available items. Typically, no password is required, or the
user is shown a message requesting that the user type "GUEST" when asked for a

password. Each of these accounts allows access to unauthenticated users.

3.5.5 Well-Known Authentication

Authentication data should be unique and difficult to guess. But unfortunately,
the convenience of one, well-known authentication scheme sometimes usurps the
protection. The system network management protocol (SNMP) is widely used for
remote management of network devices, such as routers and switches that support no
ordinary users. SNMP uses a "community string," essentially a password for the
community of devices that can interact with one another. But network devices are
designed especially for quick installation with minimal configuration, and many network
administrators do not change the default community string installed on a router or
switch. This laxity makes these devices on the network perimeter open to many SNMP
attacks.

Some vendors still ship computers with one system administration account
installed, having a default password. Or the systems come with a demonstration or test
account, with no required password. Some administrators fail to change the passwords

or delete these accounts.

28

3.5.6 Trusted Authentication

Finally, authentication can become a problem when identification is delegated to
other trusted sources. For instance, a file may indicate who can be trusted on a
particular host. Or the authentication mechanism for one system can "vouch for" a
user. Files indicate hosts or users that are trusted on other hosts are useful to users
who have accounts on multiple machines or for network management, maintenance,
and operation, they must be used very carefully. Each of them represents a potential

hole through which a remote user—or a remote attacker—can achieve access.

3.6 Spoofing

Guessing or otherwise obtaining the network authentication credentials of an
entity (a user, an account, a process, a node, a device) permits an attacker to create a
full communication under the entity's identity. Impersonation falsely represents a valid
entity in a communication. Closely related is spoofing, when an attacker falsely carries
on one end of a networked interchange. Examples of spoofing are masquerading,

session hijacking, man-in-the-middle attacks, and IP spoofing.

3.6.1 Masquerade

In a masquerade one host pretends to be another. A common example is URL
confusion. Domain names can easily be confused, or someone can easily mistype
certain names. Thus xyz.com, xyz.org, and xyz.net might be three different
organizations, or one bona fide organization (for example, xyz.com) and two
masquerade attempts from someone who registered the similar domain names. Names

with or without hyphens (coca-cola.com versus cocacola.com) and easily mistyped

29

names (IOpht.com versus lopht.com, or citibank.com versus citybank.com) are
candidates for masquerading.

In another version of a masquerade, the attacker exploits a flaw in the victim's
web server and is able to overwrite the victim's web pages. Although there is some
public humiliation at having one's site replaced, perhaps with obscenities or strong
messages opposing the nature of the site (for example, a plea for vegetarianism on a
slaughterhouse web site), most people would not be fooled by a site displaying a
message absolutely contrary to its aims. However, a clever attacker can be more
subtle. Instead of differentiating from the real site, the attacker can try to build a false
site that resembles the real one, perhaps to obtain sensitive information (names,
authentication numbers, credit card numbers) or to induce the user to enter into a real
transaction. For example, if one bookseller's site, call it Books-R-Us, were overtaken
subtly by another, called Books Depot, the orders may actually be processed, filled,

and billed to the naive users by Books Depot.

3.6.2 Session Hijacking

Session hijacking is intercepting and carrying on a session begun by another
entity. Suppose two entities have entered into a session but then a third entity
intercepts the traffic and carries on the session in the name of the other. An attacker
hijacks a session between a trusted client and network server. The attacking computer
substitutes its IP address for that of the trusted client and the server continues the
dialog believing it is communicating with the trusted client. Simply stated, the steps in
this attack are as follows:

A trusted client connects to a network server.

» The attack computer gains control of the trusted client.

30

» The attack computer disconnects the trusted client from the network server.

» The attack computer replaces the trusted client’s IP address with its own IP
address and spoofs the client’s sequence numbers.

» The attack computer continues dialog with the network server (and the network

server believes it is still communicating with trusted client).

3.6.3 Man-in-the-Middle Attack

A man-in-the-middle attack is a similar form of session hijacking, in which one
entity intrudes between two others. The difference between man-in-the-middle and
hijacking is that a man-in-the-middle usually participates from the start of the session,
whereas a session hijacking occurs after a session has been established. The
difference is largely semantic and not too significant.

A man-in-the-middle attack involves an attacker, A, substituting his or her public
key for that of another person, P. Then, anyone wanting to send an encrypted message
to P using P’s public key is unknowingly using A’s public key. Therefore, A can read the
message intended for P. A can then send the message on to P, encrypted in P’s real
public key, and P will never be the wiser. Obviously, A could modify the message

before resending it to P.

3.6.4 IP Spoofing

IP spoofing is used by an intruder to convince a system that it is communicating
with a known, trusted entity to provide the intruder with access to the system. IP
spoofing involves an alteration of a packet at the TCP level, which is used to attack
Internet-connected systems that provide various TCP/IP services. In this exploit, the

attacker sends a packet with an IP source address of a known, trusted host instead of

31

its own IP source address to a target host. The target host may accept the packet and

act upon it.

3.7 Message Confidentiality Threats

An attacker can easily violate message confidentiality (and perhaps integrity)
because of the public nature of networks. Eavesdropping and impersonation attacks
can lead to a confidentiality or integrity failure. There are several other vulnerabilities

that can affect confidentiality.

3.7.1 Misdelivery

Sometimes messages are misdelivered because of some flaw in the network
hardware or software. Most frequently, messages are lost entirely, which is an integrity
or availability issue. Occasionally, however, a destination address will be modified or
some handler will malfunction, causing a message to be delivered to someone other
than the intended recipient. All of these "random" events are quite uncommon.

More frequent than network flaws are human errors. It is far too easy to mistype
an address such as 100064,30652 as 10064,30652 or 100065,30642, or to type "idw"
or "iw" instead of "diw" for David lan Walker, who is called lan by his friends. There is
simply no justification for a computer network administrator to identify people by
meaningless long numbers or cryptic initials when "iwalker" would be far less prone to

human error.

32

3.7.2 Exposure

To protect the confidentiality of a message, one must track it all the way from its
creation to its disposal. Along the way, the content of a message may be exposed in
temporary buffers; at switches, routers, gateways, and intermediate hosts throughout
the network; and in the workspaces of processes that build, format, and present the
message. All of these exposures apply to networked environments as well.
Furthermore, a malicious attacker can use any of these exposures as part of a general
or focused attack on message confidentiality.

Passive wiretapping is one source of message exposure. So also is subversion
of the structure by which a communication is routed to its destination. Finally,
intercepting the message at it source, destination, or at any intermediate node can lead

to its exposure.

3.7.3 Traffic Flow Analysis

Sometimes not only is the message itself sensitive but the fact that a message
exists is also sensitive. For example, if the enemy during wartime sees a large amount
of network traffic between headquarters and a particular unit, the enemy may be able
to infer that significant action is being planned involving that unit. In a commercial
setting, messages sent from the president of one company to the president of a
competitor could lead to speculation about a takeover or conspiracy to fix prices. Or
communications from the prime minister of one country to another with whom
diplomatic relations were suspended could lead to inferences about a rapprochement

between the countries.

33

3.8 Message Integrity Threats

In many cases, the integrity or correctness of a communication is at least as
important as its confidentiality. In fact for some situations, such as passing
authentication data, the integrity of the communication is paramount. In other cases,

the need for integrity is less obvious.

3.8.1 Falsification of Messages
Increasingly, people depend on electronic messages to justify and direct actions.
An attacker can take advantage of users trust in messages to mislead users. In
particular, an attacker may
» Change some or all of the content of a message
* Replace a message entirely, including the date, time, and sender/receiver
identification

* Reuse (replay) an old message

Combine pieces of different messages into one

Change the apparent source of a message

Redirect a message

Destroy or delete a message
These attacks can be perpetrated in the ways we have already examined, including:

 Active wiretap

Trojan horse

Impersonation

Preempted host

Preempted workstation

34

3.8.2 Noise

Signals sent over communications media are subject to interference from other
traffic on the same media, as well as from natural sources, such as lightning, electric
motors, and animals. Such unintentional interference is called noise. These forms of
noise are inevitable, and they can threaten the integrity of data in a message.
Fortunately, communications protocols have been intentionally designed to overcome
the negative effects of noise. For example, the TCP/IP protocol suite ensures detection
of almost all transmission errors. Processes in the communications stack detect errors
and arrange for retransmission, all invisible to the higher-level applications. Thus, noise

is scarcely a consideration for users in security-critical applications.

3.8.3 Web Site Defacement

One of the most widely known attacks is the web site defacement attack.
Because of the large number of sites that have been defaced and the visibility of the
result, the attacks are often reported in the popular press.

Defacement is common not only because of its visibility but also because of the
ease with which one can be done. Web sites are designed so that their code is
downloaded, enabling an attacker to obtain the full hypertext document and all
programs directed to the client in the loading process. An attacker can even view
programmers' comments left in as they built or maintained the code. The download
process essentially gives the attacker the blueprints to the web site.

The web site vulnerabilities enable attacks known as buffer overflows, dot-dot

problems, application code errors, and server-side include problems.

35

3.8.3.1 Buffer Overflows

Buffer overflow is on web pages. The attacker simply feeds a program far more
data than it expects to receive. A buffer size is exceeded, and the excess data spill
over into adjoining code and data locations.

Perhaps the best-known web server buffer overflow is the file name problem
known as iishack. This attack is so well known that is has been written into a
procedure. To execute the procedure, an attacker supplies as parameters the site to be
attacked and the URL of a program the attacker wants that server to execute.

Other web servers are vulnerable to extremely long parameter fields, such as

passwords of length 10,000 or a long URL padded with space or null characters.

3.8.3.2 Dot-Dot and Address Problems

Web server code should always run in a constrained environment. Ideally, the
web server should never have editors, xterm and Telnet programs, or even most
system utilities loaded. By constraining the environment in this way, even if an attacker
escapes from the web server application, no other executable programs will help the
attacker use the web server's computer and operating system to extend the attack. The
code and data for web applications can be transferred manually to a web server or
pushed as a raw image.

But many web applications programmers are naive. They expect to need to edit
a web application in place, so they expect to need editors and system utilities to give
them a complete environment in which to program.

A second, less desirable, condition for preventing an attack is to create a fence
confining the web server application. With such a fence, the server application cannot

escape from its area and access other potentially dangerous system areas (such as

36

editors and utilities). The server begins in a particular directory subtree, and everything

the server needs is in that same subtree.

3.8.3.3 Application Code Errors

A user's browser carries on an intricate, undocumented protocol interchange
with the web server. To make its job easier, the web server passes context strings to
the user, making the user's browser reply with full context. A problem arises when the
user can modify that context.

Consider a online CD store, selling compact disks. At any given time, a server at
that site may have a thousand or more transactions in various states of completion.
The site displays a page of goods to order, the user selects one, the site displays more
items, the user selects another, the site displays more items, the user selects two
more, and so on until the user is finished selecting. Many people go on to complete the
order by specifying payment and shipping information. But other people use web sites
like this one as an online catalog or guide, with no real intention of ordering. If the user
is a bona fide customer, sometimes web connections fail, leaving the transaction
incomplete. For these reasons, the web server often keeps track of the status of an
incomplete order in parameter fields appended to the URL. These fields travel from the
server to the browser and back to the server with each user selection or page request.

Assume one has selected a CD and are looking at a second web page. The web

server has passed the customer a URL similar to http://www.CDs-r-us.com/page4&ii

=459012&p1=1599. This URL means the customer has chosen CD number 459012,

and its price is $15.99. He now selects a second and the URL becomes

http:/www.CDs-r-us.com/page7&i1=459012&p1=1599&i2=365217&p2=1499. But if the

customer is a clever attacker, he realizes that he can edit the URL in the address

37

http://www.CDs-r-us.com/page4&i1
http://www.CDs-r-us.com/page7&i1=459012&p1=1599&i2=365217&p2=1499
http://www.CDs-r-us.com/page4&i1=459012&p1=1599
http://www.CDs-r-us.com/page4&i1=459012&p1=1599

window of his browser. Consequently, he changes each of 1599 and 1499 to 199. And
when the server totals up his order, lo and behold, his two CDs cost only $1.99 each.
This failure is an example of the time-of-check to time-of-use flaw. The server
sets (checks) the price of the item when you first display the price, but then it loses
control of the checked data item and never checks it again. This situation arises
frequently in server application code because application programmers are generally

not aware of security and typically do not anticipate malicious behavior.

3.8.3.4 Server-Side Include

A potentially more serious problem is called a server-side include. The problem
takes advantage of the fact that web pages can be organized to invoke a particular
function automatically. For example, many pages use web commands to send an e-
mail message in the "contact us" part of the displayed page. The commands, such as

e-mail, if, go to, and include, are placed in a field that is interpreted in HTML.

3.9 Denial of Service

A denial-of-service (DoS) attack hogs or overwhelms a system’s resources so
that it cannot respond to service requests. A DoS attack can be effected by flooding a
server with so many simultaneous connection requests that it cannot respond. Another
approach would be to transfer huge files to a system’s hard drive, exhausting all its
storage space. A related attack is the distributed denial-of-service (DDoS) attack, which
is also an attack on a network’s resources, but is launched from a large number of
other host machines. Attack software is installed on these host computers, unknown to
their owners, and then activated simultaneously to launch communications to the target

machine of such magnitude as to overwhelm the target machine.

38

DoS attacks have two general forms:

Force the victim computer(s) to reset or consume its resources such that it can
no longer provide its intended service.
- Obstruct the communication media between the intended users and the victim so

that they can no longer communicate adequately.

Not all service outages, even those that result from malicious activity, are
necessarily denial-of-service attacks. Other types of attack may include a denial of

service as a component, but the denial of service may be part of a larger attack.

3.9.1 Transmission Failure

Communications fail for many reasons. For instance, a line is cut. Or network
noise makes a packet unrecognizable or undeliverable. A machine along the
transmission path fails for hardware or software reasons. A device is removed from
service for repair or testing. A device is saturated and rejects incoming data until it can
clear its overload. Many of these problems are temporary or automatically fixed
(circumvented) in major networks, including the Internet.

However, some failures cannot be easily repaired. A break in the single
communications line to your computer (for example, from the network to your network
interface card or the telephone line to your modem) can be fixed only by establishment
of an alternative link or repair of the damaged one. The network administrator will say
"service to the rest of the network was unaffected,” but that is of little consolation to

you.

39

3.9.2 Connection Flooding
The most primitive denial-of-service attack is flooding a connection. If an
attacker sends as much data as one’s communications system can handle, user is
prevented from receiving any other data. Even if an occasional packet reaches to user
from someone else, communication with user will be seriously degraded.
More sophisticated attacks use elements of Internet protocols. In addition to
TCP and UDP, there is a third class of protocols, called ICMP or Internet Control
Message Protocols. Normally used for system diagnostics, these protocols do not have
associated user applications. ICMP protocols include:
* Ping, which requests a destination to return a reply, intended to show that the
destination system is reachable and functioning
» Echo, which requests a destination to return the data sent to it, intended to show
that the connection link is reliable (ping is actually a version of echo)
» Destination unreachable, which indicates that a destination address cannot be
accessed
» Source quench, which means that the destination is becoming saturated and the
source should suspend sending packets for a while
These protocols have important uses for network management. But they can
also be used to attack a system. The protocols are handled within the network stack,

so that acts may be difficult to detect or block on the receiving host.

40

3.9.2.1 Echo-Chargen

This attack works between two hosts. Chargen is a protocol that generates a
stream of packets; it is used to test the network's capacity. The attacker sets up a
chargen process on host A that generates its packets as echo packets with a
destination of host B. Then, host A produces a stream of packets to which host B
replies by echoing them back to host A. This series puts the network infrastructures of
A and B into an endless loop. If the attacker makes B both the source and destination
address of the first packet, B hangs in a loop, constantly creating and replying to its

own messages.

3.9.2.2 Ping of Death

A ping of death is a simple attack. Since ping requires the recipient to respond to
the ping request, all the attacker needs to do is send a flood of pings to the intended
victim. The attack is limited by the smallest bandwidth on the attack route. If the
attacker is on a 10-megabyte (MB) connection and the path to the victim is 100 MB or
more, the attacker cannot mathematically flood the victim alone. But the attack
succeeds if the numbers are reversed: The attacker on a 100-MB connection can

easily flood a 10-MB victim. The ping packets will saturate the victim's bandwidth.

3.9.3 Smurf

The smurf attack is a variation of a ping attack. It uses the same vehicle, a ping
packet, with two extra twists. First, the attacker chooses a network of unwitting victims.
The attacker spoofs the source address in the ping packet so that it appears to come

from the victim. Then, the attacker sends this request to the network in broadcast mode

41

by setting the last byte of the address to all 1s; broadcast mode packets are distributed

to all hosts on the network.

3.9.4 Script Kiddies

Attacks can be scripted. A simple smurf denial-of-service attack is not hard to
implement. But an underground establishment has written scripts for many of the
popular attacks. With a script, attackers need not understand the nature of the attack
not even the concept of a network. The attackers merely download the attack script (no
more difficult than downloading a newspaper story from a list of headlines) and execute
it. The script takes care of selecting an appropriate (that is, vulnerable) victim and
launching the attack.

People who download and run attack scripts are called script kiddies. As the
rather derogatory name implies, script kiddies are not well respected in the attacker
community because the damage they do requires almost no creativity or innovation.
Nevertheless, script kiddies can cause serious damage, sometimes without even

knowing what they do.

3.9.5 Syn Flood

Another popular denial-of-service attack is the syn flood. This attack uses the
TCP protocol suite, making the session-oriented nature of these protocols work against
the victim.

For a protocol such as Telnet, the protocol peers establish a virtual connection,
called a session, to synchronize the back-and-forth, command-response nature of the
Telnet terminal emulation. A session is established with a three-way TCP handshake.

Each TCP packet has flag bits, two of which are denoted SYN and ACK. To initiate a

42

TCP connection, the originator sends a packet with the SYN bit on. If the recipient is
ready to establish a connection, it replies with a packet with both the SYN and ACK bits
on. The first party then completes the exchange to demonstrate a clear and complete

communication channel by sending a packet with the ACK bit on, as shown in Figure.

1.SYN

2.SYN + ACK % I:I
- i .

3. ACK

w

A

il L]

Source Destination

L 4

Figure1: Three-Way Connection Handshake (from “Security in Computing”)

Occasionally packets get lost or damaged in transmission. The destination maintains a
queue called the SYN_RECV connections, tracking those items for which a SYN-ACK
has been sent but no corresponding ACK has yet been received. Normally, these
connections are completed in a short time. If the SYN-ACK (2) or the ACK (3) packet is
lost, eventually the destination host will time out the incomplete connection and discard
it from its waiting queue.

The attacker can deny service to the target by sending many SYN requests and
never responding with ACKs, thereby filling the victim's SYN_RECV queue. Typically,
the SYN_RECV queue is quite small, such as 10 or 20 entries. Because of potential
routing delays in the Internet, typical holding times for the SYN_RECV queue can be
minutes. So the attacker needs only to send a new SYN request every few seconds

and it will fill the queue.

43

Attackers using this approach usually do one more thing: they spoof the
nonexistent return address in the initial SYN packet for two reasons.
» First, the attacker does not want to disclose the real source address in case
someone should inspect the packets in the SYN_RECV queue to try to identify the
attacker.
» Second, the attacker wants to make the SYN packets indistinguishable from
legitimate SYN packets to establish real connections.
Choosing a different (spoofed) source address for each one makes them
unique. A SYN-ACK packet to a nonexistent address will result in an ICMP Destination
Unreachable result, but this will not be the ACK for which the TCP connection is

waiting.

3.9.5 Traffic Redirection

A router is a device that forwards traffic on its way through intermediate
networks between a source host's network and a destination's. So if an attacker can
corrupt the routing, traffic can disappear.

Routers use complex algorithms to decide how to route traffic. No matter the
algorithm, they essentially seek the best path (where "best" is measured in some
combination of distance, time, cost, quality, and the like). Routers are aware only of the
routers with which they share a direct network connection, and they use gateway
protocols to share information about their capabilities. Each router advises its
neighbors about how well it can reach other network addresses. This characteristic
allows an attacker to disrupt the network.

In spite of its sophistication, a router is simply a computer with two or more

network interfaces. Suppose a router advertises to its neighbors that it has the best

44

path to every other address in the whole network. Soon all routers will direct all traffic to
that one router. The one router may become flooded, or it may simply drop much of its

traffic. In either case, a lot of traffic never makes it to the intended destination.

3.9.6 DNS Attack

A domain name server (DNS) is a table that converts domain names like
ATT.COM into network addresses like 211.217.74.130; this process is called resolving
the domain name. A domain name server queries other name servers to resolve
domain names it does not know. For efficiency, it caches the answers it receives so it
can resolve that name more rapidly in the future.

In the most common implementations of Unix, name servers run software called
Berkeley Internet Name Domain or BIND or named (a shorthand for "name daemon").
There have been numerous flaws in BIND, including the now-familiar buffer overflow.

By overtaking a name server or causing it to cache spurious entries, an attacker

can redirect the routing of any traffic, with an obvious implication for denial of service.

3.9.7 Distributed Denial of Service

To perpetrate a distributed denial-of-service (or DDoS) attack, an attacker does
two things. In the first stage, the attacker uses any convenient attack (such as
exploiting a buffer overflow or tricking the victim to open and install unknown code from
an e-mail attachment) to plant a Trojan horse on a target machine. That Trojan horse
does not necessarily cause any harm to the target machine, so it may not be noticed.
The Trojan horse file may be named for a popular editor or utility, bound to a standard

operating system service, or entered into the list of processes (daemons) activated at

45

startup. No matter how it is situated within the system, it will probably not attract any
attention.

The attacker repeats this process with many targets. Each of these target
systems then becomes what is known as a zombie. The target systems carry out their
normal work, unaware of the resident zombie; these zombies can then be remotely
controlled by a master. Each zombie could generate thousands of requests of a server,
with hundreds of zombies; millions of packets can be generated. With enough zombies,
even the biggest web sites or Internet pipes can be filled.

At some point the attacker chooses a victim and sends a signal to all the
zombies to launch the attack. Then, instead of the victim's trying to defend against one
denial-of-service attack from one malicious host, the victim must try to counter n
attacks from the n zombies all acting at once. Not all of the zombies need to use the
same attack; for instance, some can use smurf attacks and others syn floods to
address different potential weaknesses.

In addition to their tremendous multiplying effect, distributed denial-of-service
attacks are a serious problem because they are easily launched from scripts. Given a
collection of denial-of-service attacks and a Trojan horse propagation method, one can
easily write a procedure to plant a Trojan horse that can launch any or all of the denial-
of-service attacks.

DDOS attacks work by using remotely controlled computers to generate more
requests of a device than it can serve. The attackers gain access to machines and

install a zombie client upon them

46

3.9.8 Land Attack

A land attack involves sending a spoofing TCP SYN packet (connection
initiation) with the target host's IP address with an open port as both source and
destination. The attack causes the targeted machine to reply to itself continuously and

eventually crash.

3.9.9 ICMP Flood

A smurf attack is one particular variant of a flooding DoS attack on the public
Internet. It relies on mis-configured network devices that allow packets to be sent to all
computer hosts on a particular network via the broadcast address of the network,
rather than a specific machine. The network then serves as a smurf amplifier. In such
an attack, the perpetrators will send large numbers of IP packets with the source
address faked to appear to be the address of the victim. To combat Denial of Service
attacks on the Internet, services like the Smurf Amplifier Registry have given network
service providers the ability to identify misconfigured networks and to take appropriate
action such as filtering.

Ping flood is based on sending the victim an overwhelming number of ping
packets, usually using the "ping -f' command. It is very simple to launch, the primary

requirement being access to greater bandwidth than the victim.

3.9.10 UDP Flood

UDP floods include "Fraggle attacks". In a fraggle attack an attacker sends a
large amount of UDP echo traffic to IP broadcast addresses, all of it having a fake

source address. It is a simple rewrite of the smurf attack code.

47

3.9.11 Teardrop Attack

The Teardrop attack involves sending IP fragments with overlapping oversized
payloads to the target machine. A bug in the TCP/IP fragmentation re-assembly code
caused the fragments to be improperly handled, crashing the operating system as a
result. Windows 3.1x, Windows 95 and Windows NT operating systems, as well as

versions of Linux prior to 2.0.32 and 2.1.63 are vulnerable to this attack.

3.10 Threats to Active or Mobile Code

Active code or mobile code is a general name for code that is pushed to the
client for execution. For example, suppose an internet user wants his web site to have
bears dancing across the top of the page. To download the dancing bears, he could
download a new image for each movement the bears take: one bit forward, two bits
forward, and so forth. However, this approach uses far too much server time and
bandwidth to compute the positions and download new images. A more efficient use of
(server) resources is to download a program that runs on the client's machine and
implements the movement of the bears.

This mean a site user doesn’t control, which could easily be hacked by attackers
or crackers, is going to push code to his machine that will execute without his
knowledge, permission, or oversight. In fact, there are many different kinds of active

code.

3.10.1 Cookies

Cookies are not active code. They are data files that can be stored and fetched
by a remote server. However, cookies can be used to cause unexpected data transfer

from a client to a server, so they have a role in a loss of confidentiality.

48

A cookie is a data object that can be held in memory (a per-session cookie) or
stored on disk for future access (a persistent cookie). Cookies can store anything about
a client that the browser can determine: keystrokes the user types, the machine name,
connection details (such as IP address), date and type, and so forth. On command a
browser will send to a server the cookies saved for it. Per-session cookies are deleted
when the browser is closed, but persistent cookies are retained until a set expiration
date, which can be years in the future.

Cookies provide context to a server. Using cookies, certain web pages can greet
one with "Welcome back, Sarwar Zaman" or reflect one’s preferences, as in "Shall |
ship this order to you at 135 EIm Street?" But as these two examples demonstrate,
anyone possessing someone's cookie becomes that person in some contexts. Thus,

anyone intercepting or retrieving a cookie can impersonate the cookie's owner.

3.10.2 Scripts

Clients can invoke services by executing scripts on servers. Typically, a web
browser displays a page. As the user interacts with the web site via the browser, the
browser organizes user inputs into parameters to a defined script; it then sends the
script and parameters to a server to be executed. But all communication is done
through HTML. The server cannot distinguish between commands generated from a
user at a browser completing a web page, and a user's handcrafting a set of orders.
The malicious user can monitor the communication between a browser and a server to
see how changing a web page entry affects what the browser sends and then how the
server reacts. With this knowledge, the malicious user can manipulate the server's

actions.

49

To see how easily this manipulation is done, remember that programmers do not
often anticipate malicious behavior; instead, programmers assume that users will be
benign and will use a program in the way it was intended to be used. For this reason,
programmers neglect to filter script parameters to ensure that they are reasonable for
the operation and safe to execute. Some scripts allow arbitrary files to be included or
arbitrary commands to be executed. An attacker can see the files or commands in a
string and experiment with changing them.

A well-known attack against web servers is the escape-character attack. A
common scripting language for web servers, CGl, defines a machine-independent way
to encode communicated data. Coding convention uses %nn to represent ASCII
special characters. However, special characters may be interpreted by CGI script
interpreters. So, for example, %0A (end-of-line) instructs the interpreter to accept the
following characters as a new command. The following command requests a copy of

the server's password file: http://www.test.com/cqgibin/query?%0a/bin/cat%20/etc/

passwd. CGl scripts can initiate actions directly on the server. An attacker can observe
a CGil script that includes a string of this form: <!-#action arg1 = value arg2=value ...>
and submit a subsequent command where the string is replaced by <!-#exec cmd =
"rm *"> to cause a command shell to execute a command to remove all files in shell's
current directory.

Microsoft uses active server pages (ASP) as its scripting capability. Such pages
instruct the browser on how to display files, maintain context, and interact with the
server. These pages can also be viewed at the browser end, so any programming

weaknesses in the ASP code are available for inspection and attack.

50

http://www.test.com/cgibin/query?%0A/bin/cat /etc/passwd
http://www.test.com/cgibin/query?%0A/bin/cat /etc/passwd
http://www.test.com/cgibin/query?%0A/bin/cat /etc/

The server should never trust anything received from a client, because the
remote user can send the server a string crafted by hand, instead of one generated by
a benign procedure the server sent the client. As with so many cases of remote
access, these examples demonstrate that if user allows someone else to run a

program on his machine, he can no longer have confidence that his machine is secure.

3.10.3 Active Code

Displaying web pages started simply with a few steps: generate text, insert
images, and register mouse clicks to fetch new pages. Soon, people wanted more
elaborate action at their web sites: toddlers dancing atop the page, a three-dimensional
rotating cube, images flashing on and off, colors changing, totals appearing. Some of
these tricks, especially those involving movement, take significant computing power;
they require a lot of time and communication to download from a server. But typically,
the client has a capable and underutilized processor, so the timing issues are
irrelevant.

To take advantage of the processor's power, the server may download code to
be executed on client. This executable code is called active code. Two main kinds of

active code are JavaScript and ActiveX controls.

3.10.3.1 JavaScript

Sun Microsystems designed and promoted Java as a truly machine-independent
programming language. A Java program consists of Java bytecode executed on a Java
virtual machine. The bytecode programs are machine independent, and only the JVM

needs to be implemented on each class of machine to achieve program portability. The

51

JVM contains a built-in security manager that enforces a security policy. A Java
program runs in a Java "sandbox," a constrained resource domain from which the
program cannot escape. The Java programming language is strongly typed, meaning
that the content of a data item must be of the appropriate type for which it is to be used
(for example, a text string cannot be used as a numeric).

The original specification, called Java 1.1, was very solid, very restrictive, and
hence very unpopular. In it, a program could not write permanently to disk, nor could it
invoke arbitrary procedures that had not been included in the sandbox by the security
manager's policy. Thus, the sandbox was a collection of resources the user was willing
to sacrifice to the uncertainties of Java code. Although very strong, the Java 1.1
definition proved unworkable. As a result, the original restrictions on the sandbox were
relaxed, to the detriment of security.

The Java 1.2 specification opened the sandbox to more resources, particularly
to stored disk files and executable procedures. Although it is still difficult to break its
constraints, the Java sandbox contains many new toys, enabling more interesting
computation but opening the door to exploitation of more serious vulnerabilities.

Does this mean that Java's designers made bad decisions? No. A product's
security flaw is not necessarily a design flaw. Sometimes the designers choose to trade
some security for increased functionality or ease of use. In other cases, the design is
fine, but implementers fail to uphold the high security standards set out by designers.
The latter is certainly true for Java. There have been problems with implementations of
Java virtual machines for different platforms and in different components. For example,
a version of Netscape browser failed to implement type checking on all data types, as

is required in the Java specifications. A similar vulnerability affected Microsoft Internet

52

Explorer. Although these vulnerabilities have been patched, other problems could
occur with subsequent releases.

A hostile applet is downloadable Java code that can cause harm on the client's
system. Because an applet is not screened for safety when it is downloaded and
because it typically runs with the privileges of its invoking user, a hostile applet can

cause serious damage.

3.10.3.2 ActiveX

Microsoft's answer to Java technology is ActiveX. Using ActiveX, objects of
arbitrary type can be downloaded to a client. If the client has a viewer or handler for the
object's type, that viewer is invoked to present the object. For example, downloading a
Microsoft Word .doc file would invoke Microsoft Word on a system on which it is
installed. Files for which the client has no handler cause other code to be downloaded.
Thus, in theory, an attacker could invent a type, called .bomb, and cause any
unsuspecting user who downloaded a web page with a .bomb file also to download
code that would execute .bombs.

To prevent arbitrary downloads, Microsoft uses an authentication scheme under
which downloaded code is cryptographically signed and the signature is verified before
execution. But the authentication verifies only the source of the code, not its
correctness or safety. Code from Microsoft (or Netscape or any other manufacturer) is
not inherently safe, and code from an unknown source may be more or less safe than
that from a known source. Proof of origin shows where it came from, not how good or

safe it is. And some vulnerabilities allow ActiveX to bypass the authentication.

53

3.10.4 Auto Exec by Type

Data files are processed by programs. For some products, the file type is implied
by the file extension, such as .doc for a Word document, .pdf (Portable Document
Format) for an Adobe Acrobat file, or .exe for an executable file. On many systems,
when a file arrives with one of these extensions, the operating system automatically
invokes the appropriate processor to handle it.

By itself, a Word document is unintelligible as an executable file. To prevent
someone from running a file temp.doc by typing that name as a command, Microsoft
embeds in a file what type it really is. Double clicking the file in a Windows Explorer
window brings up the appropriate program to handle that file.

This scheme presents an opportunity to an attacker. A malicious agent may
send a file named innocuous.doc, which would expect to be a Word document.
Because of the .doc extension, Word would try to open it. Suppose that file is renamed
"innocuous” (without a .doc). If the embedded file type is .doc, then double-clicking
innocuous also brings the file up in Word. The file might contain malicious macros or
invoke the opening of another, more dangerous file.

Generally, we recognize that executable files can be dangerous, text files are
likely to be safe, and files with some active content, such as .doc files, fall in between.
If a file has no apparent file type and will be opened by its built-in file handler, we are
treading on dangerous ground. An attacker can disguise a malicious active file under a

non-obvious file type.

54

3.11 Building Blocks

An attacker simply out to cause minor damage to a randomly selected site could
use any of the techniques have described above, perhaps under script control. A
dedicated attacker who targets one location can put together several pieces of an
attack in order to compound the damage. Often, the attacks are done in series so that
each part builds on the information gleaned from previous attacks. For example, a
wiretapping attack may yield reconnaissance information with which to form an ActiveX
attack that transfers a Trojan horse that monitors for sensitive data in transmission.
Putting the attack pieces together like building blocks expands the number of targets

and increases the degree of damage.

3.12 Weak keys

For many cryptographic algorithms, some keys are weaker than others (that is,
some keys are not as secure as other keys). Strong keys are generated using truly
random number generators. For specific algorithms, keys can be tested for their
strength. For example, the data encryption standard, DES, has only 16 weak keys out
of its 256 possible keys. Because weak keys for an algorithm can be identified, they
should not be used.

When an algorithm has keys that are all of equal strength, it is said to have a
linear or flat key space. Conversely, if an algorithm has keys that are not all of equal
strength, it has a nonlinear key space. The same use of randomness applies to
passwords in that the more random the choice of letters and characters in a password,
the more secure the password is. However, the more random the sequence of letters

and characters in a password, the more difficult it is for a person to remember.

55

3.13 Mathematical Attacks

Mathematical attacks refer to the use of mathematics to break passwords or
cryptographic algorithms as opposed to other approaches, such as brute force, which
try all possible combinations of patterns.

A good example of a mathematical attack is the use of factoring algorithms to
break the RSA public key cryptography algorithm. Recall that the hard problem in RSA
is determining the prime factors of a large number. Numbers on the order of 129 digits
have been factored using factoring algorithms and thousands of computers on the

Internet. One of the better factoring algorithms is the number field sieve (NFS).

3.14 Birthday Attacks

Birthday attacks are made against hash algorithms that are used to verify the
integrity of a message and for digital signatures. A message processed by a hash
function produces an output message digest (MD) of fixed length, independent of the
length of the input message. The MD uniquely characterizes the message. For a strong
hash algorithm, H, and message M, the following is true:

* It should be computationally infeasible to find two messages that produce a
common message digest (that is, H(M1) = H(M2)).

» |If there exist a message and its corresponding message digest, it should be
computationally infeasible to find another message that generates that specific
message digest.

* It should be computationally infeasible to find a message that corresponds to a

given message digest.

56

» The message digest should be calculated using all of the data in the original

message.

3.15 War Driving

In war driving or walking, an attacker scans for 802.11-based wireless network
information by using a laptop computer with wireless adapter in promiscuous mode and
scanning software such as NetStumbler. Also, a Global Positioning System (GPS)

might be used to note the location of compromised nodes.

3.16 War Dialing/Demon Dialing Attack

In war dialing, an attacker uses a program that automatically places calls to a
group of telephone numbers in hopes of finding numbers that are connected to
modems. In demon dialing, a brute-force, password-guessing approach is used to gain

access to a system through a modem.

3.17 Replay

A replay attack occurs when an attacker intercepts and saves old messages and
then tries to send them later, impersonating one of the participants. One method of
making this attack more difficult to accomplish is through the use of a random number
or string, called a nonce, that changes with time. If Bob wants to communicate with
Alice, he sends a nonce along with the first message to Alice. When Alice replies, she
sends the nonce back to Bob, who verifies that it is the one he sent with the first
message. Anyone trying to use these same messages later will not be using the newer
nonce. Another approach to countering the replay attack is for Bob to add a timestamp
to his message. This timestamp indicates the time that the message was sent. Thus, if

the message is used later, the timestamp will show that an old message is being used.

57

Top 14 network vulnerabilities

12. Hosts running

9. Weak, easily guessed, and
reused passwords at the

13. Information unnecessary 10. Misconfigured

leakage can provide services (such as Internet servers, workstation level can doom your
the attacker with RPC, FIF, DNS, especially CGI servers to compromise.
operating system SMTP) are easily scripts on web .

and application compromised. servers, and 8. Unauthenticated

VErsions, users,
groups, shares, DNS
information via
zone transfers, and
running services

Internet, DMZ Servers

anonymous FIT.

11. Misconfigured
firewall or router

services like X Windows
allow users to capture
remote keystrokes.

like SNMF, finger, ACL can allow Norhatat 7. Excessive file

SMTP, telnet, rusers, access to internal orysanon and directory

rpcinfo, NetBIOS. systems directly or access controls
once a DMZ, (NT Shﬂl‘es, UNIX
server is NFS exports).

ised.

14. Inadequate logging, COMPproTise

monitoring, and detection

capabilities at the

network and host level. 6. Lack of

accepted and well-
Border router Internal router promulga ted

1. Inadequate router
access control:
Misconfigured router
ACLs can allow
information leakage
through ICMP, IP
NetBIOS, and lead to
unauthorized access
to services on your
DMLY servers.

Remote Access
Servers

2. Unsecured and
unmonitored remote access
points provide one of the
easiest means of access to
your COrprﬂtC IWCt‘NOI'k.
Telecommuters often connect
to the Internet with little
protection, exposing sensitive
files to attack.

-/
Maobkile /home
user

4
Branch office

security policies,
procedures, and
guidelines.

(55
(25
=]

Workstation

5. Software that
is unpatched,
outdated,
vulnerable, or
left in default
configurations.
3. Excessive trust
relationships such as NT
Domain Trusts and
UNIX .rhosts and
hosts.equiv files can
provide attackers with
unauthorized access to
sensitive systems.

4. User or test
accounts with
excessive privi_leges.

Figure 2: Top 14 network attacks (from “Network Security Bible”)

58

Summary of Network Vulnerabilities

A network has many different vulnerabilities, but all derive from an underlying

model of computer, communications, and information systems security. Threats are

raised against the key aspects of security: confidentiality, integrity, and availability, as

shown in table.

Table 1: Network Vulnerabilities (from “Security in Computing”)

Target

Vulnerability

Precursors to attack

Port scan

Social engineering

Reconnaissance

OS and application fingerprinting

Authentication failures

Impersonation

Guessing

Eavesdropping

Spoofing

Session hijacking

Man-in-the-middle attack

Buffer overflow

59

Programming flaws

Addressing errors

Parameter modification, time-of-check to
time-of-use errors

Server-side include

Cookie

Malicious active code: JavaScript, ActiveX

Malicious code: virus, worm, Trojan horse

Malicious typed code

Confidentiality

Protocol flaw

Eavesdropping

Passive wiretap

Misdelivery

Exposure within the network

Traffic flow analysis

Cookie

Integrity

Protocol flaw

Active wiretap

Impersonation

Falsification of message

60

Noise

Web site defacement

DNS attack

Availability

Protocol flaw

Transmission or component failure

Connection flooding, e.g., echo-chargen,
ping of death, smurf, syn flood

DNS attack

Traffic redirection

Distributed denial of service

61

Chapter 4 Developing our own Intrusion Detection System

Our study in the thesis was oriented towards the creation of an implementation
of an Intrusion Detection System. Our plan was to develop a Network Based Intrusion
Detection System so as to give focus on the networking related aspects of the IDS
discipline. We targeted Linux as the environment to program as most of the web-
servers that run today run on Linux based machines. Having searched and analyzed
the way to go, we came to the conclusion that the best language for the implementation
would be C/C++ due to the deep system level access that it provides that is mandatory
to make an Interface card sniff all packets within the network collision domain that it is

connected to, which is needed for the implementation.

4.1 Challenges

The challenges for creating an Intrusion Detection System was first to capture a
packets and analyze them for discrepancies to make a packet level analysis, that is to
say a network layer analysis of message stream that flows through a point in a
network. This is because remote manipulation of a system will definitely consist of
network traffic, by which a harmful user may try to communicate with a computer in
trying to make it malfunction and hopefully give unsolicited access to inside the network
of that computer.

The next challenge was to capture packets from their datalink layer headers. To
ensure deep level analysis of packet and better intrusion detection. And also to capture
packets from all the hosts connected to the computer's collision domain. This way the

IDS will work as a network sniffer for a network and scrutinize packets not meant for

62

the host it is running upon, making the implementation a Network Based Intrusion

Detection System.

4.2 Type of Implementation

As mentioned above, the implementation is of type NIDS or Network Based

Intrusion Detection System.

4.3 Planning

1. There will be a central class which will work as the Network Analyzer which will
do the bulk of the capturing and recording process

It will classify the packets with it's known masks intelligently among

“* ARP

“* ICMP

“*TCP

“* UDP

“* 1P

** OTHERS (not checked specifically)
Keep a File based Log of both the "Counts of Packets" and a "HeaderLog" to
actually store the packets that came to the daily traffic

** There should be a basis by time to how long the records can be kept
Keep a master Analysis record, (Array) of current packets , a central record
to which all the separate modules will look into (have access to) to do their

respective analysis. (kept in memory)

63

2. All the other modules will individually analyze their respective attack patterns
based on the currents packet array.
If it needs to analyze based on a single packet then it will do only that much
If more needed then it will do accordingly
May keep a separate tables of themselves for attack patterns that they are
administering
Table will keep appropriate record of both current active event and overall
record
** Including count
** Current connections, states
3. Each attack pattern will have separate modules for themselves running in
separate threads
They will check only their own packet type so that they can check for
particular pattern despite the efforts for the attacker to change the signature
pattern by delaying or sending other packets
4. The thread list will be maintained by the main class
5. Threads will not be given any parameters, instead a reference to the current
packets array
All will only read from them and not modify
6. Threads will record to a Findings area where they report Errors or Suspected
Behavior
They will be provided initially with index so that they know to which current
packet did the error generate from

This way, the log may also be updated as suspect or criminal

64

7. Report checking will be done by another thread at the main class
8. All writing and updating will only be done in the main class (may be in a thread)
so as to not disrupt the capture process
9. Main class will keep a record or all errors, their type, suspected behavior known
pattern of attacks
And will notify accordingly if there is a recent change in counts (Alarm)
(Highlight)

This alarm can be redirected to the firewall or the SysAdm in the future

10.DESIGN FIGURE:

Separate Modules
checkine own nattern Separate Modules
Separate Modules ‘g . checking own pattern
checking own pattern and keeping own records .
and keeping own records
and keeping own records - -

Thre‘;d Pool
Reports
The error Main Class
with index Network Analyzer

Captures Packet keeps Record

65

4.4 Initial Stages

During the initial stages of the implementation, difficulties were faced in creating
the required code for detecting packets in promiscuous mode, that is detecting all
packets that flow thorough a network link. For getting help in knowing how this could be
achieved, some open source programs had been studied, which were WinPcap, Snort
and Ethereal. WinPcap and Ethereal are Protocol Analyzer softwares, meaning that
they sniff on network and return the analyzed and structured form of the
communication packets that is sniffed. Snort is an open source Network Based
Intrusion Detection System that is developed by many advanced programmers with
complex analysis methods using some means of artificial intelligence related discipline
and others.

A behavior among the studied softwares was that all of them uses the same
common API and library for capturing packets in a network from datalink level, which is
pcap.h from libpcap library. This was hence considered as the library to use for
capturing packets in our own implementation. The manual pages of Linux on pcap.h
gave a very informative view of how to work with pcap.h. Also with the help of some
online resources on the use of pcap.h, especially from Tim Carstens on his
“Programming with pcap” tutorial, programming for a protocol analyzer and hence the
starting of our program was made possible. Capturing in promiscuous mode was made
possible also by pcap.h, which could be done by setting the third parameter of the
pcap_open_live() method of the library, which opens the interface card of the host
computer in promiscuous mode.

Also during the initial stages we had plans to include Graphical User Interface

for our software. It is not as easy to create one using C/C++, hence some sort of

66

wrappers were searched for to accomplish the task. Qt Designer tool proved to be a
very helpful tool in doing the GUI with C/C++ and was experimented accordingly.
However, due to the late stage of being able to make our project work properly, it was
not possible to incorporate Graphical User Interface with our implementation.

For threading, the pthread.h library was looked upon, which was the standard
library for threading in C/C++. Threading would ensure improved performance which is

crucial in heavy traffic network packet analysis.
4.5 The Implementation

4.5.1 Modularization and Work Distribution

The implementation was divided into several stages in development which lead
to the formation of several modules. The C code was made such that it was a generic
one so that it would be easy to make any modification and addition if on anytime we
might want to add some more attack signatures. Hence the code was divided into
several files making each function body a separate file entity. This also allowed us to
divide up our tasks while working for the implementation. The research of how to
capture packets in C and creation of graphical user interface in it has been the major
contribution of Rajib Rahman. He was also mainly responsible for creating the reports
and presentations that we have prepared. The threading and also graphical user
interface was looked upon by Salman Zaman, he also played a major role in the
research for the project and also the connectivity design between the modules. Sarwar
Alam and Rajib Rahman were also contributors of the main design plan which was

followed mostly according to its initial face. Sarwar Alam programed the attack

67

signatures with help from Rajib Rahman and Salman Zaman for the algorithms. Sarwar
Alam also made the connections in programming of the different modules.

As of our initial plans we first had to program for creating the Headers that we
would consider in the message stream. The Packet types we covered were Ethernet,
IP, TCP, UDP, ICMP, and ARP which makes up almost ninety-nine percent of the
network stream in a normal Ethernet Interface. The source codes are in the
appendices.

Then for sake of genericness, we created multiple overloads of printing methods
that will ensure the portability of the code when printing in to any type of data type.
Although focus was eventually given in writing to the console as the GUI was planned
out at late stages. Then with the help of “sniffex.c” a sample by Tim Carstens in his
“Programming with pcap” tutorial, the Interface Card Initializer was accomplished which
meant that the complete protocol analyzer was also built. Some hiccups were
encountered here when IP was fragmented, in which case there would be no header in
body despite the protocol field. This was solved accordingly.

Arrangements were then done to include a generic thread caller, so that addition
of new attack signature would be an easy task. The Internet and the Linux manual
pages helped quite a degree in this area. Once the handlers of threads are set, coding

for the attack signatures went underway.

4.5.2 Attack Signatures and Algorithms
The initial attack signature that we considered are:
Echo-Chargen
Fraggle

Land

68

Ping Flood
Ping of Death
Port Scan
Smurf

Most of them have been implemented as simple way as possible to ensure
performance. They are classifiable as Statistical-Analysis Type signature detection and
packet anomaly detection type.

In the statistical type signatures, a tolerance level was matched when a fixed
number of packets were reached in a relatively quick sequence depending on the
attack. For almost most of the attacks, the rate, that is to say the count divided by the
time taken are measured and checked whether they exceed the set limit. The limit
would vary in different platforms with different speeds of operations and hence should
be fine tuned accordingly. Certain problems were faced when flooding type attack
patterns were to be checked, as they come so quick that the printing to the console
could not catch up. Hence the captured packets are less than what they really are, and
hence the tolerance level that is matched is decreased to make it possible to detect. To
avoid false alarms, a fixed amount of packets are allowed to come in before analysis
are done, about twenty to twenty-five, which is also a matter of fine tuning for the
environment worked upon, and the resetting of counts if just the immediate packet was
not near enough in terms of time and rate. This eventual corrected scheme worked in
solving the problem for stateful packet analysis, which concerns multiple packets in

decision making. Global variable STL “map” was used to keep state information.

69

4.5.3 Pseudocodes

Most of the states are distinguished in terms of IP source address concatenated
with “.” and IP destination address. A reply is matched with the reverse concatenation.

4.5.3.1 Echo-Chargen

If source port is UDP 7 or 19
and the opposite UDP 19 or 7 in the destination port
when echo port sends to chargen
set active state for the ipaddress
when echo receives from chargen
check if currently active
check if last packet was too old [1in 300sec]
if passed then increase count else reset
if count in the range 20 to 25
measure rate
if count increases 25
reset count and timestamp
if rate is greater than tolerance [20 in 60sec]
set alarm flag

4.5.3.2 Fraggle

If UDP
set active state for the ipaddress
if ICMP and DESTINATION UNREACHABLE
check if currently active
check if last packet was too old [1in 60sec]
if passed then increase count else reset
if count in the range 20 to 25
measure rate
if count increases 25
reset count and timestamp
if rate is greater than tolerance [20 in 60sec]
set alarm flag

70

4.5.3.3 Land

If TCP and SYN
if Source and Destination ports are equal
if Source and Destination IP addresses are equal
set alarm flag

4.5.3.4 Ping Flood

If ICMP and Request
check if currently active
else set active state for the ipaddress and return
check if last packet was too old [1in 1sec]
if passed then increase count else reset
if count in the range 20 to 25
measure rate
if count increases 25
reset count and timestamp
if rate is greater than tolerance [70 in 1sec]
set alarm flag

4.5.3.5 Ping of Death

// Only the single packet signature was handled. Fragmented attack not covered
If ICMP and Request
if Packet length > 65535
set alarm flag

// Proposed for fragmentation
If ICMP and Request
check current state
if continuation add up fragment length
if Total Packet length > 65535
set alarm flag

71

4.5.3.6 Port Scan

// SYN and SYN-ACK scan considered together
If TCP and (SYN or SYN-ACK)
check if currently active
else set active state for the ipaddress and return
check if last packet was too old [4 / 60sec]
if passed then increase count else reset
if count in the range 20 to 25
measure rate
if count increases 25
reset count and timestamp
if rate is greater than tolerance [100 in 1sec]
set alarm flag

4.5.3.7 Smurf

/I Assuming router is set to disallow this pattern, hence any
// broadcast is smurf. Proposed idea is to keep an arp record
/I and check with the hardware address with the IP address
// whether any sort of spoofing is tried

If ICMP and Request
if host byte of the IP destination Address is broadcast [255]
set alarm flag

72

Chapter 5 Analysis and Testing

Testing was part of the implementation process, and the project is such that
without proper working of the modules it is not possible to move on. It was ensured that
the protocol analyzer was a complete one and handled all kinds of exception situations
such as IP fragmentation, not measuring size of the UDP and using the IP length field
instead, checking for valid length of headers and body from both the header fields and
the pcap controlled length measure, which measures length in physical layer as the
distance between the start and end flag of physical layer data transmission. It was
made sure that the protocol analyzer worked for all packets, ARP, IP, TCP, UDP and
ICMP in all their variations including the encapsulation of a new IP packet of an ICMP
packet which is not of type Request or Reply. Most of the testing and operations had to
be done in super user mode with root privileges as access to the interface card is

limited to other lower level user accounts.

The program of the thesis can be run as both IDS and protocol analyzer mode.
A user manual is included in the appendices. It can accept filter strings that are of the
format of “TCPDUMP” which is Linux standard console command to dump packets
from the interface card. The manual of Tcpdump is provided with Linux and hence not
included here, however, a minor introduction to it would be that it can take several
strings such as 'ip', 'tcp', 'port’, 'icmp’, 'arp’, 'and’, 'or' and it allows use of parenthesis for

grouping logics. The logics it uses is like digital logic as 'and' and 'or' are supported.

For example, if the tcp port 1863 or 1683 id to be listened to for analysis, the filter sting

73

would be “port (1863 or 1683)”. This way testing the software for any particular host

could be done, and also if it is empty then all host are scanned.

The programs used to test the working of the attack signature detection was
done by using external means such as codes and Linux root level privileged
commands. For example the land attack was checked using an external code that sent
packets in the destructive format of Land Attack packet, and our IDS was able to catch
it and send alarm. Some screenshots are included in the appendices to show the
console printout when a Land Attack and port scan were tested. Port Scan was tested
by using NMAP port scanner and OS fingerprinting software. The console command
was ‘nmap -sT -sR -O -PT 192.168.40.1”. To check smurf, the root terminal code was
‘ping -b 192.168.40.255”. To check ping flood, the command was ‘ping -f
192.168.40.1". All were successful and also a point to mention was that in a 10Mbps
LAN the tolerance that were used worked quite well as not much messages were
printed, but a moderate rate of alarming was achieved, which was like ten messages in
three seconds when there was a flooding of twenty-thousand packets in ten seconds
were being sent. As mentioned before, this is dependent on the platform used and the
speed of the network and host computer, and some fine tuning may be necessary to

reduce or increase the numbers of messages desired.

An important point in testing the IDS was to check how much of extra alarms
and or false alarms are sent during operation. Both false rejection and false
acceptance are not tolerable. However the attack patterns that we checked are mostly

anomaly based and statistical based analysis methods, in which the former shouldn't

74

suffer from false alarms. But the latter had chances, but since they are mainly network
layer attacks, the signatures were enough to determine whether a packet stream is
hostile or not. But the problem that we had to encounter was multiple similar messages
for flooding type of attack, which was discussed before as to have been handled

properly, and some fine tuning of tolerance values will also help in this matter.

75

Chapter 6 Future Development and Related Studies

Because of problems we faced in determining how to go about our
implementation in the initial stages, we were able to make the working software very
late and hence weren't able to add much attack signatures due to the time constraints.
However, most other attack types are very similar to the ones we implemented and
hence adding them to our implementation will not me a major task. We plan to include
them in the near future.

Most of the related studies regarding Intrusion Detection System nowadays
focus on how to reduce false alarms and false acceptance and rejection, and to better
catch intentional variations of attack signatures. This involves the use of certain
'intelligent’ mechanism of analysis. Hence they include heuristic analysis with todays
IDSs.

Hence we would like to add heuristics and artificial intelligence as part of our
project as future improvement plans. In trying to add more complex attack patterns we
might encounter the false alarm incidents, hence we would also want to focus on
reducing them.

We would also want to add Graphical User Interface as part of our
implementation and also make an executable for the windows platform. Plans are also
there to make it an open source resource in the Internet so that further development

can be done on it with help from developers from other places.

76

Conclusion

Network Security is a very important part of corporate world today, even though
it seems that vulnerabilities are not high, but serious damage can be caused from a
remote point in a network. Most of these attacks are in the message stream in packet
format. Although routers and firewall can be set to check attack patterns, but they lay in
the middle of a network traffic and controlling attacks from them would have a
detrimental effect on network performance. A deep level of analysis method is required
and it calls for the use of what can be now realized as the ever so important Intrusion
Detection System.

In our report, we have introduced the different types of Intrusion Detection
Systems and their place of uses. Also, we have noted out the various forms of network
attacks and how they are performed, to give idea of the challenges of Network Security
discipline. Then we have pointed out the ways we went about creating our own
implementation of the Intrusion Detection System and the problems we faced.

Having worked so far, we have observed that every solution to a network
vulnerability gives rise to another form of security threat. Hence it can be concluded
that there is no end or ultimate solution for Network Security, instead it demands the
constant monitoring and development of it's security measures. So is the Intrusion
Detection System, which can always be thwarted if not maintained and updated
regularly and properly. Hence there is a scope for continuous research in this area, and
it promises to be quite a challenging prospect for both study and career. Hence we are
willing to be part of the development of Network Security in the future and we would

encourage anyone to be a part of it as well.

77

Appendices
Appendix A User Manual

MODE

Protocol Analyzer
Record to file

Fixed number of capture
Local Host

Filter Expressions

Help

PARAMETER

Y
f

<number> [only at the beginning]
lo
as the tcpdump manual page of Linux

--help,--usage

78

Appendix B Screenshots

Successful capture of Land Attack and Port scanning or Os fingerprinting
attempt:

[Attack Types]
TCP LAND Attack

[INFO]
Packet Number 1
Sun Jan 7 15:39:53 2007

[ETHERNET HEADER]
Src Mac: 00:e0:4c:1c:21:94
Dst Mac: 00:e0:4c:50:34:96
Type: IP

[IP HEADER]
Version: 4
Hddr Len: 20

TOS: 0x00
Total Len: 40
ID: 3868
Reserved= 0
Dnt Frgmnt= 0
MoreFrgmnt= 0
Frgmnt Off: O
TTL: 255
Protocol: TCP
HddrChkSum: 55934
From: 192.168.40.114
To: 192.168.40.114

[TCP HEADER]
Src Port: 80
Dst Port: 80
Seq Num: 3868
Ack Num: 0
Hddr Len: 20
URG= 0
ACK= 0
PSH= 0
R5T=0
SYN=1
FIN= 0
WindowSize: 2048
ChkSum: 38341
UrgentPntr: 0

79

[Attack Types]
TCP Port Scan and 05 fingerprinting Attempt

[INFO]
Packet Number 151
Sun Jan 7 15:41:49 2007

[ETHERNET HEADER]
Src Mac: 00:e0:4c:1c:21:94
Dst Mac: 00:e0:4c:50:34:96

Type: IP

[IP HEADER]
Version: 4
Hddr Len: 20

TO0S5: 0x00
Total Len: 44
ID: 16794
Reserved= 0
Dnt Frgmnt= 0
MoreFrgmnt= 0
Frgmnt 0ff: 0O
TTL: 54
Protocol: TCP
HddrChkSum: 28919
From: 192.168.40.120
To: 192.168.40.114

[TCP HEADER]
Src Port: 41533
Dst Port: 1B
Seqg Num: 3450044808
Ack Num: O
Hddr Len: 24
URG=
ACK=
PSH=
RST=
S¥N=
FIN=
WindowSize: 3072
ChkSum: 51311
UrgentPntr: 0
Options (4 bytes):

oO=OoOOoOOoOo

80

References

e Alessandro Rubini & Jonathan Corbet , “Linux Device Drivers” - 2™ Edition,
O’Reilly & Associates, Inc.

e Dr. Eric Cole, Dr. Ronald Krutz & James W. Conley, “Network Security Bible”,
Wiley Publishing, Inc., 2005

e Rebecca Bace & Peter Mell, “Intrusion Detection Systems”, NIST

e Pars Mutaf, “Defending against a Denial-of-Service Attack on TCP”

e Stephen Northcutt, “Network Intrusion Detection: An Analyst's Handbook” - First
Edition, New Riders Publishing, June 16, 1999

e Biswanath Mukherjee, L. Todd Heberlein &Karl N. Levitt, “Network Intrusion
Detection”, Wiley Publishing, Inc., 2005

e Charles P. Pfleeger, Shari Lawrence Pfleeger, “Security in Computing” - Third
Edition, Prentice Hall PTR, December 02, 2002

e Joel Scambray, Stuart Mcclure & Geogre Kurtz, “Hacking Exposed: Network
Security Secrets and Solutions” - 2™ Edition, Osborne/McGraw-Hill, 2001

e Evangelos P. Markatos, Spyros Antonatos, Michalis Polychronakis, Kostas G.
Anagnostakis, "Exclusionbased Signature Matching for Intrusion Detection", CCN,
2002

e "Denial-of-service attack", http://en.wikipedia.org/wiki/Denial-of-service attack

e Tim Carstens, "Programming with pcap", http://www.iac.rm.cnr.it/~massimo/

pcap.htm

e Linux Manual Pages

81

http://www.iac.rm.cnr.it/~massimo/pcap.htm
http://www.iac.rm.cnr.it/~massimo/pcap.htm
http://www.iac.rm.cnr.it/~massimo/pcap.htm
http://en.wikipedia.org/wiki/Denial-of-service_attack

	Chapter 1	Introduction
	Chapter 2	Intrusion Detection System (IDS)
	2.1 	Definition of IDS
	2.2 	Necessity of IDS
	2.3 	Types of IDS
	2.3.1 		Network Based IDS
	2.3.1.1	 Advantages of Network-Based IDS
	2.3.1.2 	Disadvantages of Network-Based IDS

	2.3.2 		Host Based IDS
	2.3.2.1 	Advantages of Host Based IDS
	2.3.2.2 	Disadvantages of Host Based IDS

	2.3.3 		Application-Based IDS
	2.3.3.1 	Advantages of Application-Based IDS
	2.3.3.2 	Disadvantages of Application-Based IDS

	2.3.4 		Signature-Based IDS
	2.3.4.1 	Disadvantage of Signature-Based IDS

	2.3.5 		Statistical Anomaly Based IDS
	2.3.5.1 	Advantages of Statistical Anomaly Based IDS
	2.3.5.2 	Disadvantage of Statistical Anomaly Based IDS

	Chapter 3 	Threats in Networks
	3.1 	Port Scan
	3.2 	Social Engineering
	3.3 	Reconnaissance
	3.3.1 		Dumpster Diving
	3.3.2		Eavesdropping
	3.3.3 		Operating System and Application Fingerprinting
	3.3.4 		Bulletin Boards and Chats
	3.3.5 		Availability of Documentation
	3.3.6 		Theft of Service

	3.4 	Protocol Flaws
	3.4.1 		Fragmentation Attacks

	3.5 	Impersonation
	3.5.1 		Authentication Foiled by Guessing
	3.5.2 		Authentication Thwarted by Eavesdropping or Wiretapping
	3.5.3 		Authentication Foiled by Avoidance
	3.5.4 		Nonexistent Authentication
	3.5.5 		Well-Known Authentication
	3.5.6 		Trusted Authentication

	3.6 	Spoofing
	3.6.1 		Masquerade
	3.6.2 		Session Hijacking
	3.6.3		 Man-in-the-Middle Attack
	3.6.4 		IP Spoofing

	3.7 	Message Confidentiality Threats
	3.7.1 		Misdelivery
	3.7.2 		Exposure
	3.7.3 		Traffic Flow Analysis

	3.8 	Message Integrity Threats
	3.8.1 		Falsification of Messages
	3.8.2 		Noise
	3.8.3 		Web Site Defacement
	3.8.3.1	Buffer Overflows
	3.8.3.2 	Dot-Dot and Address Problems
	3.8.3.3 	Application Code Errors
	3.8.3.4 	Server-Side Include

	3.9 	Denial of Service
	3.9.1 		Transmission Failure
	3.9.2 		Connection Flooding
	3.9.2.1 	Echo-Chargen
	3.9.2.2 	Ping of Death

	3.9.3 		Smurf
	3.9.4 		Script Kiddies
	3.9.5 		Syn Flood
	3.9.5 		Traffic Redirection
	3.9.6 		DNS Attack
	3.9.7 		Distributed Denial of Service
	3.9.8 		Land Attack
	3.9.9 		ICMP Flood
	3.9.10 	UDP Flood
	3.9.11 	Teardrop Attack

	3.10 		Threats to Active or Mobile Code
	3.10.1 	Cookies
	3.10.2 	Scripts
	3.10.3 	Active Code
	3.10.3.1 	JavaScript
	3.10.3.2 	ActiveX

	3.10.4 	Auto Exec by Type

	3.11 		Building Blocks
	3.12 		Weak keys
	3.13 		Mathematical Attacks
	3.14 		Birthday Attacks	
	3.15 		War Driving
	3.16 		War Dialing/Demon Dialing Attack
	3.17 		Replay

	Top 14 network vulnerabilities
	Summary of Network Vulnerabilities
	Chapter 4 Developing our own Intrusion Detection System
	4.1	Challenges
	4.2	Type of Implementation
	4.3	Planning
	4.4	Initial Stages
	4.5	The Implementation
	4.5.1		Modularization and Work Distribution
	4.5.2		Attack Signatures and Algorithms	
	4.5.3		Pseudocodes
	4.5.3.1	Echo-Chargen
	4.5.3.2	Fraggle
	4.5.3.3	Land
	4.5.3.4	Ping Flood
	4.5.3.5	Ping of Death
	4.5.3.6	Port Scan
	4.5.3.7	Smurf

	Chapter 5 	Analysis and Testing
	Chapter 6	Future Development and Related Studies
	Conclusion
	Appendices
	Appendix A	User Manual
	Appendix B	Screenshots

	References

