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Abstract 

Swarm robotics is a decentralized approach to robotic systems. This paper exammes the 

problem of search and rescue using swarm robots. We present as solution a multi-robot search 

algorithm using probabilistic finite state machine and interaction inspired by Lennard-Jones 

potential function. The approach utilizes a finite state machine to separate the tasks performed 

and to change coordination rules according to the circumstances and social probabilities. The 

approach is tested in various scenarios to test flexibility, scalability and robustness. The 

performance results are promising and comparison with Robotic Darwinian Particle Swarm 

Optimization and Glowworm Swam Optimization for algorithmic complexity appear 

favourable. 

Keywords: autonomous robots, multi-robot systems, performance analysis, search and 

rescue, swarm intelligence 
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Chapter 1 

Introduction 

Within multi-robot systems swarm robotics is a novel approach, taking as inspiration biological 

swarms like social insects (bees, ants, or termites), fish schools, bird flocks, or bacteria colonies 

[1]. It is a decentralised approach to robotics that is based on robustness, flexibility, and 

scalability [2]. From a computation point of view, swarm intelligence simulates the overall 

behaviour of the swarm and not the individuals in the swarm it is trying to mimic. Specifically, 

it is the emergent collective behaviour in decentralized groups of autonomous robots with 

individuals in the swarm following simple local rules which can produce largely varied and 

complex behaviour for the swarm [1][3]. The robots themselves are relatively simple in design 

with limited range of sensors or actuators. The communication between robots is local and 

limited. 
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Multi-robot systems essentially have three different coordination paradigms: centralised 

architecture where decision-making is under control of a single entity, decentralised 

hierarchical architecture where decision-making is based on negotiated through a hierarchy 

system implemented locally, and decentralized distributed architecture where each entity is 

autonomous and decision-making is completely decentralized according to [ 4]. Multi-robot 

system 1s used m the current state of the art m the field of search and rescue for the 

reconnaissance and rescuing phases of a search and rescue mission as described in [5] to assist 

human responders and it has been found that distributed approaches avoid bottlenecks due to 

overflows in communication links as in centralized approaches. Furthermore, in [6] four types 

of interactions between distributed systems are described: collective where goals are shared and 

actions advance goals of others but entities are not aware of each other, cooperative where goals 

are shared and actions advance goals of others and entities are aware of each other, collaborative 

where entities are aware of each other and advance goals of others but have individual goals, 

and coordinative where entities are aware of each other and have individual goals but do not 

advance goals of others. 

Global coordinating systems or absolute positioning is not usually implemented for swarms 

and on-board sensors are very important in methods to locate other robots [7]. Relative 
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positioning techniques are more widespread in the implementations of swarm robots according 

to [1] and has been implemented in [8] where on-board sensors are used. Relative positioning 

allows individuals in a swarm to keep their own local coordinates to position themselves. 

There are several tasks within the field of swarm robotics or swarm intelligence that are widely 

researched or areas of interest such as mappmg, exploration, foraging, morphogenesis or 

pattern formation, and search tasks [9]. This paper deals with the problem of search and rescue. 

Autonomous robots finding targets within an unknown environment is a problem that is 

suitable for a swarm of robots. The area or environment in question can be dangerous or 

inaccessible to humans or robots could be deployed as secondary operation aiding humans. A 

swarm robotics approach has some advantages compared to single robots. It is vastly more 

efficient and robust in its execution due to a parallel autonomous behaviour of the individual 

in the swarm and the scalable nature of the swarm itself [1]. Sensory information accrued by 

multiple robots allow for optimization techniques to be used that improve the solution 

significantly [10]. Given all its advantages, search and rescue solutions using swarm robotics 

are relatively few leaving a wide possibility for further research. This paper aims to propose a 

new algorithm for a swarm of robots carrying out search and rescue operations. 
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Chapter 2 

Literature Review 

Particle swarm optimization (PSO) first proposed in [11] is an evolutionary computation 

technique that is inspired by social behaviours of foraging swarms. It is a robust and flexible 

approach that utilises individual fitness to maximise global performance. It considers present 

states and best performance in the swarm and past best performances of individuals to move 

towards an optimised solution towards the goal state. Due to its simplicity and low time and 

space complexity, PSO is easy to implement and has been adapted for swarm robotics despite 

being created as a solution to optimisation or estimation problem and has been shown to be 

an efficient algorithm for many applications [12]. 

There are many examples of search and rescue approaches in which unknown environments 

were traversed to locate targets at unknown locations such as in [13] where PSO was used 

with adaptive RSS weighting factor. Another method was shown in [14] with a search 
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algorithm inspired by PSO used to find targets without precise global information where 

cartesian geometry was used to unifY relative coordinate systems to improve robustness and 

efficiency. 

A distributed approach to multi-robot search was proposed in [15] where PSO was modified 

inspired by chemotaxis behaviour in bacteria. The approach is tested on dynamic 

environments for the fitness of individuals and for the swarm globally. Local adaptations 

based on varying neighbourhood sizes were used to test for the change in global fitness 

achieved through local interactions. The results show that the approach is adaptive in 

dynamic environment and continues adaptations throughout changes in the environment 

without loss in performance. 

A study in [12] conducted benchmark experiments for multi-robot search algorithms inspired 

by swarm intelligence. Five state-of-the-art algorithms are compared using the non-realistic 

simulator MRSim. The performance is measured using the exploration ratio of the 

environment and its average of 500 iterations. Robotic Darwinian PSO (RDPSO) is shown 

to have the best performance in the simulated experiments. Moreover, the RDPSO is further 

compared with two other best performing algorithms, aggregations of foraging swarm (AFS) 

and glowworm swarm optimisation (GSO), using a swarm of14 e-pucks. RDPSO converges 
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to the optimal solution faster and with accuracy GSO closely follows its performance. For 

RDPSO and GSO, the computational load due to space and time complexities or the 

communication demands are not significantly higher than the other algorithms. 

RDPSO was first proposed in [16] along with robotic PSO (RPSO) as extensions of 

Darwinian PSO (DPSO) and PSO respectively. The techniques were modified for obstacle 

avoidance and for multi-robot systems. A simulation demonstrates these algorithms 

performing distributed exploration. The techniques use dynamic topology to split the swarms 

into sub-swarms over several iterations. There arises a chance of getting stuck in local 

minimum that is avoided in the RDPSO but not in the RPSO. RDPSO outperforms RPSO 

by avoiding local optima using a punish-reward mechanism controlling social exclusion and 

social inclusion. Therefore, global communication and coordinating system considerations 

outweigh distance metrics and local minimum when dividing the sub-swarms. 

GSO was introduced in [17] as an optimization algorithm that was like but distinct from 

PSO and Ant Colony Optimisation (ACO). The entities in GSO are thought of as 

glowworms that carry a fitness value calculated based on their current location called luciferin 

which they broadcast to their neighbours. An individual in the swarm computes its 

movements based on an adaptive neighbourhood where it probabilistically moves towards a 
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neighbour with a higher luciferin value. The swarm divides into disjoint groups die to these 

movements based on local information and selective neighbours allowing it to move towards 

multiple signal sources. 

Foraging robots could use path planning in their environment for efficiency. In [18] virtual 

ants are implemented that use artificial pheromones within a swarm network. This is 

achieved by local messages forming chains within the robots deposited with artificial 

pheromone that help with path selection. The method is tested on 20 real robots and it is 

shown that the approach can do path selection for more advantageous paths when possible. 

The robots have minimal abilities since they are only required to use simple communication 

and behaviours. 

A search approach using potential field is shown in [19] where a model based upon 

Coulomb's inverse-square law is used. The system uses positive charges as obstacles pickup up 

by sensors and being positive themselves the robot move away from obstacles. The target is 

also positive since it appears as an obstacle to the sensors and while they are still denoted as a 

positive charge they are identified using a camera. Once a target has been identified the task 

is said to be completed. Information sharing could be either pessimistic or optimistic where a 

robot takes information about an obstacle given by another robot and selects a high charge if 
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pessimistic and low if optimistic. The approach is tested on Player/Stage simulator and the 

sharing systems are found to have similar performance but both outperform systems without 

sharing. 

Probabilistic finite state machines (PFSM) are also used for swarm robotics applications such 

as in [20] where a foraging swarm is modelled using PFSM with state searching, grabbing, 

homing, avoidance, deposit and resting. The mathematical aspects are modelled to mimic 

macroscopic behaviour while geometric methods are used to derive transitional probabilities 

of the individuals. Player/ Stage simulations of the model show promising results for dynamic 

situations. PFSM offer flexibility in design of the approach and it also very easy to 

implement, therefore, suiting swarm robotics. 
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Figure 1: State transition diagram for proposed algorithm 
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Figure 2: Lennard-Janes potential VLJ of two particles over distanced 
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Chapter4 

Simulation and Experimental Setup 

4.1 ARGoS overview 

ARGoS as outlined in [20] is a modular, pluggable, multi-physics engine simulator capable 

of simulating large heterogeneous swarm robotics in real time with efficiency and flexibility in 

its design. It can use multiple threads and multiple physics engines and robots can move 

freely from the simulated space of one engine to another with ease and transparency. 

Distinctly, ARGoS is implemented in a way that every entity is implemented as a plug-in 

with easy interface to include custom plug-ins. In simulations, it has been able to simulate up 

to 10,000 wheeled robots in real-time with full dynamics in place. 

A controller interacts with the sensors and actuators of a robot through a control interface. 

The sensors and actuators, in turn, measure or change the entities in the simulated 3D space. 
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Loop functions or hooks designed to occur at certain events further modifY or interact with 

the simulated space while physics engines run the mechanics of the simulation and visu-

alization module renders the graphical display of it. A simulation configuration file is used to 

set up the simulation using all the modules and plug-ins as required. Figure 3 shows the de-

sign aspects of ARGoS. 

Physics 
Engines 

- - - - - - - Control Interface 

Entities 

Simulated 3D Space 

Figure 3: The modular design of A RGoS [20] 
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Where NT, total is the total number of targets, Etotal is the total energy expended by swarm after 

finding the last target, Ttotal is the time taken in seconds to find the last target, NT, found the 

targets that have been found, A the explorable area of the environment, and N s, total the total 

number of robots in the swarm. Each scenario is analysed using the performance measure 

PsTA. A1 is 1 m2 making PsTA unitless. 

Figure 4: Map 1 with 10 search and rescue bots each 



23 
 

Figure 5: Map 2 with 20 search and rescue bots each 

Figure 6: Map 3 with 30 search and rescue bots each 
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Chapter 5 

Experimental Results and Evaluation 

The algorithm is tested on 27 scenarios with performance measures for each. To test 

flexibility, the environment is kept fixed while search and target robots are varied giving 9 

scenarios for each environment. The performance is averaged for each environment, likewise 

the same is done for scalability and robustness test using search and target robots. Space, 

time, and communication complexities are also compared to RDPSO and GSO (the best 

performing algorithms as shown in [11]). Other aspects such as obstacle avoidance and sub-

optima avoidance are also compared. 
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5.1 Flexibility 

Three different environments are used of areas 25, 56.25, and 100m2• The results shown in 

Figure 7 show that performance is highest for smaller environments. This is anticipated since 

the communication range and interaction vectors benefit from a shorter range, however, it is 

surprising to see the performance rise for the largest search area. One possibility is that the 

larger area allows for more distributed search manoeuvres that smaller areas do not. Smaller 

portioned groups arise in the larger areas allowing for less computational complexity. 

5.2 Scalability 

Figure 8 shows the average performance for the varying swarm sizes of 10, 20 and 30. The 

best case is for the lowest swarm size, however, after a dip at 20, it seems to be plateauing 

around 30. It has a positive slope near the end. The algorithm does execute with all the 

robots discovered by the end and appears scalable for the most. The swarm had a difficult 

time avoiding sub-optima for the swarm size of 20 which might explain its poorer 

performance. 
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5.3 Robustness 

Varying the target size has a very noticeable and apparent effect, Figure 9 shows a very clear 

positive slope with an increase in performance with increasing target size. This is due to the 

motion vectors depending on targets in some situations to escape sub-optima due to an aspect 

of the Lennard-Janes potential. The proposed algorithm proves robust. 
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Figure 7: Flexibility test for average performance over environment area 
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Figure 8: Scalability test for average performance over swarm size 
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Figure 9: Robustness test for average performance over environment area 
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5.4 Algorithmic complexity and feature comparison 

Further validation of the proposed algorithm can be shown through complexity analysis for 

some of the leading multi-search algorithms. RDPSO and GSO are compared with the 

proposed algorithm. Table 1 shows the summary for the comparison. RDPSO has robot 

dynamics using fractional calculus and sub-optima avoidance while the other two do not have 

any implement of such kind. The initial deployment of the GSO and proposed algorithm are 

Random while RDPSO and proposed algorithm based on Lennard-Jones potential utilise 

artificial repulsion for obstacle avoidance. The communication methods are broadcast for 

both GSO and proposed while RDPSO uses Ad hoc multi-hop for communication. 

However, communication complexity for all three is the same and depends on Ns which is 

the neighbouring swarm size. Computation complexity is higher for RDPSO as well as 

memory complexity since it uses a fractional order series RA. Memory complexity for GSO 

and proposed only depend on fixed number of values taken from previous iteration hence the 

lower complexity. 
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Table 1: Summary of multi-search algorithms in comparison with the proposed algorithm 

RDPSO GSO Proposed 
Aspect 

[11][15] [11][16] algorithm 

Robot dynamics Fractional calculus - -

Initial deployment EST Random Random 

Low-level Artificial 
Obstacle avoidance Artificial repulsion 

control repulsion 

Communication Ad hoc multi-hop Broadcast Broadcast 

Sub-optima avoidance Reward punish-ment - -

Multiple dynamic 
Dynamic partitioning 

and fuzzy adaptive Partitioning -
sources 

behaviour 

Computational 
0(2Ns) O(Ns) O(Ns) 

complexity 

Memory complexity O(RA) 0(1) 0(1) 

Communication 

complexity 
O(Ns) O(Ns) O (Ns) 
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