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Abstract
The fact that insecticidal pests impair significant agricultural productivity has be-
come one of the main challenges in agriculture. There are, nevertheless, several
requirements for a high-performing automated system that can detect pest insects
from vast amounts of visual data. We employed deep learning approaches to cor-
rectly identify insect species from large volumes of data in this study model and
explainable AI to decide which part of the photos is used to categorize the insects
from the data. We chose to deal with the large-scale IP102 dataset since we worked
with a large dataset. There are almost 75,000 pictures in this collection, divided
into 102 categories. We ran state-of-the-art tests on the unique IP102 data set to
evaluate our proposed solution. We used five different Deep Neural Networks (DNN)
models for image classification: VGG19, ResNet50, EfficientNetB5, DenseNet121,
InceptionV3, and implemented the LIME-based XAI (Explainable Artificial Intelli-
gence) framework. DenseNet121 performed best across all classes, and it was also
employed to detect crop-specific insect species. The classification accuracy for eight
specific crops ranged from 46.31% to 95.36%. Moreover, we have compared our pre-
diction performance to that of earlier articles to assess the efficacy of our research.
Keywords: IP102, Insect pest, Transfer learning, Data augmentation, classifica-
tion.
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Chapter 1

Introduction

In agriculture, insect pests are one of the most severe challenges since they wreak
havoc on crop quality. Crops are afflicted by pests, viruses, resulting in food scarcity
on the market. Insects devour around 10% of ordinary produce; at times, the amount
of wheat, rice, and other grains consumed can be substantially more significant. It
has found around 10,000 distinct parasitic bug species. Plants have been harmed
over a long period. Identifying multiple variants with minor differences is difficult,
especially if not all of these species are believed to be necessary. Being innovative in
pest detection, even if only to improve efficiency and efficacy somewhat, might be
the difference between profit and loss. Agriculture requires continuous monitoring
and evaluation of insect losses to ensure the quality and safety of crops. Due to
the wide variety of pest species and their subtle distinctions, insect pest identifica-
tion primarily relies on agricultural professionals’ professional experience, making
it more expensive and time-consuming. However, while human interaction is re-
quired, a machine-based automation solution can quickly relieve the earlier issues.
Automated insect pest monitoring is becoming more familiar with developments in
machine learning and computer vision techniques.
This research aims to classify and detect insects in fields and develop a model capable
of accurately identifying nuisance insects from images. The insect pest identifica-
tion method for agricultural insect collection is practical and accessible in terms of
calculation time. We utilize the IP102 dataset [20] to further insect pest recognition
studies in computer vision. Around 75,000 images of 102 different species are in-
cluded in the IP102 dataset [20]. This research illustrates and analyzes 102 different
insect pests types and ways to detect and categorize insect pests from images. We
implemented VGG19 [4], ResNet50 [6], EfficientNetB5 [18], DenseNet121 [9], and
InceptionV3 [7], all of which achieve high levels of accuracy when presented utilizing
the LIME-based XAI system. This study compared the performance of five unique
designs.

1.1 Research Problem
Agricultural companies and farms emerge day after day where technology plays a
crucial role. But the progress of agriculture continues to be significantly impeded
by insects/pests. Although we can control different chemical and biological pesti-
cides, careful monitoring is typically necessary across the site to get the most out of
them. In many cases, workers do passive surveillance while performing daily activi-
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CHAPTER 1. INTRODUCTION 2

ties. Therefore, frequent human monitoring cannot adequately predict the number
and intensity of pests or diseases attacked on the farm for spraying the right fer-
tilizers/pesticides to remove the host. Problem identifying is excellent, as a system
such as this must differentiate between the intended species and cope with many
non-target species. This makes complicated machine learning approaches more com-
mon than detection. There were numerous methods for detecting insects/pests. For
instance: Visual inspection, Trap method, PIR motion detectors, sensors (Thermal
sensor, Fluorescence Image Sensing, Acoustic Sensors, Gas Sensors, Sound wave sen-
sor, i.e.), ANN classifier, i.e., Researchers later implemented more complex version
classifiers, such as the KNN classifier, SVM classifier, and CNN classifier, as tech-
nology progressed. In recent years, we can observe that though there are so many
ways for detection and identification, researchers cannot find a form with higher
accuracy. In addition, many approaches are time-consuming and expensive. As a
result, the farming industry suffers alarmingly from insects/pests.

1.2 Research Objectives
Our initiative aspires to more effective detection and identification by Image Pro-
cessing of insects/pests and disease assaults. This allows us to detect insects from
vast image data using deep learning. The following are the key aims of our research:

• Insects/pest detection and identification through Image Processing

• Detecting and identifying with a comparatively higher accuracy rate

• Method effectiveness test using advanced algorithms

• Efficient process to safeguard and sustain the environment

• Adaptability and affordability

There may be other choices, but additional research is needed.

1.3 Thesis Structure
In chapter 1, we discussed the Research problem and research objectives. In chapter
2, we discussed Literature review and deep learning. In chapter 3, we discussed
Methodology and proposed models. In chapter 4, we discussed Dataset and data
augmentation. In chapter 5, we discussed Implementation and results. In chapter
6, we discussed the Conclusion and future work.



Chapter 2

Background Study

2.1 Literature Review
Pest insects have long-term detrimental effects on our agricultural, natural, and
lifestyle ecosystems. Insects from pesticides can damage crops and food production
and even produce human health risks. It is used in the core domains of “deep learn-
ing” in computer science.
Like the human brain, deep learning is one of the domains of algorithmic machine
learning (Artificial Neural Networks).
But when it comes to insects - since it is so tiny, it is color camouflage with nature
or sometimes with plants - so we have several dimensional issues. DEEP CNN has
been used to identify small things in agriculture in many methods. Image solutions
are various and have previously been wholly explored to identify species [29]. The
hyperplanes are used to identify insects, which separate the classes.
The main aim of the convolution layer, which works as filters, is to extract character-
istics from bug photographs. The data they split for classification using deep neural
networks as classification devices was used to detect and identify indoor and outdoor
food congestion using a single shot multi-box detector (SSD) with a clustering net-
work based on VGG16. In general, the results of this study are mixed (45% MAP),
but the results of herbivore classification in the 8-class research in 1105 test samples
are objectively optimistic, with 81.5% of their accuracy. Some further instances used
the Wang and XIE datasets to use their models with 24 different insect species. For
the Vector Machine (SVM), closest adjacent to KNN, naïve Bayes (NB), certain
forms and approaches are used (CNN). A high-resolution model was developed for
pest surveillance. It was built using a deep residual recursive network. With 91.5%
for the nine courses and 90% for the 24 classes of Wang and Xie, the CNN model ob-
tained the most remarkable accuracy in the research. After extensive investigation,
we reported on both a small dataset and the more extensive IP102 dataset. They
analyzed their methods. They have achieved a state-of-the-art accuracy on both
smaller datasets (92.43%) and bigger (61.93%), corresponding to the performance
of human experts. They have proposed a new procedure for classifying insect pests
using coevolutionary neural networks (CNNs). The most important feature of a
picture is emphasized via image processing techniques known as saliency methods
(Itti, Koch, and Niebur, 1998). Our research seeks to help farmers safeguard their
fields from attacks by pests and diseases while preserving the integrity of the soil
and other plant regions. This means that Deep Learning is used to identify insect
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CHAPTER 2. BACKGROUND STUDY 4

pests from extensive picture data.
This section primarily focuses on the vital work in deep training in insect and pest
identification in agriculture. The primary goal of the research is to use technology
to increase the production of crops. Start-ups and technology firms apply artificial
intelligence, machine learning, deep learning, and IoT technologies to boost agricul-
tural output. We have built many smartphone apps to detect the weather, soil, and
crop species we can exploit for the maximum yield feasible.
When ‘target’ and ‘objective missing’ classes are present, identifying and categoriz-
ing pests over the complete scenario is vital for binary classification.
On different field plants for insect categorization and insect detection, Wang and
Xie’s datasets have been finished [6]. Wang uses a set of nine insect classes with 225
images, whereas Xie uses a single set of 24 classes with a photograph of 25 per class
and a ratio of train testing between 70% and 30%.
The training set consists of 162 images of insects in the data set of Wang and 63
images from insects in the test set. Xie Data Sets includes 785 insect photographs
and 612 insect photos in a test set consisting of roughly 60 bug photographs each
class [6].
Grain safety research in grain storage highlights the detection and identification of
grain insects that deliver greater yields [18]. The saved grain insect detection and
identification database are not typical. ASAG China collected eight species from
stored grain insects (State Grain Administration Academy) [18]. Over 1,000 images
and 70% training have been randomly picked and 30% training. We have built a
second data set to replicate the present green warehouse condition with a total res-
olution of 784 original photographs from 2592 to 1944. Insects were around eight
pictures, averaging their density [18].
Research shows how deep learning algorithms examine identification and prediction
to acquire the required database. They are part of it. Use MATLAB, the Neural
Network Toolkit, the Bioinformatics Toolbox, and the Image Processing Toolbox to
address this challenge. After interviewing different farmers, their survey indicated
that most farmers want to receive applications online 24×7, for free. The farmer
has to do nothing about it; he only needs a picnic and a cloud upload. The back-end
processing makes the real quick test and offers the farmer a full overview report.
Wang, Xie, Dang, and IP102 were used to research a highly complex environment.
Firstly, the insects were categorized using image processing methods, by which the
image noise is minimized and images improved to higher accuracy. This procedure
employs an algorithm that retrieves the environment and the detection of texture.
The photos of the pests were magnified to a higher resolution to reduce the detection
uncertainty.
An additional study employing neural system arbitration produces an adaptive sys-
tem for identifying the insects, categorizing eight of the insects seen routinely in rice
fields primarily completed in two steps. The photographs will mainly be processed
and their patterns identified by many images processing tools. The segmentation
approach is used to level the data and then separate and prepare neural networks’
backpropagation for a neural network. Then, two training algorithms in the input
portion are developed using various learning techniques during the identification
stage. They are then tested on many raw photos until they are selected. The tex-
ture of each insect is preserved.
The pest identification research utilizing machine learning classifies the picture by
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taking the picture raw file and transforming this picture into precious images for a
specific test [29]. The photo is taken at high resolution and subsequently decreased
using a quantified image representation, which keeps vital classification issue infor-
mation. The result is produced as a vector. Machine education is then utilized to
recognize existence. Afterward, it is comparable to other scores of any other living
objects such as plants and animals to identify the species [29].
The research utilizing deep learning to detect and predict pests and diseases focuses
on the farming industry’s economic sector. The artificial neural network is applied
to study the condition of the plant and soil. The dataset of these plants and soil is
frequently updated in the MATLAB tool, which helps identify. The Machine Learn-
ing Algorithm then uses CART (classification and regression tree) to forecast future
pest or disease attacks.
This study is based on a long-term relationship between insects and plants and
employs the herbarium exemplifier. Machine learning assumes that just a minimal
amount related to identifying processes are based on these facts. Data from the
South East’s regional expertise and collections network, Q. bicolor, and O. sensibilis
are downloaded. The detection and classification studies were therefore separated
into two groups and each independently simplified.

2.2 Deep Learning
The characteristics retrieved from the image pertain to the “graphics” of the model,
and the object’s choice is quite problematic. It was essential in classifying perfor-
mance in the past, but it was also labor demanding and subjective expert work that
manually derived characteristics. In addition, we cannot manually extract many of
the features accurately. Consequently, a technique that would automatically iden-
tify appropriate functionality for a problem with a defined logic endeavored after.
Deep learning is an AI characteristic that replicates the human brain’s data-processing
function for object recognition. Artificial neural networks automatically extract
data from collected samples by learning the proper representation and applying a
solid model. This automatic removal proof is accurate to computer vision, cutting-
edge image technology, recognition of objects, and image recall models. (Bengio,
Courville, & Vincent, 2013) [12]. Deep learning is based on widely used ANNs that
apply mathematical models in the biological, neural, centralized animal nervous
system and brain-inspired learning algorithms. Neuronal networks consist of one or
more deep neuronal learning layers, which combine the bulk of the Artificial Brain,
composed of numerous hidden layers. ANN expanded more extensively via the flow
of information and dispersed biological communication nodes but still varies in sev-
eral ways from the human brain. The term “deep” is used here to signify that this
network contains more than one layer. Initiators and tech businesses utilize pro-
found learning and IoT technology to enhance agricultural yield [20]. Deep learning
makes use of Neural Networks to understand how the human brain operates.
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Figure 2.1: The structures of different deep learning models.

These networks are like distinct nodes (or places) linked in a single layer in the
human brain. The more the number of layers, the stronger the network gets. Infor-
mation travels between nodes using signals. The relevant weights are applied to the
nodes when these signals are received. Heavier-weight knots will increase the impact
on the other neighboring nodes. The weighted inputs are transformed to outputs
afterward. The entire system required costly hardware since vast data, including
multiple complex computations, had to be processed.
The complete procedure may be conducted using the image and processing de-
scription, object sensing network, and model optimization for insect and pesticide
identification.

2.3 Convolutional Neural Networks
Convolutional neural networks and CNN are among the most common deep learning
algorithms used to recognize patterns and classify images. CNN algorithm consists
of several contemporary designs. In Keiron O’Shea’s opinion, Ryan Nash, CNNs
comprised neurons that may be optimized to accept feedback and complete a task
wherever each neuron continues. CNN is composed of three-dimensional neurons:
the spatial dimension of the input (high and broad) and the depth. Three lay-
ers, involute layer, pooling layer, and entirely linked layers, form CNN architecture.
The convolutional layer defines the output of neurons connected to local areas in-
put to compute the scalar-produced product between its weights and the region
associated with input volume. An image transformed into a vector goes through a
two-dimensional weight set, kernel, or filter. The input data and kernel are used for
a dot product.
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Figure 2.2: Convolutional neural network architecture.

Once the kernel has been applied systematically over the picture, a two-dimensional
array called the feature maps is produced. Activation functions such as ReLU are
used to “excite” the kernel when a specific characteristic occurs at a particular input
spatial point. The activation map is transmitted over the pooling layer after passing
through the convolutional layer. Pooling aims to reduce the architecture’s dimen-
sional and complexity. Ultimately linked layers include neurons connected directly
in the two neighboring layers, without any layers connected beyond them.

2.4 Explainable Artificial Intelligence (XAI)
XAI which is used to denote Explainable Artificial Intelligence is several processes
and techniques, used by different types of algorithms, bring a perfect output that can
be understood by humans. Any complex model or system which are studied nowa-
days can easily be presented and explained with the help of Explainable AI. It can
be used to build a strong association between the service providers and consumers.
Furthermore, this will also assist in any future works for further development.
We often work with algorithms that train themselves with the help of a training
dataset that is curated with different sizes of datasets and makes decisions by itself.
It becomes difficult for us to understand on a deeper level. The main arena of Neu-
ral Networks and Artificial Intelligence is the mighty concept of Black Box which
helps to understand the scenario perfectly. Data experts and Scientists sometimes
find it difficult to understand how the final output is achieved because the process
undergoes a series of steps. To understand the entire event knowledge graph is used
which helps us with a clear view of the entire procedure.
System developers often expect a detailed view of the entire process of how the out
is generated, as a lot of important factors are involved behind it. We often find it
hard to completely figure out the sequence of steps involved in neural networks, thus
it is labeled as black box which is generating the final output.



Chapter 3

Methodology

The suggested approach involves dataset acquisition, DNN model training, test pic-
ture classification, and final findings. We had to divide up the dataset to train and
evaluate the models.
We maintained the training, validation, and testing sets similar to those stated in
the research to ensure appropriate comparability with the original study. To gener-
ate the training, validation, and testing sets, the dataset was divided about 6:1:3.
As a result, 45,095 pictures were assigned to the training set, 7,508 to the validation
set, and the remaining 22,619 as the testing set. We required many pictures to feed
the big DNNs, and thus, the training set was the largest.

Figure 3.1: Proposed method of the research.

8
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3.1 Implemented Models
Deep learning algorithms are used to study, retrieve and accurately classify the
training set from the test system, unseen data. We also use transfer learning to
decrease the training period of the system and the limited data we have. Numerous
deep learning algorithms and models have evolved due to increased research in deep
learning and image categorization. Our dataset examined the performance of five
architectures: VGG19, ResNet50, EfficientNetB5, DenseNet121, and InceptionV3.
We attempted to compare the results. The models we utilized are detailed further
down.

3.1.1 VGG19 [4]
For Visual Geometry, Group VGG is an abbreviation (a group of researchers at
Oxford who developed this architecture). The VGG architecture consists of 2D
Convolution and Max Pooling layers. VGG uses 1×1 convolutional layers to re-
duce the decision function while maintaining the same receiving fields. Due to the
small convolution filters, VGG may have several weight layers; more layers mean, of
course, improved performance. The initial releases in 2014 were VGG 16 and VGG
19. The amount of weight layers is at the end of VGG19.
VGG-19 was formed on millions of photos in the ImageNet collection by a convolu-
tional neural network. The network can divide photos into 1,000 types of objects,
such as keys, mice, pencils, and animals. The network has so collected a large num-
ber of features for several images.

Figure 3.2: VGG19 convolution layers.
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Figure 3.3: VGG19 network architecture.

The model VGG19 is a version of the 19-layer VGG model (16 layers of convolu-
tion, three levels of ultimately linked layers, five layers of MaxPool, and one layer of
SoftMax). The input to the layer cov1 is a fixed-size 224 to 224 RGB image, which
is then processed using a stack of convolutional layers (Convolutional) with a very
narrow receptive field: 3 to 3 (the smallest size in which left/right, down, and center)
ideas are captured. It also uses a T1 convolution filter, a sequential change of the
channels input (after nonlinearity) in one setup. The convolution stage is single-pixel
wide. The spatial resolution is reserved, which is done after the convolution, where
it is done in a way where a single pixel is set for three convolutional layers. Five
layers of maximum pooling, after numerous layers of Convolutional (max-pooling
doesn’t follow all the layers). To pool max in step 2, a 22-pixel frame is utilized.
After a sum of convolutional layers, three fully connected (FC) layers were added
(various depths in different designs). The first two have a total of 4096 channels.
The following classification is 1000-way ILSVRC, which operates concurrently on
1000 channels (one for each class). The last layer is a soft-max one. Every network
has the same ultimate connected layer configuration. The nonlinearity of the cor-
rection (ReLU) is available on all burial strata. It should also be emphasized that,
except for one network, no Local Response (LRN) function will be used to increase
memory consumption and computational time rather than improve the performance
of the ILSVRC dataset.
VGG offers advantages: the architecture for evaluating individual jobs is excellent.
Pretrained VGG networks are likewise free of charge available on the internet and
are thus commonly used outside the box for numerous applications. The CNN model
was mainly aimed towards winning ILSVRC. But in many different ways, it has been
used.

• The model may be used for many additional datasets as a good classification
architecture. The authors have made the models accessible to the public, as
it is or with modifications in other comparable jobs.

• Transfer learning: may also be utilized to recognize face tasks.

• With other frameworks like Keras, weights are simply available to be used as
one desire.

• Loss of content and style via the network of VGG-19.
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3.1.2 ResNet50 [6]
ResNet is a deep convolutional neural network usually coupled with image recog-
nition, classification, and auto-encoding. The ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) was won using function transmission to avoid gradient
loss and quickly training a network far more profound than previously employed.

Figure 3.4: ResNet layers.

Driven by earlier research, which shows that a closer network is possibly more po-
tent than external networks, the remaining networks were built up from a 50-layer
residual network design, and have a total of 177 layers, showing detailed infor-
mation in the Supplementary Information (ResNet50). In the ImageNet database
(https://image-net.org/), ResNet50 was trained to classify pictures into 1000 cate-
gories of objects (e.g., keyboard, mouse, and pencil, as well as several animals and
insects).

Figure 3.5: ResNet50 architecture.

The residual units, the filter’s size, and the output of each convolutional layer are
all specified as shown in the architecture of ResNet-50. DRF is also exhibited from
this network’s final convolutional layer. Key: The notification “k” means a filter
with the size “k” and “n” in the convolutional layer block. FC 1000 is the layer of
1000 neurons wholly linked. This number is the repetition in each unit at the top of
the convolutions of the layer block. nClasses denote the number of output classes.
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Figure 3.6: Residual block.

The ResNet50 architecture comprises the following components, as we can see in
Figure:

• A convolution of 7 ×7 and 64 distinct kernels with a stride of size 2 results in
the formation of a single layer.

• We observe the subsequent max size pooling with a size 2 as well.

• The subsequent convolution consists of one kernel (1×1,64), followed by one
kernel (3×3,64) and a 1×1,256 kernel repeated for 3 layers so that 9 layers are
specified in this stage.

Table I

ResNet Layers
layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer

conv1 112×112 7×7, 64, stride 2

conv2.x 56×56 3×3 max pool, stride 2[
3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

 1×1, 64
3×3, 64
1×1, 256

×3

 1×1, 64
3×3, 64
1×1, 256

×3

 1×1, 64
3×3, 64
1×1, 256

×3

conv3.x 28×28
[
3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×8

conv4.x 14×14
[
3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6

 1×1, 256
3×3, 256
1×1, 1024

×6

 1×1, 256
3×3, 256
1×1, 1024

×23

 1×1, 256
3×3, 256
1×1, 1024

×36

conv5.x 7×7
[
3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3

 1×1, 512
3×3, 512
1×1, 2048

×3

 1×1, 512
3×3, 512
1×1, 2048

×3

 1×1, 512
3×3, 512
1×1, 2048

×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8x109 3.6x109 3.8x109 7.6x109 11.3x109

Table 3.1: Layers of ResNet

We exclude the activation functions and the intermediary layers used for pool-
ing. This results in a Deep Convolutional Network with a total layer count of
1 + 9 + 12 + 18 + 9 + 1 = 50 layers.
While ResNet is straightforward to optimize, “plain” networks (those that stack lay-
ers) exhibit a considerable rise in training error as the depth of the network grows.
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ResNet may quickly increase accuracy as it gains depth, resulting in superior out-
comes than previous networks. Without expanding the training error %, it is possible
to train networks with numerous layers (even thousands). ResNet may help with the
vanishing gradient issue by using identity mapping. ResNet significantly improves
the performance of neural networks with additional layers. The Deep Residual Net-
work features a bottleneck residual block design to enhance network performance.
This method may be used for picture categorization, object localization, and object
detection in computer vision. It may also profit from depth in non-computer vision
applications while decreasing processing costs. ResNet is predicted to outperform
standard deep neural networks, if not surpass them. On the other hand, ResNet
outperforms by a huge margin when the network gets deeper. ResNet’s skip con-
nections allow the gradient to flow down an additional shortcut channel, preventing
the slope from vanishing in deep neural networks. Additionally, these linkages aid
the model in learning identity functions, ensuring that the top layer performs well
while the bottom layer performs poorly.

3.1.3 EfficientNetB5 [18]
EfficientNet is simply a convolutional neural network design and a scaling strat-
egy that applies a compound coefficient to the depth/within/resolution dimensions.
Google AI [18] has released EfficientNet, which may enhance the performance of im-
age classification compared with cutting-edge efforts. EfficientNet scaling can jointly
improve the properties of CNN, e.g., its breadth, depth, and resolution. So far, a
total of 7 EfficientNet, EfficientNet-B0, and B7 versions have been launched. The
number of layers utilized is the distinctive aspect of these versions. For example, in
EfficientNet-B0 and EfficientNetB7, the coatings used are 237 and 813, respectively.
We use a picture size (456, 456, 3), EfficientNet-B5. This suggests that 456, 456,
and 3 channels are the picture height, breadth, and channels. The size of the batch
utilized is 4. We can readily learn from Figures 3.7, 3.8, and 3.9 that many layers
are connected in EfficientNet-B5. The stem and the last layers of the network are
shown in fig. 3.7. The module set that is connected and repeated is presented in
Fig. 3.8. In figures 3, ×3, ×5, and ×7, the modules inside the brackets are repeated
three, five, and seven times. EfficientNet-B5 can produce considerably better results
than EfficientNet-B0 to B4 when utilizing the same dataset.

Figure 3.7: Stem and final layers of EfficientNet-B5.
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Figure 3.8: Modules of EfficientNet-B5.

Figure 3.9: The total architecture of EfficientNet-B5.

Since we optimized the QWK score and MSE, we formulated the problem as a
regression problem. This method allows us more freedom in optimization, which
means that we can get more outstanding QWK accuracy scores and lower MSE loss
values. The EfficientNet-B5 with additional layers has been pre-trained. MSE is the
square discrepancies between our anticipated values and those observed as follows:

MSE =

∑n
i=1(ŷl − yi)

2

n
(3.1)

Where, yi = observed values, yi = predicted values, n = number of data points
In addition, we have increased the data to improve the model’s robustness. The
data was rotated and turned vertically and horizontally. To improve convergence,
we employed group standards and Adam optimizer. Finally, we split the values by
128 to standardize them. We educated all network layers in this way. EfficientNet
uses a compound coefficient to equally and reliably measure network dimensions
and resolution. A predetermined set of coefficients for scaling, randomly modifying
these parameters, is used to increase network width, depth, and resolution reliably.
Suppose, for example, we want to use 2N times more computer resources. In such
cases, the network depth can be increased by αN, the width by β N and the image
by β N; α, β and α are constant coefficients derived by a grid search in the tiny
initial model.
The compound escalation method is based on the idea that more layers and channels
are necessary to increase the receptive field and get more fine-grained patterns on the
larger image as the picture gets more extensive. On multi-class image classification
on data sets, EfficientNet will be implemented. It is better to use the EfficientNet-
B5 version because B6 and B7 do not support Keras weights for ImageNet.
The critical contribution of EfficientNet was to study in-depth how to measure the
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size of the convolutional neural networks efficiently. Examples include the size of
the ConvNet by using the layer width, the layer depth, image input resolution, or a
combination of all three levers.

3.1.4 DenseNet121 [9]
The DenseNet121 model is one of the image classification models in the DenseNet
collection. The authors trained the models using Torch before converting them
to Caffe format. All DenseNet models were prepared using the ImageNet image
database.
DenseNet begins primarily with a fundamental level of convolution and pooling and
a sequence of transition layer and dense blocks, and in the end, there is a classifica-
tion layer. The initial convolutional block has 64 filters with a size 7×7 and a stride
of 2. A max Pooling Layer follows it with the same stride and a 3×3 max pooling.

Table II

DenseNet Layers
Layers Output Size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264

Convolutional 112×112 7×7 conv, stride 2
Pooling 56×56 3×3 max pool, stride 2

Dense Block
(1) 56×56

[
1×1
3×3

]
×6

[
1×1
3×3

]
×6

[
1×1
3×3

]
×6

[
1×1
3×3

]
×6

Transition Layer
(1)

56×56 1×1 conv
28×28 2×2 average pool, stride 2

Dense Block
(2) 28×28

[
1×1
3×3

]
×12

[
1×1
3×3

]
×12

[
1×1
3×3

]
×12

[
1×1
3×3

]
×12

Transition Layer
(2)

28×28 1×1 conv
14×14 2×2 average pool, stride 2

Dense Block
(3) 14×14

[
1×1
3×3

]
×24

[
1×1
3×3

]
×32

[
1×1
3×3

]
×48

[
1×1
3×3

]
×64

Transition Layer
(3)

14×14 1×1 conv
7×7 2×2 average pool, stride 2

Dense Block
(4) 7×7

[
1×1
3×3

]
×16

[
1×1
3×3

]
×32

[
1×1
3×3

]
×32

[
1×1
3×3

]
×48

Classification
Layer

1×1 7×7 global average pool
1000D fully-connected, softmax

Table 3.2: Layers of DenseNet

The table above summarizes the many architectures used to build the ImageNet
database. The number of pixels shifted across the input matrix is the stride. Astride
of ‘n’ (the default is 1) specifies that the filters turn ‘n’ pixels every time.
To explain the table, we may use the DenseNet-121 design, which shows that each
dense block contains a changing number of layers (variations) with two convolutions
apiece; an 11-dimensional kernel for the bottleneck layer a 33-dimensional kernel for
the convolution procedure.
Additionally, each transition layer has an 11-layer convolutional layer and a 22-layer
average pooling layer with two strides. As a consequence, the following layers are
present:

• A basic convolution layer comprised of 64 filters with a size of 7×7 and a stride
of 2.
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• A layer of pooling with a maximum pooling of 3×3 and a stride of 2.

• Dense Block 1 is composed of two convolutions repeated six times.

• Layer 1 of the transition (1 Convolution + 1 AvgPool).

• Dense Block 2 has 12 repetitions of 2 convolutions.

• Layer 2 transition (1 Convolution + 1 AvgPool).

• Dense Block 3 consists of 2 convolutions that are repeated 24 times.

• Layer 3 of the transition (1 Convolution + 1 AvgPool).

• Dense Block 4 is composed of 16 convolutions.

• To execute classification at the Output layer, the Global Average Pooling layer
accepts all of the network’s feature mappings.

• Output layer.

As a result, DenseNet-121 is composed of the following layers:

• 1 7×7 Convolution.

• 58 3×3 Convolution.

• 61 1×1 Convolution.

• 4 AvgPool.

• 1 Fully Connected Layer.

DenseNet-121, in summary, has 120 Convolutions and 4 AvgPool.
Layers, even within the similar dense block and transition layers, distribute their
weights on several inputs, that enables more deep layers to exploit attributes gath-
ered earlier in the process.

Figure 3.10: Complete architecture of DenseNet121.
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Minimum weight is given by the second and third blocks to the transition layers,
producing several repeated features. Additionally, even though the final layers use
the consequences of the whole dense block, more superior features formed more pro-
found in the model since there seemed to be a more excellent concentrate on final
feature maps throughout trials.
Because DenseNets need fewer parameters and enable feature reuse, they build more
compact models and attain state-of-the-art performance and outcomes across com-
petitive datasets than their regular CNN or ResNet counterparts.
Thus, DenseNets provide numerous appealing benefits, including removing vanishing-
gradient issues, enhanced feature propagation, feature reuse, and a significant de-
crease in parameter count. It creates a strong gradient flow, and the error signal
may be sent more directly to the preceding tiers. This is a kind of implicit deep
supervision since previous levels might get direct control from the final classification
layer.
DenseNet provides a greater variety of features and patterns since each layer takes
input from all preceding levels. It retains low complexity features since DenseNet’s
classifier utilizes characteristics of all complexity levels. It often establishes more
nimble decision-making limits. This also explains why DenseNet operates well with-
out enough training data. Additionally, it is more efficient in terms of parameter-
ization and calculation. As with DenseNet, the network now has ‘(I (I + 1)) / 2’
connections, similar to conventional deep learning architectures. Consequently, it
needs fewer parameters than typical convolutional neural networks, as it does not
require the learning of useless feature maps.
DenseNet is a network design that emphasizes incrementing deep learning networks
and increasing their training efficiency using the minimum connection between lay-
ers. DenseNet is a convolutional neural network in which each layer is linked to all
subsequent layers, where each layer is connected to all the alternate layers follow-
ing it. This guarantees that the network’s tiers can exchange the most significant
amount of data possible. The feature maps are transmitted to all future layers from
the preceding levels of each layer, and thus the systems feed-forward nature is pre-
served.
The objective of developing superior higher-layer designs resulted in the invention
of this architecture. Specifically, addressing the problem of several levels becoming
redundant in multilayer networks. The DenseNet plan aims to address this issue by
tightly connecting all tiers. This implies that each layer inputs from all preceding
levels and sends information to all subsequent layers. The consequence is that the
highest output layer has direct access to all initial layers, including the first. This
is meant to aid in resolving the duplicate layer problem.

3.1.5 InceptionV3 [7]
InceptionV3 is a convolutional neural network module created by Google for image
processing and object detection. It was designed in such a way so that it can dig
through deeper networks while maintaining the parameters. Convolutions, average
pooling, maximum pooling, concatenation, dropouts, and ultimately connected lay-
ers are all the model’s symmetric and asymmetric building blocks. Batch norm is
used frequently in the entire model to determine activation inputs, while Softmax
calculates the loss.
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The InceptionV3 model has 42 layers, somewhat more than the InceptionV1 and
V2 models. However, the effectiveness of this approach is astonishing. We’ll get to
it shortly, but first, let’s examine the components that comprise the InceptionV3
model.

Table III

InceptionV3 Architecture

Type Patch/Stride
Size Input Size

Conv 3×3/2 299×299×3
Conv 3×3/1 149×149×32
Conv Padded 3×3/1 147×147×32
Pool 3×3/2 147×147×64
Conv 3×3/1 73×73×64
Conv 3×3/2 71×71×80
Conv 3×3/1 35×35×192
3×Inception Module 1 35×35×288
5×Inception Module 2 17×17×768
2×Inception Module 3 8×8×1280
Pool 8×8 8×8×2048
Linear Logits 1×1×2048
Softmax Classifier 1×1×1000

Table 3.3: The architecture of InceptionV3.

The architecture of an InceptionV3 network is progressively built, step-by-step, as
explained below:

• Factorized Convolutions: The reduction of the number of parameters in a
network contributes to its computational efficiency. Additionally, it keeps an
eye on the network’s efficiency.

• Smaller convolutions: Substituting smaller convolutions for bigger convo-
lutions significantly accelerates training. A 5×5 filter, for example, has 25
parameters; two 3×3 filters, used in 5×5 convolution, have just 18 parameters
(3×3 + 3×3).
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Figure 3.11: Breaking into smaller convolutions.

In the middle we see a 3 ×3 convolution, and below a fully-connected layer.
Since both 3 ×3 convolutions can share weights among themselves, the number
of computations can be reduced.

• Asymmetric convolutions: A (3×3) convolution might be substituted with
a (1×3) convolution followed by a (3×1). If a (3×3) convolution is substituted
for a (2×2) convolution, the number of parameters is significantly more than
with the suggested asymmetric convolution.

Figure 3.12: Asymmetric convolutions.
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• Auxiliary classifier: During training, a smaller CNN is put between layers
as an auxiliary classifier, and its loss is added to the main network’s loss. In
GoogLeNet, auxiliary classifiers were used to create a deeper network, but in
InceptionV3, an auxiliary classifier acts as a regularizer.

Figure 3.13: Auxiliary classifier.

• Grid size reduction: Pooling methods are often used to minimize the size of
the grid. However, a more effective technique for circumventing computational
cost barriers is presented:

Figure 3.14: Grid size reduction.
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• All the above concepts are consolidated into the final architecture.

Figure 3.15: Complete architecture of InceptionV3.

The InceptionV3 model is simply an improved version of the InceptionV1 model.
The model uses several approaches to optimize the network for more excellent model
adaption. It has a more extensive network than the InceptionV1 and V2 models,
but its speed is unaffected. Moreover, it is less expensive in terms of computing.
It provides high-performance gain for convolutional neural networks. Effective uti-
lization of computing resources combined with a minor increase in computation load
for an Inception network to provide high-performance output is necessary. It can
extract characteristics from input data at various scales by using different convo-
lutional filter sizes. Additionally, within the network, 1×1 convolutions lower the
dimension of inputs. Because 1×1 convolutions are set up with fewer filters, the
outputs often have fewer channels than the initial input. 1×1 Convolution filters
learn cross-channel patterns, enhancing the network’s overall feature extraction ca-
pabilities.
InceptionV3 primarily focuses on burning less processing power by changing earlier
Inception architectures. On the ImageNet dataset, InceptionV3 is often used as it
has successfully gained an accuracy of 78.1 percent. In 1×1 convolutions, it reduces
the dimensions of data traveling through the network, which has the added benefit
of expanding the network’s width and depth wherein 3×3 and 5×5 convolutions be-
cause of the multiple Convolution filter sizes; the network may learn various spatial
patterns at different scales.

3.2 Feature Importance Visualization
The term “feature importance” refers to strategies that value input features entirely
on their predictive power for a target variable. Feature importance scores are critical
components of predictive modeling projects because they give insight into the model
and data and serve as the foundation for reducing dimension and choosing the
feature, which will improve the use of the predictive model on any problem.
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3.2.1 LIME
Deep neural networks are incredibly complicated, and their judgments might be
challenging to comprehend. The LIME method uses a smaller, more interpretable
model, such as a regression tree, to imitate the classification behavior of a deep
neural network. The neural network’s decisions may be deduced by interpreting
the simpler model’s decisions. The basic model is used to determine the relevance
of input data features as a proxy for the deep neural network’s importance of the
features.
When a specific feature is critical to a deep network’s classification decision, elimi-
nating that feature significantly impacts the classification score. As a result, char-
acterization is also crucial in the basic model. The imageLIME function in Deep
Learning Toolbox is used to construct maps of feature significance defined by the
LIME approach. The LIME algorithm for images works by:

• Segmenting an image into features.

• Creating a significant number of synthetic images by randomly inserting or
omitting attributes. Excluded features have every pixel replaced with the
image average value, thus they no longer carry network-relevant information.

• Classifying the synthetic images with the deep network.

• Fitting a simplified regression model employing the presence or absence of
image characteristics as binary regression predictors for target class scores for
each synthetic image. In the region of the observation, the model approximates
the behavior of the sophisticated deep neural network.

• Using the simple model, computing the significance of features and translating
this feature importance into a map that identifies the sections of the picture
that are most relevant to the model.

It works by splitting the picture into superpixels and then providing details. The
Pixels were divided into groups with similar information and information about any
specific portion of a photograph. After this, unwanted images were grouped by not
sharing some random superpixels.
Following that, the impact of picture disturbances on the probability of correctly
predicting a class was determined. Following that, the adjusted data were used to
train a linear model. Similar superpixels for a specific classification were provided
as weight values: positive data specifies an effect on classification accuracy, while
negative values indicated the opposite.
The following diagram depicts the LIME method’s four stages. To Explain this
type of sorting, the initial provided picture is split into superpixels. The splitting of
updated pictures was created, and classification probabilities were computed using
the original prediction model. These probabilities and changed images were entered
into a regression model, which determined the contribution of each superpixel to
classification as positive or negative. The regression weights are often represented
visually through a blue-red color map.
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Figure 3.16: LIME algorithm in four steps.

The linear regression weights are often represented visually using a blue-red color
map, with blue/red pixels denoting positive/negative consequences. The absolute
value of the importance is proportionate to the color intensity. Thus, blue areas
indicate superpixels that aid in proper classification, while red areas demonstrate
the other. Thus this execution of LIME helps the user to give rise to explanations
for isolated classes.
The separation methods used to create superpixels considerably influence the sub-
sequent clarification of the suggested XAI approach. LIME’s most recent release
contains three segmentation algorithms drawn from the scikit-image Python pack-
age.
These algorithms are as follows:

• Felzenszwalb’s [1] efficient graph-based image segmentation (FHA) over-segments
an RGB picture using tree-based clustering. The initial paramenter is some-
how used to define the number of superpixels generate is “scale,” thus gives
us the monitoring level.

• Achanta et al. [3] segment the picture utilize Simple Linear Iterative Cluster-
ing by utilizing K-means congregate in the color space (SLIC). A parameter
called “number of segments” that attempts to approximate the quantity of
superpixels produced.

• Quickshift, developed by Vedaldi et al. [2], created Quickshift, which does
segmentation by grouping pixels using a quick-shift mode seeking method.
There is no single parameter that can be utilized to control the number of
superpixels in the final image.

Additionally, each of the three approaches includes a “sigma” option for specifying
the width of a Gaussian preprocessing phase. Greater sigma values often result in
fewer segments, which identifies standard limitation split by all algorithms. Because
the usual sigma value for FHA in the library is 0.8, this value was also used in most
experiments using the other two techniques.
To provide a more structured contrast of the clarification, this experiment used the
pictures with the same number of superpixels generated by all techniques. To do
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this, segmentation parameters must be fine-tuned. Because quick-shift allowed for
the least flexibility in terms of segment length, utilized as a foundation, to produce
the same expected superpixels but along with other two perfect algorithms.
Algorithms’ sensitivity to texture and color change and their related factors, the
problem arises of how the optimal group of parameters will be constructed. While
this is somewhat arbitrarily chosen, the plan is the definitive collection of framework
that indicates the most relatable explanations. Using conventional segmentation pa-
rameters alone may not result in a meaningful description. As an alternative option,
a method for segmenting every picture into grids of 9, 16, 36, 64, 144, 256, and 576
equally-sized squares was devised. While individual segments lacked the context-
sensitive relevance of a conventional superpixel, they guaranteed that every image
was split into equal parts in the same destinations.
These square segments were then used in the same manner as conventional super-
pixels in the LIME algorithm. The weight heat maps developed indicated which
picture subregions were more relevant for a specific categorization. Perfect grids
with a more significant amount of little square segments provided a more detailed
view.
Combining the heat maps from all grids created a final thermal map. Although
this approach is unlikely to offer as extensive an explanation of too complicated
superpixel algorithms, the approximate foundation may give a reasonable rough in-
dependent of parameter modification. It is also more straightforward to grasp the
pictures due to the guaranteed number of segments. For brevity, this strategy will
be referred to as “square grid” throughout this text.
LIME is model agnostic, allowing it to be used with any machine learning model.
It approaches the model as a black box, which means that the only way to learn
how it works is to alter the input and observe the predictions. LIME modifies the
values of features in a single data sample and then assesses the effect on the output.
LIME produces a list of explanations for each characteristic’s contribution to the
data sample prediction. This permits local interpretation and identifies the features
that will have the most significant influence on the projection.

Figure 3.17: Concept of the Black Box.

Lime assumes a black box machine learning model and investigate the relationship
between the input and output, represented by the model. Users must first and
foremost be able to comprehend the explanations, which is not always the case for
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the attribute place accepted by the model, as it will contain unlimited input data
(even a simpler model with hundreds or thousands of coefficients can be difficult
to interpret) or may contain too complex/artificial variables. Consequently, the ex-
planations provided by LIME employ a different data representation (interpretable
representation) than the original feature space.
LIME creates a local explanation by approximating the black-box model in the in-
stance region to be explained with an interpretable model (for example, a straight
model with a few Numerical coefficients). In summary, LIME generates an inter-
pretable prediction explanation from the components of an interpretable model (for
example, the coefficients in linear regression) that replicates the black-box model
near the point of interest and is trained over a new data representation ensure in-
terpretability. LIME is one of the few systems capable of concurrently processing
tabular data, text, and pictures. The approach has been extensively used in text
and picture analysis because of the interpretable data structure.

Figure 3.18: Understanding model predictions with LIME.

Lime explains of model predictions at the data sample level. It allows end-users to
interpret these predictions and take actions based on them. In this scenario, the
explanations are supplied in image/text fragments, and users may quickly find the
basis for such descriptions. The method’s fundamental concept is simple: a simpler
model approximates a more complicated one. Predictions are easier to explain when
employing a simpler model with fewer interpretable explanatory variables. Complex,
high-dimensional models can be solved using the LIME approach.
The fidelity measure provides us with suitable tools to explain the predictions of
the black box with the help of the interpretable model. Models must be explainable
to users for humans to trust AI systems. AI interpretability reveals what’s going
on inside these systems and aids in the detection of potential problems, including
information leakage, model bias, robustness, and causality. LIME provides a generic
framework for uncovering black boxes and explaining why AI-generated predictions
or recommendations are made.
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Dataset Analysis

For our insect pest identification, the IP102 dataset is picked. This dataset has
several sub-classes and super-classes. Datasets are divided into two main categories:
Field (FC) and Economic Crops (EC). Field Crops are Rice, Beet, Alfalfa, Wheat,
and Corn. The Economic Crops have more insects than Field crops usually. The
Economic Crops are mainly Mango, Vitis, and Citrus. These are then broken down
into more than a hundred child classes, each defining the insect problem linked with
the crop. The article also generated some exclusive results for machine learning-
based identification. They passed both shallow and deep features using Support
Vector Machine (SVM) and K-Nearest Neighbor (KNN) classifiers (SIFT, Gabor,
CH, and so on).

Figure 4.1: IP102 dataset class structure.

The most excellent precision of approximately 70% implies that this research can
provide much value. The challenge in the IP102 data set differentiates the rear and
front of images are various classes and difficulties. The data set additionally con-
tains an asymmetric sample number for each category. Because of the imbalanced
nature, any type with a higher sample size is essential during supervised training,
and the classification deviates from the associated class.
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Figure 4.2: Imbalanced class distribution of the IP102 dataset.

The IP102 dataset’s training/validation/testing (Train/Val/Test) set split and im-
balance ratio (IR) on various class levels. The ‘Class’ indicates the associated
supersub-class class’s number. The abbreviations ‘FC’ and ‘EC’ stand for field
and economic crops, respectively.

Figure 4.3: Taxonomy of the IP102 dataset.

The abbreviations “FC” and “EC” stand for field and economic crops, respectively.
Only 35 classes are presented at the sub-class level.
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Table IV

Class Distribution
Super-Class Class Train Val Test IR

FC

Rice 14 5,043 843 2,531 6.4
Corn 13 8,404 1,399 4,212 27.9
Wheat 9 2,048 340 1,030 5.2
Beet 8 2,649 441 1,330 15.4
Alfalfa 13 6,230 1,037 3,123 10.7

EC
Vitis 16 10,525 1,752 5,274 74.8
Citrus 19 4,356 725 2,192 17.6
Mango 10 5,840 971 2,927 61.7

IP102 FC 57 24,602 4,098 12,341 39.4
EC 45 20,721 3,448 10,393 80.8
IP102 102 45,095 7,508 22,619 80.8

Table 4.1: Imbalanced class distribution of the IP102 dataset

Table 4.1 summarizes the IP102 dataset’s class distribution. First and foremost, the
dataset is separated into two sections: FC (Field Crop) and EC (Economic Crop).
Second, these two categories are subdivided into various Super-Classes. The FC
division has five Super-classes, whereas the EC level has three. When we go further
into the table, we can see that each of these Super-Classes has a set number of classes
allocated to it. The IP102 dataset’s training/validation/testing (Train/Val/Test) set
split and imbalance ratio (IR) for various class levels below.
Following the Train, Val, Test, and IR values, the table displays each division’s total
number of classes. The IP102 dataset has 102 classes in total.

4.1 Data Augmentation
The Deep Neural Network (DNN) models require a great deal of data to avoid over-
size because the data set contains an immensely vast number of pictures. However,
the data set remains very difficult, particularly for insect classes with small sample
photographs. Data is increased by altering the picture vector positions to enhance
the information. The risk of skewed data sets lowers, creating more variances for
learning DNN models. In recent years, the use of this strategy has been very suc-
cessful. The results of the data increase are presented below during DNN training.
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Table V

Data Augmentation
Augmentation Type Value Range Direction

Rotation (In degree) -30 to 30 Clockwise/
Anti-clockwise

Width shift (In fraction
of total width) -0.05 to 0.05 Left/Right

Height shift (In fraction
of total height) -0.05 to 0.05 Top/Bottom

X axis zoom (In percentage) 0 to 40 X Axis
Y axis zoom (In percentage) 0 to 40 Y Axis

Table 4.2: Data augmentation parameters

Table 4.2 provides a high-level overview of the Data Augmentation Parameters that
will be employed. The table contains five different Augmentation Types. Each type
of augmentation shows a Value Range and Direction of the particular augmentation
type.
First, we can see the Rotation(In degree) augmentation, which has a value range of
-30 to 30 and maybe Clockwise or Anti-Clockwise. Second, the Width shift (in a
fraction of total width) type, with a value range of -0.05 to 0.05 and a left/right di-
rection. Then there’s the Height shift (Infraction of full height). Although it has the
same Value Range as the Width shift, its Direction is distinct, being Top/Bottom
rather than Left/Right. Following that, we notice the X-axis zoom(In percentage)
augmentation type, which has a Value Range of 0 to 40 and a /direction of X-Axis.
Finally, the Y-axis is zoomed in (In percentage). Again, it has the same Value Range
as the X-axis zoom, but its direction is Y-Axis. Thus, from this table, we get a brief
idea of Data Augmentation Parameters.
Images were inverted horizontally at random in addition to the augmentations. Fur-
thermore, all pixel values were scaled from 0 to 1 and labeled as x. The procedure
for min-max scaling is as follows:

xscaled =
x− xmin

xmax − xmin
(4.1)

Furthermore, the validation dataset was the minor component, and it was utilized
to evaluate the model after each epoch and adjust the model parameters as needed.
However, since parameter optimization was focused only on the validation set, the
model may become skewed, favoring the validation set. Consequently, we maintained
the separate test set that the model never saw throughout the whole training phase.
The model tested on the test set only after the entire training procedure had been
completed. After then, the training data was supplemented using the settings listed
in table IV to prevent early overfitting. Lastly, all three stages of images had their
pixel values scaled.
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Figure 4.4: Proposed DNN architecture.

The augmented dataset was utilized for training all of the chosen models once it was
supplemented and scaled. The models’ feature extractor sections were left alone,
but the classification layers at the end were removed. Instead, we created two Fully
Connected (FC) layers of our own. Each node in the output layer corresponds to a
particular class’s output. We utilized the weights collected from training models on
the ImageNet dataset rather than from scratch with random weights. The gradient
descent method was aided in achieving quicker convergence thanks to this setup.
Additionally, a 30% dropout was applied to the weights between the flattened feature
map and the first FC layer with 1024 nodes to avoid overfitting.



Chapter 5

Implementation and Result
Analysis

The implementation of the proposed model for insect pests is described in this sec-
tion. We ran 30 epochs in the training and validation data sets to calculate accuracy
and loss. While training on the complete data set. Before training, all of the pic-
tures were resized to 224×224 pixels. Finally, the calculation was performed on a
workstation with an AMD Ryzen 5 3600 3.6 GHz CPU, 16 gigabyte RAM, and RTX
2060 GPU. Despite the continuing improvement in training accuracy, validation ac-
curacy fluctuated around a set figure.

5.1 Performance Metrics
The result of the proposed model for insect pests is described in this section. Dur-
ing training, checkpoints with the highest validation precision were generated, and
following the conclusion of the training, the models with the highest validation
accuracy were preserved. These models used the entirely unseen test data to be
classified.
Calculation of the validation and the test accuracy was done using the following
formula:

Accuracy =
TP + TN

NS
(5.1)

5.2 Classify into 102 classes
The graphs below show that the training precision starts lower than the validation
precision but steadily improves. This can be identified by the vast quantity of
training data supplementation and including 30% dropout in an FC convolution
layer, making the training part challenging. However, as the training progressed,
the length of movement and the correctness of evaluation rose significantly. In the
same pattern, the loss of movement and validation happened in the other direction.
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Table VI

Validation and Test Accuracy

Model Name Depth Parameters Validation
Accuracy

Test
Accuracy

VGG19 26 143,667,240 65.58% 69.14%
ResNet50 - 25,636,712 68.84% 70.73%
EfficientNetB5 - 30,562,527 67.59% 70.26%
DenseNet121 121 8,062,504 70.37% 71.98%
InceptionV3 159 23,851,784 69.12% 70.98%

Table 5.1: Accuracy of the implemented models

Table 5.1 depicts the Validation and Test Accuracy for each model used in our work.
For our dataset, we used five alternative models: VGG19, ReNet50, EfficientNetB5,
DenseNet121, and InceptionV3. The table also shows the results of Max Valida-
tion Accuracy and Corresponding Test Accuracy for each model. From above, we
can see that the validation and test accuracy of the following models are all quite
closer to each other. However, among the five models, DenseNet121 has the best
Max Validation Accuracy (70.37 percent) and Corresponding Test Accuracy (71.98
percent), while VGG19 has the lowest (65.58 percent) and Corresponding Test Ac-
curacy (69.14 percent).
Despite the best and lowest validation and test accuracy results, none of them is
less than 65 percent in the case of any deployed models.

Figure 5.1: Training loss history Figure 5.2: Validation loss history

The graph in fig-5.1 and fig-5.2 shows the history of training loss and validation loss
in between a range of 30 of VGG19, ResNet50, EfficientNet85, DenseNet121, and
InceptionV3 models. The figures are given as a percentage in loss history. Overall,
the models fit with training data quite rightly as it has a smooth downward trajec-
tory overtraining loss history. On the other hand, the validation loss history graph
shows how the models match if newly acquired data is provided.
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Figure 5.3: Training accuracy history Figure 5.4: Validation accuracy history

Fig-5.3 and 5.4 give an idea about the training and validation dataset. Although the
uptake of the training accuracy graph defines that the usage of identical images in
both training and testing cases is successful, the uneven validation accuracy graph
states the difficulties in the attempt of models to identify and classify the photos
correctly.

5.3 Comparing with other research works
We compared our results to the baseline papers [20], Feature Reuse Residual Net-
works for Insect Pest Recognition [16], High-Performance Ensemble of Convolutional
Neural Networks for Insect Pest Image Recognition [36]. Identification of Crop Con-
suming Insect Pest from Visual Imagery Using Transfer Learning and Data Aug-
mentation on Deep Neural Networks [17] after we trained our models and classified
them into 102 classes. The findings of the detailed comparison will be discussed in
the next section.

5.3.1 Comparison with the baseline paper [20]
The researchers compiled a large-scale dataset for insect pest recognition called
IP102, which included approximately 75,000 photos of 102 species. In their [20]
dataset, they also tested various cutting-edge recognition techniques.

Table VII

Comparison with baseline

Model Name Baseline
Accuracy[20]

Implemented Model
Accuracy

GoogleNet 43.5% 69.12%
ResNet 48.2% 68.84%
VGGNet 49.4% 65.58%

Table 5.2: Comparing with the baseline accuracy
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Table 5.2 portrays the comparison between the baseline accuracy and the accuracy
of the implemented models according to our paper. Our research used three models:
GoogleNet, ResNet, VGGNet, to compare our work with the baseline. The above
table shows that all the implemented models in our profession have more accuracy
than the baseline. Among them, GoogleNet has the highest accuracy rate, which
increased from 43.5% to 69.12%. However, VGGNet having the lowest increasing
accuracy rate, has risen to 65.58% from 49.4% baseline accuracy. As a result, our
approach may provide significantly better accuracy than the baseline.

Figure 5.5: Comparing with the baseline accuracy

The bar chart illustrates a comparison of baseline accuracy and implemented model
accuracy between GoogleNet, ResNet, and VGGNet. It can be seen that the base-
line accuracy grew steadily in each model. It leads to a rise from 43.5% to 48.2%
in GoogleNet and ResNet while VGGNet carries the highest value of 49.4%. On
the contrary, implemented model accuracy has decreased from 69.12% to 68.84% in
GoogleNet and ResNet and continues to reduce up to 65.58% in VGGNet.
The GoogleNet and VGGNet versions used in the study [20] were InceptionV1 and
VGG16, respectively, which is an essential factor to note in this regard. Mean-
while, we employed enhanced InceptionV3 and VGG19 versions in our planned re-
search. However, the two study projects used the same ResNet version: the deep
ResNet.There are 50 layers. Our study’s higher accuracy might be attributed to
the more solid architecture provided by these newer models. The improved accu-
racy with ResNet, in particular, illustrates the importance of feature extraction and
dropout enabled classification layers.
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5.3.2 Comparison with Paper-A: Feature Reuse Residual
Networks for Insect Pest Recognition [16]

Their proposal provided the feature reuse residual network for insect pest detection.
[16] It includes learning half of a feature and reusing half of it inside each Residual
Feature Reuse block. They built the FR-ResNet and tested its classification ability
on the IP102 dataset.
The IP102 dataset utilized the implementation described in the base paper [20].
SGD was used in a 64-piece mini-batch. According to the researchers, the models
were based on the training set, and their performance assessed the test set. Pytorch
1.0 and a single Nvidia Titan X were used in their implementations. Researchers cre-
ated FR-ResNet with varied depths and compared accuracy performance on IP102
to ResNet baseline models in their study. [16] They compared FR-ResNet to several
cutting-edge models, including AlexNet, ResNet-50, ResNet101, Googlenet, VGG16,
and DeseNet121, using the IP102 dataset. Furthermore, in this proposal, the 34-
layer FRResNet outperformed all other models on the test set, with a test accuracy
of 54.73 percent. In terms of performance, 50-layer FRResNet outperforms 34-layer
FR-ResNet. ResNet-101 has a smaller training loss than ResNet-50, but its test
accuracy is inferior owing to overfitting induced by the larger parameters.

Table VIII

Comparison with Paper-A

Model Name Paper-A
Accuracy[16]

Implemented Model
Accuracy

GoogleNet 52.17% 69.12%
ResNet 54.19% 68.84%
VGGNet 51.84% 65.58%
DenseNet 54.59% 70.37%

Table 5.3: Comparing with the Paper-A accuracy

Table 5.3 compares the implemented model accuracy with the Paper-A accuracy.
Our innovation improved the accuracy of all four models: GoogleNet, ResNet, VG-
GNet, and DenseNet, as seen in the table. In our model, GoogleNet accuracy has
increased to 69.12%, up from 52.17% in Paper-A, whereas VGGNet has a minor
improvement, rising from 51.84% to 65.58%. Nevertheless, DenseNet has the overall
highest accuracy rate in our paper. Therefore, our implemented models have also
more accuracy than Paper-A.
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Figure 5.6: Comparing with the Paper-A accuracy

The chart shows the changes in GoogleNet, ResNet, VGGNet, and DenseNet re-
garding Paper-A’s accuracy and implemented model accuracy. In both of them, the
lowest accuracy was found in VGGNet, while DenseNet portrays the highest accu-
racy. It can be seen that ResNet and DenseNet provide higher accuracy 54.19% and
54.59% respectively, in Paper-A, although GoogleNet and DenseNet show better
accuracy up to 70.37% (DenseNet) on the implemented model.
They employed two distinct ResNet models in their submission and compared the
results, whereas we used only the ResNet-50 in your proposal. The GoogleNet ver-
sion used in the study [14] was InceptionV1, which is an essential factor to note in
this regard. In the interim, we have employed an enhanced InceptionV3 and VGG19
versions in our planned study. The two research programs, however, used the same
DeseNet version. As a result, the higher precision of our investigation might be
attributed to the more robust architecture provided by these newer models. The
improved accuracy with ResNet-50 and DeneNet-121 highlights the importance of
feature extraction and dropout enabled classification layers.

5.3.3 Comparison with Paper-B: High performing ensemble
of convolutional neural networks for insect pest image
detection paper [36]

Researchers [36] integrate CNNs with multiple Adam optimization techniques for
pest identification. ResNet50, GoogleNet, ShuffleNet, MobileNetv2, and DenseNet201
are the networks they employ. Two novel Adam algorithms for deep network opti-
mization are proposed based on the Adam variant DGrad. All CNNs for the IP102
dataset were trained with cross-entropy as the loss function and the following pa-
rameters: 40 batch size .
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Table IX

Comparison with Paper-B

Model Name Paper-B
Accuracy[36]

Implemented Model
Accuracy

GoogleNet 64.11% 69.12%
ResNet 65.40% 68.84%
DenseNet 69.74% 70.37%

Table 5.4: Comparing with the Paper-B accuracy

According to our paper, the comparison between the Paper-B accuracy and the
accuracy of the implemented models is shown in Table 5.4. To compare our work
to Paper-B, we used three models: GoogleNet, ResNet, and DenseNet. The ta-
ble above demonstrates that all of the models we used in our research were more
accurate than Paper-B. GoogleNet has the highest increased accuracy rate, grow-
ing from 64.11% to 69.12%, while DenseNet has the lowest accuracy rate, moving
from 69.74% Paper-B to 70.37%. Hence, the implemented models will deliver much
greater accuracy than paper-B.

Figure 5.7: Comparing with the Paper-B accuracy

The accuracy rate between the suggested model and research work [36] based on
three distinct models are depicted in this graph. DenseNet has the most remarkable
accuracy rate, with 69.74 percent [36] and 70.37 percent (for the suggested model),
respectively. On the other side, GoogleNet has the lowest accuracy rate for research
work [36] 64.11 percent. The most insufficient accuracy was found at 68.84 percent
in the ResNet model for our planned work.
InceptionV1 was the GoogleNet version utilized in the study [31], which is essential
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to keep in mind. In the meantime, we’ve been using an improved version of Incep-
tionV3 in our research design. The DenseNet, ResNet version was utilized in both
research programs. As a result, the more robust architecture given by these newer
models may be responsible for the increased accuracy of our research. The value
of feature extraction and dropout enabled classification layers is highlighted by the
enhanced accuracy with ResNet-50 and DeneNet-121.

5.3.4 Comparison with Paper-C: Identification of Crop Con-
suming Insect Pest from Visual Imagery Using Trans-
fer Learning and Data Augmentation on Deep Neural
Network paper [17]

The primary purpose of this study [17] was to develop a model for identifying nui-
sance insects from pictures with the highest level of accuracy. Researchers conducted
30 epochs on both the training and validation datasets in this study to figure out the
success. The training and validation accuracy ultimately surpassed 25, but the vali-
dation accuracy remained consistent after that. An FC hidden layer may explain this
behavior with a substantial training data augmentation and a 50% dropout. With a
score of almost 57 percent, Inceptionv3 had the highest accuracy in large-scale cat-
egorization. The program also did an excellent job classifying several crop-specific
insects, with an accuracy rate of well over 80%.

Table X

Comparison with Paper-C

Model Name Paper-C
Accuracy[17]

Implemented Model
Accuracy

GoogleNet 56.73% 69.12%
ResNet 56.35% 68.84%
VGGNet 55.70% 65.58%

Table 5.5: Comparing with the Paper-C accuracy

The accuracy of the proposed model is compared to the accuracy of Paper-C in
Table 5.5. As shown in the table, our breakthrough enhanced the accuracy of all
three models: GoogleNet, ResNet, and VGGNet. GoogleNet accuracy has improved
to 69.12 percent in our model, up from 56.73 percent in Paper-c, whereas VGGNet
has improved the least, from 55.70 percent to 65.58 percent. As a result, our imple-
mented models are more precise than Paper-C.
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Figure 5.8: Comparing with the Paper-C accuracy

For GoogleNet, ResNet, and VGGNet, the graph displays Paper-C accuracy and
implemented model accuracy changes. The accuracy rate of GoogleNet in the im-
plemented model is substantially greater than in paper C, as seen in the graph.
In both research work, we can see a considerable difference between the accuracy
rate in the case of ResNet and VGGNet models. The accuracy of VGGNet was the
lowest, whereas GoogleNet had the highest accuracy.
The discrepancies in accuracy levels are discovered when it comes to data augmen-
tation. The value range for x-axis augmentation in the study article [17] was 0 to
10, and the range for y-axis augmentation was 0 to 25. Our suggested model’s value
range for x and y-axis augmentation is 0 to 40. In addition to the dropout weights
between the flattened feature map and the first layer with 1024 nodes, it assisted
us in achieving a higher frequency. To avoid overfitting, the suggested model in the
research paper [17] employed a 50% dropout on the weights between the flattened
feature map and the first layer FC layer with 1024 nodes. To avoid overfitting, we
employed a 30% dropout on the weights between the flattened feature map and the
first layer FC layer with 1024 nodes in our suggested models.

5.4 Classify into 8 sub-classes
Finally, although a successful global model is crucial to develop, an insect pest in a
real-life setting attracts only one crop. The crop field is, thus, usually sensitive to a
relatively limited number, which, according to the crop type, renders the importance
of a generic categorization model somewhat irrelevant. Next, we separated the data
into eight hierarchical crop categories and categorized all eight components using
the best-performed model DenseNet121.
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Table XI

Crop based insect classification accuracy

Super-Class Max Validation
Accuracy Test Accuracy

FC

Rice 63.06% 74.19%
Corn 83.49% 81.82%
Wheat 66.76% 46.31%
Beet 80.05% 78.79%
Alfalfa 76.18% 76.99%

EC
Vitis 89.38% 84.03%
Citrus 83.31% 86.82%
Mango 92.58% 95.36%

Table 5.6: Crop based insect classification accuracy

Table 5.6 encapsulates crop-based insect classification accuracy, consisting of two
separate sections: FC (Field Crop) and EC (Economic Crop). FC is further divided
into five super-classes and EC into three super-classes. In the table above, FC
has a maximum and minimum test accuracy of 83.49% and 63.06%, respectively,
whereas EC has a maximum and minimum test accuracy of 92.58% and 89.38%.
Moreover, FC has a maximum and minimum validation accuracy of 92.58% and
83.31%, respectively, whereas EC has a maximum and minimum validation accuracy
of 95.36% and 84.03%.

Figure 5.9: Training loss history Figure 5.10: Validation loss history

These graphs illustrate the accuracy in insect classification based on various crops
like rice, corn, wheat, beet, mango, etc. The percentage of training loss history is
relatively evenly distributed among the crops. In contrast, the parallel lines found
after the initial stage if newly acquired data is supplied show stability in validation
loss history.
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Figure 5.11: Training accuracy history Figure 5.12: Validation accuracy history

In fig-5.11 and fig-5.12 show the difference between the accuracy rate between the
training and validation dataset. While the results of training and testing purposes
of image identification from different crops have maintained a quite rough upward
trajectory, the models can classify the photos based on the produce at a constant
rate.

5.5 Comparing with other research work
We compared our findings to the baseline study [20] and Identification of Crop
Consuming Insect Pest from Visual Imagery Using Transfer Learning and Data
Augmentation on Deep Neural Network [17]. The next section will detail the findings
of the in-depth comparison.

5.5.1 Comparison with the baseline paper [20]
We used the same formula shown in (5.1) to calculate the test accuracy of our dataset
using DenseNet121.
We ran multiple trials, yet; we ended up with similar results. So, we can say that
our models performed better when we separated the data into eight hierarchical crop
categories and categorized all eight components using all three models regardless of
the model structure, which was identical to the prior parameters.
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Table XII

Comparison with baseline

Super-Class Baseline
Accuracy[20]

Implemented Model
Accuracy

FC

Rice 32.1% 63.06%
Corn 62.2% 83.49%
Wheat 53.0% 66.76%
Beet 62.2% 80.05%
Alfalfa 46.4% 76.18%

EC
Vitis 86.7% 89.38%
Citrus 76.6% 83.31%
Mango 89.0% 92.58%

Table 5.7: Comparing with the baseline accuracy

The contrast between the baseline accuracy and the implemented model accuracy of
the FC and EC super-classes is shown in Table 5.7. All of the implemented models
in the table are more accurate than baseline. Alfalfa accuracy increased the greatest
from 46.4% Paper-C accuracy to 76.18% in the applied model, while Corn accuracy
grew the least from 62.2% to 83.49%. According to the table, the highest increased
accuracy rate among EC is 76.6% in the baseline to 83.31% in the implemented
model, while the lowest increased accuracy rate among EC is 89.0% to 92.58% in
the implemented model.

Figure 5.13: Comparing with the baseline accuracy
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The graphs compare insect categorization accuracy rates for various crops such as
rice, corn, wheat, beet, mango, and others. The accuracy rates were 32.1 percent,
62.2 percent, 53.0 percent, 62.2 percent, 46.4 percent, 86.7 percent, 76.6 percent,
and 89.0 percent for the baseline paper. Our suggested model has accuracy rates
of 63.06 percent, 83.49 percent, 66.76 percent, 80.5 percent, 76.18 percent, 89.38
percent, 81.66 percent, and 92.58 percent, respectively.
DenseNet121 outperformed the basic model in categorizing economic and food crops.
The underlying distinctions between pest classes, the indistinguishability of pests
from their environment, and the comparability of pests across various classes con-
tribute to the lack of accuracy. Due to these limitations, it was difficult for the
neural network to learn and classify accurately.

5.5.2 Comparison with Paper-C: Identification of Crop Con-
suming Insect Pest from Visual Imagery Using Trans-
fer Learning and Data Augmentation on Deep Neural
Network [17]

They split the dataset based on the eight hierarchical crop classifications in the study
publication [17] and used their top-performing model Inceptionv3 to categorize all
eight portions. Inceptionv3 was very good at classifying all of the field crops. Insect
pest classification findings for crops such as mango, vitis, corn, citrus, and beet were
relatively encouraging, while rice, wheat, and alfalfa yielded unsatisfactory results.

Table XIII

Comparison with Paper-C

Super-Class Paper-C
Accuracy[17]

Implemented Model
Accuracy

FC

Rice 52.4% 63.06%
Corn 79.8% 83.49%
Wheat 52.7% 66.76%
Beet 71.0% 80.05%
Alfalfa 55.8% 76.18%

EC
Vitis 84.0% 89.38%
Citrus 72.8% 83.31%
Mango 89.3% 92.58%

Table 5.8: Comparison with the Paper-C accuracy

The contrast between the Paper-C accuracy and the implemented model accuracy of
the FC and EC super-classes is shown in Table 5.8. All of the implemented models
in the table are more accurate than Paper-C. Alfalfa accuracy increased the greatest
from 55.8% Paper-C accuracy to 76.18% in the applied model, while Corn accuracy
grew the least from 79.8% to 83.49%. According to the table, the highest increased
accuracy rate among EC is 72.8% in the baseline to 83.31% in the implemented
model, while the lowest increased accuracy rate among EC is 89.3% to 92.58% in
the implemented model.
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Figure 5.14: Comparison with the Paper-C accuracy

We can see from the graph that the suggested model has greater accuracy. The
maximum accuracy was attained by both Paper-C and the proposed model in EC
mango (89.3 percent and 92.58 percent, respectively). In comparison, the lowest
accuracy was achieved by ‘FC’ rice (52.4 percent and 63.06 percent, respectively).
For both study models, the accuracy rate for the EC subclass is substantially more
significant than the ‘FC’ subclass.
The data was divided into eight hierarchical crop groups by the study model[15]
and our recommended model. Where the research paper [17] utilized their best-
performing model, Inceptionv3, and we used DenseNet121 in our proposed model.
The strong design of DenseNet121 may have contributed to the higher accuracy of
our research.

5.6 Understanding model predictions
We attempted to explain the results using explainable AI (Artificial Intelligence).
We tried to determine which elements of the photographs are used to classify the in-
sects in the image data. This was accomplished by using LIME (Local Interpretable
Model-Agnostic Explanations). We randomly selected five photographs from the
75,000 images to determine why the better-performing model outperformed the oth-
ers. After randomly selecting five pictures, we ran LIME and obtained the following
findings. We end up with the result that is shown in figure 5.15.
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Figure 5.15: LIME interpretation results of correct classification

In figure 5.15, the LIME interpretation outcomes are of VGG19 (second row),
ResNet50 (third row), EfficientNetB5 (fourth row), DenseNet121 (fifth row), and
InceptionV3 (last row). By looking at the results above, we can understand why
DenseNet121 outperformed the other models: it seeks to classify insects based
on their bodies rather than the entire image, which has an indistinguishable
background. It differentiates the insect from its surroundings, even if it is relatively
distinct. The remaining models attempted to classify the insects by utilizing the
entire image. Although InceptionV3 and ResNet50 got close to DenseNet121 and
hence have the second and third highest accuracy rates among the models, we
tested. We demonstrated why the best-performing model performed better than
the rest by utilizing explainable AI.
However, we also tried to explain why the accuracy did not reach more than 70%
even on the highest performing model. For that explanation, we picked five more
images randomly from the test dataset and reran LIME on them to discover the
reason. We received the following findings. We end up with the outcome that is
displayed in picture 5.16.
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Figure 5.16: LIME interpretation results of mismatch classification

The LIME interpretation results for VGG19 (second row), ResNet50 (third row),
EfficientNetB5 (fourth row), DenseNet121 (fifth row), and InceptionV3 (sixth row)
are shown in Figure 5.16. By examining the findings above, we can see why the ac-
curacy did not exceed 70% even on DenseNet121. Let’s examine the DenseNet121’s
interpretation closely. We can see that it could not categorize the random five pho-
tos, but some of the other models classified them even though they fell short of
the 70% accuracy rate. The pictures feature an indistinguishable backdrop from the
actual image, and the models have difficulty distinguishing the background from the
actual image.
Additionally, there are 102 classifications from which the models became confused
about accurately identifying the insects. This constraint may be overcome by in-
creasing data augmentation and training our model on the dataset mentioned above.
For these reasons, DenseNet121 was unable to achieve better accuracy rates, and
while the others categorized certain insects correctly, they also failed to classify other
species, which DenseNet did.



Chapter 6

Conclusion and Future Work

We classified insect pests in this work using a large-scale dataset known as IP102,
which contains over 75,000 photos of 102 species. The IP102 complies with several
features associated with insect pest distribution in real-world contexts. The sug-
gested research sought to enhance the ability of large-scale crop-eating insect pests
to be identified and classified. On the dataset, we investigated many state-of-the-
art recognition techniques and presented it using the LIME based XAI framework.
However, there is still more work to be done. While enhanced performance was
ensured, more enhancements are necessary to provide practical application. With a
score of more than 70%, DenseNet121 earned the highest accuracy in large-scale clas-
sification. Additionally, the model performed well in classifying several crop-specific
insects, with an accuracy of over 80%. This finding suggests that small-scale de-
ployment is currently achievable for various crops. The simplicity of the LIME base
framework also serves to improve the usability and comprehension of low-level data.
This notion may be applied to various fields of data processing.
Some of the less-than-ideal outcomes are definitely due to a lack of sufficient data,
even though we employed the most significant dataset available since there were
apparent symptoms of imbalanced datasets during training. If other datasets of
these identical insects are developed in the future, they may all be merged to solve
the issue. More significantly, the possibility of extensive data augmentation adds an
exciting dimension. Given that insects may remain in any orientation or position
in their surroundings, the potential for data augmenting makes logical sense, as it
enables DNNs to learn from all directions and position patterns. As a result, further
data augmentation will be employed to determine whether the models’ performance
may be improved. Finally, the current version of the research does not address the
issue of models producing skewed findings due to imbalanced class distribution. This
issue might be solved in the future by including class weights in the training process.
We anticipate that our work contributes to the advancement of future research on
a variety of essential issues and popular image classification and recognition tasks.
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