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Abstract
Infectious and non-infectious respiratory diseases are among the major reasons for
deaths, financial and social crises around the world. However, medical personnel
still find it very difficult to detect the diseases using conventional methods to com-
bat this global crisis. We propose a respiratory disease identification method from
respiratory auscultation sounds and COVID-19 infected and healthy patients from
cough sound recordings. Our experiments demonstrate that artificial intelligence
can be utilized as an alternative method to detect respiratory illnesses. We extract
image representations of audio features such as Mel-frequency Cepstral Coefficients
(MFCCs) and Mel-Spectrogram from each audio recording and use convolutional
neural network models for our experiments. Also, we compare the two audio fea-
tures and ten different convolutional neural network architecture’s performance on
disease classification. We conduct experiments with various model training proce-
dures’ such as transfer learning and 1cycle policy, and balanced mini-batch training.
In our experiment, we classified respiratory diseases with 94.57 percent accuracy
and 0.93 ROC-AUC scores and COVID-19 affected and healthy patients’ cough
recordings with 85.96 percent accuracy and 0.84 ROC-AUC scores.

Keywords: Deep Learning; Machine Learning; Respiratory Disease; Cough Sound;
COVID-19; Mel-Spectrogram; MFCC; CNN
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Chapter 1

Introduction

The global prevalence of respiratory diseases, which affect both children and adults
is rising rapidly. According to the World Health Organization (WHO), respiratory
disorders are among the top reasons for mortality and disability worldwide [17].
Increased air pollution, industrialization, and rising living standards are wreaking
havoc on the environment in cities worldwide. Consequences of which are Chronic
respiratory diseases (CRDs) causing lung disorders that affect the airways and are
major causes of mortality worldwide. Furthermore, some major life-threatening
lung diseases are asthma, chronic bronchitis, acute respiratory distress syndrome
(ARDS), pneumonia, chronic obstructive pulmonary disease (COPD), lung cancer,
etc. Moreover, various factors, including heavy air pollution exposure, direct or
indirect tobacco smoke exposure, and most commonly, virus exposure, such as the
Coronavirus or the influenza virus, can aggravate respiratory conditions [2].

Countries concentrated with heavy populations have been battling air pollution for
a long time. Moreover, around 150 million new cases are reported every year in
the bulletin of The World Health Organization (WHO). Approximately 11-20 mil-
lion (7-13%) of these instances are severe enough to require hospitalization. Mostly
around 95% of the cases are seen in developing nations [59]. Pneumonia is respon-
sible for about 28% of all deaths in children below five years old, and around 50,000
children die from pneumonia annually in Bangladesh [11]. Worldwide, pneumonia
affects around one child in every 71 per year, with the highest rates of 2,500 cases
in South Asia and 1,620 cases in West and Central Africa per 100,000 children [64].
According to WHO, asthma is a frequent condition among children that affects 235
million people worldwide [39]. In Bangladesh, about 5.2% or 7 million people have
asthma, stated by the National Asthma Prevalence Study (NAPS). It also notes
that more than 90% of the people cannot afford the treatment cost and do not take
proper treatment [6].

The recent ongoing Coronavirus, an airborne disease, also known as COVID-19,
caused by SARS-COV-2, is taking a deadly toll on the mass population. New
progressive and fast-changing viral strains have lately been discovered worldwide,
making herd immunity a thing soon. The latest variant Omicron is regarded as the
most harmful variant compared to the previous ones as its full significance of the
mutations is still unknown [56]. In no time, COVID-19 created massive damage in
most countries as it affects the upper or lower respiratory tract leading to Acute
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Respiratory Distress Syndrome (ARDS), which results in dangerously low levels of
oxygen in the blood.

1.1 Problem Statement
Since the signs of respiratory infections are often quite similar, making a quick and
appropriate diagnosis is critical for treatment when conducted by an incompetent
or unpracticed individual, leading to misdiagnosis [5]. Moreover, the traditional
method to detect a respiratory disease has several setbacks, as it needs intense at-
tention and experienced doctors to comprehend the respiratory auscultation sound.
Aside from the characteristics of the virus and the countries it has infected, this
difficult hour calls for a cost-effective and efficient virus diagnosing method.

The irony of the situation is that, despite the number of deaths every minute due
to incurable respiratory diseases, its detection techniques have not evolved much.
Detecting the ultimate respiratory disease is a difficult task altogether as the doctors
also go through some problems while performing the basic tests. A stethoscope is
still the primary instrument for most doctors to hear the lung sound. Sometimes,
it becomes difficult while determining the problem as it requires intense attention
and experience. Using traditional handheld stethoscopes, even competent doctors
may struggle to reach a high level of agreement on respiratory symptoms. Moreover,
continuous lung sound monitoring over an extended period is nearly impossible [49].
In this case, an electronic stethoscope combined with an artificial intelligence system
can be used to overcome the limitations of classical auscultation, resulting in a more
efficient and reliable type of diagnosis via automated diagnostics [46].

The standard approach of detecting COVID-19 is not without flaws. WHO sug-
gests employing Nucleic Acid Amplification Tests (NAAT), such as real-time Re-
verse Transcription Polymerase Chain Reaction (RT-PCR), to detect COVID-19
patients based on their unique RNA sequence. Although it is a solid technique,
the testing arrangement is both time-consuming (2-48 hours) and costly, making it
unsustainable for the large number of cases that arise every day. Also, it can expose
more people to COVID-19 because the test needs an in-person visit. Furthermore,
to perform tests properly, the medical personnel may have to violate the protection
protocols [17], limiting the usage of auscultation on a patient with other respiratory
disease.

Recognizing COVID-19 symptoms is difficult since infected patients can be asymp-
tomatic [58]. However, because of its effect on the respiratory system, the coron-
avirus produces particular auditory characteristics that differ from those associated
with other respiratory disorders and healthy people. Coughing and vocal sounds can
also provide information about lung health that can be used to diagnose disease.
Although the variances in coughing noises are minor and invisible to the human
ear, their features are iterative and distinct for each patient [58]. As a result, com-
puterized respiratory sound analysis is required to overcome the above limits [48].
Machine learning algorithms have also shown promise in differentiating cough sounds
to diagnose respiratory illnesses such as pneumonia, asthma, and pertussis [15][8].
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1.2 Motivation
Previous research has shown that deep learning models can detect cardiac disease
[52], classify heart sounds [53], and identify Parkinson’s disease using audio record-
ing data [42]. Moreover, researchers from all around the world have been attempt-
ing to create the most effective techniques of detecting and controlling the coro-
navirus as early as possible. Similarly, AI researchers are working on developing
an AI technology-based approach to identify COVID-19. Furthermore, the ongoing
COVID-19 outbreak has opened the door to new deep learning-based research due
to the availability of COVID-19 affected patients’ data, such as the Coswara and
COUGHVID datasets.

The goal of our research is to investigate the possibility of detecting respiratory
disease and COVID-19 from respiratory and cough sound using deep learning tech-
niques, as well as to contribute to AI-based research to develop an alternative method
for respiratory-based disease detection that can be used as a primary warning tool
for patients.

1.3 Research Objective
For our research, we utilize the publicly accessible lung sound data from the ICBHI
2017 challenge [21], as well as crowdsourced cough sound data from the COSWARA
project [50] and the COUGHVID dataset [63].

We divide our classification task into two major tasks:

• Firstly, we use respiratory sound data to detect respiratory diseases. We utilize
the ICBHI dataset for this task and further divide the task into two sub-tasks.
The first sub-task is to classify the ICBHI dataset into six classes (COPD,
Pneumonia, Healthy, URTI, Bronchiectasis, and Bronchiolitis). The second
sub-task is to classify respiratory diseases into three classes based on disease
severity (Chronic, Non-Chronic, and Healthy).

• Secondly, we use crowdsourced cough sound data to classify COVID-19 in-
fected and healthy patients’ cough sounds. We use the Coswara project
and COUGVID crowdsourced cough sounds dataset. Since the two datasets
contain two different audio recordings with different cough sound types, av-
erage cough count, and duration, we perform this separately for the two
datasets. The first sub-task is to classify the cough sound using the Coswara
data, whereas the second sub-task is to classify the cough sound using the
COUGHVID dataset.

We conduct the following experiments on both of our tasks:

• To begin, we examine the performance of two audio characteristics, MFCC
and Mel-Spectrogram, on disease classification.
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• Next we compare ten Convolutional Neural Networks (ResNet-18, ResNet-34,
ResNet-50, ResNet-101, VGG16, VGG19, AlexNet, SqueezeNet, DenseNet-
121, XResNet-50) architectures performance on disease classification.

• Furthermore, we compare and contrast the effects of two distinct training
strategies, transfer learning and 1cycle policy, on model performance.

• Lastly, we check model generalization ability using Balanced Mini-Batch Train-
ing with Mel-Spectrogram augmentation.

1.4 Contribution
The fundamental contribution of this study is that it presents a deep learning-based
respiratory disease detection and COVID-19 patients’ cough classification approach
that can be utilized as a disease screening and warning system. In our research, we
acquire a ROC-AUC of 0.84 in COVID-19 cough classification, which is comparable
to several previous research studies. We also show that when using an imbalanced
dataset in a respiratory disease classification task, a balanced mini-batch training
strategy with feature augmentation can improve recall scores up to 5%. Moreover,
we present a comparison of various audio features, CNN architectures, and training
methodologies.
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Chapter 2

Literature Review

2.1 Related Works
Previous research showed machine learning models to detect the crackle and wheeze
sound from different lung sound recordings. The research work [30] presented a
model for automated detection of crackle sounds using an electret subminiature and
a mobile application inside a smartphone device. They developed a time-varying
autoregressive modeling and Recursive Least Squares (RLS) algorithm and detected
crackle sound with accuracy ranging from 91.2% to 94%. Another work [9] pre-
sented a model for detecting wheeze sounds from the lung sounds using a mobile
application and an electronic stethoscope to collect lung sounds. They have collected
data from 38 patients from different hospitals. Moreover, they have implemented
two machine learning algorithms to extract features and identify abnormal sounds.
Lastly, they trained a support vector machine to classify and achieve an accuracy of
86% to categorize the sound file either as wheeze or normal. A model for classifying
lung sounds into wheeze and crackle using a deep learning algorithm was presented
in the paper [12]. Their recorded lung sounds are 30 seconds long and taken from
11 different back, chest, and trachea locations using a mobile phone and a custom-
made electronic stethoscope. Moreover, they used Short-Time Fourier Transform
(STFT) to convert each sound to a spectrogram and used a denoising autoencoder
for feature selection. Finally, by training two support vector machine models, one
to detect crackles and another to identify wheezes, they achieved ROC curves with
AUCs of 0.74 for the crackle and 0.86 for wheeze. The study [20] performed an
automatic analysis of respiratory sound data from 60 patients by collecting the data
using custom-made prototype equipment. Moreover, they used the Gaussian Mix-
ture Model (GMM) with a two-stage pipeline to categorize lung sounds into wheeze,
crackle, and normal and achieved an accuracy of 98.4%. The paper [35] examined the
numerous types of unusual respiratory sounds like wheeze and crackle created a new
classification algorithm, namely LungBRN. They have proposed STFT and wavelet
analysis as the two essential input characteristics for the classifier. Furthermore,
they suggested a network design that uses a bilinear biResNet model to distinguish
between different forms of unexpected lung sounds, including crackle and wheeze.
Moreover, the research work [25] presented a breathing analysis for detecting irreg-
ular patterns in respiratory cycles. To detect adventitious sounds present in breath
sounds due to various disorders, they used a dataset collected from hospitals under
the guidance of pulmonologists and physicians. In addition, they used wavelet de-
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noising techniques to remove background noises from the respiratory sound and used
Support Vector Machine (SVM) classifiers to classify the breath sound into normal
and abnormal. They achieved 75% accuracy in detecting adventitious sounds from
a complete respiratory sound cycle.

Several research works focused on detecting specific respiratory diseases, includ-
ing paper [13], which presented a model for classifying COPD and Asthma. They
used a two-stage logistic regression model to first differentiate between patients with
COPD or Asthma from the ordinary people and then separated the patients with
Asthma or COPD, achieving a ROC-AUC score of 0.97. The paper [4] presented a
lung disease-diagnosing tool to record breath sound by using a highly sensitive mi-
crophone and analyzed the lung sound recording to check if the patient’s lung is in
good shape or not. Primarily, the sound is split and processed into upper respiratory
and lung sounds and then compared to a database to determine the patient’s illness.

Some research work has aimed at audio signal processing techniques for pre-processing
the recorded sound to extract features from audio data. The research [34] selected
Discrete Wavelet Transform coefficients (DWT), Mel-Frequency Spectral Coeffi-
cients (MFCC), and Time Domain Features to extract features. The algorithm they
used for classification is a RUSBoost algorithm and a Decision Tree as a base clas-
sifier. To evaluate their model, they used an online testing dataset and achieved an
accuracy of 87%. According to paper [18], signal processing algorithms were used
to classify usual and unusual breath sounds using electronic stethoscopes. They
retrieved Short-time Fourier transform-based features and used decomposition of
singular values to reduce the number of features. The classifier was built on k-NN
using Euclidean distance as a metric, and the suggested approach has an accuracy,
specificity, and sensitivity of 91.55%, 92.20%, and 90.9%, respectively.

Researchers are becoming increasingly interested in innovating machine learning
approaches as a means of solving problems for specific purposes. For instance, this
paper [51] presented a framework integrating a random forest classifier with the
Empirical Mode Decomposition approach for a multiple class classification task of
recognizing respiratory diseases (COPD, Bronchiolitis, Bronchiectasis, URTI, and
Pneumonia). Moreover, they evaluated 14 distinct lung sound variations and dis-
covered that segmentation is crucial in categorizing different respiratory diseases.
Their trained classifier obtained an accuracy of 88%, a precision of 91%, a recall
of 87%, a specificity of 91%, and an F1-score of 81%. The study [12] proposed a
classification model using a machine learning approach and extrapolated the results
to decide on the patient level. Their strategy is separated into two parts: micro-level
and macro-level. The micro-level is accountable for respiratory cycle classification,
while the macro-level is responsible for extrapolating the recognition accuracy to ac-
count for patient categorization. They used a boosted decision tree model to identify
each respiratory cycle based on whether unusual sounds detect at the micro-level.
Their macro-level approach achieved accuracy up to 85%. Paper [49] claimed that
though respiratory diseases are universal, their detection is challenging for the ex-
perts. The researchers used cough audio features to categorize the conditions in
patients. They created and trained a “CoughGAN” generative adversarial network
to replicate raw audio recordings of coughs. Their Random Forest and Support
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Vector Machine models correctly identified participants’ statuses between healthy
and three common respiratory diseases, with a test accuracy of 76% and an F1 score
of 83%. A recent work [47] proposed a model combining the CNN and Attention
mechanism to classify the audio data to detect abnormal breath sounds from normal
respiratory sounds. They implemented the CNN-Attention classification model, ex-
tracted the Mel Frequency Cepstral Coefficient (MFCC) feature from the data, and
fed it to the model. Moreover, to prevent various dimensions of input vectors, they
reduce the retrieved features into a single dimension.

Since 2019, more than 5 million people have perished from coronavirus disease, and
the number is still counting. There will be many more deaths before a better way
to cure or eliminate this disease is discovered. Researchers have been trying to find
ways to eradicate this deadly disease from the world in recent times. In the paper
[50], researchers have gathered nine different forms of sound data, such as deep and
shallow breathing, heavy and shallow coughing, sustained vowel phonation of the
letters a,e, and o, and normal and fast-paced digit counting from one to twenty.
They have also collected data of 941 people, including their health status and pre-
existing medical conditions. Moreover, they anonymized the data during storage
and used 13 annotators to annotate it. The collection contains 6507 clean audio
files, 1117 noisy audio files, and the remaining significantly degraded audio files, all
of which correspond to respiratory sound samples from 941 persons. Furthermore,
they have also used a random forest classifier to classify their dataset’s nine dif-
ferent sounds categories using a 28-D feature, and the accuracy on test data was
66.74%. To enhance the detection of COVID-19, in the article [43], they gathered
data from an extensive publicly supported collection of respiratory sounds using a
web-based interface and an Android app. Specifically, their dataset is made out of
6613 unique participants. Among them, 235 announced having tested positive for
COVID-19. Their SVM models accomplished an AUC score above 0.8 using coughs
and breathing sounds using handcraft features and data augmentation. Moreover,
they have utilized VGGish to extricate sound elements automatically and examined
two unique features: handcrafted and transfer learning.

In the work [44], they demonstrated that cough audio samples gathered from peo-
ple worldwide via cellphones can be used to build an artificial intelligence-based
approach that reliably predicts COVID-19 with a ROC-AUC score of 77.1 per-
cent. They trained a deep neural network using the publicly available cough sound
datasets COSWARA [50] and COUGHVID [63]. The paper [58] has used the MFCC
features from the sound recordings as an input individually into LSTM Recurrent
Neural Network, CNN, and Multilayer Perceptron (MLP) Network, respectively.
Furthermore, they achieved an AUC score of 70.69 using Random Forest (baseline),
56.57 using MLP, 70.67 using LSTM, 72.33 using CNN, and 87.07 using CNN with
Data Augmentation. The research [54] showed that a deep neural network could
detect symptomatic and asymptomatic COVID-19 cases using breath and cough
audio recordings. However, their dataset includes 517 crowdsourced breathing and
coughing audio recordings from 355 individuals, and they achieved an AUC-ROC
of 0.846 using this dataset. This study also used audio samples to generate spec-
trograms to create an end-to-end CNN design. Finally, the paper [57] has chosen
5,240 samples from 2,478 people from the collected dataset and divided them into
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separate participant-independent sets for model training and validation. Using a
CNN model, they obtained an AUC-ROC of 0.71 using features from breathing,
coughing, and voice data as predictors and predicted COVID-19.
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Chapter 3

Data Description

The coronavirus disease (COVID-19) pandemic is unprecedented in most people’s
lifetimes. Due to the ongoing pandemic, the entire planet was brought to a stand-
still. For this reason, physically collecting the respiratory sound was not possible
at that time. Among the various open-source datasets, we chose the ICBHI dataset
for respiratory sound classification and COSWARA and COUGHVID dataset for
COVID-19 classification. Moreover, before the data was ready to be trained, we
applied multiple pre-processing techniques discussed in section 3.2.

3.1 Dataset
We used three separate datasets for our study, one lung sound dataset collected with
an electronic stethoscope for respiratory disease classification and two crowdsourced
cough sound data for covid-19 cough detection.

3.1.1 ICBHI Scientific Challenge Dataset
The first dataset we utilize in this study was revealed as part of an International
Conference on Biomedical and Health Informatics (ICBHI) scientific challenge. The
ICBHI challenge dataset was published in 2017 and used by several academics. Two
study teams from Greece and Portugal accumulated the audio files in the ICBHI
dataset. The two research teams took approximately 920 audio samples from 126
patients of different ages and analyzed them. There are 6898 respiratory cycles in
the dataset, with 1864 containing crackles, 886 containing wheezes, and 506 com-
prising both wheezes and crackles. The average duration of these recordings is 21.49
seconds, and their median is 20 seconds. Adventitious sounds are not indicated in
259 of these annotated tracks. There is a text file against every audio file in the
dataset, which includes information about the start and end time of a respiratory
cycle and the presence or absence of wheeze and crackle sounds. Moreover, the
diagnosis in the dataset include Healthy, Bronchiolitis, Pneumonia, Bronchiectasis,
Lower Respiratory Tract Infection (LRTI), COPD, Asthma, and Upper Respiratory
Tract Infection (URTI). The dataset contains people with COPD around 50.79%,
which is the highest. On the other hand, healthy people with Upper Respiratory
Tract Infection (URTI) are 20.63% and 11.11% respectively [21].
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Figure 3.1: Number of subjects against their medical condition in ICBHI dataset

The ICBHI data is collected from two universities, Aristotle University of Thessa-
loniki (AUTH) and the University of Aveiro. The Researchers of Aristotle University
of Thessaloniki (AUTH) recorded samples from six distinct places from the chest.
The School of Health Sciences, University of Aveiro (ESSUA), on the other hand,
recorded noises from the left and right anterior, as well as the trachea, lateral chest,
and posterior. Normal and abnormal respiratory sounds like a wheeze, crackles were
identified and annotated by expert physicians [21].

The majority of the spectrum power of a healthy vesicular breathing lung sound falls
between 60 to 600 Hz, and the frequency ranges up to 1,000 Hz. On the other hand,
wheeze and crackle have a frequency range of 1,000 Hz to 2,500 Hz. Because lung
sound is weak and vulnerable to external disturbances like heartbeat and music, a
5th order Butterworth bandpass filter is utilized to keep the frequency of interest
between 100 Hz and 2,000 Hz [35].

3.1.2 COSWARA
The second dataset we utilized is the Coswara dataset [50], a curated database of
respiratory sounds, coughs, and voices which are categorized by gender, age, country,
state, and health status. The audio samples of this dataset were obtained through
global crowdsourcing using an online application where a user engages with the
application for an average of 5-7 minutes. For each of the sound categories, each
respondent contributes nine audio tracks. All of the audio samples were manually
curated and recorded at a 48 kHz sampling rate. The annotator might listen to each
sound recording and answer several questions by utilizing a web interface. These
questions helped confirm the category label and the audio file’s quality. For each
audio track, the annotator was also given the option of adding any additional com-
ments. The dataset contains 6507 clean audio files, 1117 noisy audio files, and the
remaining significantly degraded audio files, all of which correspond to respiratory
sound samples. Deep and shallow breathing, heavy and shallow coughing, sustained
vowel phonation of the letters a,e, and o, and normal and fast-paced digit counting
from one to twenty were among the nine types of sound data collected. During
storage, they anonymized the data and utilized 13 annotators to annotate it.
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3.1.3 COUGHVID
The third dataset we utilized in this paper is the COUGHVID dataset [63], one of
the largest publicly available COVID-19 related cough sound datasets. This dataset
has recordings of over 25,000 crowdsourced cough audios covering a broad range of
participants. The COUGHVID crowdsourcing dataset is one of the massive cough
datasets categorized by professionals, with 1,155 people claiming to have COVID-19
from around the world. In addition to making the majority of their cough corpus
available to users, they have trained a cough identification machine learning model
to extract non-cough recordings from the dataset. This automated cough identi-
fication tool enables developers to construct durable programs that automatically
exclude non-cough noises from audios. An extra layer of validation was performed,
in which four expert specialists evaluated a portion of the dataset to identify which
crowdsourced samples are likely to come from COVID-19 patients. The COUGHVID
dataset contains over 2,800 coughs labeled by experts, each with its severity level,
diagnosis, and whether or not audible health problems such as nasal congestion,
wheezing, dyspnea are present. Lastly, they validated that COVID-19 samples were
collected in areas where the virus was active during the recording time, and they
examined the quality of cough recordings.

3.2 Data Pre-processing
For our experiments, we preprocessed the three datasets separately which are dis-
cussed in this section.

3.2.1 Respiratory Disease Classification
The ICBHI dataset contains 920 audio recordings of eight different respiratory
disease labels: COPD, Pneumonia, Healthy, URTI, Bronchiectasis, Bronchiolitis,
Asthma, and LRTI. For respiratory disease classification, we first preprocess the
dataset with two different approaches. In the first method, we exclude the Asthma
and LRTI data due to insufficient data on Asthma and LRTI and perform a six-class
classification with the rest of the data.
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Disease Count
COPD 793

Pneumonia 37
Healthy 35
URTI 23

Bronchiectasis 16
Bronchiolitis 13
LRTI (×) 2

Asthma (×) 1

Table 3.1: Disease distribution of audio samples from ICBHI datasets. Lowest two
samples (marked with ×) were excluded from 6 class classification.

In the second method, we divide the dataset’s eight diseases into three categories
based on disease severity: Chronic, Non-Chronic, and Healthy. The Chronic cate-
gory contains COPD, Asthma, and Bronchiectasis diseases, and The Non-Chronic
category contains URTI, LRTI, Bronchiolitis, and Pneumonia diseases. We divided

Class Count
Chronic 810

Non-Chronic 75
Healthy 35

Table 3.2: Disease distribution for 3 class classification

the dataset into three parts for this task: 60% for the training set, 20% for the
validation set, and 20% for the test set.

3.2.2 COVID-19 Cough Classification
We pre-process the Coswara and COUGHVID datasets individually for our COVID-
19 positive and negative cough classification task because the data formats and
cough sounds differ significantly. In the Coswara data gathering method, partici-
pants were instructed to cough atleast three times. In contrast, the number of times
participants should cough was not explicitly stated in the COUGHVID data collec-
tion process. Also, the number of coughs in a single audio file in the COUGHVID
dataset is inconsistent, and some recordings contain only one cough sound. For this
reason, we choose to pre-process and evaluate our models on these data separately,
which also allows us to identify which type of cough recording is better for AI-based
classification.

Coswara

The Coswara dataset contains seven different covid status information depicted on
figure 3.2. And for one patient id, one status label is assigned. To separate the
dataset into two classes, we label the healthy and no respiratory illness exposed
status as COVID-19 Negative. And label the positive mild, positive asymptomatic,
and positive moderate statues as COVID-19 Positive labels. After preprocessing the
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Figure 3.2: COVID-19 status label distribution in Coswara dataset

data, we get 429 COVID-19 positive and 1527 COVID-19 negative samples. Also,
the Coswara data contains nine different audio recordings from each patient, such as
counting, shallow and heavy coughing, breathing sounds, vowel pronunciations, etc.
We only used the heavy cough recordings from each patient for our experiments.
Lastly, we split the dataset into 75% training, 15% testing, and 15% validation set.

Class Count
COVID-19 Negative 1527
COVID-19 Positive 429

Table 3.3: Sample count for Coswara
Dataset

Class Count
COVID-19 Negative 1788
COVID-19 Positive 596

Table 3.4: Sample count for
COUGHVID Dataset

COUGHVID

Figure 3.3: COVID-19 status label distribution in COUGHVID dataset

The COUGHVID dataset contains three different COVID-19 statuses collected from
patient self-reports shown in Figure 3.3. The status ratio is highly imbalanced with
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the majority of the samples from the healthy patients, so we take all COVID-19
cough samples totaling 596 samples and only 1788 healthy samples from the dataset,
which forms a 1:3 COVID-19 positive and negative ratio. We also utilize expert label
annotations of diagnosis from the dataset to remove healthy patient recordings that
contain an expert diagnosis of upper infection, lower infection, obstructive disease,
and COVID-19. Finally, we split the data into 80% training, 10% test, and 10%
validation sets.
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Chapter 4

Proposed Methodologies

Our dataset contains just audio data, which is challenging to analyze for model
training. So, we extract several audio features from the audio files before training
the model. Since the data were imbalanced in class distribution, we also use a
balanced mini batch training strategy to train our models. Finally, we employ
several training strategies that improve our model’s performance.

4.1 Feature Extraction
Classifier models find it difficult to identify a particular sound due to different com-
plications in the raw sound data. For these reasons, to properly recognize audio data,
it is required to extract relevant features from it. In our work, we extract two popu-
lar features Mel-Spectrogram and Mel Frequency Cepstral Coefficients (MFCC), to
train and validate our models.

4.1.1 Mel-Spectrogram
The Mel-spectrogram is one of the most effective ways for extracting hidden ele-
ments from audio and visualizing them as an image [67]. To elaborate, a sound
signal comprises many single-frequency sound waves, and while samples were taken
over time, only the amplitudes of the signal are collected. Hence, the Fast Fourier
Transform is used to extract meaningful information from an audio signal, and it
creates a spectrum by decomposing the signal into its many frequencies and am-
plitudes, changing the frequency from the time domain to the frequency domain.
To explain, a rapid way to perform the Fourier transform is using the Fast Fourier
Transform (FFT), which allows us to evaluate the frequency content of a signal.
However, because audio waves are non-periodic and change over time, the Short-
Time Fourier Transform (STFT) is applied to overlapping window segments of the
audio signal, which produces a spectrogram. A spectrogram is a visual represen-
tation of a signal’s loudness or amplitude as it varies over time and at different
frequencies. The Spectrogram plots Frequency (y-axis) against Time (x-axis), with
different colors representing varying frequency amplitudes, and its brightness is pro-
portional to the signal’s energy. However, because people perceive frequency and
loudness in a logarithmic pattern and are better at detecting lower frequencies than
higher frequencies, spectrograms have little energy or color, and the frequencies and
amplitudes are concentrated in a narrow range. As a result, the spectrogram is
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converted to the Mel Spectrogram to make it more intuitive for people to under-
stand and more effective for CNN-based models. The Mel Spectrogram employs the
Decibel scale instead of amplitude to show color or energy, and on the y-axis, mel
scale is shown instead of Frequency [65].

The processes to create a mel spectrogram are as follows: first, air pressure samples
are acquired over time to digitally represent an audio signal. The audio signal is
then mapped from the time domain to the frequency domain using Fast Fourier
Transform on overlapping windowed segments of the audio signal, which produces
a Spectrogram. Finally, the Spectrogram is transformed into The Mel Spectrogram
by converting the frequency to a mel scale, and the amplitude is changed to decibels.

For our experiments, we used 1024 as the length of the FFT window making with
512 number of samples between successive frames and took the whole frequency
spectrum and divided it into 64 evenly spaced frequencies.

4.1.2 Mel Frequency Cepstral Coefficients (MFCC)
MFCC stands for Mel Frequency Cepstral Coefficients. We decided to use MFCC
as it is a widely used feature in audio classification and speech recognition tasks.
The potential of this feature is to represent the qualities and characteristics of the
human auditory system accounts for its effectiveness.

To generate MFCC features from an audio signal the following steps are followed:
As audio signals are always changing, they are initially framed into short frames of
20-40ms in length where it is assumed that the signals are stationary. Next, the
discrete Fourier transform is then used to estimate the spectral density of the power
spectrum of each frame, and the idea is influenced by the cochlea, a human organ
in the ear. Based on the incoming sound’s frequency the cochlea vibrates in various
places, and different nerves send signals to the brain that particular frequencies are
there. So, by determining the frequency present in the frame, the estimated spectral
density of the power spectrum works similarly to the cochlea. Afterwards the mel
filterbank is applied to the power spectrum, which sums the energy in each filter.
The first filter in the Mel filterbank is quite narrow, and as the frequency rises, the
filter becomes wider. Only the approximate amount of energy that occurs at each
location of the mel filterbank is relevant. Here, the Mel scale tells us how wide
and far apart the filterbanks should be. After collecting the filterbank energies, the
logarithm of all energies is determined, which is inspired by the fact that people
perceive loudness on a logarithmic scale. Since , the energies of the filterbanks are
highly correlated and the filterbanks overlap, the discrete cosine transform is em-
ployed to decorrelate the energies, implying that diagonal covariance matrices can
be used to represent the features. The resulting features are called Mel Frequency
Cepstral Coefficients. [3][1].

For most of our experiments, we extracted 40 MFCC features from each audio file
and used 2048 as the length of the FFT window, and used 512 numbers of samples
between successive frames.
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Figure 4.1: Mel-Spectrogram feature plot for different diagnosis
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Figure 4.2: MFCC feature plot for different diagnosis
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4.2 Feature Augmentation
One of the underlying issues with audio classification and speech recognition tasks is
that the model overfits and fails to generalize when the training data is insufficient.
The data augmentation technique is commonly applied to raw audio data in deep
learning tasks to address the issue of data unavailability. However, using augmenta-
tion on raw audio data has certain disadvantages, such as increased processing time
and cost. Furthermore, if the augmentation technique is unsuitable for the task,
important audio information may be lost. Also, standard speech audio augmenta-
tion techniques such as pitch shift and altering the speed of the audio file can cause
the audio to lose key audio characteristics in our respiratory sound classification
task. Therefore, we employ feature augmentation techniques on the produced mel
spectrogram features of our training audio data instead of using raw audio files. We
utilize the Fastaudio library [45], which provides the mel spectrogram augmentation
techniques Spectrogram Shifting (SGRoll), Time masking, and Frequency masking.
The time and frequency masking augmentation technique was invented by Park et
al. [37],which is applied directly to the mel spectrogram, and it is the input feature
of the neural network. Since augmentation is done directly to the mel spectrogram
features rather than raw audio data, no extra raw audio data is required for this
augmentation. Furthermore, the augmentation is performed immediately during
model training, which is also computationally efficient [38]. Besides, Park et al. [37]
achieved state-of-the-art results using this augmentation technique and surpassed
more complicated hybrid systems in automatic speech recognition tasks. Figure 4.3
shows the effect of three augmentations on Mel-Spectrogram features. We employ
the following augmentation techniques in our experiments:

Time Masking

In time masking augmentation, [t0, t0 + t) time steps are masked, where t is the
successive time steps along the x-axis of the mel spectrogram. Here, the value of t
is chosen at random from a uniform distribution ranging from 0 to the time mask
parameter T, while t0 is selected from [0, τ − t), where τ is the total number of
time steps in the mel spectrogram. The purpose of this augmentation is to make
spectrograms account for partial information loss in the time direction, allowing
the model to learn more relevant features and distinguish audio features where the
signal information is deformed in the time direction.

Frequency Masking

In frequency masking augmentation, Mel-Spectrogram frequency channels [f0, f0 +
f) are masked, where f is the successive channels of the mel frequency. The choice of
f depends on the uniform distribution from 0 to the frequency masking parameter
F, while the choice of f0 is based on [0, ν−f), where ν is the mel frequency channels
number. The motivation of this augmentation is to make the Mel-Spectrograms
account for partial information loss in the frequency channels, allowing the model
to acquire useful features even when partial frequency channel information is absent.
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Figure 4.3: Augmented feature plot for different diagnosis
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Spectrogram Shifting

This augmentation technique shifts the spectrogram along the x-axis and wraps
around to the other side. The amount of shifting is picked at random between 0 and
the maximum shifting parameter value, and the direction to shift the spectrogram is
chosen at random or can be specified by the direction parameter value. The purpose
of this augmentation is to reduce the model’s bias toward positional values.

4.3 Training Strategies
For identifying a better model it is important to know what approach is being used to
train it. Throughout this chapter, we’ll briefly examine five training improvements
that attempt to increase model accuracy even more. We utilize the fastai library
[28] for most of our experiments.

4.3.1 Data Input
The class imbalance between data is one of the major obstacles in any deep learning
task, as in most cases models trained on an imbalanced dataset fails to generalize
and the gradient of the loss functions becomes flat. Learning from an imbalanced
class distribution, the model performs well on the majority class, but the predic-
tions of the minority classes are usually inconsistent. Data sampling approaches
such as undersampling the majority class or oversampling the minority class are
conventionally applied to overcome this problem. Class undersampling is the pro-
cess of balancing the majority and minority classes by removing a certain number
of samples from the majority class. However, there are certain drawbacks of under-
sampling, such as valuable data from the majority class getting lost and a lack of
variety among data. On the other hand, the oversampling approach duplicates data
in the minority class in order to equalize the number of samples in both minority
and majority classes. The undersampling strategy also has certain drawbacks, such
as overfitting the minority class since the model learns duplicate data [32].

During conventional deep learning model training, instead of using all of the sam-
ples at once, a subset of data samples called mini-batch is fed into the model one
by one. The subset of samples is picked at random from all of the training samples
and provided to the model until the original sample set is complete. The mini-batch
training process then begins again, with the number of samples restored. When a
mini-batch is generated from an imbalanced dataset, the mini-batches are likewise
imbalanced, causing the model to learn classes in unequal proportions, overfitting
it towards the majority class. It is necessary to balance data or the mini-batches to
avoid the problem of model overfitting. Therefore we employ a balanced mini-batch
training technique with feature augmentation to train our models. For this, we first
count the number of samples in each class of training set, then assign a weight to
each sample depending on the total sample count. Here, the weight refers to the
probability that one sample would appear on a mini-batch. As a result, the ma-
jority class has a lower weight than the minority class. These weights assigned to
each sample ensures that each mini-batch has an almost equal number of class sam-
ples which helps the model learn each class equally, reducing overfitting. When the
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minority class is assigned higher weights, samples from that class are oversampled
by duplicate data. However, duplicate data can cause the model to overfit if the
model learns the sample data multiple times. Hence, we only utilize the mini-batch
oversampling approach with our mel-spectrogram feature that includes three aug-
mentation procedures which ensures that an augmented version of the feature data
is used rather than the duplicate data.

Wclass =
1

Total number of samples of that class

4.3.2 Learning Rate Finder
Learning rate is one of the most critical hyper-parameters to tune for deep learning.
The choice of learning rate is particularly crucial, as a small learning rate can make
model training exceedingly slow, and a large learning rate can cause the model to
diverge. So, to train our model, we utilize the learning rate finder method invented
by Smith (2017) [24], which provides a good approximation of the ideal learning
rate value. The process includes monitoring the loss early while training, and the
model trains for one epoch using a mini-batch by a small learning rate while the
loss value is stored. Then the model trains for another epoch by increasing the
learning rate by a specified percentage. Thus the method repeats until the loss value
worsens and starts to diverge. Following that, a smoother version of the plot shows
the recorded loss value of each iteration, therefore we use this plot to determine
an optimal learning rate to train our model. The proposed optimum value is one
magnitude order less than the plot’s minimal loss value. Since the minimum loss
value is not optimal since it is too high and at the edge where the loss value starts
diverging. Additionally, the learning rate from the steepest slope, around 2/3 of the
way through the longest valley, or the learning rate value found by the interval slide
rule are excellent choices [61]. To train our model, we empirically tested several
learning rates using the learning rate plot and found the learning rate from the
longest valley to be optimum.

Figure 4.4: Learning Rate plot
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4.3.3 1cycle Policy
Optimizing a deep learning model is a difficult task as several hyper-parameters can
affect how the model performs for better or worse. For example, a low learning
rate causes a model to learn slowly and takes many epochs to converge, whereas
a high learning rate causes the loss value to fluctuate around the local minimum.
Finding the sweet spot between small and large learning rate is critical to train
the model quickly and efficiently. The basic technique to train the model is to test
several learning rates at random and select the one that produces the best results;
however, this strategy is both time intensive and impractical. So, we selected our
applied learning rates using Smith’s learning rate finder, which provides an excellent
approximation of the optimum learning rate [24].

In traditional deep learning model training, learning rate schedules and adaptive
learning rates are conventionally used, as choosing one ideal static learning rate is
challenging. Learning rate schedules consist of strategies like Step Decay, Time-
Based Decay, and Exponential Decay to decrease the learning rate during model
training. This technique remains constant throughout training since it is determined
before the training process begins, which has the disadvantage of being unable to
adjust to the specific characteristics of the dataset. Adaptive learning rate strate-
gies, on the other hand, can lessen the problem which include employing adaptive
gradient descent algorithms such as Adadelta, Adam, Adagrad, RMSprop; however,
these strategies are computationally costly [36][22].

Thus we employ the “1cycle” policy invented by Smith [33]; a modified version
of their Super-Convergence method to train the neural networks. Moreover, using
super-convergence methods, models train in order of magnitude faster than standard
training methods; and can increase the performance of models when the training
data is limited. The “1cycle” policy ensures the accuracy to plateau before training
ends, and it is a combination of Simulated annealing and Curriculum learning [33].

The procedure involves two phases of the learning rate, one of which raises the
learning rate and the other of which reduces the learning rate; these two steps are
called ’1cycle’. The learning rate in the ’1cycle’ policy increases up to the maximum
learning rate value that we selected using the learning rate finder plot, which can
decrease up to ten times lower than the maximum value. The ‘1cycle’ executes fewer
times than the total number of epochs, and learning rates get reduced by many
orders of magnitude for the remaining epochs. The motivation is to prevent the
model from overfitting by using the high learning rate as a regularization method.
The cyclic learning rate is also not computationally expensive, as it terminates the
need to find the optimum learning rate because it will fall between the minimum
and maximum bound [36].

4.3.4 Transfer Learning
Deep learning models typically perform well and learn to predict accurately when
huge amounts of data are accessible; however, data scarcity remains a big issue in
most deep learning tasks. Transfer learning is the usual solution to effectively use
deep learning when large amounts of data are unavailable. The transfer learning
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procedure applies previously acquired features and weights from an existing model
to a new task. The key idea is to reuse the learned properties of a model trained
on a large dataset to a different problem with little data available. Using transfer
learning, a model does not need to be trained from the beginning but instead can
train on already existing features from pre-trained models, which resolves the re-
source and time constraints. Transfer learning also improves model efficiency and
accelerates model’s generalization [23].

In conventional image classification tasks, pre-trained models utilizing the ImageNet
dataset are used for transfer learning. Here, models trained on the ImageNet dataset
generalize on diverse image classification tasks because models can learn from a large
dataset containing 1000 different image categories with 1.2 million training data.
Some convolutional neural network models trained on the ImageNet dataset are
ResNet, VGGNet, DenseNet, etc. Lower convolution layers of these models capture
image features such as edges, diagonal patterns, and lines, and higher convolutional
layers capture specific image features such as human body parts, eyes, faces, etc.
The fully connected layers of these CNN models are task-specific and used to cate-
gorize images into different categories. So, to use these pre-trained models, the last
fully connected layers are changed according to the specific task’s number of classes
[31].

In our classification task, the extracted audio features are image representations of
the sound information, which allows us to use CNN-based architectures with transfer
learning from image data. Although image data differs from the spectrogram or
MFCC features, several fundamental operations of the first few convolutional layers
are identical, such as identifying edges, patterns, diagonal lines, blobs of an area,
etc. These common types of functionality, and the fact that our generated sounds
features are images, encourage us to employ transfer learning techniques. Also,
we use the fine-tuning strategy of transfer learning to change the weights of the
higher convolutional layers as these are not specific to our task. For the fine-tuning
procedure we first train the last fully connected output layer with all other layers
frozen for one epoch, then we unfreeze all the layers and train our whole model for
the remaining epochs.

4.3.5 Model Callbacks
Functions applied at a given stage of model training are named callbacks; the call-
backs function has a significant role in deep learning model training as it can change
the behavior of the model. To train our model, we applied following callbacks func-
tions:

Early Stopping Callback

It terminates model training depending on the monitored parameter value. The
callbacks prevent the model from overfitting when the model performance is not
improving. We use early stopping callbacks to monitor the accuracy metric when
using the transfer learning strategy, and we use early stopping callbacks to monitor
the validation loss value while training with the 1cycle learning rate.
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Save Model Callback

It saves the best model at the epochs where the monitored value is higher than
prior epochs. This callback is essential to save the model with the best weights and
performance. We utilize these callbacks to monitor the accuracy value and save the
model when it is at its best.
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Chapter 5

Model Architecture

Deep Convolutional Neural Networks are promising architecture that has been pio-
neered in recent years. There are numerous prominent deep learning models, and we
employed six of them which are VGGNet, ResNet, XResNet, AlexNet, SqueezeNet,
and DenseNet. The models have been trained and tested accordingly and the out-
comes are quite convenient.

5.1 VGGNet
VGGNet is a convolutional neural network model that is commonly considered to
be one of the best deep learning architectures currently available at the moment.
The major distinguishing characteristic of VGGNet is that, instead of having a large
number of hyper-parameters, they concentrated on generating a 3x3 convolution fil-
ter with stride 1. Moreover, they also used max pooling layers of 2x2 filters with
stride 2 and same kind of padding. The convolution layers and max pooling layers
are used throughout the structure frequently. VGGNet includes a variety of config-
urations that vary in depth of layers.

During training, the input to the first convolutional layer is a 224 x 224 RGB image
of specific size. With the filters set to 3x3 receptive fields, the image was progressed
via a sequence of convolutional layers. It also incorporates 1x1 convolution filters
in one of the layouts. The stride of the convolution is fixed to 1 pixel by default.
For 3x3 convolution layers the spatial padding of the input is 1 pixel such that the
spatial resolution is kept after convolution. Max-pooling is performed with stride 2
over a 2x2 pixel window. However, it is not applied to all of the convolution layers.
Max-pooling followed after every two or more convolutional layers, thus a total five
max-pooling layers were observed that carried spatial pooling. After all convolu-
tional layers of varied depths, three Fully-Connected (FC) layers are applied in all
VGGNet configurations. The first two each have 4096 channels, whereas the latter
has 1000 channels. In all networks, the fully connected layers are configured in the
same way and followed by a soft-max layer. All the convolution and FC layers are
equipped with an activation function which is Rectified Linear Unit (ReLU).

The only difference between the layouts is the depth, which follows the basic design
found in architecture. Two CNN architectures that we used in our dataset are
VGG16 and VGG19. The 16 in VGG16 refers to the number of weight layers (13
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VGGNet Configuration
VGG16 VGG16 VGG19

16 weight Layers 16 weight Layers 19 weight Layers
224×224 RGB image

Conv-3 64 Conv-3 64 Conv-3 64
Conv-3 64 Conv-3 64 Conv-3 64

maxpool
Conv-3 128 Conv-3 128 Conv-3 128
Conv-3 128 Conv-3 128 Conv-3 128

maxpool
conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256
conv1-256 conv3-256 conv3-256

conv3-256
maxpool

conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512

conv3-512
maxpool

conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512

conv3-512
maxpool
FC-4096
FC-4096
FC-1000
softmax

Table 5.1: Layers arrangements of VGGNet architectures

conv. layers and 3 FC layers). This network is quite huge, with approximately
138 million parameters. Similarly, the 19 in VGG19 denotes the presence of 19
weight layers (16 conv. layers and 3 FC layers). This network is the largest of VGG
configuration, with estimated 144 million parameters [7].
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Figure 5.1: Difference between a traditional feedforward connection and a residual
block

5.2 ResNet
ResNet is referred to as residual network which is a simple yet efficient method to
ease the complexity of deep neural network training. It has been widely embraced
by computer vision, natural language processing and reinforcement learning.

When the network grows deeper, the accuracy becomes saturated and diminishes
quickly, causing a degradation problem. This degradation is neither originated by
overfitting nor by additional layers to a deep network. Furthermore, adding more
layers to networks causes the vanishing gradient problem, which affects convergence.
This implies that when the route for information from the input to the output layers
lengthens, certain data may ‘vanish’ or be lost, reducing the network’s capacity to
train effectively.

Microsoft proposed a deep residual learning architecture to address this issue. By
skipping some layers, residual connection provides an alternative way for data to
reach later regions of the neural network. They allowed these layers to fit a residual
mapping precisely rather than assuming every few stacked layers to match a speci-
fied underlying mapping directly.
In Figure 5.1, a series of layer i to layer i+n is considered and the input of the layer
i is denoted by x.The result of the layer i+n is F(x) where x will simply run through
these layers one after another in a classic feedforward setup. The residual connection
conducts element-wise addition F(x) + x after applying identity mapping to x. A
residual block is the term used in literature to describe the entire architecture that
takes an input x and creates an output F(x) + x. An activation function ReLU is
also applied in a residual block.
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The usual plain deep network has the same amount of filters for the similar feature
maps. To maintain the time complexity of each layer, the amount of filters is dou-
bled when the size of the features map is halved. It is indeed important to note that
ResNet networks have less filters and are easier than VGG networks.

Generally several residual blocks, of the same or distinct architectures, are employed
throughout the neural network. When the input x and the output F(x) are of the
same size, then the element-wise addition F(x) + x can be utilized directly. If
their dimensions change, we can implement identity mapping with additional zero
padding for higher dimensions. Moreover, by using a linear transformation (i.e.
multiplication by a matrix W) we can use F(x) + Wx instead of identity mapping
to match the dimensions.

The input of a ResNet is a 7x7 convolution layer with stride 2, followed by max
pooling layer and four identical blocks which have different configuration and iter-
ation. It conducts 3x3 convolution for ResNet-18 and ResNet-34 and bypasses the
input after every 2 convolutions. However, in the case of ResNet-50 and ResNet-101
it conducts 3x3 and 1x1 convolution and bypasses the input after every 3 convolu-
tions. Every layer is incorporated with an activation function ReLU. An average
pooling layer as well as a 1000-way fully-connected layer with softmax concludes the
network [10].

Layer Name output size 18-layer 34-layer 50-layer 101-layer 152-layer

conv1 112x112 7x7, 64, stride 2

conv2_x 56x56
3x3 max pool, stride 2

3× 3, 64

3× 3, 64

 ×2

3× 3, 64

3× 3, 64

 ×3


1× 1, 64

3× 3, 64

1× 1, 256

 ×3


1× 1, 64

3× 3, 64

1× 1, 256

 ×3


1× 1, 64

3× 3, 64

1× 1, 256

 ×3

conv3_x 28x28

3× 3, 128

3× 3, 128

 ×2

3× 3, 128

3× 3, 128

 ×4


1× 1, 128

3× 3, 128

1× 1, 512

 ×4


1× 1, 128

3× 3, 128

1× 1, 512

 ×4


1× 1, 128

3× 3, 128

1× 1, 512

 ×8

conv4_x 14x14

3× 3, 256

3× 3, 256

 ×2

3× 3, 256

3× 3, 256

 ×6


1× 1, 256

3× 3, 256

1× 1, 1024

 ×6


1× 1, 256

3× 3, 256

1× 1, 1024

 ×23


1× 1, 256

3× 3, 256

1× 1, 1024

 ×36

conv5_x 7x7

3× 3, 512

3× 3, 512

 ×2

3× 3, 512

3× 3, 512

 ×3


1× 1, 512

3× 3, 512

1× 1, 2048

 ×3


1× 1, 512

3× 3, 512

1× 1, 2048

 ×3


1× 1, 512

3× 3, 512

1× 1, 2048

 ×3

1x1 average pool, 1000-d fc,softmax

Flops 1.8× 109 3.6× 109 3.8× 109 7.6× 109 11.3× 109

Table 5.2: Layer arrangement of ResNet architectures
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Figure 5.2: Traditional ResNet architecture

5.3 XResNet
XResNet is an enhanced version of ResNet that is used consistently to increase
model performance which was first introduced in paper [27] further mentions that
higher accuracy can be achieved by making slight changes to the data preprocessing
and model architecture as well as learning rate schedule and loss function.

An input stem, four succeeding stages, and a final output layer make up a ResNet
network. A 7x7 convolution with an output of 64 channels is used in the input stem
followed by a 3x3 max pooling layer with stride 2 for each layer. The input stem
decreases the height and width of the input by four times while increasing the size
of the channel to 64. Beginning with stage 2, each stage starts with a downsampling
block, followed by multiple residual blocks. There are two paths in the downsam-
pling block: path A and path B. Path A is arranged in a bottleneck structure and
has three convolutions, each with a kernel size of 1x1, 3x3, and 1x1 respectively. In
order to halve the input width and height the first convolution has a stride of 2,
while the output channel of the last convolution is 4 times larger than the preceding
two. Path B transforms the input shape into the output shape of path A using a 1x1
convolution with a stride of 2, so that the outputs of both paths can be added to get
the downsampling block’s output. The only difference between a residual block and
a downsampling block is that a residual block only uses convolutions with a stride
of one.

An improvement of ResNet was introduced in the paper [16] which changed the
downsampling block of ResNet. Since the path A of the downsampling block utilizes
a kernel size of 1x1 along with a stride of 2, the convolution overlooks three-quarters
of the input feature map. The work [16] alters the stride size of the first two
convolutional layers in path A, ensuring that no data is lost. Path A’s output
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structure remains unaffected as the second convolution has a filter size of 3x3. The

Figure 5.3: Modified downsampling block of ResNet

paper [27] shows that XResNet is influenced by the above modification of ResNet, it
is seen that in path B of the downsampling block, the 1x1 convolution also excludes
three quarter of the input feature maps, thus it is altered so that no data is discarded.
Also it is deduced that altering the convolution layer’s stride from 1 to 2 and placing
a 2x2 average pooling layer with stride 2, works better practically and has a little
effect on the computational cost. In total XResNet-50 enhances ResNet-50 by 1%
and in terms of training throughput, it is only 3% slower than ResNet-50.

Figure 5.4: Modification proposed by XResNet

5.4 Alexnet
AlexNet is a convolutional neural network which has a major effect on machine
learning, especially when it comes to computer vision and deep learning after [19]
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was published. There are now far more complicated CNNs that can operate very
quickly on faster GPUs, even on very huge datasets.

AlexNet comprises eight weighted layers, with the first five being convolutional layers
while the rest are fully connected layers. In a convolutional layer, there are usu-
ally several filters of similar size. The initial convolution layer includes 96 11x11x3
kernels. The height and width of the filters are generally equal, and the number of
channels determine the depth.

The first two convolutional layers are followed by overlapping max pooling layers.
Max Pooling layers are commonly used to reduce the layers’ height and width while
keeping the depth constant. Overlapping max pooling layers are comparable to
regular max pooling layers, except that the neighboring windows over which the
maximum is determined, overlap one another.

The third, fourth, and fifth convolutional layers include direct connections between
them. An overlapping max pooling layer feeds the output of the fifth convolutional
layer into a series of two fully connected layers. Dropout was utilized before the two
fully connected layers to prevent significant overfitting. The concluding fully con-
nected layer’s output is sent to the 1000-way softmax classifier. Every convolutional
and fully-connected layer’s output is equipped with ReLU non-linearity.

5.5 SqueezeNet
SqueezeNet is a deep convolutional neural network (CNN) and has a compressed ar-
chitecture design. The model generates an architecture so the amount of parameters
can be reduced, particularly with the help of fire modules that use 1x1 convolutions
to “squeeze” the parameters. SqueezeNet achieved the same level of accuracy as
AlexNet on the ImageNet dataset but with 50 times less parameters. The model
size of AlexNet is 240MB whereas the model size of SqueezeNet is only 4.8MB.
The SqueezeNet fire module is said to encompass a squeeze convolution layer that

Figure 5.5: Microarchitectural view of Fire Module used in SqueezeNet

has solely 1x1 filters, flowing into an expand layer with a combination of 3x3 and
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1x1 convolution filters. In the Fire module there are three adjustable hyperparam-
eters which are the number of 1x1 convolution filters in the squeeze layer as well
as in the expand layer and the number of 3x3 convolution filters in the expand layer.

In order to design this CNN architecture three strategies have been adapted. The
first strategy it follows is to replace the 3x3 filters with 1x1 filters. This modifi-
cation will have 9x less parameters and computational cost. Next, it declines the
input channels to 3x3 filters utilizing the squeeze layers to maintain a smaller num-
ber of parameters. Lastly, in order to keep the activation map large as it might
lead to higher classification accuracy it delays the downsample in the network by
late allocation of the pooling layers. SqueezeNet on figure 5.6 starts with a soli-

Figure 5.6: Architecture of SqueezeNet

tary convolution layer, then 8 Fire modules, and finally a convolution layer. From
the beginning to the end of the network, the number of filters per fire module is
steadily increased. Moreover, the conv1, fire4, fire8, and conv10 layers are followed
by max-pooling layers with stride of 2. Some more configurations of SqueezeNet
like SqueezeNet with simple and complex bypass connections are inspired from the
ResNet architecture [14].
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5.6 DenseNet
DenseNet is a convolutional neural network in which each layer is connected to all
of the levels below it. In a conventional feed-forward Convolutional Neural Network
(CNN), apart from the first one (which takes in the input) every convolutional layer
draws the output of the preceding convolutional layer and employs an output fea-
ture map that is then passed on to the next convolutional layer. The ‘vanishing
gradient’ problem emerges when a CNN network gets deeper. DenseNets solves this
problem by easing the connectivity pattern between layers and altering the usual
CNN architecture. Since the DenseNet architecture is connected to every other layer
directly, its name is Densely Connected Convolutional Network.

DenseNets are separated into dense blocks which are formed by multiple convolu-
tional layers. Inside a dense block, inputs of each layer are concatenated with the
feature maps of all the previous layers, rather than being added element-wise. The
feature maps have been considered as the network’s global state. After passing
through each convolutional layer, the feature map expands in size, with each layer
contributing ‘k’ features on top of the global state. This parameter ‘k’ is called the
network’s growth rate which controls the amount of data added to each layer of the
network. Even though each layer only provides a ‘k’ number of output feature-maps,

Figure 5.7: Three dense blocks are shown in a deep DenseNet

the number of inputs can be fairly high, especially when more layers are added. To
increase the efficiency and speed of computations, a 1x1 convolution layer has been
included as a bottleneck layer before each 3x3 convolution.

The dimensions of the feature maps remain constant inside a dense block however
the amount of filters between them keeps changing. When the size of feature maps
varies, use of the concatenation method is not reasonable. However, down-sampling
of layers, which minimizes the size of feature-maps through dimensionality reduction
to achieve higher computation speeds, is an important aspect of CNNs. Thus, to
get rid of this dilemma Transition Layers are added between the blocks that lower
the number of channels to half of what they were before. A 1x1 convolutional
layer and a 2x2 average pooling layer with stride 2 are included in each transition
layer. DenseNets require fewer parameters than a conventional CNN because of the
bottleneck structure and transition layers.

For our classification problem, we are using DenseNet-121, among the various
DenseNet configurations. All the configurations have an input of a basic convolution
layer with 64 filters of size 7x7, followed by a 3x3 max pooling layer both having a
stride of 2. Next the feature map advances through four dense blocks with transition
layers between them. The final output of the dense blocks goes through a 7x7 global
average pooling before being attached by a softmax classifier [29].
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Layers Output Size DenseNet-121
Convolution 112 x 112 7 x 7 conv, stride 2

Pooling 56 x 56 3 x 3 max pool, stride 2

Dense Block (1) 56 x 56
[
1× 1 conv
3× 3 conv

]
× 6

Transition Layer (1) 56 x 56 1× 1 conv
28 x 28 2 x 2 average pool, stride 2

Dense Block (2) 28 x 28
[
1× 1 conv
3× 3 conv

]
× 12

Transition Layer (2) 28 x 28 1× 1 conv
14 x 14 2 x 2 average pool, stride 2

Dense Block (3) 14 x 14
[
1× 1 conv
3× 3 conv

]
× 24

Transition Layer (3) 14 x 14 1× 1 conv
7 x 7 2 x 2 average pool, stride 2

Dense Block (4) 14 x 14
[
1× 1 conv
3× 3 conv

]
× 16

Classification Layer 1 x 1 7× 7 global average pool
1000D fully-connected, softmax

Table 5.3: Architecture of DenseNet-121
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Chapter 6

Evaluation

We utilize several metrics to correctly evaluate the performance of our models, in-
cluding Accuracy, Area Under the Receiver Operating Characteristic Curve (ROC
AUC), F1 scores, Recall score, Sensitivity score and Precision score.

Accuracy is the most widely used threshold metric for evaluating classifiers which
shows the ratio of accurately predicted samples to total samples.

Accuracy =
True Negative + True Positive

True Negative + True Positive + False Positive + False Negative
Here, True Positive (TP) refers to the outcomes where the positively predicted
classes are actually positive, and True Negative (TN) are those outcomes where the
Negatively predicted classes are actually negative. In contrast, False Positive (FP)
are those positive predictions where the actual class is negative and False Negative
(FN) are those negative predictions where the actual class is positive. In short, TP
and TN are the correct predictions, whereas FP and FN are the wrong predictions.

Recall score, also known as the Sensitivity score, is the percentage of all positive
samples accurately predicted by the model. In our task, the recall metric indicates
what percentage of total patients with diseases were predicted by the model to have
that disease. The high recall score is significant when we need to identify more sick
patients.

Recall =
True Positive

True Positive + False Negative
Specificity score is the opposite of the Recall score and is the percentage of all neg-
ative samples accurately predicted by the model. The specificity metric in our task
reveals what percentage of total healthy patients the model predicted to be healthy.

Specificity =
True Negative

True Negative + False Positive
Precision score assesses a model’s ability to predict positive labels correctly and dis-
plays the percentage of relevant findings from all positive predictions. The precision
metric in our task indicates the percentage of patients who had the disease and is
diagnosed by the model. A high precision score is essential if we focus on lowering
False positives rates.
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Precision =
True Positive

True Positive + False Positive
The F1 score, obtained by determining the harmonic mean of precision and recall,
gives a balanced combination of the recall and precision scores.

F1score = 2× Precision× Recall
Precision + Recall

The ROC-AUC metric measures a model’s ability to differentiate across classes. We
utilize The ROC-AUC score for our Covid-19 infected and healthy patients’ cough
detection task to assess the model’s ability to differentiate between positive and neg-
ative cough recordings. Also, we utilize the ROC-AUC plot to display the model’s
predictions at different threshold values. For our classification tasks, we display the
macro-average scores for Recall, Precision, F1, and Sensitive. The macro-average
computes the score for each class independently and then averages them, assigning
equal weight to each class. The macro-average score is particularly useful because
we aim to classify all diseases and healthy individuals separately.

We show our results for each experiment separately in the tables below. We use
the feature column to show the results for three types of feature inputs (i.e MFCC,
Mel-Spectrogram, and Mel-Spectrogram with data augmentation). Additionally, we
show the results from the two types of the training process: fine-tuning and the
1cycle policy in separate tables.

6.1 Respiratory Diseases Classification
The tables below show the experimental result of respiratory disease classification
where we use the ICBHI Challenge Dataset. Table 6.1, 6.2 represent the results
for our six class respiratory disease classification with both fine-tune and 1cycle
procedure respectively. Similarly, Table 6.3, 6.4 depict the experimental finding of
our 3 class classification with both training procedures as well.
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Model Feature Task Accuracy (%) ROC-AUC (%) F1 score (%) Recall(%) Specificity (%) Precision(%)

ResNet-18

Mel-Spectrogram 90.22 68.16 44.72 42.01 94.3 54.38

Mel-Spectrogram(Augmented) 85.87 78.43 51.28 59.86 96.99 47.31

MFCC 86.41 60.75 28.64 29 92.5 28.6

ResNet-34

Mel-Spectrogram 87.5 75.69 47.62 54.67 96.71 47.76

Mel-Spectrogram(Augmented) 86.41 86.25 64.03 75.41 97.08 58.12

MFCC 86.41 60.75 28.64 29 92.5 28.6

ResNet-50

Mel-Spectrogram 88.04 75.97 47.1 55.72 96.23 44.12

Mel-Spectrogram(Augmented) 88.59 82.79 57.18 68.11 97.47 54.1

MFCC 89.13 68.25 41.43 41.8 94.69 41.51

ResNet-101

Mel-Spectrogram 90.76 79.51 56.92 61.75 97.27 56.45

Mel-Spectrogram(Augmented) 83.7 75.66 47.24 55.84 95.48 44.37

MFCC 86.96 70.3 41.75 44.56 96.04 41.9

VGG16

Mel-Spectrogram 89.67 80.37 49.14 63.66 97.09 47.25

Mel-Spectrogram(Augmented) 91.3 86.32 66.74 74.14 98.5 64.24

MFCC 88.04 75.19 47.36 54.72 95.65 43.22

VGG19

Mel-Spectrogram 92.39 82.98 60.18 67.83 98.12 60.45

Mel-Spectrogram(Augmented) 91.3 90.18 72.82 81.86 98.5 67.56

MFCC 90.22 72.19 51.47 50.64 93.74 56.13

AlexNet

Mel-Spectrogram 88.59 64.99 33.88 37.09 92.88 33.86

Mel-Spectrogram(Augmented) 82.07 76.43 43.85 55.95 96.92 39.08

MFCC 86.39 68.74 36.16 43.39 94.08 32.66

SqueezeNet

Mel-Spectrogram 89.13 72.3 49.77 50.48 94.12 54.07

Mel-Spectrogram(Augmented) 81.52 75.2 41.97 53.57 96.83 37.78

MFCC 85.33 59.13 25.86 26.51 91.74 28.14

DenseNet-121

Mel-Spectrogram 91.85 80.53 64.26 64.18 96.88 72.9

Mel-Spectrogram(Augmented) 82.07 74.84 41.91 52.77 96.92 39

MFCC 85.33 74.84 45.8 53.35 96.33 52.32

XResNet-50

Mel-Spectrogram 89.67 85.26 62.32 72.87 97.65 56.2

Mel-Spectrogram(Augmented) 86.41 84.3 55.51 70.92 97.68 50.24

MFCC 87.5 81.26 54.71 64.67 97.85 50.23

Table 6.1: Experimental results for 6 class classification using fine-tune approach on
ICBHI dataset

6.2 COVID-19 Cough Classification
In this section, the tables illustrate the COVID-19 infected and Healthy patients’
cough classification result where we use the Coswara and COUGHVID Dataset.
The experimental results based on the Coswara dataset are shown in Table 6.5,
6.6 whereas experimental results based on the COUGHVID dataset are depicted in
Table 6.7, 6.8. All the evaluation metrics are included in the tables including both
of the training procedures.
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Model Feature Task Accuracy (%) ROC-AUC (%) F1 score (%) Recall(%) Specificity (%) Precision(%)

ResNet-18

Mel-Spectrogram 92.93 86.52 72.61 75.4 97.64 83.12

Mel-Spectrogram(Augmented) 85.87 83.21 50.41 68.85 97.57 42.41

MFCC 91.85 80.43 64.78 65.14 95.73 65.03

ResNet-34

Mel-Spectrogram 88.59 69.5 35.21 42.12 96.88 31.5

Mel-Spectrogram(Augmented) 90.76 82.38 60.35 66.36 98.41 58.05

MFCC 87.5 70.4 40.25 44.66 96.14 40.14

ResNet-50

Mel-Spectrogram 90.22 86.12 65.16 73.93 98.32 64.83

Mel-Spectrogram(Augmented) 86.96 80.9 54.05 64.62 97.19 50.4

MFCC 86.41 72.47 46.4 49.01 95.94 51.61

ResNet-101

Mel-Spectrogram 90.76 75.77 56.65 57.15 94.4 67.62

Mel-Spectrogram(Augmented) 85.33 79.65 55.15 62.98 96.33 51.99

MFCC 85.87 78.43 51.28 59.86 96.99 47.31

VGG16

Mel-Spectrogram 90.76 85.81 68.42 74.93 96.69 64.55

Mel-Spectrogram(Augmented) 87.5 83.73 57.69 70.17 97.29 52.34

MFCC 89.67 77.22 54.64 57.36 97.07 63.18

VGG19

Mel-Spectrogram 84.24 76.51 46.28 56.31 96.71 42.21

Mel-Spectrogram(Augmented) 86.96 77.84 48.6 59.06 96.61 43.19

MFCC 86.41 67.66 35.54 39.96 95.37 33.92

AlexNet

Mel-Spectrogram 86.96 61.71 34.15 31.38 92.03 46.13

Mel-Spectrogram(Augmented) 81.52 81.78 50.47 66.74 96.82 48.25

MFCC 86.39 65.37 33.83 38.1 92.64 31.79

SqueezeNet

Mel-Spectrogram 90.76 74.5 52.34 54.03 94.97 51.05

Mel-Spectrogram(Augmented) 77.72 78.56 45.04 61.51 95.6 40.03

MFCC 79.89 66.29 33.45 37.74 94.83 31.41

DenseNet-121

Mel-Spectrogram 93.48 79.72 63.83 62.28 97.16 67.74

Mel-Spectrogram(Augmented) 88.59 81.08 57.63 65.83 96.32 53.69

MFCC 88.04 68.73 37.46 42.97 94.5 35.39

XResNet-50

Mel-Spectrogram 92.93 87.63 72.02 77.63 97.64 68.95

Mel-Spectrogram(Augmented) 83.15 80.21 51.09 63.88 96.54 47.1

MFCC 87.5 75.11 50.32 54.67 95.56 50.03

Table 6.2: Experimental results for 6 class classification using 1cycle approach on
ICBHI dataset

39



Model Feature Task Accuracy (%) ROC-AUC (%) F1 score (%) Recall(%) Specificity (%) Precision(%)

ResNet-18

Mel-Spectrogram 91.85 73.59 60.08 58 89.19 63.8

Mel-Spectrogram(Augmented) 91.22 85.04 67.39 73.21 96.87 63.48

MFCC 93.48 88.63 73.98 80.88 96.39 72.41

ResNet-34

Mel-Spectrogram 94.57 83.15 72.67 72.18 94.12 74.81

Mel-Spectrogram(Augmented) 89.19 88.07 68.72 80 96.13 63.22

MFCC 92.39 75.18 60.02 59.7 90.67 63.04

ResNet-50

Mel-Spectrogram 93.48 79.58 62.45 64.14 95.01 68.63

Mel-Spectrogram(Augmented) 91.22 88.13 75.07 81.03 95.23 71.95

MFCC 92.39 76.4 68.89 64.78 88.02 75.98

ResNet-101

Mel-Spectrogram 94.57 90.42 77.89 82.78 98.06 74.07

Mel-Spectrogram(Augmented) 91.89 84.13 72.11 75.98 92.28 69.05

MFCC 91.3 85.56 68.23 75.5 95.62 65.66

VGG16

Mel-Spectrogram 92.93 84.87 70.21 73.57 96.16 67.55

Mel-Spectrogram(Augmented) 90.54 85.91 66.98 75.21 96.6 64.06

MFCC 92.93 83.82 70.67 74.1 93.54 70.84

VGG19

Mel-Spectrogram 94.02 84.55 77.11 76.53 92.58 77.75

Mel-Spectrogram(Augmented) 92.57 81.85 71.13 71.2 92.5 71.61

MFCC 92.93 73.05 60.62 57.89 88.22 70.04

AlexNet

Mel-Spectrogram 91.3 79.39 63.5 65.86 92.93 62.14

Mel-Spectrogram(Augmented) 90.54 92.61 74.98 88.59 96.63 67.78

MFCC 89.67 71.85 56.44 56.65 87.04 63.56

SqueezeNet

Mel-Spectrogram 89.67 78.14 61.77 65.24 91.04 59.18

Mel-Spectrogram(Augmented) 78.38 74.77 50.54 60.51 89.04 47.97

MFCC 91.3 79.01 64.8 66.38 91.63 63.61

DenseNet-121

Mel-Spectrogram 91.3 80 66.68 68.4 91.61 65.3

Mel-Spectrogram(Augmented) 82.43 73.55 52.67 59.79 87.3 49.7

MFCC 92.93 84.55 73.67 75.59 93.51 72.12

XResNet-50

Mel-Spectrogram 88.59 83.54 63.11 72.45 94.64 59.22

Mel-Spectrogram(Augmented) 90.54 84.65 65.47 72.69 96.61 61.9

MFCC 92.39 83.56 73.12 76.43 90.68 71.75

Table 6.3: Experimental results for 3 class classification using fine-tune training on
ICBHI dataset
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Model Feature Task Accuracy (%) ROC-AUC (%) F1 score (%) Recall(%) Specificity (%) Precision(%)

ResNet-18

Mel-Spectrogram 93.48 84.67 71.47 74.3 95.04 70.1

Mel-Spectrogram(Augmented) 88.51 90.59 72.71 85.3 95.87 66.34

MFCC 90.76 72.85 56.23 55.57 90.12 57.91

ResNet-34

Mel-Spectrogram 93.48 77.86 66.96 64.67 91.06 71.21

Mel-Spectrogram(Augmented) 90.54 81.93 66.14 70.43 93.44 64.11

MFCC 91.3 80 66.68 68.4 91.61 65.3

ResNet-50

Mel-Spectrogram 94.57 83.49 75.58 74.19 92.78 77.21

Mel-Spectrogram(Augmented) 91.89 81.01 66.45 68.16 93.87 67.12

MFCC 94.02 80.61 72.99 69.95 91.26 76.77

ResNet-101

Mel-Spectrogram 94.57 84.93 72.19 73.15 96.71 86.75

Mel-Spectrogram(Augmented) 87.84 82.76 66.9 74.7 90.82 62.14

MFCC 90.76 85.46 67.59 74.24 96.68 64.29

VGG16

Mel-Spectrogram 92.39 82.62 67.93 71.88 93.37 70.54

Mel-Spectrogram(Augmented) 91.22 86.74 72.41 78.25 95.23 70.52

MFCC 88.04 77.67 59.54 66.2 89.15 57

VGG19

Mel-Spectrogram 92.39 76.99 63.28 63.29 90.69 65.66

Mel-Spectrogram(Augmented) 90.54 88.7 70.89 80.77 96.63 65.19

MFCC 88.04 69.63 47.99 51.48 87.78 45.71

AlexNet

Mel-Spectrogram 88.04 71.18 53.68 54.54 87.81 52.92

Mel-Spectrogram(Augmented) 82.43 83.05 58.84 72.39 93.71 54.33

MFCC 91.85 76.81 69.91 67.11 86.52 73.39

SqueezeNet

Mel-Spectrogram 91.3 77.68 66.12 66.38 88.98 66.03

Mel-Spectrogram(Augmented) 72.97 72.46 45.96 56.2 88.71 44.88

MFCC 91.85 82.08 72.2 73.69 90.48 70.91

DenseNet-121

Mel-Spectrogram 91.85 78.46 63.43 65.1 91.83 64.64

Mel-Spectrogram(Augmented) 89.19 80.02 62.35 67.14 92.91 59.69

MFCC 92.39 78.73 68.43 66.8 90.67 71.06

XResNet-50

Mel-Spectrogram 91.3 75.76 55.91 57.27 94.24 55.37

Mel-Spectrogram(Augmented) 92.57 92.09 78.31 86.84 97.33 72.69

MFCC 89.67 86.56 69.08 79.44 93.69 63.85

Table 6.4: Experimental results for 3 class classification using 1cycle approach on
ICBHI dataset
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Model Feature Task Accuracy (%) ROC-AUC (%) F1 score (%) Recall(%) Specificity (%) Precision(%)

ResNet-18

MFCC 84.23 76.53 73.61 71.06 71.06 78.53

Mel-Spectrogram 81.85 82.03 68.76 66.57 66.57 73.71

Mel-Spectrogram (Augmented) 74.66 75.46 65.57 67.16 67.16 64.71

ResNet-34

MFCC 82.89 75.04 67.51 64.65 64.65 79.35

Mel-Spectrogram 84.59 81.08 73.06 70.04 70.04 79.95

Mel-Spectrogram (Augmented) 76.37 79.29 69.18 72.28 72.28 67.9

ResNet-50

MFCC 78.19 70.58 65.88 64.98 64.98 67.21

Mel-Spectrogram 80.48 74.14 70.29 69.72 69.72 70.96

Mel-Spectrogram (Augmented) 71.23 70.04 62.96 65.55 65.55 62.27

ResNet-101

MFCC 80.54 76.44 66.72 64.81 64.81 71.29

Mel-Spectrogram 85.96 81.51 75.84 72.64 72.64 82.4

Mel-Spectrogram (Augmented) 82.19 80.73 74.27 74.84 74.84 73.77

VGG16

MFCC 83.22 79.83 67.87 64.87 64.87 80.77

Mel-Spectrogram 84.59 80.73 72.18 68.89 68.89 81.06

Mel-Spectrogram (Augmented) 75 77.71 66.82 69.1 69.1 65.77

VGG19

MFCC 81.88 78.57 69.02 66.78 66.78 74.12

Mel-Spectrogram 82.88 79 69.35 66.65 66.65 76.7

Mel-Spectrogram (Augmented) 79.45 80.21 71.53 73.09 73.09 70.47

AlexNet

MFCC 81.05 77.85 67.24 65.28 65.28 71.7

Mel-Spectrogram 82.19 76.46 70.88 69.09 69.09 73.91

Mel-Spectrogram (Augmented) 55.48 51.71 48.42 50.9 50.9 50.63

SqueezeNet

MFCC 73.83 68.05 61.2 61.08 61.08 61.33

Mel-Spectrogram 83.22 80.72 70.2 67.44 67.44 77.3

Mel-Spectrogram(Augmented) 66.78 66.16 59.89 63.86 63.86 60.06

DenseNet-121

MFCC 81.88 77.67 69.9 67.89 67.89 73.8

Mel-Spectrogram 82.19 78.91 70.03 67.94 67.94 74.17

Mel-Spectrogram (Augmented) 77.05 78.34 70.08 73.29 73.29 68.72

XResNet-50

MFCC 79.87 71.34 57.58 57.17 57.17 72.74

Mel-Spectrogram 82.88 81.04 73.78 72.97 72.97 74.74

Mel-Spectrogram (Augmented) 69.18 74.71 62.66 67.12 67.12 62.48

Table 6.5: Experimental results of fine-tune training with Coswara dataset
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Model Feature Task Accuracy (%) ROC-AUC (%) F1 score (%) Recall(%) Specificity (%) Precision(%)

ResNet-18

MFCC 77.05 73.32 64.19 63.51 63.51 65.16

Mel-Spectrogram 84.59 83.72 74.62 72.34 72.34 78.48

Mel-Spectrogram (Augmented) 66.44 61.61 57.94 60.24 60.24 57.87

ResNet-34

MFCC 75.34 73.02 62.7 62.42 62.42 63.03

Mel-Spectrogram 83.22 82.54 73.81 72.62 72.62 75.39

Mel-Spectrogram (Augmented) 72.82 74.97 65.26 68.2 68.2 64.37

ResNet-50

MFCC 81.16 76.9 66.55 64.4 64.4 72.55

Mel-Spectrogram 83.56 74.06 71.49 68.81 68.81 77.5

Mel-Spectrogram (Augmented) 70.81 71.68 64.07 68.02 68.02 63.53

ResNet-101

MFCC 85.62 78.27 74.66 71.27 71.27 82.52

Mel-Spectrogram 82.88 75.45 71.18 68.95 68.95 75.53

Mel-Spectrogram (Augmented) 75.5 73.59 66.09 67.14 67.14 65.39

VGG16

MFCC 80.82 78.18 67.73 65.91 65.91 71.44

Mel-Spectrogram 80.48 75.56 69.92 69.14 69.14 70.9

Mel-Spectrogram (Augmented) 74.5 76.7 65.53 67.05 67.05 64.69

VGG19

MFCC 81.51 77.54 70.95 69.8 69.8 72.55

Mel-Spectrogram 80.48 71.87 66.91 65.12 65.12 70.77

Mel-Spectrogram (Augmented) 81.88 77.21 72.83 72.33 72.33 73.39

AlexNet

MFCC 75.4 70.32 60.29 59.63 59.63 61.5

Mel-Spectrogram 79.11 70.56 60.3 59.07 59.07 67.69

Mel-Spectrogram (Augmented) 66.11 66.91 58.59 61.69 61.69 58.7

SqueezeNet

MFCC 80.82 72.34 66.74 64.76 64.76 71.58

Mel-Spectrogram 80.45 71.38 68.93 67.17 67.17 72.39

Mel-Spectrogram (Augmented) 73.49 71.46 66.12 69.18 69.18 65.15

DenseNet-121

MFCC 77.05 78.41 67.72 68.69 68.69 67.02

Mel-Spectrogram 79.7 72.82 68.63 67.25 67.25 70.96

Mel-Spectrogram (Augmented) 76.17 80.74 69.3 72.56 72.56 68.03

XResNet-50

MFCC 80.82 75.89 70.26 69.36 69.36 71.43

Mel-Spectrogram 78.95 73.59 69.51 69.07 69.07 70.02

Mel-Spectrogram (Augmented) 80.2 78.62 69.78 69.04 69.04 70.71

Table 6.6: Experimental results of 1cycle training with Coswara dataset
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Model Feature Task Accuracy (%) ROC-AUC (%) F1 score (%) Recall(%) Specificity (%) Precision(%)

ResNet-18

MFCC 74.42 58.11 58.17 57.69 57.69 63.17

Mel-Spectrogram 75.31 73.08 60.62 59.7 59.7 65.32

Mel-Spectrogram (Augmented) 59.83 62.69 54.91 57.67 57.67 55.93

ResNet-34

MFCC 74.88 65.46 61.42 60.46 60.46 64.78

Mel-Spectrogram 71.13 64.69 60.02 59.67 59.67 60.54

Mel-Spectrogram (Augmented) 68.2 67.28 59.46 59.93 59.93 59.18

ResNet-50

MFCC 76.28 69.62 63.87 62.62 62.62 67.42

Mel-Spectrogram 68.62 60.7 57.06 56.89 56.89 57.31

Mel-Spectrogram (Augmented) 65.27 65.46 56.77 57.43 57.43 56.58

ResNet-101

MFCC 71.16 68.92 63 63.52 63.52 62.63

Mel-Spectrogram 74.48 62.37 59.28 58.58 58.58 63.56

Mel-Spectrogram (Augmented) 65.27 60 57.54 58.53 58.53 57.35

VGG16

MFCC 73.49 63.54 58.21 57.68 57.68 61.71

Mel-Spectrogram 76.15 64.23 59.22 58.59 58.59 67.25

Mel-Spectrogram (Augmented) 72.38 64.7 58.87 58.3 58.3 60.77

VGG19

MFCC 72.56 68.94 61.83 61.37 61.37 62.52

Mel-Spectrogram 74.9 64.67 62.06 61.08 61.08 64.95

Mel-Spectrogram (Augmented) 65.69 68.35 60.45 63.24 63.24 60.52

AlexNet

MFCC 74.61 68.1 62.4 61.5 61.5 64.48

Mel-Spectrogram 72.8 68.44 54.33 54.7 54.7 58.81

Mel-Spectrogram (Augmented) 67.78 63.07 59.52 60.21 60.21 59.19

SqueezeNet

MFCC 79.53 72.44 65.54 63.57 63.57 75.73

Mel-Spectrogram 75.73 68.03 58.88 58.31 58.31 66.12

Mel-Spectrogram (Augmented) 65.27 61.45 57.16 57.98 57.98 56.97

DenseNet-121

MFCC 75.81 75.17 63.46 62.31 62.31 66.61

Mel-Spectrogram 72.38 68.09 61.03 60.51 60.51 61.95

Mel-Spectrogram (Augmented) 67.36 65.35 61.24 63.25 63.25 60.93

XResNet-50

MFCC 76.28 73.06 63.87 62.62 62.62 67.42

Mel-Spectrogram 73.64 68.17 60.46 59.69 59.69 62.82

Mel-Spectrogram (Augmented) 75.31 71.68 59.27 58.59 58.59 65.15

Table 6.7: Experimental results of fine-tune training with COUGHVID dataset
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Model Feature Task Accuracy (%) ROC-AUC (%) F1 score (%) Recall(%) Specificity (%) Precision(%)

MFCC 67.91 60.25 57.08 57.03 57.03 57.12

Mel-Spectrogram 73.22 71.72 61.21 60.52 60.52 62.72ResNet-18

Mel-Spectrogram (Augmented) 67.78 70.1 59.12 59.66 59.66 58.84

MFCC 71.16 64.37 57.13 56.75 56.75 58.72

Mel-Spectrogram 74.9 63.22 61.49 60.53 60.53 64.8ResNet-34

Mel-Spectrogram (Augmented) 63.6 61.4 57.27 59.08 59.08 57.37

MFCC 73.95 67.1 65.38 65.38 65.38 65.38

Mel-Spectrogram 75.73 68.1 63.8 62.75 62.75 66.55ResNet-50

Mel-Spectrogram (Augmented) 51.46 48.7 47.05 49.32 49.32 49.48

MFCC 69.77 61.97 56.09 55.81 55.81 57.09

Mel-Spectrogram 74.48 67.96 63.27 62.46 62.46 64.83ResNet-101

Mel-Spectrogram (Augmented) 62.76 61.55 57.51 60.18 60.18 57.99

MFCC 78.14 63.87 60.36 59.56 59.56 74.69

Mel-Spectrogram 72.8 63.96 55.89 55.81 55.81 59.67VGG16

Mel-Spectrogram (Augmented) 59 60.69 54.52 57.67 57.67 55.87

MFCC 74.88 57.52 60.05 59.23 59.23 64.46

Mel-Spectrogram 71.13 58.18 57.89 57.46 57.46 59.18VGG19

Mel-Spectrogram (Augmented) 62.76 63.85 57.22 59.63 59.63 57.62

MFCC 74.61 62.93 58.61 58.02 58.02 63.29

Mel-Spectrogram 73.22 61.2 52.89 53.87 53.87 58.7AlexNet

Mel-Spectrogram (Augmented) 66.11 63.51 58.92 60.2 60.2 58.67

MFCC 75.81 69.2 63.46 62.31 62.31 66.61

Mel-Spectrogram 74.9 64.55 58.93 58.31 58.31 64.23SqueezeNet

Mel-Spectrogram (Augmented) 67.36 65.46 59.18 59.93 59.93 58.87

MFCC 73.49 65.33 59.62 58.91 58.91 62.3

Mel-Spectrogram 70.71 62.18 57.57 57.18 57.18 58.68DenseNet-121

Mel-Spectrogram (Augmented) 56.9 60.04 52.33 55.16 55.16 53.94

MFCC 80 69.36 70.03 68.18 68.18 74.01

Mel-Spectrogram 76.57 67.36 63.5 62.2 62.2 67.93XResNet-50

Mel-Spectrogram (Augmented) 69.04 67.89 62.31 63.82 63.82 61.82

Table 6.8: Experimental results of 1cycle training with COUGHVID dataset
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Chapter 7

Discussion

For respiratory disease classification, we attain the maximum 93.48% accuracy using
the DenseNet-121 model in classifying respiratory diseases into six different disease
categories; the model was trained with Mel-Spectrograms features using 1cycle train-
ing policy. We achieve the highest macro-average ROC-AUC and specificity score
of 0.90 and 98.50% using the VGG19 model. On the other hand, the highest macro
F1 value of 72.82% and recall score of 81.86% are slightly lower while employing the
VGG19 model. The VGG19 model was trained using the balanced mini-batches and
augmented Mel-Spectrograms along with fine-tuning training procedures. Moreover,
the ResNet-18 model has the highest macro average precision score of 83.12%; the
model was trained using the Mel-Spectrograms feature and 1cycle training policy.
The low macro-average f1 score, recall score, and precision scores are due to the
fact that the ICBHI dataset contains some classes with very little data, such as
Bronchiolitis have only 13 samples which affects the overall macro average scores.
As a result, the model’s predictions are comparatively lower on those classes which
restricts us from evaluating the model’s performance appropriately. The bar plot in
Figure 7.1 shows the individual Recall scores of six separate disease classes for the
VGG19 model.

Figure 7.1: Recall scores of six separate disease classes
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For respiratory disease categorization, based on the severity of the disease, we ac-
quire the highest accuracy of 94.57% using the ResNet-34 and ResNet-101 which
were trained with fine-tune training procedure. Moreover, the same accuracy was
acquired using ResNet-50 and ResNet-101 architectures which were trained with
1cycle policy. All of these models were trained with Mel-Spectrogram features.
Also, we achieved the highest ROC-AUC and macro average recall score of 0.92
and 88.59%, respectively, using the AlexNet architecture trained with augmented
Mel-spectrogram in balanced mini-batches with the fine-tuning training procedure.
Additionally, we achieve the highest macro average f1 scores of 78.31% using the
XResNet-50 architecture; the model was trained with augmented Mel-Spectrograms
using the 1cycle training policy. However, the ResNet-101 architecture has the
highest macro average specificity and precision scores of 98.06% and 86.75% trained
using Mel-Spectrograms with fine-tuning and 1cycle training policy, respectively.
Our result for categorizing respiratory disease into three categories is better than
the first sub-task of classifying the disease into separate classes, indicating that the
model can categorize the disease more effectively than it can individually identify
it.

Figure 7.2 and 7.3 contrasts fine-tuning and 1cycle training techniques. Both train-
ing approaches produce nearly equal results when employed with the MFCC feature.
Also, using the balanced mini-batch training with augmented Mel-Spectrogram in-

Figure 7.2: Specificity score with fine-tune training procedure

creased the average recall for all models up to 5% in our experiments. The Figure
7.4 and 7.5 shows the comparison of two types of Mel-Spectrogram feature input.

For COVID-19 infected and healthy patients’ cough classification using the Coswara
dataset, we acquired the maximum accuracy and F1 score of 85.96% and 75.83%,
respectively, using the ResNet-101 model trained using Mel-Spectrograms with the
fine-tune training procedure. However, using the ResNet-101 model trained with
augmented spectrograms with fine-tuning, we attained the highest recall and speci-
ficity score of 74.84%. The highest precision score is 82.52%, which was similarly
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Figure 7.3: Specificity score with 1cycle training procedure

Figure 7.4: Recall score for Mel-Spectrogram input without augmentation

achieved with the ResNet-101 model, but this time employing MFCC features with
the 1cycle policy. In addition, utilizing a ResNet-18 model trained with 1cycle policy
using Mel-Spectrograms, we find the highest ROC-AUC score of 0.84. For this task,
we are using a crowdsourced cough dataset with a significant chance of incorrect
disease categorization during collection since the labels are self-provided by the par-
ticipants. Such mislabeling could be one of the explanations for the model’s slightly
lower performance compared to our respiratory disease classification task, where
we employed the ICBHI dataset with expert-diagnosed disease labels. Figure 7.6
shows the confusion matrix of the ResNet-101 model trained with augmented Mel-
Spectrograms. Here, the macro average sensitivity and specificity score is 74.84%.

Utilizing the COUGVID dataset for COVID-19 infected and healthy patients’ cough
classification, we achieve the highest accuracy and F1 scores of 80% and 70.03% re-
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Figure 7.5: Recall score for Mel-Spectrogram input with augmentation

Figure 7.6: Confusion Matrix of ResNet-101 model

spectively using the XResNet-50 model on the MFCC feature with 1cycle training
policy. We also find the highest Recall and Specificity score of 68.19% using the
same model. However, we achieve the highest Roc-Auc score of 0.75 using the
DenseNet-121 model and the highest precision score of 75.73% with the SqueezeNet
model, employing MFCC features with fine-tuning training in both models. The
score is lower than the Coswara datasets score, which might be due to a variation in
cough sounds in the two datasets. Some recordings in the COUGHVID dataset, for
example, contain just one cough since participants were not instructed how many
times they should cough during the data collection method; whereas, participants
in the Coswara data collection procedure were asked to cough at least three times.
Furthermore, because the COUGHVID dataset contains a variety of cough sounds
and the files are not explicitly labeled by the cough type, we could not choose only
the heavy-cough files, as we did with the Coswara dataset.
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Figure 7.7: ROC-AUC score for Coswara dataset

Figure 7.8: ROC-AUC score for COUGHVID dataset

Here the above Figure 7.7 and 7.8 contrast the ROC-AUC score for MFCC feature
models for the two datasets, Coswara and COUGHVID.
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Chapter 8

Comparison

In this paper, we have adapted numerous models and training methods to get the
best outcomes. We chose the model with the highest performance to compare it to
earlier studies. However, because many implementation details are unavailable, this
comparison is not considered a head-to-head comparison.

8.1 Respiratory Disease Classification
The comparison of Respiratory Disease Classification is shown in tables 8.1 and
8.2, where we have compared our best results with previous research work. It shows
that most previous studies employed machine learning techniques, but we used a
variety of deep CNN models. Despite the data being imbalanced, most previous
research has avoided using augmentation techniques. In contrast, we used a variety
of augmentation strategies to balance the data in our study. Most of the studies
used six or more class classification procedures; however, we also used a three-class
classification technique along with six-class classification.
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Previous work Data Augmentation Task Model Feature used

Chambres,G. et al [26] ICBHI No
Wheeze, Crackle

based 2 class
machine learning Low-level features

Fraiwan,L. et al[55]
King Abdullah University

Hospital+ICBHI
No 6 class Boosted Decision Tree

Shannon entropy, logarithmic

energy entropy, and

spectrogram-based spectral

entropy

Kok, X. H. et al[34] ICBHI No 6 class RUSBoost
Feature from Wilcoxon Rank

Sum test and mRMR algorithm

Wu,L. et al[51] ICBHI No 6 class

combining random forest

classifier and Empirical

Mode Decomposition (EMD)

Mean of multiple features

Basu, V. et al[41] ICBHI Yes 6 class Custom Deep CNN MFCC

Nguyen, T. et al[62] ICBHI Yes 3 class

Pre-Trained ResNet-101

with Stochastic

Normalization

Logmel Spectrogram

Nguyen, T. et al[62] ICBHI Yes 2 class

Pre-Trained ResNet-101

with Stochastic

Normalization

Logmel Spectrogram

Ours ICBHI Yes 6 class CNN Mel-Spectrogram, MFCC

Ours ICBHI Yes 3 class CNN Mel-Spectrogram, MFCC

Table 8.1: Theoretical comparison of Respiratory Disease Classification with previ-
ous works

Previous work Task Accuracy (%) Sensitivity (%) Specificity (%)

Chambres,G. et al [26]
Wheeze, Crackle

based 2 class
85 - -

Fraiwan,L. et al[55] 6 class 98.27 95.28 98.90

Kok, X. H. et al[34] 6 class 87.1 86.8 93.6

Wu,L. et al[51] 6 class 88 87 97

Basu, V. et al[41] 6 class 95.67 95.65 -

Nguyen, T. et al[62] 3 class - 91.47 100

Nguyen, T. et al[62] 2 class - 96.41 100

Ours (VGG19) 6 class 91.30 81.86 98.50

Ours (ResNet-101) 3 class 94.57 82.78 98.06

Table 8.2: Experimental result comparison of Respiratory Disease Classification
with previous works
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8.2 COVID-19 Cough Classification
The result of cough classification in COVID-19 patients is shown in tables 8.3
and 8.4. Although we have used both Coswara and Coughvid dataset, Coswara
has produced better results. While employing the models, most of the previous
researchers have used various amount of data with class imbalance.

Previous Work Task Model Feature Augmentation

Bagad, P. et al[40] COVID-19 cough classification CNN: ResNet18 Mel-Spectrogram Yes

Sharma, M. et al[66] COVID-19 cough classification CNN: ResNet18 Mel-Spectrogram Yes

Mohammed, E. A. et al[60] COVID-19 cough classification CNN Ensemble Multiple features Yes

Chaudhari,G. et al[44] COVID-19 cough classification CNN Ensemble Multiple features No

Brown, C. et al[43] COVID-19 cough classification CNN Multiple features Yes

Mahanta, H. K.[58] COVID-19 cough classification CNN MFCC Yes

Coppock, H. et al[54] COVID-19 cough classification CNN Log Spectrogram No

Han, J. et al[57] COVID-19 cough classification CNN Mel-Spectrogram No

OUR COVID-19 cough classification CNN Mel-Spectrogram, MFCC Yes

Table 8.3: Theoretical comparison of COVID-19 cough Classification with previous
works
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Previous Work Data Accuracy(%) ROC-AUC

Bagad, P. et al[40] 3,117 total cough samples - 0.72

Sharma, M. et al[66]
1394 Positive and

2866 Negative samples
- 0.79

Mohammed, E. A. et al[60]
638 Positive and

8248 Negative samples
77 0.77

Chaudhari,G. et al[44]
539 Positive and

2810 Negative samples
- 0.77

Brown, C. et al[43]
54 Positive and

34 Negative samples
- 0.82

Mahanta, H. K.[58]
75 Positive and

965 Negative samples
- 0.87

Coppock, H. et al[54]
54 Positive and

32 Negative samples
- 0.846

Han, J. et al[57]
9 Positive and

1964 Negative samples
- 0.71

Ours (ResNet-18)
429 Positive and

1527 Negative samples
84.59 0.84

Table 8.4: Experimental result comparison of COVID-19 Cough Classification with
previous works
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Chapter 9

Conclusion

In this research, we present deep-learning based techniques for detecting respira-
tory diseases and distinguishing COVID-19 infected and healthy patients’ cough
from audio recordings. We achieve 93.48% accuracy and 0.90 ROC-AUC scores to
classify six respiratory conditions from respiratory sound recordings, and 94.57%
accuracy and 0.93 ROC-AUC scores to classify respiratory diseases in three cate-
gories. Moreover, we achieve 85.95% accuracy and a ROC-AUC score of 0.84 in
classifying cough recordings of COVID-19 infected and healthy patients; our result
is comparable to several previous research works. Also, we compare the performance
of two audio features, MFCC and Mel-Spectrogram performances with ten differ-
ent convolutional neural network architectures. Furthermore, we experiment with
various training procedures such as transfer learning, 1cycle policy, and balanced
mini-batch training and compare the performance of each method. Our work shows
that AI can be utilized as an alternative screening and preliminary warning tool for
potential patients. A key challenge is the limited availability of human respiratory
sounds data, as the ICBHI dataset contains only 920 audio recordings. Also, the
lack of ground truth in cough sound data limits the scope because we had to rely on
patients’ self-reports with potential misdiagnosis to train and evaluate the models.
To improve our research we will generate our own dataset under the supervision
of a medical professional and train it in a modified model architecture to get more
efficient results. In addition, we will aim to acquire larger and more representative
data with clinical ground truth in the future, to improve our models’ performance.

55



Bibliography

[1] S. . Davis and P. . Mermelstein, “Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 28, no. 4,
pp. 357–366, 1980. doi: 10.1109/tassp.1980.1163420.

[2] K. R. Smith, “Fuel combustion, air pollution exposure, and health: The situa-
tion in developing countries,” Annual Review of Energy and the Environment,
vol. 18, no. 1, pp. 529–566, 1993. doi: 10.1146/annurev.eg.18.110193.002525.

[3] X. Huang, A. Acero, and H.-W. Hon, “Spoken language processing: A guide
to theory, algorithm, and system development,” Jan. 2001.

[4] R. L. Moedomo, M. S. Mardiyanto, M. Ahmad, B. Alisjahbana, and T. Djat-
miko, “The breath sound analysis for diseases diagnosis and stress measure-
ment,” in 2012 International Conference on System Engineering and Technol-
ogy (ICSET), 2012, pp. 1–6. doi: 10.1109/ICSEngT.2012.6339358.

[5] A. . Badnjevic, M. . Cifrek, and D. . Koruga, “Integrated software suite for
diagnosis of respiratory diseases,” Eurocon 2013, 2013. doi: 10.1109/eurocon.
2013.6625037.

[6] U. K. Barua, S. K. Saha, D. K. Ghosh, and M. M. K. Ruble, “Epidemiological
study on bronchial asthma at shaheed suhrawardy medical college hospital,
dhaka,” Journal of Shaheed Suhrawardy Medical College, vol. 5, no. 2, pp. 77–
80, 2013. doi: 10.3329/jssmc.v5i2.20759.

[7] K. . Simonyan. (Sep. 4, 2014). “Very deep convolutional networks for large-
scale image recognition,” [Online]. Available: https://arxiv.org/abs/1409.1556.

[8] Y. . Amrulloh, U. . Abeyratne, V. . Swarnkar, and R. . Triasih, “Cough sound
analysis for pneumonia and asthma classification in pediatric population,”
2015 6th International Conference on Intelligent Systems, Modelling and Sim-
ulation, 2015. doi: 10.1109/isms.2015.41.

[9] D. Chamberlain, J. Mofor, R. Fletcher, and R. Kodgule, “Mobile stethoscope
and signal processing algorithms for pulmonary screening and diagnostics,”
in 2015 IEEE Global Humanitarian Technology Conference (GHTC), 2015,
pp. 385–392. doi: 10.1109/GHTC.2015.7344001.

[10] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-
nition, 2015. arXiv: 1512.03385 [cs.CV].

[11] ICDDRB, Pneumonia and other respiratory diseases, https://www.icddrb.
org/news-and-events/press-corner/media-resources/pneumonia-and-other-
respiratory-diseases, Accessed: 2022-01-15, 2015.

56

https://doi.org/10.1109/tassp.1980.1163420
https://doi.org/10.1146/annurev.eg.18.110193.002525
https://doi.org/10.1109/ICSEngT.2012.6339358
https://doi.org/10.1109/eurocon.2013.6625037
https://doi.org/10.1109/eurocon.2013.6625037
https://doi.org/10.3329/jssmc.v5i2.20759
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/isms.2015.41
https://doi.org/10.1109/GHTC.2015.7344001
https://arxiv.org/abs/1512.03385
https://www.icddrb.org/news-and-events/press-corner/media-resources/pneumonia-and-other-respiratory-diseases
https://www.icddrb.org/news-and-events/press-corner/media-resources/pneumonia-and-other-respiratory-diseases
https://www.icddrb.org/news-and-events/press-corner/media-resources/pneumonia-and-other-respiratory-diseases


[12] D. . Chamberlain, R. . Kodgule, D. . Ganelin, V. . Miglani, and R. R. Fletcher,
“Application of semi-supervised deep learning to lung sound analysis,” 2016
38th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 2016. doi: 10.1109/embc.2016.7590823.

[13] D. B. Chamberlain, R. . Kodgule, and R. R. Fletcher, “A mobile platform
for automated screening of asthma and chronic obstructive pulmonary dis-
ease,” 2016 38th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), 2016. doi: 10.1109/embc.2016.
7591897.

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.
Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
<0.5mb model size, 2016. arXiv: 1602.07360 [cs.CV].

[15] R. X. A. Pramono, S. A. Imtiaz, and E. . Rodriguez-Villegas, “A cough-based
algorithm for automatic diagnosis of pertussis,” PLOS ONE, vol. 11, no. 9, D.
F. Hozbor, Ed., e0162128, 2016. doi: 10.1371/journal.pone.0162128.

[16] (Feb. 4, 2016). “Torch | training and investigating residual nets,” [Online].
Available: http://torch.ch/blog/2016/02/04/resnets.html.

[17] Forum of International Respiratory Societies, Forum of International Respira-
tory Societies, Forum of International Respiratory Societies Staff, European
Respiratory Society, and European Respiratory Society Staff, The Global Im-
pact of Respiratory Disease. European Respiratory Society, 2017.

[18] S. I. Khan, V. Ahmed, and N. P. Jawarkar, “Application of signal processing
techniques for preliminary detection of adventitious lung sounds in paediatric
population using electronic stethoscope,” in 2017 International Conference on
Big Data Analytics and Computational Intelligence (ICBDAC), 2017, pp. 335–
338. doi: 10.1109/ICBDACI.2017.8070859.

[19] A. . Krizhevsky, I. . Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017. doi: 10.1145/3065386.

[20] Y. . Liu, Y. . Lin, X. . Zhang, Z. . Wang, Y. . Gao, G. . Chen, and H. .
Xiong, “Classifying respiratory sounds using electronic stethoscope,” 2017
IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted
Computed, Scalable Computing Communications, Cloud Big Data Com-
puting, Internet of People and Smart City Innovation (SmartWorld/SCAL-
COM/UIC/ATC/CBDCom/IOP/SCI), 2017. doi: 10 . 1109 / uic - atc . 2017 .
8397496.

[21] B. M. Rocha, D. . Filos, L. . Mendes, I. . Vogiatzis, E. . Perantoni, E. .
Kaimakamis, P. . Natsiavas, A. . Oliveira, C. . Jácome, A. . Marques, R. P.
Paiva, I. . Chouvarda, P. . Carvalho, and N. . Maglaveras, “Α respiratory
sound database for the development of automated classification,” Precision
Medicine Powered by pHealth and Connected Health, pp. 33–37, 2017. doi:
10.1007/978-981-10-7419-6_6.

[22] S. Ruder, An overview of gradient descent optimization algorithms, 2017.
arXiv: 1609.04747 [cs.LG].

57

https://doi.org/10.1109/embc.2016.7590823
https://doi.org/10.1109/embc.2016.7591897
https://doi.org/10.1109/embc.2016.7591897
https://arxiv.org/abs/1602.07360
https://doi.org/10.1371/journal.pone.0162128
http://torch.ch/blog/2016/02/04/resnets.html
https://doi.org/10.1109/ICBDACI.2017.8070859
https://doi.org/10.1145/3065386
https://doi.org/10.1109/uic-atc.2017.8397496
https://doi.org/10.1109/uic-atc.2017.8397496
https://doi.org/10.1007/978-981-10-7419-6_6
https://arxiv.org/abs/1609.04747


[23] ——, Transfer Learning - Machine Learning’s Next Frontier, http://ruder.io/
transfer-learning/, 2017.

[24] L. . N. . Smith. (Jun. 3, 2017). “Cyclical learning rates for training neural
networks,” [Online]. Available: https://arxiv.org/abs/1506.01186.

[25] M. A. Azam, A. Shahzadi, A. Khalid, S. M. Anwar, and U. Naeem, “Smart-
phone based human breath analysis from respiratory sounds,” in 2018 40th
Annual International Conference of the IEEE Engineering in Medicine and Bi-
ology Society (EMBC), 2018, pp. 445–448. doi: 10.1109/EMBC.2018.8512452.

[26] G. . Chambres, P. . Hanna, and M. . Desainte-Catherine, “Automatic detection
of patient with respiratory diseases using lung sound analysis,” 2018 Interna-
tional Conference on Content-Based Multimedia Indexing (CBMI), 2018. doi:
10.1109/cbmi.2018.8516489.

[27] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, Bag of tricks for
image classification with convolutional neural networks, 2018. arXiv: 1812 .
01187 [cs.CV].

[28] J. Howard et al., Fastai, https://github.com/fastai/fastai, 2018.
[29] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, Densely connected

convolutional networks, 2018. arXiv: 1608.06993 [cs.CV].
[30] N. . Olvera-Montes, B. . Reyes, S. . Charleston-Villalobos, R. . Gonzalez-

Camarena, M. . MejiaAvila, G. . Dorantes-Mendez, S. . Reulecke, and T.
A. Aljama-Corrales, “Detection of respiratory crackle sounds via an android
smartphone-based system,” 2018 40th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), 2018. doi:
10.1109/embc.2018.8512672.

[31] D. . Sarkar. (Nov. 17, 2018). “A comprehensive hands-on guide to transfer
learning with real-world applications in deep learning,” [Online]. Available:
https : / / towardsdatascience . com / a - comprehensive - hands - on - guide - to -
transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a.

[32] R. Shimizu, K. Asako, H. Ojima, S. Morinaga, M. Hamada, and T. Kuroda,
“Balanced mini-batch training for imbalanced image data classification with
neural network,” in 2018 First International Conference on Artificial Intelli-
gence for Industries (AI4I), 2018, pp. 27–30. doi: 10.1109/AI4I.2018.8665709.

[33] L. N. Smith and N. Topin, Super-convergence: Very fast training of neural
networks using large learning rates, 2018. arXiv: 1708.07120 [cs.LG].

[34] X. H. Kok, S. . Anas Imtiaz, and E. . Rodriguez-Villegas, “A novel method for
automatic identification of respiratory disease from acoustic recordings,” 2019
41st Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 2019. doi: 10.1109/embc.2019.8857154.

[35] Y. Ma, X. Xu, Q. Yu, Y. Zhang, Y. Li, J. Zhao, and G. Wang, “Lungbrn: A
smart digital stethoscope for detecting respiratory disease using bi-resnet deep
learning algorithm,” Oct. 2019. doi: 10.1109/BIOCAS.2019.8919021.

[36] K. . Mavropalias. (Feb. 19, 2019). “Understanding fastai’s fitonecyclemethod,”
[Online]. Available: https://iconof.com/1cycle-learning-rate-policy/ (visited
on 01/15/2022).

58

http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
https://arxiv.org/abs/1506.01186
https://doi.org/10.1109/EMBC.2018.8512452
https://doi.org/10.1109/cbmi.2018.8516489
https://arxiv.org/abs/1812.01187
https://arxiv.org/abs/1812.01187
https://github.com/fastai/fastai
https://arxiv.org/abs/1608.06993
https://doi.org/10.1109/embc.2018.8512672
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://doi.org/10.1109/AI4I.2018.8665709
https://arxiv.org/abs/1708.07120
https://doi.org/10.1109/embc.2019.8857154
https://doi.org/10.1109/BIOCAS.2019.8919021
https://iconof.com/1cycle-learning-rate-policy/


[37] D. . S. . Park. (Apr. 18, 2019). “Specaugment: A simple data augmentation
method for automatic...,” [Online]. Available: https://arxiv.org/abs/1904.
08779.

[38] (Apr. 22, 2019). “Specaugment: A new data augmentation method for auto-
matic speech recognition,” [Online]. Available: https ://ai .googleblog.com/
2019/04/specaugment-new-data-augmentation.html.

[39] M. . Trivedi and E. . Denton, “Asthma in children and adults—what are the
differences and what can they tell us about asthma?” Frontiers in Pediatrics,
vol. 7, 2019. doi: 10.3389/fped.2019.00256.

[40] P. . Bagad. (Sep. 17, 2020). “Cough against covid: Evidence of covid-19 signa-
ture in cough sounds,” [Online]. Available: https://arxiv.org/abs/2009.08790.

[41] V. . Basu and S. . Rana, “Respiratory diseases recognition through respira-
tory sound with the help of deep neural network,” 2020 4th International
Conference on Computational Intelligence and Networks (CINE), 2020. doi:
10.1109/cine48825.2020.234388.

[42] J. . Bielby, S. . Kuhn, S. . Colreavy-Donnelly, F. . Caraffini, S. . O’Connor,
and Z. A. Anastassi, “Identifying parkinson’s disease through the classification
of audio recording data,” 2020 IEEE Congress on Evolutionary Computation
(CEC), 2020. doi: 10.1109/cec48606.2020.9185915.

[43] C. . Brown, J. . Chauhan, A. . Grammenos, J. . Han, A. . Hasthanasombat,
D. . Spathis, T. . Xia, P. . Cicuta, and C. . Mascolo, “Exploring automatic
diagnosis of covid-19 from crowdsourced respiratory sound data,” Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery
Data Mining, 2020. doi: 10.1145/3394486.3412865.

[44] G. . Chaudhari. (Nov. 26, 2020). “Virufy: Global applicability of crowdsourced
and clinical datasets...,” [Online]. Available: https : //arxiv . org/abs/2011 .
13320#:%5C%7E:text=This%5C%20study%5C%20demonstrates%5C%
20that%5C%20crowdsourced,%5C%25%5C%20(75.2%5C%25%5C%2D78.3%
5C%25)..

[45] H. A. Coultas Blum, L. G. Scart, and R. Bracco, Fastaudio, Aug. 2020. [On-
line]. Available: https://github.com/fastaudio/fastaudio.

[46] F. . Demir, A. M. Ismael, and A. . Sengur, “Classification of lung sounds with
cnn model using parallel pooling structure,” IEEE Access, vol. 8, pp. 105 376–
105 383, 2020. doi: 10.1109/access.2020.3000111.

[47] C. Li, H. Du, and B. Zhu, Classification of lung sounds using cnn-attention,
EasyChair Preprint no. 4356, 2020.

[48] P. D. Muthusamy, K. Sundaraj, and N. Abd Manap, “Computerized acoustical
techniques for respiratory flow-sound analysis: A systematic review,” Artificial
Intelligence Review, vol. 53, Jun. 2020. doi: 10.1007/s10462-019-09769-6.

[49] V. . Ramesh, K. . Vatanparvar, E. . Nemati, V. . Nathan, M. M. Rahman, and
J. . Kuang, “Coughgan: Generating synthetic coughs that improve respiratory
disease classification*,” 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine Biology Society (EMBC), 2020. doi: 10.1109/
embc44109.2020.9175597.

59

https://arxiv.org/abs/1904.08779
https://arxiv.org/abs/1904.08779
https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html
https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html
https://doi.org/10.3389/fped.2019.00256
https://arxiv.org/abs/2009.08790
https://doi.org/10.1109/cine48825.2020.234388
https://doi.org/10.1109/cec48606.2020.9185915
https://doi.org/10.1145/3394486.3412865
https://arxiv.org/abs/2011.13320#:%5C%7E:text=This%5C%20study%5C%20demonstrates%5C%20that%5C%20crowdsourced,%5C%25%5C%20(75.2%5C%25%5C%2D78.3%5C%25).
https://arxiv.org/abs/2011.13320#:%5C%7E:text=This%5C%20study%5C%20demonstrates%5C%20that%5C%20crowdsourced,%5C%25%5C%20(75.2%5C%25%5C%2D78.3%5C%25).
https://arxiv.org/abs/2011.13320#:%5C%7E:text=This%5C%20study%5C%20demonstrates%5C%20that%5C%20crowdsourced,%5C%25%5C%20(75.2%5C%25%5C%2D78.3%5C%25).
https://arxiv.org/abs/2011.13320#:%5C%7E:text=This%5C%20study%5C%20demonstrates%5C%20that%5C%20crowdsourced,%5C%25%5C%20(75.2%5C%25%5C%2D78.3%5C%25).
https://github.com/fastaudio/fastaudio
https://doi.org/10.1109/access.2020.3000111
https://doi.org/10.1007/s10462-019-09769-6
https://doi.org/10.1109/embc44109.2020.9175597
https://doi.org/10.1109/embc44109.2020.9175597


[50] N. Sharma, P. Krishnan, R. Kumar, S. Ramoji, S. R. Chetupalli, N. R., P. K.
Ghosh, and S. Ganapathy, “Coswara — a database of breathing, cough, and
voice sounds for covid-19 diagnosis,” Interspeech 2020, Aug. 2020. doi: 10.
21437/ interspeech . 2020 -2768. [Online]. Available: http : //dx .doi . org/10 .
21437/Interspeech.2020-2768.

[51] L. Wu and L. Li, “Investigating into segmentation methods for diagnosis of
respiratory diseases using adventitious respiratory sounds,” in 2020 42nd An-
nual International Conference of the IEEE Engineering in Medicine Biology
Society (EMBC), 2020, pp. 768–771. doi: 10.1109/EMBC44109.2020.9175783.

[52] W. . Chen, Q. . Sun, X. . Chen, G. . Xie, H. . Wu, and C. . Xu, “Deep learning
methods for heart sounds classification: A systematic review,” Entropy, vol. 23,
no. 6, p. 667, 2021. doi: 10.3390/e23060667.

[53] J. S. Chorba, A. M. Shapiro, L. . Le, J. . Maidens, J. . Prince, S. . Pham,
M. M. Kanzawa, D. N. Barbosa, C. . Currie, C. . Brooks, B. E. White, A. .
Huskin, J. . Paek, J. . Geocaris, D. . Elnathan, R. . Ronquillo, R. . Kim, Z. H.
Alam, V. S. Mahadevan, S. G. Fuller, G. W. Stalker, S. A. Bravo, D. . Jean,
J. J. Lee, M. . Gjergjindreaj, C. G. Mihos, S. T. Forman, S. . Venkatraman,
P. M. McCarthy, and J. D. Thomas, “Deep learning algorithm for automated
cardiac murmur detection via a digital stethoscope platform,” Journal of the
American Heart Association, 2021. doi: 10.1161/jaha.120.019905.

[54] H. . Coppock, A. . Gaskell, P. . Tzirakis, A. . Baird, L. . Jones, and B. .
Schuller, “End-to-end convolutional neural network enables covid-19 detection
from breath and cough audio: A pilot study,” BMJ Innovations, vol. 7, no. 2,
pp. 356–362, 2021. doi: 10.1136/bmjinnov-2021-000668.

[55] L. . Fraiwan, O. . Hassanin, M. . Fraiwan, B. . Khassawneh, A. M. Ibnian,
and M. . Alkhodari, “Automatic identification of respiratory diseases from
stethoscopic lung sound signals using ensemble classifiers,” Biocybernetics and
Biomedical Engineering, vol. 41, no. 1, pp. 1–14, 2021. doi: 10.1016/j.bbe.
2020.11.003.

[56] Geddes. (Nov. 26, 2021). “What do we know about the new b.1.1.529 coron-
avirus variant and should we be worried?” [Online]. Available: https://www.
gavi . org / vaccineswork /what - we - know - about - new - b11529 - coronavirus -
variant-so-far?gclid=CjwKCAiAtdGNBhAmEiwAWxGcUkxG5P23X1g5TuA33gIjdyqoBFaV1AZFbW72NZJr1UuXujbUjB8-
NxoCQN4QAvD_BwE (visited on 01/15/2022).

[57] J. Han, T. Xia, D. Spathis, E. Bondareva, C. Brown, J. Chauhan, T. Dang, A.
Grammenos, A. Hasthanasombat, A. Floto, P. Cicuta, and C. Mascolo, Sounds
of covid-19: Exploring realistic performance of audio-based digital testing, 2021.
arXiv: 2106.15523 [cs.SD].

[58] S. . K. . Mahanta. (Oct. 12, 2021). “Covid-19 diagnosis from cough acoustics
using convnets and data...,” [Online]. Available: https://arxiv.org/abs/2110.
06123.

[59] Maraqa, DeNicola, Udeani, and Custodio. (Jun. 26, 2021). “What is the global
prevalence of bronchiolitis?” [Online]. Available: https://www.medscape.com/
answers/961963-36369/what-is-the-global-prevalence-of-bronchiolitis.

60

https://doi.org/10.21437/interspeech.2020-2768
https://doi.org/10.21437/interspeech.2020-2768
http://dx.doi.org/10.21437/Interspeech.2020-2768
http://dx.doi.org/10.21437/Interspeech.2020-2768
https://doi.org/10.1109/EMBC44109.2020.9175783
https://doi.org/10.3390/e23060667
https://doi.org/10.1161/jaha.120.019905
https://doi.org/10.1136/bmjinnov-2021-000668
https://doi.org/10.1016/j.bbe.2020.11.003
https://doi.org/10.1016/j.bbe.2020.11.003
https://www.gavi.org/vaccineswork/what-we-know-about-new-b11529-coronavirus-variant-so-far?gclid=CjwKCAiAtdGNBhAmEiwAWxGcUkxG5P23X1g5TuA33gIjdyqoBFaV1AZFbW72NZJr1UuXujbUjB8-NxoCQN4QAvD_BwE
https://www.gavi.org/vaccineswork/what-we-know-about-new-b11529-coronavirus-variant-so-far?gclid=CjwKCAiAtdGNBhAmEiwAWxGcUkxG5P23X1g5TuA33gIjdyqoBFaV1AZFbW72NZJr1UuXujbUjB8-NxoCQN4QAvD_BwE
https://www.gavi.org/vaccineswork/what-we-know-about-new-b11529-coronavirus-variant-so-far?gclid=CjwKCAiAtdGNBhAmEiwAWxGcUkxG5P23X1g5TuA33gIjdyqoBFaV1AZFbW72NZJr1UuXujbUjB8-NxoCQN4QAvD_BwE
https://www.gavi.org/vaccineswork/what-we-know-about-new-b11529-coronavirus-variant-so-far?gclid=CjwKCAiAtdGNBhAmEiwAWxGcUkxG5P23X1g5TuA33gIjdyqoBFaV1AZFbW72NZJr1UuXujbUjB8-NxoCQN4QAvD_BwE
https://arxiv.org/abs/2106.15523
https://arxiv.org/abs/2110.06123
https://arxiv.org/abs/2110.06123
https://www.medscape.com/answers/961963-36369/what-is-the-global-prevalence-of-bronchiolitis
https://www.medscape.com/answers/961963-36369/what-is-the-global-prevalence-of-bronchiolitis


[60] E. . A. . Mohammed. (Jul. 28, 2021). “An ensemble learning approach to digital
corona virus preliminary screening from cough sounds,” [Online]. Available:
https://www.nature.com/articles/s41598-021-95042-2?error=cookies_not_
supported&code=e09cf70f-8ecf-422f-939e-adc0b3152e8d.

[61] Z. . Mueller. (Mar. 16, 2021). “Methods for automating learning rate finders,”
[Online]. Available: https://www.novetta.com/2021/03/learning-rate/.

[62] T. . Nguyen. (Aug. 4, 2021). “Lung sound classification using co-tuning and
stochastic normalization,” [Online]. Available: https://arxiv.org/abs/2108.
01991.

[63] L. Orlandic, T. Teijeiro, and D. Atienza, “The coughvid crowdsourcing dataset,
a corpus for the study of large-scale cough analysis algorithms,” Scientific
Data, vol. 8, no. 1, May 2021, issn: 2052-4463. doi: 10 .1038/s41597-021-
00937-4. [Online]. Available: http://dx.doi.org/10.1038/s41597-021-00937-4.

[64] (Jul. 20, 2021). “Pneumonia in children statistics,” [Online]. Available: https:
//data.unicef.org/topic/child-health/pneumonia/.

[65] L. . Roberts. (Dec. 13, 2021). “Understanding the mel spectrogram - ana-
lytics vidhya,” [Online]. Available: https://medium.com/analytics-vidhya/
understanding-the-mel-spectrogram-fca2afa2ce53.

[66] M. . Sharma. (Jun. 5, 2021). “Impact of data-splits on generalization: Identi-
fying covid-19 from...,” [Online]. Available: https://arxiv.org/abs/2106.03851.

[67] Q. . Zhou, J. . Shan, W. . Ding, C. . Wang, S. . Yuan, F. . Sun, H. . Li, and
B. . Fang, “Cough recognition based on mel-spectrogram and convolutional
neural network,” Frontiers in Robotics and AI, vol. 8, 2021. doi: 10.3389/
frobt.2021.580080.

61

https://www.nature.com/articles/s41598-021-95042-2?error=cookies_not_supported&code=e09cf70f-8ecf-422f-939e-adc0b3152e8d
https://www.nature.com/articles/s41598-021-95042-2?error=cookies_not_supported&code=e09cf70f-8ecf-422f-939e-adc0b3152e8d
https://www.novetta.com/2021/03/learning-rate/
https://arxiv.org/abs/2108.01991
https://arxiv.org/abs/2108.01991
https://doi.org/10.1038/s41597-021-00937-4
https://doi.org/10.1038/s41597-021-00937-4
http://dx.doi.org/10.1038/s41597-021-00937-4
https://data.unicef.org/topic/child-health/pneumonia/
https://data.unicef.org/topic/child-health/pneumonia/
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://arxiv.org/abs/2106.03851
https://doi.org/10.3389/frobt.2021.580080
https://doi.org/10.3389/frobt.2021.580080

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Problem Statement
	Motivation
	Research Objective
	Contribution

	Literature Review
	Related Works

	Data Description
	Dataset
	ICBHI Scientific Challenge Dataset
	COSWARA
	COUGHVID

	Data Pre-processing
	Respiratory Disease Classification
	COVID-19 Cough Classification


	Proposed Methodologies
	Feature Extraction
	Mel-Spectrogram
	Mel Frequency Cepstral Coefficients (MFCC)

	Feature Augmentation
	Training Strategies
	Data Input
	Learning Rate Finder
	1cycle Policy
	Transfer Learning
	Model Callbacks


	Model Architecture
	VGGNet
	ResNet
	XResNet
	Alexnet
	SqueezeNet
	DenseNet

	Evaluation
	Respiratory Diseases Classification
	COVID-19 Cough Classification

	Discussion
	Comparison
	Respiratory Disease Classification
	COVID-19 Cough Classification

	Conclusion
	Bibliography

