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Abstract

Content centric network is a state-of-the-art networking architecture for content
distribution and content caching. However, it is inefficient to cache every content
in each network device. The modern edge computing technology opens the door
for content caching in the edge of the network. However, still we have to decide
which contents we should cache and which content we should replace from the
cache. Deep learning based predictive analytics can play an important role in
selecting contents for caching purposes. In this research, we will use Long short-
term memory(LSTM) based Recurrent Neural Network(RNN) for decentralized
content caching at the hierarchical edge of the network.

Keywords: Content, Caching, Edge networking, Deep learning, Recurrent Neu-
ral Network(RNN), Long short-term memory(LSTM),Decentralized,Hierarchical.
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Chapter 1

Introduction

Soon after the invention of the first computer ENIAC in 1946, one of the most
significant lacking it had was networking. People could do many things with
the computer. But, it was impossible to share their works with others who were
miles away. From this hunger of sharing, people started to think about making
a system by which they could share their works with others. From this conse-
quence, in 1960 ARPANET (The Advanced Research Projects Agency Network)
was built in order to create a network with thousands of computers. And, thus
the journey of networking had started. Simply, the linking of computers to allow
them to operate interactively is networking.

In the very first era of networking, it was just a connection between computers for
sharing mostly research data or important files. Only some of the sophisticated
researchers and high-level people got to have the benefit of networking. But, in
modern times, the concept of networking has changed a lot. Nowadays, there
are thousands of fields in networking. Computer networking connects devices
and endpoints on a LAN or a wider network, such as the internet or a private
wide area network (WAN). This function allows service providers, enterprises,
and consumers all over the world to exchange resources, use or give services,
and interact. From phone conversations to text messages to streaming video to
the internet of things, networking makes everything easier (IoT). People from
every stage in society get help from networking in their day to day life. In this
context, content has become the most powerful weapon in the networking field.
Any content that is stored as digital data is considered digital content. Content,
also referred to as digital media, is saved in specific formats on digital or ana-
log storage. Information broadcast, transmitted, or stored in computer files are
examples of digital content. People use content to get their job done in their
daily life. Starting from media streaming sites, social networking sites, online
news portals and many others are spreading digital well being to human beings
through content.

Content centric networks are getting richer day by day with the help of thou-
sands of content providing sites and its users. However, this wouldn’t have been
this rich, if it wouldn’t have been efficient. Efficiently caching the contents is so
important in networking. Caching a content means fetching the content from the
server. [t might be any server all over the world. But, that might be problematic



as the server from which the files are being cached, might be far away from the
user. That’s where efficient content caching comes in handy. In efficient content
caching, files get fetched from the closest server. As a result, lots of time gets
saved.

However, there is a significant issue when deciding which content we should cache
and which we should replace from the cache because of limited cache memory.
We need to cache contents that are more important to the users. But, it is
harder to decide which content is more important to the user. Again, another
issue might be where to cache the files. Whether we would need to cache the files
in the regional cache or the central cache. To make the purpose easier, we can
use deep learning based predictive analytics. Predictive analytics can help us to
decide which file to cache and which file to replace from the cache depending on
its importance. Moreover, predictive analytics helps us to cache the contents in
a decentralized way. Thus, the prediction will run on the edges but the central
cache will benefit from that.

Predictive analytics is essential for storing content at the network’s edge effi-
ciently. Businesses may be proactive and forward-thinking using predictive an-
alytics, predicting events and behaviors based on data rather of guesswork or
assumptions. The same can be said of content caching. Information providers
can use predictive analytics to cache the most popular content at the network’s
edge, allowing users to access it faster and with less latency.

1.1 Research Problem

With [6] the mass availability of devices like mobile phones, computers etc. the
use of the internet is increasing rapidly day by day. And, content providing sites
like YouTube, Netflix, Prime Video etc. are becoming so popular among the
users. However, people want to stream their contents faster from the sites with
less latency. If the requested files are available on the cache server, they are de-
livered to the users extremely faster. Which is why caching is necessary. Assume
a [6] Netflix subscriber in London wants to stream the show House of Cards. To
ensure fast access and minimum buffering time, Netflix copies the videos from
their origin servers in Los Gatos, CA, to the caching server closest to London.
Because of this, all subscribers in London can quickly access the show and avoid
a transatlantic file transfer. However, it is impossible to keep every movie in the
closest caching server of London because of space limitation. To save the space
of the cache server, the not so popular movies are needed to be replaced from the
cache server with new ones. As a result, there comes a decision between what
movies to keep and what movies need to be replaced from the cache. Therefore,
a question might arise:

“Which contents we should cache and which contents we should re-
place?”

This research will answer the above question through the usage of Deep Learning
based Predictive Analytics Algorithm (in our case, LSTM based RNN).



1.2 Research Objectives

We are going to build a system using deep learning based predictive analytics so
that we can decide which contents need to be cached and which contents need
to be replaced from the server. The contents that are trending should be kept in
the cache and others should be replaced from the cache. The objectives of the
research are:

e To understand, what content caching is and how it works

Importance of efficient content caching and its mechanism

Importance of edge computing and edge network in efficient content caching

To develop a model for connection between predictive analytics and efficient
content caching

To evaluate the model



Chapter 2

Literature Review

As the blessings of modern technologies like mobile phones, tablets, computers
etc. are becoming more affordable and easier to get, people are getting more
and more used to these devices’ day by day. And, people are getting more com-
fortable with content providing sites like Netflix, YouTube, Prime Video and so
on. And, the number of users is rapidly increasing day by day. According to [14]
Statista, the number of Netflix users in 2020 is 195.15 million by Q3. However, in
a recent article of [16] TNPS (The New Publishing Standard), in 2030 the num-
ber of Netflix users is expected to increase up to 500 million. There might be one
problem with the loading time of the contents that are far away from the user.
To solve that issue, the concept of caching comes in handy. But, the amount of
cache memory is limited. That’s why there is a trade-off between which content
to cache and which to replace. To efficiently cache data, predictive analytics is
SO necessary.

2.1 Decentralized Content Caching

Content caching is a performance optimization mechanism in which data is de-
livered from the closest servers for optimal application performance. According
to [3] ‘interserver’, when a system accesses the website, the contents in that site
will be provided by a nearby cache server rather than the original server which
is remote. As a result, it will decrease the latency. However, while caching the
movies on the central cache server, a large amount of computational power is
needed to predict the movies. Moreover it takes a lot of time to predict the
movies for the central cache. So, some solution is needed to cache the contents
on the central cache with least computational power. That’s where decentral-
ized content caching comes in. Decentralization helps to predict the movies on
the regional cache servers and use the prediction to cache the movies on the
central cache server. Again, it is impossible to cache each and every content in
the cache server. That’s why efficient content caching is needed too. In efficient
content caching, most popular contents are cached and least important contents
get replaced from the cache server. Decentralization and efficient content caching
reduces server traffic and the performance of the application gets improved.



2.2 Edge Computing and Edge Network

Edge networking is a distributed computing paradigm that brings computation
and data storage as close to the point of request as possible in order to deliver
low latency and save bandwidth. However, [19] edge computing is a modern
technology on data center and cloud computing architectures to help create ef-
ficiencies. Edge computing is significantly important outside the cloud, at the
edge of the network, and more significantly in applications where real-time data
processing is required. Due to the proximity of the analytical resources to the
end users, sophisticated analytical tools and Artificial Intelligence tools can run
on the edge of the system. According to [7] ‘The Emergence of Computing’, this
placement at the edge helps to increase operational efficiency and contributes
many advantages to the system.

2.3 Predictive Analytics

Predictive analytics is the use of data, statistical algorithms and machine learn-
ing techniques to identify the likelihood of future outcomes based on historical
data. The goal is to go beyond knowing what has happened to providing a best
assessment of what will happen in the future [21]. Though predictive analytics
has been around for decades, it’s a technology whose time has come. More and
more organizations are turning to predictive analytics to increase their bottom
line and competitive advantage. According to PredictiveAnalyticsToday [15], it
uses a number of data mining, predictive modeling and analytical techniques to
bring together the management, information technology and modeling business
process to make predictions about the future. The patterns found in historical
and transactional data can be used to identify risk and opportunities for the
future.

2.4 Related Works

This part aims to critically review previous relevant works in the field of Pre-
dictive Analytics in the context of Efficient Content Caching at edge networks.
Observing different techniques used in different relevant research works, we found
many challenges in efficiently caching the contents through prediction.

Content caching on the edge of the network is so important because if not cached,
the data will be accessed by the user directly from the main server through the
cloud. Which will increase the latency. According to [4], popular content and
objects can be stored and served from edge locations, which are closer to the
end users. This operation is also beneficial from the end user perspective since
edge caching can dramatically reduce the overall latency to access the content
and increase the sense of overall user experience.

Again, edge computing is another factor in terms of content caching. According



to [10], using the cloud as a centralized server simply increases the frequency
of communication between user devices, such as smartphones, tablets, wearable
and gadgets, referred to as edge devices, and geographically distant cloud data
centers. This is limiting for applications that require real-time response. Hence,
there has been a need for looking ‘beyond the clouds’ towards the edge of the
network, referred to as edge computing. Computing on edge nodes closer to
application users could be exploited as a platform for application providers to
improve their service. Although, the cache memory at the edge of the network is
limited. So, we have to make a decision about what content to cache and what
content to replace from the cache. That’s where deep learning based predictive
analytics comes in useful.

Recurrent Neural Network (RNN) is significantly useful for solving the efficient
content caching prediction problem because it not only utilizes the current state
but also uses the previous state data using sequence. According to [4], Unlike the
hidden neuron in FNN, the output of RNN depends on both the current output
of the previous layer and the last hidden state. However, using RNN might not
be appropriate in some cases as there might be data vanishing gradient prob-
lems. Recurrent Neural Net- works work just fine when we are dealing with
short-term dependencies[8]. To solve that issue, LSTM (Long Short-Term Mem-
ory) comes handy. Long Short- Term Memory (LSTM) networks are a type of
recurrent neural network capable of learning order dependence in sequence pre-
diction problems[5]. According to [10], LSTM models are quite popular due to
their special design property related to carefully avoiding vanishing and explod-
ing gradient problems when building deep layer neural network models. With
LSTMs, the information flows through a mechanism known as cell states. This
way, LSTMs can selectively remember or forget things[8].

Hierarchical LSTM that considers both check-in time and event taxonomy struc-
ture from check-in sequences to provide accurate predictions on a user’s future
check-in location category. Each category is also projected into an embedding
via hierarchical LSTM, resulting in new representations with greater semantic
implications. The efficiency of the suggested Hierarchical LSTM is set to be
demonstrated by experimental results that Hierarchical LSTM increases Accu-
racy by 4.22 percent on average, and Hierarchical LSTM learns a superior taxo-
nomic representation for clustering categories, culminating in a 1.5X increase in
Silhouette Coefficient.[12]

Several cloud-based apps use a data center as a centralized computer to analyze
data from edge devices like smartphones, tablets, and wearable. This strategy
puts ever-increasing requirements on communication and computing resources,
thereby lowering Quality of Service and Experience. Edge Computing is based
on the idea of transferring part of this computing burden to the network’s edge in
order to take use of computational capabilities that are presently underutilized in
edge nodes such base stations, routers, and switches. This position paper exam-
ines the difficulties and possibilities that come as a result of this new computing
path.[7]



2.5 Loss functions

The error (also known as ”the loss”) between both the output of our methods
and the supplied goal value is calculated using loss functions. The loss function,
in layman’s terms, describes how far our estimated output is off the mark.[17]
It’s a way of determining how effectively your algorithm models the data.[9] Loss
functions are used in optimization problems in order to reduce the loss. Loss
functions are used in regression to find the best fit line by reducing the total
losses of all the points that fall inside the line’s prediction. Loss functions are
used to control how perception and neural network weights are altered during
training. The magnitude of the loss is proportional to the size of the update.
The accuracy of the model is improved by lowering the loss.However, in these
machine learning applications, the trade off between update size and low loss
must be considered.[17]

2.6 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a type of recurrent neural net-
work capable of learning order dependence in sequence prediction problems[5].
Long Short Term Memory networks, or "LSTMs,” are a kind of RNN that can
learn long-term dependencies. LSTMs are specifically developed to prevent the
problem of long-term reliance. They don’t have to work hard to remember knowl-
edge for lengthy periods of time; it’s like second nature to them[1].LSTM net-
works are well-suited to classifying, processing and making predictions based on
time series data[18]. LSTM is an RNN architecture specifically designed to ad-
dress the vanishing gradient problem [5]. LSTM works tremendously well on a
large variety of problems, and are now widely used [1].

Here is the struc- ture of the Long Short-Term Memory(LSTM) unit which shows
its workflow. A cell, an input gate, an output gate, and a forget gate are the
components of an LSTM unit. The three gates control the flow of information in
and out of the cell, and the cell remembers values across arbitrary time periods.
A LSTM unit is composed of a cell, an input gate, an output gate and a forget
gate. The cell remembers values over arbitrary time intervals and the three gates
regulate the flow of information into and out of the cell.
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Figure: Structure of a LSTM Unit [11]

Now,flowchart of LSTM has been given here to illustrate the work process and
its steps:
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Figure: Flowchart of LSTM

2.6.1 Understanding LSTM

The LSTM cell is similar to a conveyor belt. With only a few tiny linear inter-
actions, it flows straight down the entire chain. It’s incredibly easy for data to
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simply travel along it unaltered. Gates allow information to pass across the cell
if desired. A sigmoid neural net layer plus a pointwise multiplication operation
make them up. The sigmoid layer produces integers ranging from zero to one,
indicating how much of each component should be allowed to pass. ” Allow noth-
ing through!” signifies a value of zero, while ”let everything through!” means a
value of one. Three of these gates are present in an LSTM to protect and govern
the cell state. The first stage in our LSTM is to decide which information from
the cell state will be discarded. The ”forget gate layer,” a sigmoid layer, makes
this judgment. The LSTM layer checks hy;; and z; and gives a value between 0
and 1 for each value in the cell state Cy;. A value of 1 indicates to completely
keep this and 0 indicates to completely delete this.

ft = O'(Wf.[ht_l,xt] + bf)

The next stage is to figure out what new data we’ll store in the cell state. There
are two components to this. The "input gate layer,” a sigmoid layer, chooses
which values we’ll update first. Then a tanh layer generates a vector of new
candidate values. In the next step these two layers get merged to create an
update to the state.

it = O'(VVi.[ht_l, l‘t] + bz)

C, = tanh(WC.[ht_b .fEt] + bc)

It’s now time to switch from C;; to Cy. It multiplies the previous state by ft,
forgetting what it had previously opted to ignore. it*Ct is then added. This is
the new candidate values, scaled according to how much each state value was
updated.

Cr= fixCior + 1, % C

Finally, we must determine what we will produce. This output will be based on
the state of our cells, but it will be filtered. First, we run a sigmoid layer to
determine which aspects of the cell state will be output. The cell state is then
passed through tanh (to force the values to be between 1 and 1) and multiplied by
the output of the sigmoid gate, resulting in only the parts we choose to output.

Oy = U(WO.[ht_l, l‘t] + bo)

hy = o % tanh(CY)

However, the above-mentioned LSTM is a very basic one. There are a lot more
types of LSTMs. Another type of LSTM can was created by adding ‘peephole
connections’ to all the gates.

ft = O'(Wf.[ct_l, ht_l,xt] + bf)
iy = o(Wi.[Cooa, hy—v, ] + b;)

0 = o(Wo.[Crov, hy—v, 2] + by)

Another type of LSTM uses coupled forget and input gates. It makes the forget
and keep decisions together.

Cr=fixCii+ (11— fi)*Cf



However, a much updated version of LSTM, Gated Recurrent Unit or GRU was
introduced in 2014. It’s a single "update gate” that combines the forget and input
gates. It also modifies the cell state and hides the state, among other things.
The resulting model is easier to understand than ordinary LSTM models, and it
is gaining popularity.

ze =0(W,.[hi—1,x])

re = o(Welhi—1, 24])
hy = tanh(W.[ry * hy_1, x4])
he = (1—2z) % hy_1+ 2z + I}

= = w -
2 o S
F |—>] 89 «>| ©° 2u |, gyW
T = S g 5%
z Z 0O vd o- o-
4 o)
MULTIPLE
LAYERS
OF LSTM

CELLS

Figure: Various layers of the RNN model layer as used in this paper
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Chapter 3

Methodology

The aim of using predictive analytics for decentralized content caching at the
hierarchical edge network is to cache the most popular contents at the edge of
the network and thus decrease the latency. With a view to doing so, the model
requires designing a process that takes data from the activity of the users as an
input. Then it systematically processes the input data and outputs either of the
different results: ‘stream from the caches’ or ‘stream from the cloud’ or ‘don’t
cache’. The below figure provides a generalized view of the model design for the
first time slot:
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Figure 3.1: The flow chart of the predictive analytics model

We are using LSTM based Recursive Neural Network (RNN) for solving our
problem. We could use other Deep Learning based models for this work. But,
unlike many other algorithms, LSTM based RNN remembers the previous se-
quence by keeping them in memory. As a result, the output gets more and more
accurate day by day. The workflow will be done in the following stages:

1. Input data:
In this stage the program takes activity data from the users as input.
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2. Input data pre-processing: In this stage the input data gets formatted in
such a way that LSTM can use it to process easily.

3. Splitting: In this stage the formatted input data gets split into two parts.
One is for training and another is for testing. We have taken 70% for
training and 30% for testing. The model will get trained based on the
training data and we will check the accuracy of the model based on the
testing data.

4. Predictions: In this stage prediction model is used for prediction to decide
whether to cache or replace.

5. Cache or Replace: In this stage the system will decide whether to cache or

replace a movie based on their predicted hit count.

3.1 System Architecture

-

>
>

A

Central Server ,

h

Regional Server 1 Regional Server 3

\ 4

Regional Server 2

Figure 3.2: System Architecture

For an efficient content centric caching, we needed better prediction which we
achieved using a multi-layered system which can be seen in the figure above.
In our proposed system, we have 2 layers that are interconnected and highly

13



optimised for efficient content caching. The first layer or the Regional Servers
have the lowest hop count from the end users. Which means that the regional
servers have the lowest latency with respect to the end users. In the second and
the final layer or the central cache server, is the closest server to the cloud.

3.1.1 Regional Cache Servers

In the very beginning of the caching time-frame, the most demanding movies are
stored in the regional cache servers based on the highest predicted hit counts.
The process gets repeated on all the regional cache servers. After filling up all
the cache servers with their maximum capacity, they send back the remaining
popular movies to the central server. The rest of the caching happens on the
central server.

3.1.2 Central Cache Servers

In the beginning stage, movies with predicted hit counts come from the regional
cache servers. The most popular movies get stored in the central cache server
with the maximum capacity and the rest are dropped.

In the next time frame, when a new movie comes, the system checks if the movie
is available in the regional cache server or not. If the movie is available, then
it simply streams from the cache server at a faster speed. If the movie is not
available in the regional cache, it looks for the movie into the central cache server.
If the movie is available on the central server, it will stream from there. If the
movie is not available in the central cache server too, then it will cache the movie
to the regional cache server or the central cache server based on the predicted hit
count value of the movie. Thus, the regional cache server and the central cache
server makes the streaming job much faster.

3.2 Model Architecture
@ Output

@ Dense Layer

cu_dnnistm1 —» cu_dnnistm1 |—» cu_dnnistml fecccececaanns —>»{ cu_dnnistm1 LSTM layer2

A A A A

cu_dnnistm »| cu_dnnistm |—» cu_dnnistm pesccceceaaans —>»{ cu_dnnistm

o I

x100 Input
x1 x2 x3

Figure 3.3: Architecture of our Model

LSTM layer1
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We have built our LSTM model to predict hit counts of movies in a time series
manner. The LSTM model is a many-to-one RNN model because our model
takes movielD and timestamp as input and gives us hit count as predicted out-
put. As LSTM is a recurrent neural network model, we converted our dataset
into a series and for our model’s input we are feeding sequences. In the model
we have 100 LSTM layers (here we have used CuDNNLSTM as it executes much
faster with the help of GPU), 1 dropout layer and 1 dense layer. We haven’t
used redundant dense layers because they use too much computational power.
In the dense layer there is only one cell. Because of the one cell in the dense layer
the output layer also has a single output. The output is predicted hit count for
a particular movie at a particular timestamp. Based on the predicted hit count,
we can know how many times the movie has been watched. And, thus we can
determine which movie to cache and which to replace.

3.3 Dataset Description

In predictive analytics, the most important tool is data. To know what to cache
and what not to cache, we need a lot of data based on the user’s ratings. That is
why we have chosen MovieLens dataset which consists of various datasets among
which, we will primarily be using movies and ratings datasets. The movie dataset
consists of movie id, title, genres and rating dataset consists of userid, movie id,
rating and timestamp. It contains 27753444 ratings and 1108997 tag applications
across 58098 movies. These data were created by 283228 users between January
09, 1995 and September 26, 2018. This dataset was generated on September 26,
2018 [2]. This dataset can be downloaded from [20].

3.4 Dataset Pre-processing

Data preprocessing is a data mining technique to turn the raw data gathered
from diverse sources into cleaner information that’s more suitable for work. In
other words, it’s a preliminary step that takes all of the available information to
organize it, sort it, and merge it [13].

e Data set clean: Not all the data of a data set are necessary for each and
every research. For that reason, data set cleanup is necessary for preparing
the data for pre-processing. Data cleaning is required for smooth noisy data
and standardizing the data. By cleaning up the data set movies, we are
categorizing the genres into integer values and adding another field called
release date which gets derived from the title field. In the case of rating
data set, we are sorting the data set by userld keyword. Also, a field called
daily (seconds a day).
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movield title genres
1 Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
2 Jumanji (1995) Adventure|Children|Fantasy
3 Grumpier Old Men (1995) Comedy|Romance
4 Waiting to Exhale (1995) Comedy|Drama|Romance
5 Father of the Bride Part II (1995) Comedy
userld movield rating timestamp
1 307 3.5 1260000000
1 481 35 1260000000
1 1091 1.5 1260000000
1 1257 4.5 1260000000
1 1449 4.5 1260000000
Table: Before Data Cleanup
movield title genres releaseDate
0 1 Toy Story (1995) 1.00 1995
1 2 Jumanji (1995) 2.00 1995
2 3 Grumpier Old Men (1995) 3.00 1995
3 4 Waiting to Exhale (1995) 4.00 1995
4 5 Father of the Bride Part II (1995) 5.00 1995
timestamp userld movield rating daily
23237827 237556 21 3 9140
5510411 56769 1176 4 9140
23237876 237556 1079 3 9140
23237833 237556 47 5 9140
23096009 236139 28 5 9524

Table: After Data Cleanup

e Then we are joining the data sets (movies, rating) that are coming from
our previous step, data set cleanup.

e Then we are dividing the data set into three parts for building prediction
models on three regional cache servers. However, to reduce redundancy,
we are showing output from only the first part of the three.

e Then we are sorting our joined data sets in ascending order based on times-
tamp, userld, movield.
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movie

timestamp | userld 1d rating | daily |tstamp hour| tstamp day | tstamp year | genres releaseDate
0 23237827 | 237556 | 21 3 9140 6455 269 1 17 1995
2 23237876 | 237556 | 1079 3 9140 6455 269 1 38 1988
3 23237833 | 237556 | 47 5 9140 6455 269 1 30 1995
51498 (23193844 | 237134 | 21 5 9609 6443 269 1 17 1995
51499 (23193845 | 237134 | 150 5 9609 6443 269 1 58 1995

Table: Before Sorting

timestamp | userld | movield | rating daily tstamp_hour | tstamp_day | tstamp_year | genres releaseDate
64 | 23184175 | 237014 1 3 9618 6441 269 1 1 1995
65 | 23184176 | 237014 4 4 9618 6441 269 1 4 1995
66 | 23184177 | 237014 10 3 9618 6441 269 1 9 1995
63 | 23184178 | 237014 11 5 9618 6441 269 1 4 1995
62 | 23184179 | 237014 19 1 9618 6441 269 1 5 1995

Table: After Sorting

o After sorting the datasets, we are creating label from tstamp day and
movield. At the very beginning we are creating a merged string with
tstamp day and movield separated by ‘-’. Then we are counting how many
times the merged string is there in the data set. This indicates to us the
hit count of the particular movie thus we can know the popularity of that

movie.
timestamp | userIld |movield | rating | daily | tstamp_hour | tstamp day |tstamp_year | genres | releaseDate
0 |23237827] 237556 21 3 | 9140 6455 269 1 17 1995
1 5510411 | 56769 | 1176 4 [9140 1531 64 1 93 1991
2 23237876 | 237556 | 1079 3 | 9140 6455 269 1 38 1988
3 23237833 237556 47 5 19140 6455 269 1 30 1995
4 123096009 | 236139 28 5 19524 6416 268 1 15 1995
5 | 2619774 | 26999 60 4 |9524 728 31 1 2 1995
6 23096013 | 236139 58 5 19524 6416 268 1 4 1994
Table: Before Preprocessing
timestamp | userld |movield | rating | daily | tstamp_hour | tstamp_day | tstamp_year| genres | releaseDate label
0 23237827 237556 21 3 9140 6455 269 1 17 1995 18
2 [23237876|237556 1079 3 9140 6455 269 1 38 1988 1
3 123237833 [ 237556 47 5 9140 6455 269 1 30 1995 23
5149
8 (23193844 (237134 21 5 9609 6443 269 1 17 1995 18
5149
9 123193845 (237134 150 5 9609 6443 269 1 58 1995 40

Table: After Preprocessing

e After the preprocessing, we are only keeping the movield, tstamp day and
label in our final data sets because the other entities are not useful for our

use case. So, we are dropping the rest.
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timestamp | userld |movield | rating | daily | tstamp_hour | tstamp_day | tstamp_year| genres releaseDate label
0 [23237827(237556 | 21 3 |9140 6455 269 1 17 1995 18
2 |23237876 237556 | 1079 3 |9140 6455 269 1 38 1988 1
3 [23237833|237556 ( 47 5 |9140 6455 269 1 30 1995 23
5149
8 23193844 (237134 21 5 19609 6443 269 1 17 1995 18
5149
9 [23193845|237134( 150 5 19609 6443 269 1 58 1995 40
Table: Before Dropping
movield tstamp_day label
0 21 269 18
2 1079 269 1
3 47 269 23
51498 21 269 18
51499 150 269 40

Table: After Dropping
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Chapter 4

Implementation

This section describes the implementation of the proposed model for predicting
contents for the users in the edge of the network. This model was implemented
and tested using Jupyter Notebook. The implementation of the model consists of
dataset collection, input data pre-processing and testing. Among them, we have
already described the first two parts previously. Now, we are only describing the
testing part. This section also delivers the result of running the implementation
of the pro- posed model for predicting contents. Jupyter Notebook is used to
run the test file. Jupyter Notebook is a powerful tool for running python codes.
We could have used languages like Java or C. However, python is much more
efficient and much less time consuming compared to those languages. Also, most
of the ma- chine learning libraries are easily accessible compared to Java or C.
That is why we have chosen python as our primary programming language.

4.1 Constructing the Model

The proposed model consists of three files. The files are described in table below:

File Name Description

dataset preprocessing.ipynb | Cleans up the dataset and categorises genres into integers,
Joins two datasets (movies.csv and ratings.csv), labels up
the data and prepares for applying prediction based
algorithms, Ascendingly sorts the preprocessed dataset
based on timestamp, userld, movield.

Thesis_Draft.ipynb Applies LSTM on the dataset and provides prediction
models.
Content_Caching.ipynb Caching and replacing movies using prediction models

provided by Thesis_Draft.ipynb for caching on regional
cache servers and the central cache server.

In the very beginning we are importing the three datasets that were produced in
the dataset preprocessing phase. After importing the datasets, we are dropping
the duplicate values as the duplicate values will cause an under fitting problem
in our models. Then we are splitting the datasets into train and test datasets.
We are taking 70% for the train and 30% for the test dataset. After splitting
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the datasets, we are reshaping the train and test datasets because we will need
to transform our datasets in a shape so that our model grants them. In the next
step we are creating our LSTM model. Here we have a 64 cell LSTM layer, a 32
cell LSTM layer, a dropout layer and finally a 1 cell dense layer where we used
rectified linear activation function or ReLLU as activation function. To compile
the model we have used adam optimizer and mean squared error as our loss
function. In the dense layer we have only used one cell because our LSTM model
is many to one and we want a single output in the output layer. Thus the model
takes movield and timestamp day as input and outputs a single output which is
hit count. Then we are saving our model for future caching.

Model: "sequential_ 2"

Layer (type) Output Shape Param #
cu_dnnlstm_2 (CuDNNLSTM) (None, 2, 64) 17152
cu_dnnlstm_3 (CuDNNLSTM) (None, 32) 12544
dropout_1 (Dropout) (None, 32) 0
dense_1 (Dense) (None, 1) 33

Total params: 29,729
Trainable params: 29,729
Non-trainable params: @

Madell TIs“eaaential"

Layer (type) Output Shape Param #
cu_dnnlstm (CuDNNLSTM) (None, 2, 64) 17152
cu_dnnlstm_1 (CuDNNLSTM) (None, 32) 12544
dropout (Dropout) (None, 32) 0

dense (Dense) (None, 1) 33

Total params: 29,729
Trainable params: 29,729
Non-trainable params: @

Model: "sequential 1"

Layer (type) Output Shape Param #
cu_dnnlstm_2 (CuDNNLSTM) (None, 2, 64) 17152
cu_dnnlstm_3 (CuDNNLSTM) (None, 32) 12544
dropout_1 (Dropout) (None, 32) 0
dense_1 (Dense) (None, 1) 33

Total params: 29,729
Trainable params: 29,729
Non-trainable params: @

Figure 4.1: Summary of the LSTM Models
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4.2 Content Caching and Replacing

In the very beginning of the caching, we loaded 3 models that were saved in the
implementation stage. For real life scenarios, in spite of using the test data of the
existing dataset, we have created a synthetic dataset made with 60 movies and
corresponding movie size for those movies. Then we have trained the 3 models
individually with the same dataset which refer to 3 regional cache servers. We
have 15000 MB space for each regional cache server and 25000 MB space for
the central cache server. Then we ran knapsack on all the regional servers using
predicted hit count as value and movie size as weights. The items returned by
the knapsack algorithm are sent to the edges respectively.

After fulfilling the regional caches with their maximum capacity, the rest of the
movies from all the regional caches that could not be cached will be sent to
the central cache server. However, there is also a storage scarcity. The central
cache server can only store 25000 MB movies. So, we need to choose which
movie to cache. To ensure the most popular movies on the central server, we
ran knapsack with the regional cache excluded movies and their predicted hit
counts. However, there are some movies which are in more than one regional
cache server. For those movies, we have summed up the predicted hit counts
from the common regional caches. After running knapsack on the central server,
the returned movies will be stored along with their hit counts.

In the second time slot, when there will be a new movie request by a user in
a particular region, the system will search for the movie in the regional cache
server. If it finds the movie in the regional cache, it will simply load the movie
from the regional cache server much faster compared to the cloud.

If the movie is not in the regional cache, it will search in the central cache server.
If the movie is available in the central cache, it will stream the movie from there.
It will be slower than regional cache but still much faster than cloud. However,
if the movie is not in the central cache too, then the model will run with movield
and corresponding timestamp and it will output a predicted hit count. Then it
will look into the central cache. If the predicted hit count is greater than any
of the movies in the central cache, then the movie will be replaced by the new
movie. However, if the hit count is less than all the movies, then the movies
won’t be cached.
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Chapter 5

Result Analysis

The main goal of our prediction model was to predict the hit count of the movies
so that we can accurately predict the popularity of the movies in an autonomous
way. Predicting the hit count accurately helps us efficiently cache most popular
movies on the regional and central cache servers. And, our prediction result
here is highly satisfactory. We ran our models with Adam optimizer and mean
squared error loss function individually on all three regional cache servers respec-
tively. After completing 100 epochs on each of the regional servers, the prediction
accuracy was 99.79%, 99.70% and 99.49% on the three servers respectively.

By evaluating the three LSTM models we can see that in model 1, the training
loss value is 0.0022 and the validation loss is 0.0043. Below is the the training
loss vs validation loss graph for model 1:

Training and Validation loss

012 - Training loss
- yalidation loss

0.10 1

0.08

0.06 1

Loss

0.04 1

0.02 4

0.00 1
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And the accuracy of our first model is 99.79% which is achieved after running
the model for 100 epochs.

Epoch | Runtime per step | Loss | Accuracy | Val.loss | val.accuracy
96 2s 0.0043 0.9958 0.0021 0.9979
97 2s 0.0043 0.9958 0.0021 0.9979
98 3s 0.0043 0.9958 0.0022 0.9979
99 2s 0.0043 0.9958 0.0021 0.9979
100 2s 0.0043 0.9958 0.0022 0.9979

Table: Accuracy of model 1 achieved by epochs

Similarly in model 2, the training loss value is 0.0030 and the validation loss is
0.0049. Below is the the training loss vs validation loss graph for model 2:

Training and Validation loss

0.035 - — ?a?ning loss
- validation loss

0.030 A
0.025 A

0.020 A

Loss

0.015 A

0.010 A

0.005 A

0 20 40 60 80 100
Epochs

And the accuracy of our first model is 99.70% which is achieved after running
the model for 100 epochs.

Epoch | Runtime per step | Loss | Accuracy | Val.loss | val.accuracy
97 2s 0.0049 0.9952 0.0030 0.9970
98 3s 0.0049 0.9952 0.0030 0.9970
99 2s 0.0049 0.9952 0.0030 0.9970
100 2s 0.0049 0.9952 0.0030 0.9970

Table: Accuracy of model 2 achieved by epochs

From model 3, it can be observed that the loss value is 0.0051 and the validation
loss is 0.0047. Below is the the training loss vs validation loss graph for model 3:
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Training and Validation loss
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And the accuracy of our first model is 99.49% which is achieved after running
the model for 100 epochs.

Epoch | Runtime per step | Loss | Accuracy | Val.loss | val.accuracy
96 2s 0.0047 0.9955 0.0051 0.9949
97 2s 0.0047 0.9955 0.0051 0.9949
98 2s 0.0047 0.9955 0.0051 0.9949
99 2s 0.0047 0.9955 0.0051 0.9949
100 2s 0.0047 0.9955 0.0051 0.9949

Table: Accuracy of model 3 achieved by epochs

It can also be seen that the time required to stream a content from the caches is
much lower compared to cloud:

Cloud Stream

Central Cache n
Regional Cache H

Figure: Time required to stream a content (in ms)

Here is the bar diagram which illustrates the time required to stream content
in milliseconds. We can see clouds st6ream needs around 4200 milliseconds.
Assuming we need almost 21 hubs to reach cloud station. Compared to that,
it takes only 400 milliseconds to stream a content from central cache. When
it comes to regional, the required time calms down to 200 milliseconds only.
According to the graph, regional cache server undoubtedly takes less time to
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stream a content which is praiseworthy.
Moreover, the accuracy is considerably higher compared to conventional caching
methods:

99.79%
83.00% 87.00% 89.00% I
i Mser Localization Disparity Proposed model

Figure: Comparison with conventional caching methods

This diagram illustrates the accuracy comparison of existing caching methods
with our proposed one. Some of the existing models are Mser, Localization,
Disparity etc. Accuracy of Mser is 83% where localization has 87% accuracy.
Beside them, Disparity has 89% accuracy. On the other hand decentralised con-
tent caching model has accuracy of 99.79% which is considerately higher than
mentioned existing models. In other words, compare to other models, decentral-
ized content caching method predicts better accurately which is really close to
100%.

Finally, it is visible that using the central cache server in a decentralized way
uses a lot less power compared to not using in a decentralized way.

With Decentralisation

Without Decentralisation

0 1 2 3 4 5 6 7 8 9 10

Figure: Power usage comparison (in kWh per day)

This diagram clearly shows that, the central cache server’s daily power usage.
It shows, when its running with decentralisation the central cache server uses
only 2.4 kilowatt-hour per day. Whereas, without decentralisation it uses up-to
8.4 kilowatt-hour per day. Now, we can say that with decentralisation, we need
almost one-third of computational power than without decentralised one.

So we can confidently claim that, in terms of accuracy, streaming and power
usage, with decentralisation, central server caching is way better than the tradi-
tional caching methods.
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Our proposed model improves the conventional caching in the following ways:

e Using our proposed model, the system can cache the movies much faster
than conventional models. Because, when streaming from the regional
server, the end user only needs to traverse a single hop and when streaming
from the central cache server, the end user needs to traverse two hops
whereas when streaming from the cloud, the end user needs to traverse so
much more than that of cache servers. Thus the users can stream contents
much faster with the least latency.

e Moreover, our proposed system does not need to make any prediction in
the central cache server. As a result, a major amount of computational
power and a huge amount of time gets saved.
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Chapter 6

Conclusion

6.1 Challenges Faced and Solutions

On our journey to prepare our dataset and implement the algorithm, we had
faced a lot of challenges and we had tried a bunch of approaches to get rid of
those challenges. However, the final approach helped us to solve most of the
issues that arose. The issues and solutions are discussed here.

At the very beginning, when we were preparing our dataset, we faced a major is-
sue. After the preprocessing, when we were using the dataset in our LSTM model,
we were facing an under fitting issue and the accuracy was very low(around 23%).
Then we looked into our preprocessing and found out that there was a lot of du-
plicate data which was causing this problem. So, we dropped the duplicate values
and our problem got solved. Our accuracy went above 99%.

The next problem we were faced with was in spite of getting 99% accuracy,
our prediction value was giving us invalid values. Then we looked into our mode
and changed our loss function from sparse categorical crossentropy to many other
loss functions. But finally we switched to mean squared error. And, our problem
got solved.

While caching the movies on regional servers as well as the central cache server,
we were planning to do prediction on both layers. But, it takes additional time
to predict on the central cache server and then cache the movies. So, we finally
stuck to the plan to do prediction only on the regional servers and then use those
hit count values to run knapsack on the central cache server. However, there we
were facing another major problem. The movies that edge 1 could not cache,
we planned to cache them on the central server. But, there might be movies
that could not be cached on edge 1, edge 2 and edge 3. For those movies, the
prediction values would be different. Which will create problems with running
knapsack on the central cache server. We successfully solved this problem by sim-
ply summing up the predicted hit count values from the common edges. And,
finally used the summed up hit count for the central cache server.
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6.2 Summary and Future Work

The aim of our thesis was to build a complete system model which accurately
predicts contents by determining efficiently what to cache and what to replace
from the cache. Our system model will reduce the total hop count and thus
decrease the latency to access the contents. Our work also helps to decrease
computational power used in conventional ways. However, there are a lot of
fields that we can improve in future.

e For our thesis, we have only worked on three Regional servers. If we can
increase the regional cache server count, the overall caching on the central
server would be more efficient and accurate.

e We haven’t considered the base stations under the regional servers. In fu-
ture if we can consider the base stations under the regional servers, there
will be three layers for caching contents and the overall caching would be
more efficient and contents would be more accessible.
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