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Abstract
The prostate gland is a small gland located in the lower abdomen of a man. Prostate
cancer occurs when a tumor, or abnormal, malignant growth of cells, forms in the
prostate. Prostate cancer is a slow-growing cancer that often goes undetected until
it has progressed to an advanced stage. The majority of men with prostate can-
cer are unaware of having it, and many of them die of other causes before they
even get diagnosed with it. However, prostate cancer becomes hazardous when it
grows rapidly or spreads outside of the prostate. With early detection and per-
sonalized care, the prostate cancer survival rate is significantly increased. Deep
learning can play a significant role regarding this, as the field of medical imaging
has shown that identification based on computer-aided diagnosis helps radiologists
make more precise diagnoses while still reducing diagnostic time and costs. How-
ever, the data concerning prostate cancer can be quite difficult to collect and it
is used in a restricted manner due to the unwillingness of the patients to share
and the hospital’s confidentiality about their patients’ records. The aim of our re-
search was to address these challenges and it led us to develop such a system where
prostate cancer can be classified, maintaining confidentiality of the data using a de-
centralized method called federated learning, different from how it can be done with
current approaches. In this research, we have classified prostate cancer using sim-
ple CNN, Xception and VGG19 models in both traditional and federated learning
approaches for comparative analysis. In fact, VGG19 outperformed the other two
models in both approaches, with centralized classification accuracy being 95.51%
and decentralized classification accuracy being 83.76%. Most importantly, through
our system, the instance of our server-side model is distributed to different clients so
that the clients can independently train their model using their local dataset in their
own environment. Eventually, the updated weights of those trained models return
back to the server to be aggregated from all the contemporary clients to finally train
our server-side model without even accessing confidential medical data in order to
ensure privacy focused classification.

Keywords: Federated Learning; Prostate Cancer; Secure Deep Learning; Privacy;
Distributed Learning; Medical Imaging
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Chapter 1

Introduction

1.1 The Concerns Regarding Prostate Cancer
Despite having many clinical research and attempts of innovations, Prostate cancer
is the second most common uncontrolled disease (after lung cancer) in men world-
wide, counting 1,414,259 new cases and causing 375,000 deaths worldwide where
7.3% of all deaths caused by cancer in men in 2020. People from regions like North-
ern America, Northern and Western Europe, New Zealand and Australia face higher
incidence rates than the people from regions like Northern Africa and Asia sustain-
ing cases 37.5 and 11.3 per 100,000 respectively [1]. Besides, in 2021, the American
Cancer Society’s estimate for prostate cancer in the United States are about 248,530
new cases and about 34,130 of whom may die from prostate cancer [2]. Moreover, it
is expected that upto 1.7 million new cases of prostate cancer, along with 499,000
new deaths caused by it will occur by 2030 simply due to the aging population of
the world [3].

The majority of prostate cancers develop slowly, however some cancer glands grow
quickly and spread from the prostate to other parts of the body, particularly the
lymph nodes. It is difficult to forecast the early stages of this dangerous prostate can-
cer since it has few symptoms such as constant urination, hematuria, urine stream,
dysuria, release of fluid in the prostate, bone pain in the femur, and so on. Prostate
cancer has a significant risk factor because of its limited symptoms, such as obesity,
genetic alterations, family history, age, and medical history [4]. There have also
been cases where prostate cancer continues to grow despite there being incredibly
low testosterone in the bloodstream due to the hormonal treatment or medical con-
ditions. Different testing techniques [5] have been used to predict prostate cancer,
but because these methods take a long time, it is difficult to come up with a decision
that will be more advantageous in a short amount of time.

1.2 Machine Learning in Healthcare
Machine Learning has become an increasingly promising approach for patients’
healthcare. [6] However, all of these schemes are entirely data driven. For cases
where centralized ML schemes are used, where all the data are pooled into a central
server, patients’ privacy compromise has been a big issue in terms of data exchange
of medical imaging records. Due to the lack of proper decentralized methods, a pa-
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tient’s privacy might be compromised which is very much held in contempt in case
of medical information [7]. However, this problem can be solved by implementing a
secure and private AI based decentralized and federated data storage and learning
system replacing the present pattern of data sharing and centralized storage, which
has a higher risk of compromising individual privacy. At present, patients’ private
data, despite needing to be protected, are mostly left exposed to all digital influences
under current data sharing systems, meaning, such unregulated use of such private
data may lead to cases of misuse — notably for financial gain, which may increase
day by day, or other nefarious purposes. Our solution is Federated Learning, which
we believe may be much more reliable in terms of keeping medical records safe and
secure.

1.3 Federated Learning and Prostate Cancer
Prostate cancer, becoming an increasing concern for modern day men, requires ex-
tensive collaborative research and classification techniques. Naturally, the privacy
of such personal medical conditions would need to be kept when performing the
collaborative initiative for the intended robust and accurate classification system.
In the proposed federated approach, all personal data regarding would be kept un-
der the supervision of the institution they themselves are involved with and only
locally trained models would be shared throughout the network for an aggregated,
collaborative, robust and accurate model to be used globally. Such an approach, we
believe, would be increasingly likely to be used not only in medical imaging but also
in other data security platforms.

1.4 Research Motivation
According to [8], previously published federated learning systems only focused on
optimizing a specific problem, such as security, privacy, accuracy, communication
efficiency, or a broad unclassified sector. By employing LoAdaBoost, FedAvg, there
were concerns (computational cost, computational complexity, and test accuracy)
that were targeted to keep in mind; yet not for any particular sector in the same re-
search. However, no previous published research has taken place in the medical field
where security, privacy, test accuracy and communication efficiency were all taken
into account. This study came up with an approach for detecting prostate cancer
and classifying it using a decentralized, distributed, and safe federated learning sys-
tem, taking into account data privacy, security, test accuracy, and communication
efficiency for a specific medical sector. Furthermore, this study may be able to detect
deadly prostate cancer in a timely manner, thus saving some lives.
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Chapter 2

Research Problem and Objective

Federated learning entails training statistical models in expansive heterogeneous
networks of remote devices with localized data which requires overcoming some
unorthodox challenges —

2.1 Effect of privacy concerns
Most cases of medical imaging data are kept isolated with supplier institutions and
for this reason, a large amount of dataset is needed to be transferred. As this
type of transfer causes more and more legal challenges over a patient’s privacy, it is
very difficult to find enough medical image dataset.Because of few medical imaging
datasets, models which were trained by a few of these datasets often fail to work
on different protocols, equipment and patient population. But using FL, data can
be used in different institutions to train the DL model by distributing training
operations without using a combined single dataset [9].

2.2 System Diversity
Different federated learning devices may have different storage, size, analytical, and
connection capabilities, and these capabilities may result in varying hardware, net-
work, and power connectivity. Thus, while building or analyzing through federated
learning, it is important to keep a few things in mind: accepting diverse hardware,
anticipating a limited number of involvement, and being strong to network-released
devices [10].

2.3 Expensive Communication
In federated networks, communication is a key constraint, which, along with privacy
issues about transferring raw data, mandates that data generated on each device
remain local. Besides, in federated learning, many devices are required to train or
communicate, and network connectivity can be slower than local computing in vari-
ous ways of values. It is critical to develop effective communication mechanisms that
will frequently communicate model updates as part of the training process rather
than sending the entire dataset over the network. Among local updating methods,
primal-dual methods are found to be famous for convex objectives and distributed
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local-updating primal methods have practically shown immense improved perfor-
mance over traditional approaches for non-convex objectives [10].

2.4 Synchronous or asynchronous training algo-
rithm

The choice of whether to focus on asynchronous or synchronous training algorithms
is a fundamental design decision for a Federated Learning infrastructure. But de-
pending on the training algorithm, there might be some differences. Some successful
work has been done using asynchronous training e.g. [11] and to address the issue of
systems heterogeneity, asynchronous communication is popular to alleviate untidi-
ness but can be irrational in federated learning due to the possibility of unlimited
delay. However, according to [12] currently the synchronous training algorithm is
highly in use even in the data center. Because some notion of synchronization is
needed on a finite amount of devices so that a simple portion of the updates from
multiple users is consumed less in the learning phase of the algorithm.

According to Li [10], to overcome these challenges various approaches can be taken.
In addition, the Federated Averaging method is highly used for non-convex prob-
lems in federated settings. Among compression schemes, sparsification, subsampling
and quantization can substantially reduce the space required for communicated mes-
sages per round. However, in federated settings, it is challenging to implement these
compression schemes directly. On the other hand, star topology is the preeminent
communication topology for decentralized training and it is found to be faster than
centralized training in data center environments. Moreover, it can theoretically re-
duce communication expenses on global servers in federated learning but in practical
as it has limitations training over heterogeneous data, hierarchical communication
patterns are proposed to reduce load on global servers.

2.5 Research Objective
The goal of this research is to make the detection of prostate cancer easier, less
time consuming and protected using Federated learning. Since FL is a distributed
and decentralized machine learning method that allows for the training on the large
substances of decentralized data residing in devices, it can be used to train the
medical image dataset and patient’s privacy can be maintained. The following are
the objectives of this research:

1. To gain a deeper understanding of federated learning and how it works.

2. To gain a thorough understanding of how Federated Learning may be used to
maintain privacy, as well as how it may be applied.

3. To create a model for detecting prostate cancer malignancy and test it on a
variety of medical datasets.

4. To evaluate whether Federated Learning is a more reliable and secure approach
in handling the classification of prostate cancer.
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5. To offer possible improvements on the model for better utility and/or security.
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Chapter 3

Literature Review

In 2020, prostate cancer being the fifth leading cause of cancer deaths among men
[1], raised the necessity of its early detection for immediate treatment. In this case,
deep learning is a potent approach to deal with this emergency as many works in
the field of medical imaging diagnosis have been accomplished using deep learning.
However, in order to reach clinical-grade accuracy, deep learning models require
training from substantially huge curated datasets but medical data is supremely
confidential and its usage is highly restricted [6]. As a result, collecting medical
data is a very difficult and time consuming process. So, to deal with this issue, a
secured deep learning approach can be adopted which is known as federated learning.

Kelloff and co. [13] mentions prostate cancer being the second most common cause
of cancer-death among American men and not being invariably lethal. Current
standard imaging techniques, such as ultrasound, MRI, CT and nuclear medicine
cannot detect them in early stages. However, Song [14] mentions how the technol-
ogy has improved over the years, coining the term mp-MRI (such as T2-weighted
imaging, diffusion imaging, and dynamic contrast-enhanced imaging for lesion de-
tection, differentiation and staging). There is no doubt that these sorts of imaging
plays a pivotal role in various stages of cancer treatment. That being the case, it
is crucial that ways to reliably and efficiently classify them become common practice.

Rieke, Hancox and their colleagues [6] mention how Federated Learning will become
a huge contributing factor in managing and handling the health of the populace
digitally. Their implementation methodology involves the Hub Spoke (a form of
centralised topology) with the FedAvg aggregation approach, similar to our proposal.
The peer-to-peer approach was mentioned on an occasional basis, whereby the chal-
lenges would be greater compared to the centralised approach. Challenges in their
implementation involved data heterogeneity (multi-modality, multi-dimensionality
and multi-characteristic data), privacy security (trusted or non-trusted collabo-
ration where strict encryption systems may be needed to be placed), traceability
accountability (the need for measuring contribution and quality from the plethora
of different clients participating in the endeavour) and system architecture.

The authors Nilsson A, Smith S, Ulm G, Gustavsson E and others discuss an algo-
rithm called FedAvg in their study [15], which works with a server-client relation-
ship where the server initiates training. The server sends a global model to all of
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its clients, and the Stochastic Gradient Descent Algorithm is used to optimize it
at client level. The FedAvg algorithm takes into account a total of five hyperpa-
rameters: learning rate, batch sizes, number of epochs, number of customers, and
learning rate decay. Clients split their own data into different batch sizes and com-
plete a certain number of SGD epochs after adjusting local models to shared models.
The updated models are transmitted back to the server by the clients once the local
models have been adjusted from the global model. Upon receiving the models from
clients, the server brings changes to the global model by enumerating the weighted
sum of all the acquired local models. Despite its effectiveness, the FedAvg algorithm
still falls short in circumstances like the case of device heterogeneity. One of the
prevalent problems is when a device fails to maintain the task of calculating a given
number epochs within the time restriction and gets dropped by the server.

Choudhury and co. [16] address the many practical challenges when dealing with
machine learning in real-world health data. Their main methods involve federated
learning as the main framework upon which the work is implemented, along with
differential privacy which is used to guarantee the privacy of the algorithms working
on aggregated data. Three classification algorithms were used (perceptron, support
vector machine and logistic regression) and in order to evaluate the models, both
before and after performing the privacy-preserving mechanism, their utility is mea-
sured in terms of F1 score. 70% of the data was used to train the model with 5-fold
cross-validation. 10 sites (clients) were used in the experiment on high grade server
CPUs and RAM; done on 10 rounds of iteration. The last phase includes comparing
and contrasting between centralized learning, FL, and FL with �-differential privacy
in terms of utility, for � between 0.01 and 0.5. Results showed that FL archives
comparable performance to centralized learning for ADR and mortality prediction.
Additionally, despite differential privacy guaranteeing a set level of privacy accord-
ing to the set parameter, it led to a significant drop in performance and utility.

Another paper, also done by Choudhury and co. [17] focuses on, primarily, the pri-
vacy preserving aspect of federated learning in general, where they propose a syntac-
tic approach for offering privacy in the context of FL. The goal was to increase data
value and model performance while maintaining a verifiable and defensible level of
privacy that met privacy legal framework requirements. The experimental results
showed a consistent improvement for larger values � affecting utility positively across
all classification algorithms. Additionally, the parameter k used for their syntactic
approach yielded more generalized forms of their datasets for higher values to create
equivalence classes, thus affecting the utility negatively; a behaviour common across
all classification algorithms. Meaning, since their approach is heavily focused on
privacy, their results were as expected, in that, it was a trade-off one needed to take.

Xu, J. and co.’s paper regarding federated learning for healthcare informatics [18]
also addresses the issue of medical records not being properly utilized for robust and
better healthcare due to the fragmentation and sensitivity of the data, and also how
federated learning offers to be a completely unutilized solution to the problem. It
also addresses the common challenges faced when taking a naive, or unsophisticated
approach in the implementation of federated learning. The most common solution
is to force the data to adapt to a uniform distribution, such as, using the minimax
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optimization scheme of agnostic federated learning (AFL) [19]. Alternatively, we
could also share a common set of data globally across all clients [20][21]. The entire
paper acts as a general summary of different federated learning algorithms, tech-
niques and challenges, and provides a wide range general solution to them, as well
as a survey of a set of representative FL methods for healthcare.

Although federated learning is focused on preserving the privacy of clients’ data in
a distributed machine learning setup, it is not impossible for information leakage
to nor occur. Wei, K et al [22] mentions in their paper about Federated Learning
with Differential Privacy that private information divulsion can occur by analyzing
the uploaded parameters from the clients, and proposes a framework where artificial
noise is added to the parameters at the clients’ ends before aggregation of the model
takes place (NbAFL). Proof of their framework working is attempted under certain
circumstances, whereby their theoretical convergence bound reveals key properties,
such as trade-offs between convergence performance versus privacy levels, and there
being an optimal number of communication rounds for convergence performance for
a fixed level of privacy. Their evaluations are proved to be consistent and obey their
design principles.

HybridAlpha [23] is another such framework proposed by Xu, R and co. which
focuses on dealing with the drawbacks of standard frameworks, such as differential
privacy like the above and secure multiparty computation (SMC), that have large
communication overhead and slow training time. HybridAlpha employs an SMC
protocol based on a kind of functional encryption, which allows it to be simple, effi-
cient and resilient to unforeseen circumstances like clients canceling in the middle.
Evaluation procedures show that HydribAlpha reduces training time by 68% and
data transfer volume by 92% on average, all the while maintaining the same level of
performance and privacy as existing solutions.

The usefulness and applications of federated learning can also be found in other
fields as well, such in mobile networks [24] and the industrial areas [25]. In mo-
bile networking, virtual keyboards such as Gboard and SwiftKey use FL to improve
language suggestions, service providers can use models that employ FL that use lo-
cation history of mobile devices to accurately provide entertainment and restaurant
recommendations, delivery and commute services can use real time traffic informa-
tion to provide accurate ETAs for arrival and travel times, and healthcare data can
be shared among hospitals or medical researchers to improve clinical services and
analytics; all the while making sure the actual data that is used to train the different
types of models stay in the phone they’re trained from.

Truex, S. and co. [26] touch upon issues such as maintaining data locality on its
own does not provide sufficient privacy guarantees and that an FL system that can
prevent interference both during training and final trained model needs to be made.
Similar to Xu, R’s paper on HybridAlpha [23], they also establish the drawbacks in
accuracy of systems such as SMC, as well as trying to develop their own differential
privacy system that is both well-balanced in terms of security and accuracy, as well
as being scalable vertically (more complex models) and horizontally (various kinds
of models). In addition to employing differential privacy, they also add in a thresh-
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old homomorphic encryption algorithm such as the Paillier cryptosystem [27].

Yang, Q., Liu, Y., Chen, T., and Tong, Y. [28] propose several types of federated
learning frameworks such as horizontal FL, vertical FL, and federated transfer learn-
ing, as well as provide architectures, applications and surveys on the topic. HFL
is used in cases where datasets share the same feature space but different space in
samples, for example firms providing the same kinds of products/services can have
the same feature space, but may have different customer groups with very little in-
tersections, so different sample space. The problem with this type of model is that
it assumes honest participants and the server is honest-but-curious i.e. only the
server can compromise on the data privacy, which may not work in certain real life
scenarios. VFL is the opposite, where two datasets can share the same sample space
but different feature space. Here, attackers can only learn about the data from the
infected client, and not from other clients beyond what is revealed by the parameters
that are relayed in and out. In FTL however, both spaces differ. This might seem
like two irrelevant datasets are being used in a single federation, however, the point
here is to actually find and learn about any common representation between their
feature spaces.

From the above discussion, we can infer that federated learning has the potential to
be a feasible approach for early medical imaging diagnosis ensuring patient confiden-
tiality but there are aberrant challenges that need to be subdued. Albeit there have
been attempts made such as differential privacy technique, syntactic anonymization
to address the issues of data privatization it has also led to degradation in prediction
accuracy in many of the cases. Along with this, the heterogeneity in devices and
their computational ability comes in the way of accomplishing the desired number
of epochs and model encryption in time. Furthermore, another common problem
that is encountered is the variance of data availability at client level that may not
have adequate data for the deep learning models to be well suited. All of these
shortcomings leave the door open to work in these aspects to look for models that
will yield better accuracy and be well suited for data related to prostate cancer.
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Chapter 4

Work Plan

4.1 Training Phase
Our work plan involves a standard machine learning model that takes in medical
imaging as training and testing data. Initially, the model is trained on the main
server using open source imaging data as a preliminary form of fitting.

Next, in order to simulate multiple computers from different hospitals, the updated
model is sent to each of these clients, where separate and independent imaging data
is stored. Here, each client uses their own data to further train the model locally,
resulting in n different versions of the original global model, where n represents the
number of different clients participating in the training phase.

Once the training is done, the local models, and only the models, are sent back to
the main server. The data that was used to locally train the copies of the model
remains with the clients. The collected models are then collected and aggregated
into a single, more sophisticated global model, which is then redistributed to the
clients for further use.

This training may be repeated several times in order to make sure the model is not
underfitting.

It must be noted that the image training is done on only one ’type’ of imaging data,
such as MRI or CT scans; not both at the same time. A different model needs to be
used for new types of scans.
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Figure 4.1: Workplan

4.2 Testing Phase
Before deployment, the trained model is tested on the server side with a different set
of images. The model outputs the results with a certain degree of confidence (e.g.
95% confidence in malignancy, 80% confidence in non-malignancy, 75% confidence
in unsurety). The confidence values are simply the output numbers of the model
converted to a percentage. This may also be represented as a ratio. In cases where
the confidence differences between the three outputs are too close (such as being
95% malignant and 80% non-malignant) the model is passed through the training
phase once again, possibly with a different set of data.

If the confidence differences are large enough (98% malignant, 37% non-malignant,
2% unsure), it would mean the model passed the testing phase and is ready for
deployment.

4.3 Post-Deployment Phase
After the model is deployed into the real world, it still does not stay static. Since
machine learning is all about constantly updating and improving the model, it must
go through an indefinitely continuing training and testing routine.

Here, data from a new patient is put into the model (local), supposedly by the doc-
tor or technician etc. involved in the patient’s diagnosis. The model outputs the
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results of the imaging, stating how confident it is in the malignancy of said tumor.
If the doctor approves of the results, that is, deems the confidence sufficient enough
to be a reliable outcome, then this output is used to fine-tune the weights of the
model for stronger confidence.

If the doctor disapproves of the result, meaning, it is deemed not sufficient enough
to be a safe and reliable outcome, the doctor manually looks into the imaging to
determine the malignancy of said tumor. After this, the doctor’s result is inputted
into the model which is used to retrain it for better results. Ultimately, the model
must go through continuously updating phases.

After these steps are carried out in all the clients involved, the locally updated
models are sent back to the server at the scheduled time. No further updated models
will be accepted into the server after this time is up. The aggregated global model is
then redistributed across all clients to be used by the doctors once again, hopefully,
for better future diagnoses and classifications.
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Chapter 5

Methodology

The suggested prostate cancer classification model’s goal is to detect prostate can-
cer in data separated by PI-RADSv2 grades. To accomplish so, the model needs to
create a mechanism that receives data from files of prostate cancer patients as in-
put, processes it systematically, and produces predictions of four types: PIRADS1,
PIRADS2, PIRADS3, and PIRADS4.

5.1 Dataset
Most medical data is immensely confidential and used under extreme restrictions
[4]. So the fundamental initiative of our research was to collect a credible Multi-
parametric MRI dataset that we were able to download from “The Cancer Imaging
Archive” [29]. The dataset was created by conducting the study on old men aged
47-69 years, based on data gathered in a single-center condition from PCa 3 T
mpMRI acquisitions in a treatment-naive population employing an endorectal coil
under standard-of-care clinical conditions [30]. In fact, it comprises data of double
mpMRI examinations of 15 patients each. With no intervening treatment, imaging
was done at intervals of up to 2 weeks [30]. In this dataset, three types of scanned
images are available. They are:

• Axial T2-Weighted (T2AX)

• Diffusion-Weighted or Apparent Diffusion Coefficient (DW or ADC)

• Dynamic Contrast-enhanced Subtract (DCE or SUB) [30].

T2AX imaging technique performs best in detecting prostate cancer in the tran-
sitional zone, DW or ADC imaging technique performs dominantly in detecting
prostate cancer in the peripheral zone and only a qualitative assessment with the
presence or absence of focal enhancement is recommended by using DCE or SUB
imaging technique [31]. Among these three types of scanned images, we have chosen
to work with the Axial T2-Weighted images. The reason behind selecting T2AX
images is, 8 out of 11 patients who were diagnosed with tumor, had a Tumor-
suspicious Region Of Interest (tROI) volume of less than 0.5 mL which was derived
from averaging between the calculations acquired in baseline and repeat T2AX im-
ages whereas usually clinically significant prostate cancer patient has tROI volume
of greater than 0.5 mL [30]. Therefore, we also took into account the T2AX image
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data of baseline study as well as of repeat study for training the model. The file
format of the images are .dcm (DICOM images) and there are on average 30 T2AX
dicom image slices in each study of each patient, so on average there are 900 T2AX
dicom slices.

For labelling the dataset, we have selected the PI-RADS scoring system that strives
to ensure that mpMRI findings are consistently interpreted, communicated, and
reported [30]. PI-RADS score ranges from 1 to 5 but in our dataset we labelled
classes from only 1 to 4 because there was no patient recorded with PI-RADS score
5 in baseline-repeat study. The PI-RADS score denotes the likelihood of the presence
of clinically significant prostate cancer, the interpretation is given in the following:

• PI-RADS 1 – Quite Low (High possibility of clinically insignificant cancer
being present)

• PI-RADS 2 – Low (Possibility of clinically significant cancer being present)

• PI-RADS 3 – Medium (Uncertain presence of clinically significant cancer)

• PI-RADS 4 – High (High possibility of clinically significant cancer being
present)[31]

5.2 Data preprocessing

5.2.1 Centralized
The next step was processing the images of patients using different mechanisms.
It is very important for the images to be in the same size to be able to feed in a
convolutional neural network. All the MRI scans were converted from dicom files
to image data. The data were then divided into 4 folders depending on their PI-
RADS value. Consequently, the data were randomly splitted into train (70% of the
images), validation (20% of the images) and test (10% of the images) set. This split
resulted in 624 images belonging to train samples, 179 images belonging to validation
samples and 89 images belonging to test samples. The batch size of the input data
was set to 10 per batch. The images were then processed with the preprocess_input
function of the VGG19 model and Xception model. For the VGG19 model, the
image target size was set to 224 by 224 and the images were converted from RGB to
BGR format in the function. Subsequently, with regard to ImageNet, the function
would make the images zero-centric without scaling for each color channel. For the
Xception model, the image target size was set to 299 by 299 and the pixels of the
images are scaled in the range of -1 to +1 by the preprocess_input function of the
Xception model. The classes defined for both the VGG19 and Xception models were
PIRADS1, PIRADS2, PIRADS3 and PIRADS4.
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Figure 5.1: Visual comparison among pre-processed, processed for VGG19 and pro-
cessed for Xception

5.2.2 Decentralized
The preprocessing for decentralized training started with taking in all the images
together from the directories train,test and validation. The labels for the images
were saved as numerical values such as zero representing PI-RADS score 1. The
images were then converted into numpy arrays and resized to 224 by 224. Subse-
quently, the data were shuffled for well distribution and normalized to make sure
the comparisons between data collecting techniques and texture instances are as
accurate as possible. The data were splitted for train and test purposes with a ratio
of 80 to 20 respectively. At this phase, the train data was distributed among the
clients in a dictionary keeping the client names as keys and the data shards as value
pairs. Following the data distribution, each client’s data were batched to a size of
32 with the help of from_tensor_slices(). The same was done for the test data as
well.

5.3 Experimental set up
The classification process of the MRI data is no different than any other image
classification procedure after the format is changed from dicom files to jpg files.
The image data are taken as input and processed to suit the specific algorithm
that is being used. The labels are defined for each image data if we are following
a supervised approach. However, if the unsupervised procedure is followed then it
may not be necessary. The task of extracting attributes is handled by the neural
networks.

5.3.1 Centralized architecture
In centralized architecture, we trained the models with data located in a central
device. The training phase started by preprocessing the input image data. Next, the
salient features were selected by the model via reducing the extracted features from
the dataset. Then, the dataset was splitted into a train set and test set for learning
and prediction purposes of the model respectively via neural networks leading to a
classified result.
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Figure 5.2: Dataflow of classification

5.3.2 Decentralized architecture
As the images were processed to the desired level, we created the deep neural model
to initiate the training phase. We constructed two instances of the model, one to
be globally used and one to be locally used by the end devices. An environment
was created to be run for the set number of communication rounds which implies
how many times the global weights are sent back to local to train. At each round,
a random number of clients(end device) was picked to be trained. Afterwards, the
clients were shuffled and the picked number of clients were selected and proceeded
to be trained. While iterating through the clients, each client’s model weights were
to the global weights and trained for one round. Upon the finishing of a client’s
model train, the proportion of the client’s training data was compared to the overall
training data maintained by all clients to determine the scaling factor. The client’s
trained model weights were scaled using the value of the scaling factor generated
in the previous step. These scaled locally trained model weights were saved to
aggregate to the global model weights. Subsequently, at global level, the averaging
was done on the scaled values component wise based on the percentage of the data
points supplied by each participant client. Finally, the averaged values are set as
the new weights for the global model and kept to be used at local level. The process
repeats itself for the set amount of rounds.
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Figure 5.3: Decentralized model architecture

We have used one simple Convolutional Neural Network model and two state of
the art pre-trained image classification models for classifying our MRI data. These
three models were trained both in the centralized and the decentralized system for
50 epochs separately.

5.3.3 Simple CNN
The simple CNN model that we used was built on a Sequential class stacked with
3 layers of Conv2D network which had a gradually increasing number of filters 32,
64 and 128. These Conv2D layers help extract the features from input images. The
activation function we used in all the Conv2D networks was the ReLU function
and the padding was kept the same for all the layers. In between the Conv2D
layers there were three MaxPool2D layers which had a pool size of 2,2 and strides
size of 2 for all the layers. The MaxPool2D layers were used to reduce the spatial
dimension by taking the maximum value over an input window of pool size keeping
the depth constant. Following the Conv2D and MaxPool2D layer, we used a Flatten
function to turn the varying dimensional tensors to one dimensional. Subsequently,
we utilized a Dense function with a softmax activation function and unit size of 4.
The model was compiled with a learning rate of 0.0001 and the loss function was
set to categorical_crossentropy. Furthermore, we used the Adam optimizer as it is
computationally efficient in optimizing the cost function by finding out the best set
of parameters.

5.3.4 VGG19
There are many different CNN architectures and among those, the VGG19 has been
chosen for our work because of its simplicity. There is another CNN architecture
which is VGG16. Convolutional layers, max pooling layers, and fully linked layers
make up the VGG16 model. There are 16 layers in all, with 5 blocks and a maximum
pooling layer in each block. Nevertheless, VGG19 is significantly better than VGG16
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although it uses more RAM. Moreover, VGG19 gives more accurate predictions than
VGG16. This network has been pre-trained using the ImageNet database which
contains a large number of images. VGG19 is a 19-layer variant of the VGG model
which contains 16 convolution layers, 5 MaxPool layers and 3 Dense layers. In
VGG19, as the filters are being increased, the convolution layers must be increased.
More specifically, if in layer-1 there are 16 filters, other layers must have 16 or more
filters. In our work, we excluded the prediction dense layer that was included in
the model and added our own dense layer with the unit size of 4 and a softmax
activation function. We used the Adam optimization algorithm with a learning rate
of 0.00001 and the loss parameter was set to categorical_crossentropy. However, for
the decentralized approach the learning was set to 0.0001.

5.3.5 Xception
Xception is an intermediate step between depthwise separable convolution and stan-
dard convolution (after a depthwise convolution, a pointwise convolution). A depth-
wise separable convolution, also known as Xception, can be thought of as an Incep-
tion module with a maximally significant number of towers. Inception modules
were replaced with depthwise separable convolutions in Xception. In a nutshell,
Xception’s architecture is made up of Depthwise Separable Convolution blocks and
Maxpooling, which are linked together by shortcuts of ResNet-style. A convolution
layer in Inception attempts to learn filters in a three-dimensional space that has
two spatial dimensions (width and height) and a channel dimension. A single con-
volution kernel is charged with mapping cross-channel and spatial correlations at
the same time. Inception modules often look at cross channel correlations using a
series of 1x1 convolutions, which map the input data into three or four smaller 3D
spaces than the original input space, and then map all correlations in these smaller
3D spaces using standard 3x3 or 5x5 convolutions. Moreover, according to [32],
Xception is a convolutional neural network architecture based entirely on depth-
wise separable convolution layers and a hypothesis which states that the mapping of
cross-channel and spatial correlations in convolutional neural network feature maps
may be completely separated. Basically, the Xception architecture is a depthwise
separable convolution layer stack with residual connections that is stacked in a linear
fashion. There are 36 convolution layers and 4 MaxPooling layers in this Xception
model. This Xception is more or less similar to Inception but the basic difference
is that On the ImageNet dataset (for which Inception V3 was created), Xception
marginally outperforms Inception V3, and considerably outperforms Inception V3
on a bigger image categorization dataset. The model’s prediction dense layer has
been replaced with our own dense layer which has a unit size of 4 and a softmax
activation function. We utilized GlobalAveragePooling2D to apply average pooling
to the spatial dimensions until each is one, while leaving the other dimensions alone
with the parameter (None, 2048). Here, Adam optimization method has been used
with a learning rate of 0.0001 and categorical_crossentropy as the loss parameter.
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Chapter 6

Results & Analysis

6.1 Centralized
In this part, the performance of the three models that we used to classify the MRI
data would be discussed. The simple convolutional model achieved an accuracy
of 92.13%. The precision and recall value was also the same for this model. The
VGG19 model yielded an accuracy of 95.51% although it had a validation accuracy
of 97.21% while training. It failed to correctly classify 3 MRI data belonging to
the PIRADS2 class and one belonging to the PIRADS3 class. Similar to our simple
convolutional model, the VGG19 model also had the same precision and recall score
as its accuracy rate. The similar ratio of true positive and alternating value of false
positive and false negative among the four classes led to the equal value of precision
and recall score. The Xception model produced an accuracy of 89.47% when the
learning rate was set to 0.00001. However, the model was able to achieve the same
accuracy of 95.51% as the VGG19 model when we increased the learning rate to
0.0001. The precision rate and recall value after the change in learning rate was
96.59% and 95.51% respectively.

According to the accuracy, precision and recall, the comparison among Simple CNN,
VGG19 and Xception is shown below:
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Figure 6.1: Comparison of performance among the models in centralized system

6.2 Decentralized
This section includes the performance of the same three models but in a decentralized
environment i.e. federated learning approach. Carrying the same parameters like
learning rate, epochs albeit the different setup, our simple neural network model
could afford to reach an accuracy of 74.86% on the test data while having a recall
and precision score of 82.62% and 73.31% respectively. The Xception model reached
an accuracy of 76.54%. In the meantime, it gained a recall value of 85.72% and a
precision value of 74.9%. Among the three of the models we tested, the VGG19
model stood out and reached an accuracy of 83.76% while having a recall score of
91.22% and precision score of 79.82%.
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Figure 6.2: Comparison of performance among the models in decentralized system

6.3 Comparison between centralized & decentral-
ized setup

6.3.1 Simple CNN model
While training the dataset on the CNN model in the centralized system our model
saw quite a spike in learning for the first ten to twelve epochs and quite a decrease in
loss function. For the rest of the epochs the model saw very little improvement. On
the contrary, in the decentralized system, the model saw barely any improvement in
learning for the first fifteen epochs. While the rest of the training period saw varying
learning spikes. The model observed a decrease in the loss function consistently
through the training period.
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Figure 6.3: Accuracy and Loss Histogram of Simple CNN Model

6.3.2 VGG19 model
Our VGG19 model reached peak accuracy very quickly in the centralized system,
before 5 epochs, whereas our decentralized model merely started to become more
accurate at the same number of epochs, taking around 30 epochs to reach peak
accuracy.
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Figure 6.4: Accuracy and Loss Histogram of VGG19 Model

6.3.3 Xception model
Despite reaching peak training accuracy before 5 epochs, our centralized Xception
model had very frequent and sharp highs and lows during its validation phase. Even
so, the general trend was still heading towards a better direction. On the other hand,
our decentralized model underwent a steady and gradual improvement throughout
the 50 epochs it went through.
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Figure 6.5: Accuracy and Loss Histogram of Xception Model

6.3.4 Overall Accuracy Comparison
Although the scores gained in the decentralized system could not exactly reach the
scores gained in the centralized system running the equal number of epochs, our
models produced promising results that can be further improved with the change in
likes of communication round and feeding more data.
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Figure 6.6: Comparison of performance among the models in centralized & decen-
tralized system
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Chapter 7

Conclusion & Future Work

7.1 Future Work
The goal of this study was to apply federated learning, which is a decentralized
privacy-preserving learning method, to protect the privacy of personal medical data.
Because medical data has such high privacy concerns and it is essential that the pri-
vacy of such data is to be protected, a technique that will provide considerable
benefits in terms of privacy preservation is required. As a result, the decentralized
learning approach of Federated Learning was used in this study. Even though it is
a decentralized learning method, it still faces several obstacles, such as server-side
threats or poisoning attacks [33]. In some situations, a poisoning attack in the de-
centralized system may allow user-level privacy to be compromised. In the future, a
framework containing Generative Adversarial Networks (GAN) might be utilized to
handle this problem. A multitask discriminator might also be added to the frame-
work to allow the system to save private data requested by the user. This will differ
from the current research procedures in some ways. The training process is limited
under the current procedures, however this has no bearing on the conventional train-
ing mechanism. Using the mGAN-AI practical reconstruction attack, a malicious
server may assure the reconstruction of genuine training data [34]. However, there
are still some improvements that may be made in the future. Besides, in real life,
decentralized data distribution may often be non-IID i.e. non-independent and iden-
tically distributed since different hospitals or clients may have local data of only one
class or few classes out of many classes which can worsen the model’s performance.
For instance, if one client contains the data of patients with PI-RADS score-2 only,
then the model may not learn to classify the images having PI-RADS score-1, 3, 4
.etc. Therefore, this challenge needs to be addressed and worked on. On the other
hand, since it is a decentralized learning approach, in real life scenarios, data may
get increased during the runtime of the training process as there is no centralized
control over the clients, from the server and data of new patients may get added
at any moment. Hence, further research is needed to address this challenge and to
solve it in an appropriate manner.
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7.2 Conclusion
Deep learning, particularly federated learning has resulted in a plethora of digital
healthcare technologies [6]. To summarize, by utilizing federated learning, this re-
search can be used to develop a safe and reliable approach for identifying prostate
cancer in a short amount of time. In this research, the classification process was
completed first, and then federated learning was employed to provide a secure and
trustworthy approach for protecting medical data. Since privacy is a major prob-
lem, decentralized federated learning was used in this work, and the efficiency of the
federated learning was tested using a set of medical image data, particularly for our
purposes, from prostate cancer patients. The comparison between the efficiency of
centralized and decentralized approaches have been shown in this research. How-
ever, if the necessity of this research is being discussed, it can be said that as a result
of early detection, prostate cancer patients who strive to keep their disease hidden
due to social stigma can begin their treatment sooner by assuring them with their
privacy concerns while also preventing the illness from becoming aggressive.
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