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Abstract

The connection between heart and kidney has been medically established. The pres-
ence of a condition affecting one of the organs impairs the other. Hence, the causal
associations between two of the most long-term conditions: Chronic Kidney Disease
and fatality of Heart Failure are supported by the outcomes of Machine Learning
techniques. The novelty of this research lies in its techniques that successfully find
patterns in on of the stages of Cardiorenal Syndrome. We employed two disease
datasets to perform predictive analysis with five classifiers: Random Forest, XG-
Boost, CatBoost, Logistic Regression and Support Vector Machine, and analyzed
the feature importance scores of the models to gauge the relationship between the
conditions. The top predictors in our research were Random Forest, XGBoost and
CatBoost classifiers with accuracy of the models for heart failure ranging from 70%
to 76% and the accuracy for CKD prediction varied from 97% to 99%. Numerous fea-
tures of the top predictors of HF and CKD were shared such as serum creatinine and
diabetes. Individually, the CKD dataset ranked highest importance for haemoglobin
levels, the imbalance of which causes anemia, and anemia is a key component in the
HF dataset. The results of the visualization techniques of ML also yielded outcomes
that were medically sound. This analysis of the physiological attributes and their
importance with the help of machine learning, aided in successfully reaffirming the
medical findings of a crucial stage of Cardiorenal syndrome.

Keywords: Cardiorenal; Machine Learning;Feature Importance; Cardiovascular
Disease; Chronic Kidney Disease
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Chapter 1

Introduction

Chronic diseases have a tendency to progress into other life-threatening conditions
in the future [1]. Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD)
are two such long-term and persistent diseases. Chronic kidney disease is a condition
that comprises deterioration of kidney function over a period of time. Heart Failure
(HF) is a condition associated with cardiovascular disease that increases the risk of
mortality in patients [2], [3]. Patients with heart failure can experience the adverse
symptoms of chronic kidney disease and result in death or shorter life span [4].

Heart failure impairs the heart’s capability to pump blood and often, pressure ac-
cumulates in the main pathway connecting the kidneys, causing a blockage. The
kidney function exacerbates over time, due to insufficient oxygen or blood supply.
This renders the kidney unable to remove wasteful substances from the blood. On
the other hand, when the kidney function is compromised, it is unable to regulate
blood pressure that exerts pressure on the heart to supply blood to the kidneys [5].
This can lead to structural changes in the heart that contribute to the condition of
heart failure. In the medical sector, the primary focus of the study of Cardiore-
nal syndrome is on the pathophysiology of chronic renal end-stages, structural
changes in the heart unique to kidney disease progression and it concludes that
CKD is prevalent in 60% cases of heart failure (HF) [6]. In medical research the
strong association of the two conditions have been proven and extensively studied.
Identifying people with CKD, HF or those who are at risk of developing one of the
conditions in the presence of the other, is a cornerstone of treatment or preventive
assistance.

Our primary objective is to use machine learning techniques in order to develop
personalized models that will separately predict chronic kidney disease (CKD) and
fatal heart failure (HF) in patients. Then, using feature importance to gain insight
into the predictive models and data, we identify an association between the two
conditions [7-9], corroborating the medical theory linking terminal heart failure and
chronic kidney disease.

Annually, more than 250,000 people die from heart failure in the United States.
Among them 50% of the deaths are sudden [10]. In spite of the improvements in
healthcare, heart failure may be difficult to diagnose initially [11]. Utilization of ex-
isting data on persistently occurring conditions is essential in finding subtle patterns
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or behaviour of one condition in relation with another.

In previous literature, several studies have been conducted to apply machine learn-
ing techniques on patients’ data. Abdar M. experimented with 10 machine learning
algorithms to classify Coronary Artery Disease. The best three algorithms were
optimized along with genetic algorithm and particle swarm optimization [12].

Muhammad L. J. uses instances from two Nigerian hospitals and applies traditional
machine learning algorithms for prediction of CAD. Lastly, they visualized the in-
fluencing features by generating a decision tree [13].

Several techniques have been employed to detect chronic kidney diseases. In a re-
search project, Pujari et al. proposes image processing techniques to classify stages
of chronic kidney diseases [14]. Moreover, Almansour et al. implemented ANN and
support vector machines for the prediction of kidney diseases with high accuracies
[15]. Using the UCI Chronic Kidney Disease Dataset, Kunwar et al. implemented
näıve bayes and ANN to draw a comparison [16] between the two techniques. Over-
all, it was observed that research endeavors have been made to improve disease pre-
diction and as well as progression. However, limited research has been conducted to
see how one disease could potentially progress into another.

More studies have successfully illustrated associations between conditions such as
cardiovascular diseases and chronic kidney disease by employing open datasets [17-
19]. However, in the status quo, machine learning methods have been used in limited
ways to reaffirm associations between diseases. Chaudhuri A.K. et al [20] used data
mining techniques to detect early cardiovascular disease in kidney disease patients.
The authors have used Chi-square automatic interaction detection method to anal-
yse and rank the features from the two datasets.

1.1 Scope and Novelty of the Research:

The novelty of our approach is twofold. We incorporate two existing datasets by
UCI machine learning repository: one including clinical records for heart failure [21]
and another containing records for chronic kidney disease [22], and employ classifier
models to predict the outcomes for each of the instances. Then, we explore the rela-
tionship between the two closely related conditions that are: fatal heart failure and
chronic kidney disease. In other words, we use machine learning to explore a stage
of Cardiorenal syndrome, which has not been investigated using machine learning in
previous literature. Medical journals have repeatedly revealed the strong relation-
ships between the two conditions.

The potential for integrating the two disciplines is endless. A well developed ma-
chine learning approach to analyse cardiorenal syndrome can aid in early diagnosis
of heart failure in kidney disease patients and the reverse. Machine learning algo-
rithms consider variables like ejection fraction, anemia or creatinine levels to predict
the diseases concerned. More often their decisions are dependent on a set of features
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with varying importances. When assessing the feature relevance scores, it is essential
to select the best performing models. In our case, the best performing models were:
Random Forest, XGBoost and CatBoost. Moreover, out of all 13 features of heart
failure, about 6 of them were common with chronic kidney disease feature set which
confirms that the diseases are related to a large extent. Our interest, therefore lies
within these common features and their correlations with the other unique features
for each condition.

Machine learning is becoming increasingly important in the realm of healthcare.
In situations involving two or more diseases where practitioners often find it diffi-
cult to gauge disease progression and their interrelations [23], machine learning can
aid finding patterns. Thus, we devised this approach to study a set of chronic dis-
eases and understand their patterns in crucial stages in order to confirm biological
insights. In the first stage of our experiment we used classification algorithms to
predict disease outcomes from the open datasets. Then, we determined the best
predictors or importances of the top features. Additionally, we evaluate the correla-
tion matrix with a similar aim. Lastly, we employ data visualisation techniques to
prove the hypothesis stated in medical literature.

1.2 Thesis Organization:

The work is organized into following sections: In section 2, we discussed the rele-
vance of this study and the purpose for it, the breakdown of the models and the
reasons for their success (or lack), and finally, the alternative strategies we used.
Section 3 overviews the experimental setup that demonstrates the work progression,
description of the datasets, preprocessing techniques, hyperparameter tuning, dis-
cussion of the best predictors; followed by section 4, where the results and feature
contributions are extensively discussed. Section 5 concludes the paper.
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Figure 1.1: Workflow Diagram of Our Research
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Chapter 2

Related Work and Theoretical
Background

Prior medical research has frequently established a relationship between the two
terminal conditions by structured review assessment of the literature to assess the
evidence of heart failure in people with chronic kidney disease or vice-versa [24].
While each of these health states is linked with a high rate of morbidity or mortal-
ity, the presence of the dyad indicates an even worse prognosis. Thus, using machine
learning to determine the association between these conditions can aid in forecasting
the likelihood of a patient having one ailment getting the other.

In our experiments, we have used Logistic Regression, Support Vector Machines,
XGBoost classifier, Random Forest classifier and CatBoost classifier for classifica-
tion. Then we fine-tuned the models to choose a set of optimal parameters for the
algorithms. We further applied K-fold cross validation to assess the model perfor-
mance on data and observe models’ improvements. The next stage was to determine
the feature importance of the best predictor models and to compare the common
contributing features of the two medical conditions. Finally, we sought to establish
a mathematical relationship between chronic kidney disease and heart failure.

2.1 Significance of the Research:

We developed a concept for this research that would combine artificial intelligence
with the domain of healthcare. The contributions include the following:

• Machine learning techniques can be used to find hidden patterns accurately
and aid in the prognosis of diseases and conditions. This further reduces the
diagnostic tests for chronic diseases, thus reducing the overall medical cost.

• Classification, association and clustering in machine learning contributes to
finding traits efficiently. Each of these has a unique set of guidelines when
applied on clinical data. Effective application of these strategies will benefit
in the understanding of the progression of chronic diseases.
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• A methodology based on artificial intelligence can provide significant insights
and aid physicians in making more informed decisions about patient care. This
work is a significant step forward towards that direction.

• The UCI repository harbours several datasets pertaining to different diseases,
which are essentially lab reports of instances. Our work demonstrates the
use of two openly available and easily accessible datasets that can be used
in sophisticated research investigations.It proves to be beneficial to rely on
documented records or big data and ML techniques, which make the process
to procure results and links of diseases faster and more effective.

• This research can serve as a trajectory for the future research conducted in
finding association of diseases.

2.2 Logistic Regression

Logistic regression is a supervised machine learning approach that provides a straight-
forward yet efficient solution to binary and linear classification problems. It is an ex-
tensively employed linear algorithm with a non-linear transform on output. Logistic
regression removes noise as it considers removing outliers and possibly mis-classified
instances from the training data. Our experiment highly relies on determining fea-
ture importance and logistic regression can interpret model coefficients as indicators
of feature importance. In addition, during hyperparameter tuning we included L1
regularization, which helps avoid over-fitting in these cases, even though logistic
regression is very little inclined towards the possibilities of over-fitting. In addition,
we used L1 regularization during hyperparameter tuning to assist avoid over-fitting
in these situations, even though logistic regression has a low tendency to over-fit.

Figure 2.1: Architecture of Logistic Regression
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2.3 Support Vector Machine

Support Vector Machine(SVM), one of the most popular supervised learning algo-
rithms, is used for both classification and regression problems. The model(s) creates
a decision boundary which can divide n-dimensional space into classes. This makes
the process of putting a new datapoint into the correct category easier for future
steps. SVM decides the hyperplane, which is the best decision boundary, by choosing
support vectors and data points that are closest to the hyperplane. In our experi-
ment, we have used SVC out of the many classes of SVM. The training complexity
of the model depends highly on the size of the dataset, hence it produces higher
accuracy for our datasets. However, in order to avoid the possibilities of overfitting,
L1 regularization was included during hyperparameter tuning.

Figure 2.2: Architecture of SVM

2.4 Random Forest

Random forests are ensemble learning models consisting of a large number of indi-
vidual decision trees that can be used for classification, regression and other tasks.
The large number of relatively uncorrelated models act as a committee. The whole
dataset is used to build individual trees unless sub-sample size is controlled with the
max samples parameter - bootstrap=True(default). The use of bagging(bootstrap
aggregation) and featuring randomness while building each tree in order to create un-
correlated trees leads to improved predictive accuracy as well as overfitting-control,
ultimately making random forest perform well in most datasets.
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Figure 2.3: Random Forest Classifier

2.5 Gradient Boosting

Gradient Boosting can be realized as a differentiable loss function that is to be min-
imized. The third step, the weak learners are aggregated. The gradient descent
algorithm is used to minimize the loss when adding learners.

2.6 XGBoost Classifier

XGBoost is an ensemble classifier that is built upon decision trees and Gradient
Boosting. The individual decision trees, known as weak learners, decide which fea-
tures are important and need focus. The misclassified examples are assigned higher
weights.
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Figure 2.4: XGBoost Classifier

2.7 Explored Techniques

Initially, we intended to use nine models on both the datasets. However, we were
unable to apply Naive Bayes classifier on the CKD dataset due to the non-normal
distribution of the numerical data. For classification we also employed KNN classi-
fier, a non-parametric algorithm which uses data with several classes to predict the
classification of the new sample point. The classifier was then discarded because our
study is based on feature importance, which is not defined in the KNN classification
technique - the strategy for identifying significant features for this model during
training involves feature selection method, which is not included in the scope of our
work.

The variables contained in the dataset consist of both categorical and continuous
types. K-means clustering requires variables to be strictly numerical. However,
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) can find
clusters even in the presence of outliers. It forms clusters based on regions of high
density. It consists of two hyperparameters: minPoints and epsilon. To initiate the
process the algorithm starts by randomly locating a point and then finds a mini-
mum of points separated by distance of epsilon. DBSCAN uses Euclidean distance
by default. However, it also avails the option of using Gower’s similarity coefficient
which allows one to compare two elements and assigns terms based on the nature of
the feature. The outcome of this was a single cluster assigned the number 0 since
the numerical features had a limited range. Moreover, to validate the nature of the
merged dataset, hierarchical clustering was used. The dendrograms formed had no
distinguishable cluster.
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2.8 Correlation Matrix

Generally, correlation matrices are the statistical measure of strength of the rela-
tionship between two variables. In machine learning we use correlation to determine
the relationship between the data features. However, during the investigation of our
work we have learnt that studies in the medical sector provide evidence of causal
assertion overreach drawn from correlational findings. In finding patterns between
interconnected diseases, correlation matrices were deemed as unreliable because the
critical evaluation in a medical work requires statistical knowledge in addition to
clinical knowledge. Furthermore, coefficients are often influenced by outliers which
may skew the actual relationship [25]. We evidently reached the same conclusion
using machine learning approaches as well. For instance, for the heart failure corre-
lation matrix, ejection fraction only showed a negative correlation of only 0.32 and
serum creatinine showed a correlation coefficient of positive 0.36. For CKD, serum
creatinine had a correlation of 0.3, despite the medical hypotheses. Hence some
of the correlations are statistically underestimated and it is not completely reliable
when predicting the importance of features [26].
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Figure 2.5: Correlation Matrix for Heart Failure
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Figure 2.6: Correlation Matrix for Chronic Kidney Disease
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Chapter 3

Experimental Setup

3.1 Dataset

We collected the datasets from UCI Machine Learning Repository. The Heart Fail-
ure Clinical Records Dataset with 13 features and 299 instances was used for the
supervised training of the models to predict death due to HF. In this dataset, the
instances fall into two categories - death due to heart failure and non-fatal heart
failure, which has the potential to become fatal. The 13 characteristics include:

• age: age of the patient (years)

• anaemia: reduction of red blood cells or hemoglobin (boolean)

• high blood pressure: status of hypertension (boolean)

• creatinine phosphokinase: amount of the CPK enzyme in the blood (mcg/L)

• diabetes: presence of diabetes (boolean)

• ejection fraction: amount of blood leaving the heart with each contraction (%)

• platelets: platelets in the blood (kilo platelets/mL)

• sex: gender (binary)

• serum creatinine: amount of serum creatinine in the blood (mg/dL)

• serum sodium: level of serum sodium in the blood (mEq/L)

• smoking: the patient smokes or not (boolean)

• time: follow-up period (days)

• [outcome] death event: whether the patient deceased from HF (boolean)

We used Chronic Kidney Disease Dataset with 25 features and 400 instances, for the
training of CKD prediction. The individuals in the chronic kidney disease dataset
are divided into two categories - patients with chronic kidney disease and those
without kidney disease. In this dataset the 25 are:

• age: age in years (numerical)
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• blood pressure: bp (mm/Hg)

• specific gravity (nominal): sg (1.005,1.010,1.015,1.020,1.025)

• albumin: represented as al (nominal)

• sugar: represented as su (nominal)

• red blood cells: rbc count being normal or abnormal

• pus cell: pc count is normal or abnormal (nominal)

• pus cell clumps: pcc- presence or absence (nominal)

• bacteria: ba is present or not present (nominal)

• blood glucose random: bgr (mgs/dl)

• blood urea: bu (mgs/dl)

• serum creatinine: sc (mgs/dl)

• sodium: sod (mEq/L)

• potassium: pot (mEq/L)

• hemoglobin: hemo (gms)

• packed cell volume: pcv (numerical)

• white blood bell: wc count (cells/cmm)

• red blood cell: rc count (millions/cmm)

• hypertension: presence or absence of hypertension, htn (binary)

• diabetes mellitus: presence or absence of dm (binary)

• coronary artery disease: cad (binary)

• appetite: appet being good or bad (binary)

• pedal edema: pe (nominal)

• anemia: ane (nominal)

• [outcome] CKD: weather the patient has CKD or not (binary)

Generally, reducing the features to only the most relevant ones when training ma-
chine learning models plays an important part in the training process. In the case of
chronic diseases, models’ in-built feature importance scores can be used to infer the
most contributing attributes to the disease. Hence, we used a subset of a larger set
of medical indicators of the two conditions. The datasets were split for the training
and test sets at 80:20 ratio (respectively).
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3.2 Preprocessing of the Input Data

As the first step we have applied log transform to the continuous features of the
heart failure dataset to correct the skewness of the variables. The original goal was
to make the continuous variables in the heart failure dataset have log-normal distri-
bution. The continuous variables such as creatine phosphokinase, ejection fraction,
platelet counts and serum sodium were scaled using MinMaxScaler in order to trans-
form the features to a particular range. This is supposed to refine the performance
of the models used in our experiment. In the CKD dataset StandardScaler was
used to transform red blood cell counts, white blood cell counts, packed cell volume,
haemoglobin, serum sodium, blood urea, blood glucose random, blood pressure and
age to ensure the skewed distributions have zero mean and unit variance. Potassium,
serum creatinine, pus cell, red blood cell, sugar, albumin and specific gravity were
scaled using MinMaxScaler. StandardScaler shifted the mean to zero; however,
the skewness of the distributions did not change due to the presence of outliers.
Hence the Yeo-Johnson transformation technique was used to improve the distribu-
tion curve (Figure 8). Unlike Box-Cox transformation, Yeo-Johnson transformation
does not require the variables to be positive [27].

Figure 3.1: Comparison of Before and After Yeo-Johnson Transformation
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The heart failure records dataset did not have any missing values in general. How-
ever, the Chronic Kidney Disease Dataset had substantial missing data, which were
handled via missing data imputation. Traditional missing data imputation tech-
niques such as replacement with mean, mode or most occurring values are not
suitable for prediction of diseases. Hence, we employed the K-Nearest Neighbour
imputation technique for handling missing data. KNN imputation method involves
usage of Euclidean distance measure and finding out the contributing measure for
each of the predictions. It finds the samples which are the closest to it and fills in
with the mean of the nearest samples.

3.3 Hyperparameter Tuning

The best outcomes for heart failure prediction were created with the addition of L1
penalty to the coefficients. To minimize the cost function, the SAGA solver is uti-
lized. Moreover, SVM was optimized with the kernel parameter set to ‘poly’ and 15
maximum iterations. The XGBoost classifier was implemented with 1000 estimators
and maximum depth set to 3. The learning rate was set to 0.001. For the Random
Forest classifier, the optimal depth was 10, number estimators 500 and with random
state set to 1. Several machine learning models were fine-tuned for Chronic Kidney
Disease prediction as well. The SVM could achieve high generalization ability with
a linear kernel and 15 iterations. The XGBoost classifier was initialized with 1000
estimators and maximum depth of exactly 3.

3.4 Determining the Best Predictors

At the outset, seven machine learning models were applied on both the datasets.
From a theoretical perspective Naive Bayes algorithm has the underlying assump-
tion that all the features contribute equally to the outcome of classification. Due
to the nature of the K-Nearest Neighbour Classifier, its feature importance scores
cannot be calculated using traditional techniques. Hence, we have eliminated the
aforementioned models.

We then narrowed down to the best five classifiers, all of which produced high
accuracy on the chronic kidney disease Dataset. The Random Forest classifier fared
exactly as well as XGBoost and CatBoost, which performed the best on the test
data. The Logistic Regression classifier also generated good results.

Lastly, the linear and kernel SVCs were used for prediction and they yielded very
favourable outcomes. These models exhibited further improvements with K-fold
cross validation.

We applied five of the above mentioned algorithms on the heart failure dataset.
The models did not achieve the same level of accuracy for this dataset as they did
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for the CKD dataset, but the findings were still reliable. The best predictors how-
ever, were the same as the ones in CKD dataset - XGBoost, CatBoost and Random
Forest classifiers. Logistic Regression classifier generated close enough results and a
good score. The SVC performed poorly in this dataset.

3.5 Finding Feature Importance of Top Predic-

tors

Analysis of feature importances helps us gauge the degree of relevance. Apart from
gaining a better understanding and performance of the model, it can lead researchers
towards a better understanding of biological phenotypes or features of the dataset
and the correlation between them . Furthermore, it is essential to analyse how in-
built feature importance measures work. Random Forest algorithm computes its
feature importances using Gini Importance and Mean Decrease Accuracy.

Random Forest’s built-in feature importance method is reliable given that its perfor-
mance is highly accurate on the testing data. XGBoosts’ in-built feature importance
measure is highly dependable due its high performance accuracy. Additionally, its
feature importance results are more reliable than that of the linear models. While
calculating the importance scores, it also takes into account the relationship between
variables [28].

The top predictors in our experiment were Random Forest, XGBoost and CatBoost
classifiers respectively.

3.6 Study of Contributions of the Common Fea-

tures

The datasets included 13 and 25 features each. In order to determine whether there
is a link between the two chronic diseases, we studied the patterns of their common
features. The HF and CKD datasets shared six characteristic features, which in-
cluded category and numerical variables. In the HF dataset, the presence or absence
of hypertension (htn) corresponded to the binary valued high blood pressure (bp)
column in the CKD dataset. Similarly anemia (ane) and diabetes mellitus (dm)
in both the datasets were binary valued and the columns comprising the patients’
serum sodium (sd), serum creatinine (sc), and age were numerical data.

The contributions of these common features to the prognoses of the diseases were
carefully evaluated. Medical findings suggest that in individuals with chronic kidney
disease, heart failure is highly prevalent. This is a stage of Cardiorenal syndrome
which encompasses a spectrum of disorders in the heart-kidney, in which chronic dys-
function in one organ may induce chronic dysfunction in the other [29]. This study:
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Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment
Strategies: A Scientific Statement From the American Heart Association shows that
serum creatinine is found in the skeletal muscle during the diagnosis CKD and the
prognosis is usually leaning towards heart failure with a likelihood of over 60%.

Diabetes mellitus of type-2 is common and is associated with endothelial dysfunc-
tion and vascular permeability [30]. Anemia in patients with CKD significantly
contributes to the increase of HF and ischemic heart disease (IHD) in individuals.

3.7 Observation of the Distribution and Signifi-

cance of Features

We have employed a handful of visualization techniques to verify the hypotheses
found in literature. Heatmaps were used to illustrate the relationship between the
categorical and target variables. Furthermore, in order to investigate the continu-
ous features that were in common such as serum sodium, serum creatinine and age,
violin plots were used.
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Chapter 4

Result Analysis and Discussion

4.1 Prediction Results

In our experiments we have applied five machine learning models which have yielded
decent results. The table below shows the results corresponding to each of the mod-
els. We have recorded the results in the table below (Table 1).

Model CKD Dataset HF Dataset
Random Forest 99.3% 74.8%
XGBoost 98.21% 72.4%
CatBoost 97.9% 71.7%
Logistic Regression 97.5% 70%
Support Vector Machine 97.14% 51.4%

Table 4.1: Accuracy of Each Model for the Two Datasets

In order to analyse the feature importance, we will be taking into account the top
three models: Random Forest, XGBoost and CatBoost.

4.2 Feature Importance and General Findings

In order to find the link between the two diseases we studied the features from the
top predictors. The best performing algorithms were Random Forest, XGBoost and
CatBoost so we studied the feature importance for each. Over 40% of the features
in the heart failure dataset were in common with the kidney disease dataset. This
section summarizes our findings on the behavior of common characteristic features
such as diabetes, serum creatinine, age etc. and the relevance of other unique factors
such as ejection fraction and platelet count. Then the patterns of the categorical
and continuous features are shown for improved visualization.

For the above-mentioned predictors, features that received most importance were
serum creatinine, serum sodium, age and diabetes mellitus which are all common in
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the two datasets. Serum sodium is highly associated with risk of mortality from
failing heart, in patients with chronic kidney disease [31]. A study of the Ameri-
can Heart Association shows that when CKD is diagnosed, serum creatinine is
detected in the skeletal muscle, and the prognosis is typically heart failure with a
probability of over 60% [26]. In the same study we have seen that, in the population
with heart failure with reduced ejection fraction (HFrEF) and diabetes mellitus
(DM) present, CKD is found in 71% cases.

Biomarkers Characteristics/Site of Origin Diagnostic Value Prognostic Value
Serum creatinine Skeletal muscle AKI, CRS HF, CRS

Table 4.2: Role of Serum Creatinine in Dignosis of HF

Figure 4.1: Role of Ejection Fraction and Diabetes Mellitus

The ejection fraction (EF) in the heart failure dataset was also of significant
importance. Though ejection fraction was not a feature in the CKD dataset, sev-
eral studies have found that chronic kidney disease is common in people with heart
failure and preserved or reduced ejection fraction (HFpER/HFrEF) [32].

In CKD dataset, haemoglobin level is of highest importance. Haemoglobin is
the primary protein in our red blood cells and in the condition of anemia the
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haemoglobin level drops. Anemia is one the common contributing factors in the
CKD and HF-datasets. Anemia risks are higher in chronic kidney diseases and ane-
mia in heart failure is considered to develop due to a complex interaction of iron
deficiency and kidney disease [33]. Anemia is also a significant element in the HF-
dataset. This demonstrates that chronic kidney disease and heart failure are also
interlinked in terms of haemoglobin levels and anemia.

We will show the feature importance yielded in each of the models Random Forest,
XGBoost and CatBoost from the subsections of code. Throughout the sections, it
can be seen that our feature importance results have been consistent with the afore-
mentioned findings from the medical literature. In other words the features shared
by the two diseases had high to moderate importance scores, yielded by Random
Forest, XGBoost and Catboost classifiers.

Random Forest

For the heart failure records dataset, some of the shared features that ranked high
were serum creatinine, serum sodium and age. Similarly, for chronic kidney disease
dataset the importance of serum creatinine was moderately high, it occupied the
third position. Furthermore, diabetes mellitus, hypertension and serum sodium
also showed some importance in this case. Ejection fraction, which was not in
common among the two datasets, showed highest importance in the heart failure
records dataset. Hemoglobin showed the highest importance in the chronic kidney
disease dataset. Anemia was a common feature among the two dataset and it was
observed from the figures below that anemia was a contributing factor to heart
failure. Haemoglobin, which is associated with anemia, on the other hand gained
the highest importance in the kidney disease dataset.
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Figure 4.2: Feature Importance of Random Forest Classifier

XGBoost

For this model, serum creatinine, serum sodium, age and high blood pressure had
high importance in case of heart failure contribution. Similarly to the previous
results, serum creatinine had a high importance score, followed by hypertension,
diabetes mellitus and serum sodium. Among the unique features, ejection fraction as
a feature has consistently been identified as the most important contributing factor
to heart failure. Likewise, haemoglobin was the most important feature in the kidney
disease dataset. Specific gravity and albumin was shown moderate importance by
XGBoost classifier.
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Figure 4.3: Feature Importance of XGBoost

CatBoost

Among the shared features, serum creatinine, age, serum sodium and diabetes melli-
tus had high to moderate importance in the prediction of heart failure. Haemoglobin
levels, serum creatinine and serum sodium showed moderately high importance in
detection of kidney disease. Specific gravity and albumin showed the highest impor-
tance score in case of Catboost, in the kidney disease dataset, unlike in the previous
cases.
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Figure 4.4: Feature Importance of CatBoost

4.3 Association between Categorical Features

Ensemble models such as XGBoost employ three different metrics for calculating
feature importances: Gain, coverage and weights. Anemia, hypertension and di-
abetes have smaller numbers of possible values or branchings compared to other
continuous variables. Each binary feature can be used once in the ensemble of trees.
Hence feature importance measure could be less indicative of feature importances
of binary variables in particular. In general, from the feature importance results, it
was seen that categorical features had moderate to low importance scores.Therefore,
the goal in this section is to analyse numerically how the categorical features have
influenced the existence of both the conditions.

Diabetes

Among the 96 people who died from heart failure, about 40 of them had diabetes
mellitus, which goes on to prove that it has a moderate impact on heart failure fatal-
ity, as shown by the heart failure feature importance figures. In the case of chronic
kidney disease, it shows a high influence. About 250 patients in total were diagnosed
with kidney disease and among them 137 of them had diabetes mellitus, making it
an important complication in determining the presence of kidney complications.
From the findings above, we can conclude that diabetes mellitus as a common fea-
ture has a moderate to high impact on the presence or absence of the conditions
and their state.
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Figure 4.5: Influence of Diabetes

Hypertension

Hypertension had a low influence on the event of fatal heart failure, however it
strongly impacted the presence of chronic kidney disease. From the sample of people
who had heart failure, about 40% died from heart failure. On the other hand, 58.8%
of the chronic kidney disease patients had hypertension. We may conclude from
the findings, that the presence of hypertension does in fact increase the chances of
chronic kidney disease. Likewise it increases the risk of heart failure in the presence
of chronic kidney disease.

Figure 4.6: Influence of Hypertension
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Anemia

From the figure below, it can be seen that among the sample of the population who
were not diagnosed with chronic kidney disease, none of them were pre-diagnosed
with anemia. Moreover, a moderately large subset of those diagnosed with the
chronic condition were reported to have anemia. 48% of those who died from heart
failure had anemia. Although anemia as a shared feature did not score significantly
high in case of feature importances, numerical analysis showed that it is a highly
influential factor in determining the presence of kidney disease and the possibility
of the related condition, in this case, heart failure.

Figure 4.7: Influence of Anemia

4.4 Association between Numerical Features

In this section we analyze the numerical and continuous features to see their effect
on the patients in presence of chronic kidney disease and heart failure. We have used
the Violin Plot of Seaborn to visualize the quantitative categories and understand
the association between the diseases. For the serum creatinine and serum sodium
levels, the plots show similarity in patterns. The age distribution for the two dis-
eases however are different, although this finding is more remarkable owing to the
medical grounds supporting it. The violins are split in half to better understand the
difference between two groups. For the heart failure analysis, the two parts reflect
feature-behavior in cases of death from HF and non-fatal HF. Similarly, the left and
right sides of the plot of chronic kidney disease data points show those of patients
with and without chronic kidney disease respectively. Our work mainly focuses on
the presence or fatality of the diseases i.e. the left part of the violin represented as
HRT and CKD in the graph.
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Serum Sodium

Serum sodium levels in cases of fatal heart failure vary from just over 120 mg/dl to
150 mg/dl, which, as seen in the plot, is closely comparable to the sd-levels in CKD.
In terms of patterns, the outcome of this violin is particularly striking because the
two violin plots show identical results for both presence and absence of individual
diseases. The values are most concentrated at 135 mg/dl to 145 mg/dl in both CKD
and HF-plots and past medical records revealed reasonably similar outcomes [34].

Figure 4.8: Violin Plot of Serum Sodium

Age

Here the violin represents the data points showing the age range of patients with
heart failure is well distributed from 30 to above 90. It is comparatively a flatter
curve indicating that congestive heart failure affects adults of all ages which coincides
with the studies of the healthcare sector. The CKD dataset had some discrepancies
and outliers that we plan to handle in the future. Due to the outliers in the dataset
the violin of CKD appears to be skewed around the age range of 0 to 10 - there are
data points on the negative axis as well, whereas we know age cannot be less than
zero. Eliminating these outliers, the violin plot shows that the age of patients from
the CKD dataset ranges from little above 40 to about 80. The slope of the curve is
steeper and values are more concentrated around 60 to 65 in our plot. According
to current estimates of medical research: CKD is more common in people aged 65
years or older (38%), than in people aged 45-64 years (12%) and 18-44 years (6%)
[35]. Our finding agrees with the medical point of view on the fact heart failure is
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seen in individuals of varying age while kidney disease is more prevalent in patients
of a specific age.

Figure 4.9: Violin Plot of Age

Serum Creatinine

The last common numerical data for violin plot representation is the serum cre-
atinine level. From the two datasets, there is significant similarity in the sc-levels
concentrated in the range of 1.5 to 4. In the event of death from heart failure, serum
creatinine level has an increase at least 0.5 mg/dL from baseline and causes total
loss of kidney function within 4 weeks or end-stage kidney disease by 3 months [36].
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Figure 4.10: Violin Plot of Serum Creatinine

4.5 Evaluation

Heart failure and chronic kidney disease are associated and share many contributing
factors. Leveraging actionable information extracted from the visualization and fea-
ture importance, we arrive at the same conclusion as the medical hypothesis. It can
be deduced from our research that machine learning can detect medical patterns in
complex data, revealing the existence of a link between two diseases.

From the analysis of chronic kidney disease dataset, the following features had the
highest importance:

RF ∩ CatBoost ∩XGBoost = {hemoglobin, albumin, serum creatinine,

pcv, sg, hypertension, serum sodium, bgr, bu}

Analysis of the heart failure dataset yielded the following importance scores:

RF ∩ CatBoost ∩XGBoost = {ejection fraction, serum creatinine, age,

platelets, creatine phosphokinase, serum sodium, hypertension, diabetes mellitus}

The aforementioned relationships have been thoroughly documented in previous
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literature. In general, among both the diseases we found that serum creatinine,
hypertension, serum sodium and diabetes mellitus were of high importance and
the relationship may be denoted in the following manner:

CKD∩HF = {serum creatinine, hypertension, serum sodium, diabetes mellitus}

4.6 Conclusion

The findings of this study can be applied to the domain of healthcare and artificial
intelligence applications in the medical field. This paper aims to investigate two
chronic conditions - chronic kidney disease and heart failure - and their relationship
in order to demonstrate that developing one of these chronic illnesses significantly
raises your risk of developing the other. Asymptomatic, chronic kidney disease can
go undiagnosed until it has progressed to serious cardiovascular complications, in-
cluding fatal heart failure. Again, the primitive stage of heart failure is a health
crisis, and its presence alone confers a disproportionately high risk of developing
CKD. Thus, in this research, we used an analysis of the physiological attributes of
people to predict the probability of heart failure in patients diagnosed with chronic
kidney disease (CKD) or vice versa, combining machine learning systems and con-
ventional methods. We get sufficient comprehension of the attributes through the
use of models and conclude that machine learning is capable of collecting information
and patterns, as well as establishing the relationship between the two circumstances.
Early diagnosis of these chronic diseases can enable clinicians in strengthening and
implementing preventative and treatment remedial strategies aimed at reducing high
morbidity and death. There is research employing imaging methods to detect risk
factors for developing HF in people with chronic kidney disease [37]. Future studies
may combine the image processing technology with data mining to more precisely
determine the relevance of the features.
The findings of any research study is universal in nature. As a result, this extensive
research builds a solid basis for the medical theory associating chronic kidney disease
with heart failure.
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