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Abstract

The current approach to maternal and child healthcare is extremely patient-centred,
it requires costly, risky surveillance and testing before diagnosis besides treatment
accompanied with uncertainty despite the essential combination of healthcare exper-
tise, skills and experience in medical care and public health for medical practitioners
to support maternal and child health.
With the recent maternity and prenatal engagement besides the availability of health
data and information, we interpretably revolutionize advances in maternal medicine
by turning massive amounts of data into proactive, predictive, preventive, person-
alized and participatory optimal treatment plans through predictive and preventive
medicine for maternal and child well being.
This work focuses on interpretable predictive and Machine Learning (ML) mod-
elling of Artificial Intelligence (AI) algorithms to be used in predictive analytics of
health data for maternal precision medicine and explainable preventive insights for
physicians and patients’ medical decision making. We also introduced the concept
of Quantum Lattice Learning for building Explainable Machine Learning models in
Quantum Space.
Due to the uncertainty caused by abstracted black-box AI and ML models (algo-
rithms) used to support the maternal-child medical decisions, there is ambiguity
of safety and trust of all the existing and proposed AI models. That hinders reli-
ability and trust in adoption of the developed models by physicians and patients.
We, therefore, implemented Explainable Artificial Intelligence (XAI) and feature
interpretability analysis to allow clinicians like obstetricians, perinatologists, gyne-
cologists and midwives to understandably trust, comprehensively assess connections
and transparently analyze and use the important derived features for strategic ma-
ternal and child predictive, preventive and precision medicine.
The adoption of the proposed XAI approaches (models) on health data usage could
potentially strengthen health systems, public health, primary and surgical care for
mothers and children globally. They can significantly improve accountability, relia-
bility and adoption of safe and trusted artificial intelligence applications for improved
maternal-fetal medicine besides global health. Moreover, our transparent models
provide useful insights for healthcare management and policy-making to improve
the health and well-being of patients and physicians.

Keywords: Explainable Artificial Intelligence (XAI); Quantum Lattice Learning
(QLL); Machine Learning (ML); Maternal and Child Health (MCH); Predictive,
Preventive and Precision Medicine (PPPM); Patient Monitoring and Management;
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Chapter 1

Introduction

1.1 Background

Osteoporosis is one of the huge socioeconomic burdens revealed by demographic
patterns with a liability to meeting the financial and social needs yet it is increasing
with the growing number of elders [4][8] who are greatly constraining the Health care
systems. Moreover 1 in 3 women over the age of 50 years and 1 in 5 men will expe-
rience osteoporotic fractures in their lifetime according to the International Osteo-
porosis Foundation statistics [34][95][16]. Unfortunately Adherence to neridronate
therapy in pregnant women due to pregnancy osteoporosis during postpartum or
last trimester due to vertebra fractures is also obscured [22].This calls for an urgent
need to strategically and sustainably control the health care costs and survival of
the elderly and vulnerable pregnant women.
While services offered at maternal antenatal care units have been greatly interrupted
by the covid-19 crisis, the authority measures for preventing the spread of the disease
have continuously stressed the healthcare systems in limited resource settings be-
sides the in-access to affordable maternity services [68]. The scarcity of experienced
skilled health workers to attend to the mothers in and out of the maternal health cen-
ters has even made this situation worse hence leading to an increase in maternal and
neonatal mortality and morbidity rates globally [109][84][74]. Despite the fact that
pregnant women need social, emotional and psychological support, there is extreme
scarcity of these services to mothers in low resource settings. Moreover some of the
pregnant mothers are faced with gender-based violence besides extreme poverty and
lack of necessary tools and technologies to support them during maternity. This
necessitates a need for an urgent, affordable approach to monitor and support ma-
ternal and fetal health. Prior studies have reflected an an overwhelming increased
number of stillbirths amongst communities in constrained settings most especially
minority groups and developing countries [119][74]. This justifies the need for cost
effective, proactive maternal and fetal monitoring and surveillance to reduce mater-
nal morbidity and mortality across communities. With reliable monitoring systems
of fetal and labor activities, physicians can efficiently manage maternal and fetal
health with guided informed medical decisions and choices.
Maternal and Fetal complications are the leading contributors to Neonatal mortality
and morbidity which is one of the biggest global burdens hindering achievement of
Sustainable Development Goal Three (SDG-3) [7]. To make matters worse, neona-
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tal healthcare medical costs attributed to the need for NICU services are reportedly
one of the fastest growing expenses in healthcare. This Maternal and Child Health
(MCH) problem is causing a lot of toxic emotional stress to pregnant mothers hence
fueling an infinite loop of fetal and neonatal health risks. Moreover, most of the
preventive initiatives taken to reduce these risks are very expensive and obstructed
by outcome uncertainties most especially in resource constrained settings[99][15].
The limited access to neonatal emergency services globally hardens the prenatal
quality management and this generally reduces the quality of healthcare provided
to mothers. The abrupt maternal-fetal emergencies also limit quality of maternity
facility or service management in health centers. Unfortunately, there are lots of
interdisciplinary contributing factors (features) to neonatal emergencies that render
existing solutions obsolete for NICU service management [107][58]. With healthcare
Big Data, we can preventively predict NICU admissions to improve health facility
management and reduce neonatal mortality and morbidity using machine learning
and artificial intelligence. We can reduce toxic stress among pregnant mothers and
NICU service providers by explainably identifying the interdisciplinary contributing
factors (features) to neonatal emergencies [21]. This AI approach to Neonatal Elec-
tronic Healthcare (E-Health) can affordably improve access to quality maternal and
neonatal care services most especially in constrained resource settings [40].
It is important to note that the innovative technology emerging trends coupled with
accumulated patient and healthcare records have greatly disrupted the approaches
to medicine. Leveraging these readily available but underutilized technological tools
could greatly boost the health and well-being of mothers and children. With the
power provided by healthcare records and biomedical informatics, we can innova-
tively optimize data utilization for predictive, preventive and personalized medicine
to not only reduce healthcare costs but also increase access and reliability of qual-
ity healthcare solutions across the globe [97]. Hematologic and blood disorders in
children are one of the most complex inherited or acquired bone marrow failure
syndromes that contribute to child mortality and morbidity globally. Despite the
expertise provided by physicians in response to these complications, the survival
rates of the diagnosed pediatric patients are still very low besides the high costs and
in-access to these Hematologic healthcare services most especially in low resource
settings [98].
Despite the innovative technological trends in healthcare, Biomedical research about
preventive and predictive medicine for COVID-19 in pediatric patients and other
pulmonary diseases like Tuberculosis (TB), Pneumonia, and Bronchitis among oth-
ers is still extremely limited. Open chest X-ray datasets to pediatric biomedical
image processing are also extremely scarce. This domain of pediatric biomedical
image processing is literally unexplored yet child mortality and morbidity arising
from pulmonary diseases and infections is rapidly increasing since the discovery of
COVID-19. It has been confirmed that COVID-19 can emerge, before, during or
after any kind of pediatric pulmonary infection or disease and this is extremely
lethal due to the similarities between the COVID-19 symptoms to other pulmonary
disorders [108]. Biomedical instrumentation health services in infants and children
are quite expensive and inaccessible in low resource settings yet these pulmonary
diseases pose a significant burden on child health. The pediatric evaluation of pul-
monary health since the discovery of COVID-19 introduced new diagnostic and
therapeutic challenges for the physicians besides the uncertainties in medical diag-
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nosis and limited access to quality healthcare in low resource settings. Annotated
(labeled) pediatric chest X-ray Image data for the medical image processing is very
scarce and a little expensive to access which reduces the effectiveness of pediatric
medical image processing and transfer learning.
In addition to the universal maternal mortality, there is a global disruption in peoples
ability to reproduce. Globally, women under 35 are exhibiting a decline in birth rates
for nearly all age groups yet there is an increase in birth rates for those in the 30s and
early 40s [115] in developed societies. The lack of both quantity and quality eggs for
women in their late 30s and early 40s would make it difficult for them to conceive
besides other risk factors that lower rates of successful conception. Fortunately,
availability and rise of fertility health interventions has made it possible for women
who are choosing to become mothers at a later age thus making fertility solutions
a norm for many families today. This has become a global increasing trend for the
future for women in both developed and developing countries.The growing market for
fertility services is inspiring academia and industry to innovate better products and
services for fertility customers for example egg freezing services. Unfortunately, the
minority, less privileged and under-served groups faced with a more unconventional
path to pregnancy still have limited choices. This is because the products, services
and markets for reproductive medicine are still concentrated among the privileged
and developed communities.

1.2 Motivation

Clinicians offer various pharmacologic and therapeutic treatments for several health-
care problems including but not limited to infertility and osteoporosis although the
offered adherence to treatments is not satisfactory [44][106]. The perceptions and ex-
periences of patients during treatment greatly affects their adherence to osteoporosis
therapy [10] yet they are extremely unpredictable hence a need for interdisciplinary
collaboration to improve long term treatment approaches [66][59]. This is what mo-
tivated us to use Machine Learning Models to predict the adherence of patients in
order to develop improved strategies patient adherence to medications individually
most especially for the elderly and vulnerable pregnant women.

Despite the strategic electronic prenatal safety monitoring tools deployed for ma-
ternal and neonatal health for example the Electronic Fetal Monitoring (EFM}
strips, uncertainty and ambiguity of cardiotocogram signal results still hinders cor-
rect inter- and intra-observer signal interpretation. This births interpretation dis-
crepancies among physicians and patient caretakers thus stirring poor communica-
tion and opinion variation for precise medical decisions [90]. Electrocardiography as
a field of biomedical research has greatly contributed towards developing maternal-
fetal technologies and a gold standard database for Fetal heart rate (FHR) signal
processing to support Electronic Fetal monitoring and evaluation but this requires
a highly sophisticated skillset to operate the expensive inaccessible equipment most
especially for economically disadvantaged and highly populated regions to imple-
ment the clinical procedures for sophisticated medical practices and applications
[80] hence a need for a more feasible approach.

In worst case scenarios, an Explainable Feature Learning approach to Predictive
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Neonatal medicine could enable maternal and neonatal medical practitioners to pre-
cisely identify and proactively monitor high risk expectant mothers and neonates.
With a multidisciplinary maternal and child health dataset, physicians can obtain
interdisciplinary insights on additional information necessary for handling neonatal
emergencies and risky pregnancies [55][86].
Interpretable Prediction of NICU admission with machine learning can guide on
efficient utilization and management of the NICU facilities. It can also guide on
optimal predictive and preventive maternal and neonatal health interventions with
reduced room for errors and uncertainty [30]. With the disruptive AI innovation
and technology trends today besides open healthcare big data, the need for data
utilization has grown towards developing novel and strategic data-driven solutions
to healthcare problems [105][89].
Therefore an explainable feature learning approach for predicting NICU admissions
is a step towards a better, equitable and global contribution to health data uti-
lization for a better future. Since we are solving an interdisciplinary problem, we
need to obtain data that gathers multiple perspectives across domains for capturing
interdisciplinary contributions (features) to Neonatal emergencies for Maternal and
Child Health. With this kind of data, we can tackle this interdisciplinary problem
with big data techniques and Artificial Intelligence. Explainable feature learning is
very important in this case for optimal selection based on feature importance. Since
we have a pool of interdisciplinary contributors in the dataset, robust machine al-
gorithms can proficiently learn to predict NICU admissions.

Neonatal Hematology is another scope of hematology and blood disorders that in-
cludes but is not limited to bone marrow transplantation, acute myeloid leukemia,
Non-Hodgkin’s lymphoma, blood count disorders, anemias, hemobiology, leukemias,
blood clotting disorders, multiple myeloma, lymphocytic disorders, immune system
disorders, stem cell disorders, transfusion medicine, hematology, thrombocytopenia,
thalassemias, Hodgkin’s lymphoma, red cell biology, immunobiology among others
[71][7]. Unfortunately the application of Machine learning and Artificial Intelligence
methods for medical interventions in all these scopes is still limited for pediatric
medicine despite the massive volumes of data available for use. With interdis-
ciplinary collaborative research, predictive, preventive and personalised medicine,
we can innovatively establish reliable pediatric comprehensive bone marrow failure
treatment plans for diagnostic, therapeutic and support services for children with
acquired and inherited bone marrow disorders [87].

We can now agree on the importance and contribution of healthcare data for Pedi-
atric health yet for all the digital health initiatives taken in data mining of medical
image data for pediatrics, the reliability of diagnostics developed still remains un-
trustable and unsafe since it is not easily understandable to physicians and pediatric
patient caretakers. Image Processing, Machine Learning (ML) and Deep Learning
(DL) are the pillars of augmented intelligence which is a technique of computer vi-
sion tailored to improve accuracy of digital image processing with less resources like
computational power or image data access [96]. Augmented intelligence for health
care can greatly help developing countries and nations with limited tools and tech-
nologies in mining medical image data. With the few existing open Chest X-ray
Image datasets, we can leverage augmented intelligence, transfer learning, artifi-
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cial intelligence and biomedical image processing to improve pediatric diagnostics
of pulmonary diseases besides improving pediatric pulmonary treatment plans for
the physicians and patients. Pattern recognition and classification of pulmonary
diseases in X-ray Images using a deep convolutional Neural Network would help us
identify lethal patterns in pediatric patients and to evaluate the pediatric pulmonary
health of patients for early treatment and health attention.

In addition to costliness, the ambiguity of uncomfortable reproductive medical pro-
cedures for infertility treatment and evaluation, the fertility customers require ad-
vanced, proactive, predictive, preventive and personalized treatment plans that are
feasible enough to synchronize with advancing healthcare data driven solutions to
comfortably administer reproductive medicine. Moreover the field of reproductive
medicine is so sensitive for its combination of philosophy, cognitive psychology and
human medicine for successful fertility diagnosis. This necessitates an accessible
technological approach to fertility medical diagnosis, treatment and evaluation. The
technological solution must also be interpretable and explainable for fertility physi-
cians and customers (fertility patients) to transparently adopt.

Generally, we identified and focused our work on mainly four stages of maternal
and child health and we were mainly motivated by the way they were interrelated
in forming up a huge convoluted problem of Maternal and Child Mortality and
Morbidity.

1.3 Research Scopes (Gaps addressed)

In this subsection, we summarise and clarify on the specific research gaps in the
existing works that we are are addressing in this thesis.

Firstly, numerous osteoporosis treatment plans have been developed by physicians
but there has not been any work done to predict therapeutic adherence of patients
to osteoporosis treatment in order to develop strategies to improve adherence to
medications individually.

Secondly, several CTGs signal exploration and deployment avenues have been done
but no focus has been put on classical representation of feature based extracted
results of ML classifiers in a less ambiguous interpretable manner for fetal health
evaluation.

Also, no work has been done to explainably explore maternal significant multidisci-
plinary features for NICU admission prediction using ML and AI techniques. There
is also no work identified to focus on exploring feature Learning and interaction in
predictive maternal and neonatal healthcare.

We also realised that there is very limited work done to predictively evaluate in-
fluential determinants of prolonged survival of pediatric risks upon stem cell trans-
plantation procedures. Moreover all the exiting statistical methods used are not
interpretably sufficient.
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Based on the exiting literature, all works on pediatric biomedical image processing
do not cover the computer vision techniques that are comparatively comprehensible
for pediatricians to assess connections between pulmonary health diseases. We did
not find any works that interpretably articulate important features for precise pre-
dictive and preventive pediatric medicine using any computer vision techniques.

Lastly, despite the various fertility treatment plans developed by fertility physi-
cians, we found no work done to predict the success of any of the treatment plans
prescribed for the fertility patients. There is no work done with any statistical tech-
niques to handle uncertainty of feature interaction for machine learning models in
reproductive health.

Generally, the application of Machine Learning and Artificial Intelligence techniques
in the field of maternal and child health is still an under researched thematic area
yet its potential in stopping preventable deaths is very enormous.

1.4 Conceptualization of the Research Gaps

Since available works support the application of integrated life course approaches
to examine reproductive health, it was very applicable in the field of maternal and
child health because it examines the whole human life course in consideration of
continuity of reproduction with a focus on correlation between indicators of repro-
ductive health [12] [6][65].

We therefore developed a research design that used a life course approach to study
Maternal and Child health by exploring features across life, human generations that
influence pregnancy outcomes, gynaecological disorders, fertility and age. We also
recognised significant influences on maternal and child health like chronic disease
risks. We then synthesized a summarized cycle of Maternal and Child health events
based on reproductive life sequential events.

The cycle synthesised is based on the observations made in the research patterns
after rigorous maternal and child health literature review. It is called “The Life
Cycle Approach to Maternal and Child Health (LcMCH).”

The research scope summary is illustrated in The Life Cycle Approach to Maternal
and Child Health (LcMCH) where we picked at least one problem at each stage of
the cycle to demonstrate the purpose of our works in this thesis through the research
Objectives derived.
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Figure 1.1: The Life Cycle Approach to Maternal and Child Health

1.5 Research Objectives

(a) To prove the concept of predictive, preventive and precision medicine using
Machine Learning (ML) and Artificial Intelligence (AI) techniques for Mater-
nal and Child Health (MCH) using real datasets.

(b) To improve ML and AI interpretability for MCH physicians and care takers
by using explainable AI techniques in more transparent and insightful means
for predictive, preventive and precise MCH medical decision making.

(c) To derive and comprehensively illustrate the most important features (factors)
that require extra attention for specific MCH predictive, preventive and precise
medical decision making.

(d) To create a new Explainable Predictive Machine Learning Model that is ca-
pable of transparently illustrating feature interaction of the most influential
features leading to a precise medical decision for MCH.

The above core research objectives of this thesis were investigated through a series
of scientific international conference papers centered on the core subjects namely;
Maternal and Child Health (MCH), Machine Learning (MCH) and Artificial Intel-
ligence (AI) at the different Stages of The Life Cycle Approach to Maternal and
Child Health (LcMCH) as illustrated in Table 1.1
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Paper Short
Form

Research Contributions Objectives
Investigated

Stage
of
LcMCH

ML-4-
Osteoporosis-
Treatment

A Machine Learning Approach for
Predicting Therapeutic Adherence to
Osteoporosis Treatment

a (I)

XAI-4-Fetal-
Health-
Evaluation

Cardiotocogram Biomedical Signal
Classification and Interpretation for
Fetal Health Evaluation

a, b, c (I)

XAI-4-NICU-
Admissions

Explainable Feature Learning for
Neonatal Intensive Care Unit
(NICU) Admissions

a, b, c (II)

XAI-4-
StemCell-
Transplantation

Explainable Artificial Intelligence for
Hematologic Pediatric Patient Sur-
vival Prediction upon Stem Cell
Transplantation

a, b, c (II)

XAI-4-
Pulmonary-
Health-
Evaluation

Explainable Augmented Intelligence
and Deep Transfer Learning for Pe-
diatric Pulmonary Health Evaluation

a, b, c (III)

QLL-XAI-
4-Fertility-
Treatment

An Explainable Lattice based Fer-
tility Treatment Outcome Prediction
Model for TeleFertility

a, b, c, d (IV)

Table 1.1: Scientific Research papers for each research objectives at each of The Life
Cycle Approach to Maternal and Child Health (LcMCH) Stage

1.6 Research contributions

1.6.1 A Machine Learning Approach for Predicting Thera-
peutic Adherence to Osteoporosis Treatment (ML-4-
Osteoporosis-Treatment) | LcMCH: I | Objective: a.

Figure 1.2: Stage I of The Life Cycle Approach to Maternal and Child Health
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We developed Machine Learning models for predicting therapeutic adherence of
patients to osteoporosis treatment and tested them on a real dataset for Drug Per-
sistence [12] with 69 features and about 3414 samples. We optimized and tested the
accuracy of different ML models and classified the accuracy metrics of the results
depending on the training, testing or overall dataset where the ExtraTree Model
showed the finest accuracy of 100%, 85.0% and 94.5% with respect to the datasets.
The outcomes of the tests prove that the implementation of Machine Learning Pre-
dictive Models that use the ExtraTree Classification algorithms with SMOTESVM
enable health professionals to compatibly decide on the individualized therapeutic
treatments and approaches for osteoporosis treatment and pharmacologic manage-
ment of their patients. The summary of the contributions is stated below.

1. We proposed and developed Machine learning Models for predicting thera-
peutic adherence to osteoporosis treatment for physicians and researchers to
develop suitable adherence-improving interventions.

2. We optimized the Models with various sampling techniques for the imbalanced
data on osteoporosis.

3. We evaluated the performance and accuracy of the models with both synthe-
sized and real datasets for Drug Persistence classification.

4. Finally, we recommended the most accurate Machine Learning Models for
adoption and deployment for researchers, physicians and investors in the ther-
apeutic adherence domain.

1.6.2 Cardiotocogram Biomedical Signal Classification and
Interpretation for Fetal Health Evaluation (XAI-4-
Fetal-Health-Evaluation) | LcMCH: I | Objectives: a,
b, c.

Figure 1.3: Stage I of The Life Cycle Approach to Maternal and Child Health

We took advantage of the generated open cardiotocography biomedical signal dataset
[26] to build Machine learning models that classified and interpreted fetal heart rate
and uterine contraction signals with reduced EFM maternal-fetal signal ambiguity
for efficient maternal-fetal assessment by the maternal caretakers/specialists and
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with easy interpretation of FHR tracings for improved fetal health evaluation. We
are focused on testing and optimization of ML models for affordable advances in elec-
tronic fetal evaluation and testing perinatology to improve maternal-fetal wellbeing
of pregnant women.
The summary of the contributions is stated below.

1. We proposed ML biomedical signal classifiers to reduce maternal-fetal signal
ambiguity for efficient fetal evaluation.

2. The Models illustrated maternal-fetal classical results for EFM interpretation
of FHR tracings in a more interpretable presentation for maternal-fetal assess-
ment.

3. Moreover, we performed feature extraction and comprehensively test the var-
ious classification models and recommend the best classifier for fetal health
evaluation.

4. Finally, we evaluated the performance and accuracy of biomedical signal clas-
sifiers with both synthesized and real datasets obtained for purposes of 10 class
or 3-class diagnostic fetal experiments with clear model explainability.

1.6.3 Explainable Feature Learning for Neonatal Intensive
Care Unit (NICU) Admissions (XAI-4-NICU-Admissions)
| LcMCH: II | Objectives: a, b, c.

Figure 1.4: Stage II of The Life Cycle Approach to Maternal and Child Health

We proposed Interpretable Machine Learning Models for predicting NICU admis-
sion using maternal health profiles that capture interdisciplinary maternal and child
health features. We used interpretable approaches to explain the features contribut-
ing to the predicted results for physicians and patients to understand how the ma-
chine learning algorithms came up with the predicted results. The demonstrated
predictive models can be integrated in mobile medical applications for Maternal-
Fetal Telemedicine to increase access to quality healthcare for mothers through
E-health.
The summary of the contributions is stated below.
a) We proposed and build reliable interpretable machine learning algorithms for
predictive and preventive Neonatal Medicine.
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b) We demonstrated ‘black box’ machine learning explainability techniques for in-
terpreting and understanding Machine Learning predictions for Maternal and Child
Health.
c) We illustrated feature importance identification and learning for effective medical
predictions using large interdisciplinary datasets comprising of very many health
features for precision medicine.

1.6.4 Explainable Artificial Intelligence for Hematologic Pe-
diatric Patient Survival Prediction upon Stem Cell
Transplantation (XAI-4-StemCell-Transplantation) |
LcMCH: II | Objectives: a, b, c.

Figure 1.5: Stage II of The Life Cycle Approach to Maternal and Child Health

Since the application of interpretable machine learning to survival analysis and pre-
diction transparently overcomes the constraints of reactive and statistical approaches
to medicine, we can significantly improve the quality of healthcare and survival of
the vulnerable pediatric populations with the application of machine learning and
artificial intelligence for predictive, preventive and personalized pediatric medicine.
Below is the summary of our contributions.

1. We proposed an interdisciplinary innovative approach for Predictive, Preven-
tive and Personalized transplantation and cellular therapeutic medicine for
hematologic pediatric patients and demonstrated how it can improve their
survival.

2. We modelled and built Explainable Pediatric Survival Predictors for safer pre-
cision stem cell transplantation.

3. We interpretably simulated the stem cell transplantation outcomes and illus-
trated the most important factors influencing the success or failure of the
transplantation procedure.

4. We tested and evaluated the accuracy of the machine learning models and
recommended the most optimal models for predictive and preventive pediatric
treatment.
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5. Finally, we collaboratively shared insights about the applications of Artifi-
cial Intelligence and machine learning for personalized pediatric medicine and
informed decision making for pediatric physicians and patient caretakers.

1.6.5 Explainable Augmented Intelligence and Deep Trans-
fer Learning for Pediatric Pulmonary Health Evalua-
tion (XAI-4-Pulmonary-Health-Evaluation) | LcMCH:
III | Objectives: a, b, c.

Figure 1.6: Stage III of The Life Cycle Approach to Maternal and Child Health

Since Scientific Innovation and interdisciplinary collaborative research have proven
a positive contribution towards interdisciplinary medicine, we leverage innovative
tools it provides for prediction and transparently overcome the constraints of re-
active and statistical approaches to medicine. We interdisciplinarly improve the
quality of healthcare and in vulnerable pediatric populations with the application
of interpretable machine learning and explainable augmented intelligence for predic-
tive, preventive and personalized pediatric pulmonary medicine.
Below is the summary of our contributions.

1. We presented an interpretable approach to medical image processing for lethal
pediatric pattern recognition in order to proactively, predictively, preventively,
personalize and participate in optimal pediatric pulmonary treatment plans.

2. We demonstrated a combination of computer vision tools and techniques for
reliable pediatric pulmonary diagnosis regardless of the scarcity of pediatric
chest X-ray Image datasets for a safe and trustable approach to pediatric
pulmonary health evaluation.

3. Finally, we demonstrated and recommended safe and reliable approaches to
efficient biomedical image processing with limited medical image data and
computational resources.
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1.6.6 An Explainable Lattice based Fertility Treatment Out-
come Prediction Model for TeleFertility (QLL-XAI-4-
Fertility-Treatment) | LcMCH: IV | Objectives: a, b,
c, d.

Figure 1.7: Stage IV of The Life Cycle Approach to Maternal and Child Health

We proposed, modelled and simulated interpretations of fertility intervention predic-
tions to enable fertility patients and physicians to understand the health contributors
to the predicted possibilities of any selected fertility treatment plan in lattice space.
There are lots of therapeutic and diagnostic possible interventions for infertility but
the ambiguity and uncertainty about the most appropriate treatment plan hinders
precise selection. Fertility Physicians propose many possible treatment plans that
are costly, risky and possibly unhealthy to patients in the long run since most of
them involve body intake of various medicines with hope to discover that which
works best for them. Swallowing too much medicine is unhealthy and medical ad-
herence is hard. That is why we proposed the use of machine learning for predictive
medicine and lattice models to explain the predictions to the physicians and patients
in lattice space. With the simulated explanations, physicians and patients can make
an informed choice with the help of the fertility health feature interactions displayed.
This approach to fertility medical precision is very cost effective, less ambiguous and
preferable to patients.
Below is the summary of our contributions.

1. We introduced the concept of Quantum Lattice Learning using the Feynman’s
technique for Medical Machine Learning model Interpretability and Explain-
ability in lattice space.

2. We proposed and modelled interpretable predictors for precise fertility inter-
vention evaluation using Lattice based Models.

3. We explainably simulated the predicted fertility intervention outcomes in lat-
tice space for informed decision making on fertility treatment plans.

4. We tested and evaluated the accuracy of the lattice models and recommended
optimal models for TeleFertility (remote assessment of fertility interventions).

5. Finally, we shared insights about Artificial Intelligence Innovation for telemedicine
( E-Health) evaluation of fertility to make this technology globally accessible
to everyone.
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1.7 Thesis organization

The thesis organization is based on research scope Conceptualization and Objectives
of the research. The research Objectives are investigated by a series of six research
papers coded as with Research Paper Short Formats in Table 1.1. At every stage
of The Life Cycle Approach to Maternal and Child Health (LcMCH), a
specific objective is achieved by investigating as chosen problem with consideration
of Observations and Lessons Learned (Chapter 5) of each research paper at every
stage of Maternal and child health life cycle. The tabular visualization of the thesis
organization can be studied in Table 1.2.

Chapter 1: Introduction

Background
Motivation
Research Scope
Research Scope Conceptualization
Research Objectives
Research Contributions
Thesis Organization

Chapter 2: Existing Works

Machine Learning Modelling
Biomedical Signal Classification
Neonatal Intensive Care Unit Admissions
Pediatric Transplantation and Stem cell therapy
Pediatric Pulmonary Health
Predictive, Preventive and Personalized Medicine
Explainable Artificial Intelligence

Chapter 3: Methodology LcMCH Stage I LcMCH Stage II LcMCH Stage III LcMCH Stage IV

ML-4-Osteoporosis-Treatment

Objective:
a

XAI-4-Fetal-Health-Evaluation

Objectives:
a, b, c

XAI-4-NICU-Admissions

Objectives:
a, b, c

XAI-4-StemCell-Transplantation

Objectives:
a, b, c

XAI-4-Pulmonary-Health-Evaluation

Objectives:
a, b, c

QLL-XAI-4-Fertility-Treatment

Objectives:
a, b, c, d

Chapter 4: Results and Discussion

Chapter 5: Conclusion
Major Observations and Lessons Learned
Conclusion derived from the Observations
Future Works derived from the Observations

Table 1.2: Tabular visualization of the thesis organization

Figure 1.8: Thesis Methodology Organisation based on The Life Cycle Approach to
Maternal and Child Health
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Chapter 2

Existing Works

2.1 Machine Learning Modeling.

Machine Learning (ML) Modeling and algorithm choice selection is often dictated by
the purpose and the problem to be solved. ML Algorithms are categorized as super-
vised learning, semi-supervised learning, unsupervised learning, and reinforcement
learning. Predominantly, supervised learning is further divided into the classifica-
tion and regression, unsupervised learning is divided into clustering and dimension
reduction among others [93]. For ML model optimization in supervised learning,
the goal is to find an optimal mapping function to minimize the loss function of
the training samples. In our work, we had to optimize the ML Models by selecting
optimal parameter values for sampling in the shortest time possible. Since we had
to classify imbalanced data, we deployed optimal sampling techniques with SVM
(Support Vector Machine) to optimize the Models accordingly [72]. We focused on
tuning Machine Learning Models for accurate prediction of therapeutic adherence to
osteoporosis treatment in a more generalizable manner among other MCH precision
medical outcomes.

2.1.1 Handling the imbalanced data in Machine Learning.

Due to the highly imbalanced registered medical data in fields like therapeutic
medicine, we apply Synthetic Minority Oversampling Technique (SMOTE) and
Adaptive Synthetic (ADASYN) Sampling Approach to independently handle Im-
balance because majority of the machine learning algorithms never consider the
distribution of the data sample by default. Imbalanced data often skews results
towards the majority sample class distribution if the model is built using an Im-
balanced data which is extremely misleading both in practice and theory if the
imbalance is ignored [93].

2.2 Biomedical Signal Processing

2.2.1 Cardiotocography

Cardiotocography has been deployed in many maternal fetal technological applica-
tions for example fetal heart rate monitoring using doppler ultrasound technology,

15



morphological analysis of fetal electrocardiograms for noninvasive fetal monitoring,
prediction of vaginal or caesarian deliveries, qualitative assessment of fetal state by
-Hyperballs simplification of fuzzy rules, Phonocardiography advanced signal pro-
cessing for passive fetal monitoring, digitization and analysis of cardiotocography
records, detection of change in fetal heart rate, feature selection for fetal health sta-
tus classification, convergent cross mapping of cardiotocography signals with Gaus-
sian processes to discover causalities [61] and fetal health classification based on
machine learning [91].

2.2.2 Classification of biomedical signals.

Classification of biomedical signals is a step of biomedical signal processing to ob-
tain information out of signals for medical diagnosis. This classification has been
implemented in a number of applications for example; Ensemble learning classifi-
cation to determine signal quality of radar-recorded heart sound signals, detection
and classification aortic stenosis using seismo-cardiogram and gyrocardiogram sig-
nals, classifying electrocardiogram signals to detect atrial fibrillation from intensive
care unit patients, arrhythmia recognition and classification using ECG signals [78],
classification of heart sound signals to detect abnormal cardiac valves, physiological
heart sound audio classification for heat status monitoring, automatic classification
and evaluation of ECG signal quality by channel for subsequent processing, Classifi-
cation and detection of Atrial fibrillation from premature atrial contraction and pre-
mature ventricular contraction using novel density poincare´ plots [82], classification
of Biofeedback signals for intelligent biofeedback augmented content comprehension,
classification of capnographic signals to diagnose chronic obstructive pulmonary dis-
ease and congestive heart failure and classification of cardiotocograms to analyze
dimensionality techniques on big data [70][120]. With relevance to CTG signals, the
noise due to measurement, inadequate training samples, non-discriminative features
and inherent ambiguity of classification greatly affect the classification results.

2.3 Neonatal Intensive Care Unit (NICU) Admis-

sions

NICU Admissions have attracted a lot of attention recently that most scientists have
actively participated in solving this problem. Technological approaches to length
of stay in NICU analysis [85], automatic extraction of impulsive cries of preterm
newborns [83], Forecasting NICU admissions in near-term and term infants with
low illness acuity [92] all geared towards understanding the future actions of arti-
ficial intelligence in management of newborns [47] and pregnancy disease strategic
management by prediction and identification of maternal risk factors for neonatal
intensive care admissions [92].
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2.4 Pediatric Transplantation and Cellular Ther-

apy

Bone marrow transplantation also referred to as stem cell transplantation is a med-
ical treatment that replaces human bone marrow with healthier bone marrow cells
usually for treatment of blood disorders. The high morbidity and mortality caused
by transplant-related uncertainties is worrying despite the necessity of prolonging life
and treatment of blood disorders with hematopoietic cell transplantation in hema-
tologic malignant patients. The risk of cardiac toxicity in old chronic patients and
pediatric patients is still life threatening to these vulnerable populations yet there
is not yet a safe trustable proactive solution to handle health risk [37]. This calls
for an urgent need for a collaborative interdisciplinary innovative scientific solution
to save lives of these vulnerable populations across the globe.

There are a lot of patient survival interventions put in place to increase the overall
survival rates of blood disordered patients upon stem cell transplantation. Hematopoi-
etic Stem Cell Transplantation (HSCT) is one of the best approaches that have
resulted in an excellent probability of overall survival and chronic GVHD-free sur-
vival (cGFS) in patients with Diamond-Blackfan anemia (DBA) [37]. Haploidentical
hematopoietic stem cell transplantation graft manipulation prevented graft-versus-
host disease, improved survival in pediatric leukemia [111]. Allogeneic hematopoi-
etic stem cell transplantation (HSCT) from an Human Leukocyte Antigen (HLA)-
haploidentical relative (haplo-HSCT) was proven to be a suitable option for pedi-
atrics with acute leukemia [24]. T-cell receptor (TcR)/Cluster of Differentiation 19
(CD19) -depleted HLA-haploidentical HSCT is an effective strategy for children with
several non-malignant disorders. HLA-haploidentical HSCT after T-cell/B-cell de-
pletion (haplo-HSCT) also exhibited efficiency in effectiveness in children [11]. Also
aggressive interventions with critical care is encouraged for pediatric hematopoietic
stem cell transplant patients having respiratory failure [35]. One comparative anal-
ysis to confirm increasing the CD34+ cells / kg dosage prolongs general survival
time of patients without synchronous occasions of unpleasant events affecting pa-
tients’ quality of life besides learning rule sets performed for survival data synthesis
[35].

All the reactive medical approaches proposed are extremely patient centered. To the
best of our knowledge, there is no work performed to predictively and preventively
improve pediatric patient survival before stem cell bone marrow transplantation
using ML and AI techiques.

2.5 Pediatric Pulmonary Health

Automatic classification of fetal heart rate based on convolutional neural network
has been done before as a solution exhibiting mixed approaches of transfer learn-
ing for faster feature extraction and learning improved diagnostic approaches of
healthcare [52]. Some scholars followed the sound of children’s hearts using a deep-
learning-based computer-aided pediatric diagnosis system in order to improve the
health infants and children [77]. There are some approaches discussed on unveiling
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COVID-19 from Chest X-ray with deep learning. The authors shared knowledge
about the hurdles race with small data which is the exact problem in X-ray pedi-
atric datasets [73][64].

The complexity of diagnosis of pulmonary diseases among covid-19 patients is re-
flected in a case study for diagnostics and management of tuberculosis and covid-19
in a patient with pneumothorax where the scholars described a first case where tu-
berculosis and COVID-19 were diagnosed concomitantly in a Russian patient with
pneumothorax [101]. A data augmented approach to transfer learning for covid-19
detection clarifies the possibilities of how we can still be able to do more with less
availability of data for medical image processing and deeply explain how transfer
learning can been used for pulmonary disease detection using X-ray, ultrasound,
and CT scans [88]. Scholars also discussed about classification of pulmonary dis-
eases from x-ray images using a convolutional neural Network. The niche was not
pediatric pneumonia but instead tomographic identification and evaluation of pul-
monary involvement due to sars-cov-2 infection using artificial intelligence and image
segmentation techniques [102].

Inception-v4, inception-resnet and the impact of residual connections on learning
have greatly exhibited advances in image recognition performance [26], this makes
them so applicable in pediatric medical imaging since we have even more issues to
handle with less data access and much needs for computational resources. A novel
augmented deep transfer learning for classification of COVID19 and other thoracic
diseases from X-ray was developed, where augmented ensemble transfer learning
techniques showed substantial performance gain over the conventional transfer learn-
ing [81]. Alternatively, covid-19 detection using chest x-ray images with a regnet
structured deep learning model was also presented by other scholars in identifying
medical diagnoses and treatable diseases by image-based deep learning [39] although
the pediatric niche was not addressed even in the critic evaluation of methods for
covid-19 automatic detection from x-ray images discussed by authors in [63].

The works on the occurrence of COVID-19 in pediatric patients and other pulmonary
diseases like Tuberculosis (TB), Pneumonia, bronchitis among others is extremely
limited. This domain of biomedical image processing is literally ignored hence the
existence of open datasets to address cross cutting issues is very scarce. It has been
proven that COVID-19 can transpire before, at the time of, or after the diagnosis
of TB, Pneumonia or any other pulmonary infection and more reliable evidence is
often required to regulate or control the spread of any of these pulmonary diseases
whether they are reactive or not [69]. The sole purpose of our work is to reduce
the worst case scenario of each of the detected pediatric pulmonary abnormalities
on pediatric patients. Data on the association between TB, Pneumonia, COVID-19
and other pulmonary diseases are not conclusive enough, nevertheless most scholars
believe that a pediatric carrier of more than one of these infections is likely to worsen
the condition of any of them most especially TB. We believe that an explainable
augmented intelligence approach with deep transfer learning for pediatric pulmonary
health evaluation would greatly reduce the worst case scenario in pediatrics patients.
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2.6 Predictive, Preventive and Personalized Medicine

(PPPM).

Reactive patient centered medicine is extremely risky and life threatening. Fortu-
nately, biomedical informatics and computational Intelligence have the potential to
innovatively disrupt these reactive approaches to medicine by allowing for interdis-
ciplinary collaboration of biology and engineering research for proactive improved
medical interventions. Using health data records, big data and analytic techniques,
it is possible to predictively approach medical diagnostics by forecasting possible
msedical outcomes before making any medical decision. This is referred to as pre-
dictive medicine. Additionally, preventive approaches to medicine can be leveraged
to avoid worst case scenarios among patients by using medical data forecasts. Data-
driven innovative approaches can allow for pediatric personalized medicine such
that the various important feature interactions are virtually performed by machines
through machine learning upon modeling the necessary patient metrics in order to
generate the most appropriate medical intervention insights that can guide physician
decisions [17][100].
With the available predictive power and improved computational intelligence, we
can feasibly deploy machine learning and artificial intelligence for predictive, pre-
ventive and personalized medicine to identify the most important metrics affecting
the success or failure of blood medicine in vulnerable populations.

2.6.1 Hematologic Predictive, Preventive and Personalized
Medicine.

Besides the delayed interventional medical approaches of reactive medicine, the in-
sufficient economy of healthcare systems and in-access to appropriate specialized
training programs for specific subjects like pediatric medicine makes it so hard to
build sufficient expertise and capacities to handle Hematological emergencies in chil-
dren. Moreover the problematic ethical aspects of several pediatric treatments as
well as inadequate communication among professional medical groups and health-
care policy makers complicate medical outsourcing interventions to save lives of the
vulnerable pediatric population

2.6.2 Predictive Models for Medical Adherence.

Machine learning Algorithms have been deployed in prediction of various aspects
of Medical Adherence which include predicting patients’ non-adherence risks [76],
fibromyalgia therapies adherence for mitigation of inaccuracy of social health fo-
rum data [49], predicting medication non-adherence in Crohn’s disease maintenance
therapy [75], examining medication adherence thresholds and risks of hospitalization
[20], use of medical claims data in medication adherence prediction, identifying post-
menopausal women at high risk of osteoporosis [14], predicting short-term fracture
risks [57], among others. Most of the research is focusing on predicting results of
non-adherence and other dynamics associated with non-adherence, no work has been
done about prediction of adherence to osteoporosis therapeutic treatment. That is
the research gap we are addressing for better adherence-improvement interventions
for patients.
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2.6.3 Maternal and Neonatal Predictive Medicine.

With the availability of massive historical and incoming health data, Artificial In-
telligence has become the future of reproductive healthcare. It has the power to
detect patterns and formulate neat simulations from large amounts of highly folded,
complex distributed data using machine learning. This often helps in development
of intelligent reproductive diagnostic and treatment plans [60][104]. Artificial In-
telligence has been used for In vitro fertilization (IVF) outcome prediction, sperm
analysis and selection, embryo and occyte selection and it has been proven to im-
prove accuracy with increase in patient data provision thus an increase in accuracy
of predictive and precision medicine besides treatment plans [56].

2.7 Explainable Artificial Intelligence (XAI).

The complexity and convolution of ethical components of critical decision-making in
neonatology and other aspects of pediatrics often require proper understanding and
explanation to not only the physician but also the patient managers [2] and that
is what necessitates interpretable technologies. Explainable Artificial Intelligence
(XAI) is what gives humans ability to not only explain but also validate the outcome
or Machine Learning (ML) models. It illuminates learning ‘black box’ to allow hu-
mans interpret and reliably understand how the model works. Locally Interpretable
Model-agnostic Explanations (LIME) explainable Feature Learning uses surrogate
models. It bases on predictor variable relationships with the output predictions to
learn and explain the ‘black box’ models within local regions [108][54]. ”Explain Like
I’m 5.” (ELI5) feature learning in random forest algorithm with multidisciplinary
datasets is achieved through the Inspection of Machine learning pipeline processes.
ELI5 python package is used to compute feature importance by permutation for
specific compatible ‘black box’ estimators with in the pipelines [48]. SHapley Ad-
ditive exPlanations (SHAP) Feature Learning encompasses LIME techniques with
additive feature attribution methods within a general framework for learning and
visually simulating feature interactions and importance [116][31][32].
XAI insightfully suggests features that drive ML decisions and highlights redundant
features that have little influence on the predictive results. With these insights,
physicians can make precise critical decisions and programmers can build better
and more accurate ML models [23]. XAI is what can interpretably prove that the
ML model does not contain biases and can be safe for acceptance and distribution
in production and critical medical environment with sincere trust and confidence to
humans [94] while providing practical and applicable perceptions on what to do to
improve the medical outcomes [110].

2.7.1 Feature Relevance Interpretation in Explainable AI
(XAI).

A lot of explainability techniques have been developed and tested for transparent
interpretation of machine learning models. “Blackbox” or opaque Artificial Intel-
ligence algorithms require post-hoc explanations to transparently understand and
interpret their procedures of how they come up with medical predictions, this is the
only way users can be able to trust these algorithms in making medical decisions
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[103]. Some of the explainability methods of these algorithms include but are not
limited to;
Feature relevance interpretations to quantify the model input variables in order
to explain the model for example the Layer-wise Relevance Propagation (LRP),
Local interpretations with concentrated specific model areas of interest to explain
the model, Visual interpretations which simplify model explainability by generating
multiple visualizations of the model. Text explanations use symbols for example
natural language text in order to generate explainable representations. Exemplifica-
tion explanations extract instances from training datasets that represent operations
of the model as a live demonstration [53].
Other Model-agonistic explainability methods used in demystifying “blackbox” ma-
chine learning models depend on intrinsic model architectures to relate the input to
outputs. They perform the explanations by simplification, feature relevance expla-
nations or visual explanations. Interpretation by Simplification may include Local
Interpretable Model-Agnostic Explanations (LIME) which bases on the target pre-
diction surrounding area to locally approximate a model during explanation. Some
are based on coalitional Game theory (Shapley values) to derive explanations while
others use visual explanations for model-agonistic interpretations for example Partial
Dependence (PD) and Individual Conditional Expectation (ICE) plots to explain
the models [46][118][114].

2.7.2 Safe and Trustable AI.

Explainable Artificial Intelligence is what gives lay humans like physicians and pa-
tients the ability to comprehend and validate the outcome of Machine Learning
models. It illuminates the abstracted ‘black box’ to allow humans understand how
the model works. An example is when humans understand the health features that
guide the health predictive decisions and those that least contribute to the final pre-
diction. Using these insights, humans can build simpler and more accurate models
and physicians can choose better fertility treatment plans. XAI is what can inter-
pretably proves that the Machine Learning model does not contain biases and that
it is safe for adoption and deployment in medical (production) environment with
trust and confidence to humans while providing actionable insights on what to do
to improve the outcome [53].
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Chapter 3

Methodology

3.1 ML-4-Osteoporosis-Treatment | LcMCH: I

3.1.1 Summary

Osteoporosis is a great disability burden with an expected cost increase of almost
50% by 2025. Due to its long term treatment, 50–70% of the patients withdraw
from their osteoporosis medications within the first year of initiation. This neces-
sitates an urgent need for improved osteoporosis and pharmacologic management
tools most especially for pregnant women, postmenopausal women and the elderly
to ensure therapeutic adherence of the patients during treatment. In this paper, we
developed and tested accuracy of Machine Learning Models for predicting therapeu-
tic adherence of patients to enable health professionals to compatibly decide on the
therapeutic treatments and approaches for osteoporosis treatment and pharmaco-
logic management of their patients. We were the first to develop and test Machine
Learning Models for Predicting Therapeutic Adherence treatments. The ML Model
accuracy results are summarized as classical metrics where the ExtraTree Model
exhibited the highest accuracy of 100%, 84.1%, 94.2% on the training, testing and
overall dataset respectively using Synthetic Minority Over-sampling Technique Sup-
port Vector Machine (SMOTE-SVM).

In this research work, we achieved our first objective (a) of proving the concept
of predictive, preventive and precision medicine using Machine Learning (ML) and
Artificial Intelligence (AI) techniques for Maternal and Child Health (MCH) using
real datasets.

3.1.2 Methodology

Approach

Predicting patient therapeutic adherence to osteoporosis treatment. Although Bone
Turnover Markers (BTMs)/ Biomarkers are currently used for prediction and man-
agement of osteoporosis [9], Machine learning is more appealing to support strategic
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clinical decisions based on predictive patient management tools and applications.
Our proposed ML Models were typically limited to objective prediction of patient
adherence to therapeutic treatment based on features that affect drug persistence
among patients.
We proposed ML Models to classify features that affect patient adherence based
on predictive analytics performed on drug persistence data. The proposed predic-
tive models are built on application of machine learning classification algorithms to
categorize patients based on features that influence drug persistence.

Dataset Description and Features

Despite the fact that [62] doubts the accuracy of machine learning-based prediction
of medication adherence, most of the factors pointed out to hinder accuracy of our
developed ML Models are taken care of by the dataset we used. The dataset [119]
used had 69 features and about 3414 samples which is sufficient information to
develop ML Models for the prediction problem in this domain. Lastly, the biggest
problem of imbalanced registered medical data on osteoporosis [28] is handled by
deploying appropriate sampling techniques.

Data Exploration We examined the data types in the dataset and the signifi-
cance of NULL data together with the frequency of each category visually separated
by labels as shown in Figure 3.1.
According to the histograms plotted, we observed not significant or special correla-
tion between the variables with the target function. Also, the categorical variables
could not determine the correlation factor between the variables and the target
functions.

Data Cleaning We removed numerical columns and apportioned each categorical
variable a value number to be mapped to since correlation cannot be calculated for
categorical variables. Then we examined the results, considering the correlation
between ”pseudo categorical variables” and the ”target” independent function.
Figure 3.2 illustrates the correlations among all variables where Grey fields signify
no correlation, while the comparative intensity of the red and blue colors signify a
rise in correlation, red indicates a positive correlation and blue indicates a negative
correlation.
We further restricted some of the variables with low correlation results by setting
and choosing the correlation above 0.01 or below -0.01 as illustrated in Figure 3.3.
Since the correlation between the variables in the training and test data in Figure
3.4 is nearly the same, good predictive results could be expected if a good train
result is obtained.

Sampling and Training. For data balance since Persistency Flag 0 had the
majority samples after checking, it would affect the accuracy of the Models.
We deployed optimal sampling techniques to obtain sufficient synthetic data for
training the Models for optimal results, they included: SMOTE to aid creation of
more synthetic data for the minority class 1, Borderline-SMOTE which is a new
Over-Sampling Method for Imbalanced Data Sets Learning, SMOTE-SVM to aid
identification of misclassified examples on the decision boundary and ADASYN to
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Figure 3.1: Sample count plot Histograms

generate more synthetic instances in regions of the feature space where the density
of minority was low and fewer or none where the density was high [93].
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Figure 3.2: Correlation Heat map of features in train dataset (Partial)

Figure 3.3: Correlation Heat map of features after restricting variables with low
correlation results (Partial)

Figure 3.4: Correlation Heat map of features in test dataset (Partial)
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3.2 XAI-4-Fetal-Health-Evaluation | LcMCH: I

3.2.1 Summary

Maternal and Neonatal health has been greatly constrained by the in-access to es-
sential maternal health care services due to the preventive measures implemented
against the spread of covid-19 hence making maternal and fetal monitoring so hard
for physicians. Besides maternal toxic stress caused by fear of catching covid-19,
affordable mobility of pregnant mothers to skilled health practitioners in limited re-
source settings is another contributor to maternal and neonatal mortality and mor-
bidity. In this work, we leveraged existing health data to build interpretable Machine
Learning (ML) models that allow physicians to offer precision maternal and fetal
medicine based on biomedical signal classification results of fetal cardiotocograms
(CTGs). We obtained 99%, 100% and 97% accuracy, precision and recall respec-
tively for the LightGBM classification model without any GPU Learning resources.
Then we explainably evaluated all built models with ELI5 and comprehensive fea-
ture extraction.

In this research work, we achieved the objectives a,b and c thus, we proved the con-
cept of predictive, preventive and precision medicine using Machine Learning (ML)
and Artificial Intelligence (AI) techniques for Maternal and Child Health (MCH)
using a real dataset, improved ML and AI interpretability for MCH physicians and
care takers by using explainable AI techniques in more transparent and insightful
means for predictive, preventive and precise MCH medical decision making, then
derived and comprehensively illustrate the most important features (factors) that
require extra attention for specific MCH predictive, preventive and precise medical
decision making.

3.2.2 Methodology

Approach

Explainable Biomedical Signal Classification.
Machine learning is appealing to enhance maternal fetal medicine through elec-
tronic fetal monitoring and evaluation applications or frameworks in telemedicine
in constrained resource settings. Our proposed ML Models are typically limited to
objective classification and unambiguous interpretation of cardiotocogram biomed-
ical signal features that affect evaluation of fetal health. With feature extraction,
the ML Models classify signals to evaluate fetal health in a probabilistic approach
for informed maternal-fetal health decisions by physicians or caretakers. We com-
pressively evaluate the ML models for optimal accuracy and represent EFM inter-
pretations as classical results for minimal ambiguity.

Dataset Description and Preparation

We obtained 2126 instances of real, multivariate cardiotocography biomedical signal
dataset [120] containing measurements of fetal heart rate and uterine contraction
features classified by expert obstetricians based on fetal state and the morphology
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patterns with 23 attributes. We first explored the signal density of each feature
in our dataset in order to understand and establish the boundaries and limits for
the fetal health state categories ie {Normal (1), Suspect (2) and Pathological (3) as
illustrated in Figure 3.5. } We then checked for the missing values and assessed the
distribution of the target fetal health classes.

Figure 3.5: Cardicotogram Target Variables

On Exploring the dataset, we realized extreme data imbalance in amongst the target
variables and handled it by resampling. In order to choose an appropriate resampling
technique, we needed to explore the outliers as shown in Figure 3.6 and set the upper
and lower thresholds to filter the signals.
We then calculated the signal correlation and examined the results, considering the
correlation between ”pseudo categorical variables” and the ”target” objective func-
tion. The heat map in Figure 3.7 illustrates the correlations among all variables as
blue-green fields represent no correlation, while the relative intensity of the aerob-
lue and blue colors represent an increase in correlation. In particular, blue reveals
a positive or direct correlation (the variation of one characteristic directly affects
the other) and aeroblue reveals a negative or indirect correlation (the variation of a
characteristic inversely affects that of the other).

Sampling, Feature Extraction and Training

Due to the signal class imbalance, we resampled the data before training the ML
Models to prevent highly skewed signal class distributions and ensure high classifica-
tion performance by up sampling the minority classes. Therefore, we first separated
signal target classes, sampled with replacement to match the majority signal class
then we randomly reproduced results which we combined with the majority class
after up sampling. We extracted the features with 23 dimensions and separated tar-
get variables then scaled the extracted features for standardization before training
and evaluating the ML Models.
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Figure 3.6: Exploring signal outliers

Figure 3.7: Correlation matrix Heat map of all features in the dataset
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Model Selection and Description.

Gradient Boost Classifier: This iterative functional gradient ensemble method
builds an additive model by combining both Gradient Descent to minimize loss func-
tion of the predecessor and Boosting where several weak learners are sequentially
merged into a strong learner in a forward stage-wise manner. The 3 components
of gradient boosting are; Loss function (to estimate the accuracy of the model at
making predictions), weak learners (decision trees to classify data) and additive
model (to sequentially and iteratively add weak learners). For the functional gra-
dient descent, if we look for approximations f̂(x) as functions on an iterative basis,
the function of approximations is initialized as a sum of approximations f̂0 (x) such
that:

f̂ (x) =
M∑
i=0

f̂i (x) (3.1)

Since f̂(x) is a description of functions that pretend to pass into functional space,
we restrict the search to certain functions of the f̂ (x) = h (x, k). It is important to
note that;
The sum of the models is more complex compared to any family model but choose
the optimal, we consider E for the coefficient of every step. Consider the expression
below;

f̂ (x) =
t−1∑
i=0

f̂i (x), (3.2)

(pt, θt) = argp,θminEx,y

[
L
(
y, f̂ (x) + ρ.h (x, θ)

)]
, (3.3)

f̂t (x) = ρ.h(x, θt) (3.4)

Since having a trained model h(x,) for any loss function L(y,f(x,)) is so hard in
practice, we use expression of the loss function gradient to measure its value on our
data and use least quadratic squares to correct residual predictions after training
the models with predictions similar to the obtained gradient.
The square difference between pseudo-residuals r and our estimates for regression,
and classification tasks are then minimized as shown below;

f̂ (x) =
t−1∑
i=0

f̂i (x), (3.5)

rit = −
[
∂L (yi, f (xi))

∂f (xi)

]
f(x)=f̂(x)

, for i = 1, . . . , n, (3.6)

θt = argθmin
n∑

i=1

(rit − h (xi, θ))2 , (3.7)

ρt = argρmin
n∑

i=1

L(yi, f̂ (xi) + ρ.h(xi, θt)) (3.8)

Light Gradient Boost Model
This architectural framework sequentially trains numerous trees to boost the gradi-
ent weights learning with a reduced error by giving more weight to the misclassified
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points in the subsequent iterations with a reduction in memory usage [93]. It uses
Gradient-based One Side Sampling (GOSS) and Exclusive Feature Bundling (EFB)
techniques to overcome constraints in Gradient Boosting Decision Tree frameworks.
All LightGBM solutions are built on the following function to gain estimated vari-
ance Vj

∗(d) over the subset A ∪ B.

V ∗
j (d) =

1

n
(

∑
xi∈Al

gi+
1−a
b

∑
xi∈Bl

gi)
2

nj
l (d)

+

∑
xi∈Ar

gi+
1−a
b

∑
xi∈Br

gi)
2

nj
r(d)

) (3.9)

Where Al = {xi ∈ A : xij ≤ d},Ar = {xi ∈ A : xij > d}, Bl = {xi ∈ B : xij ≤
d},Br = {xi ∈ B : xij > d},d is the point for computing the split in the dataset to
find the optimal variance performance.
Categorical Boosting (CAT)
his gradient boosting framework developed by the Yandex team was designed to
handle categorical variables by obtaining the best gradient through an ensemble
of decision trees. It makes use of categorical features for integrative learning dur-
ing training instead of preprocessing stage. Encoding techniques are used during
runtime to convert categorical values to numerical values to reduce over-fitting by
using random permutations of training data. Since CAT uses target statistics (TS)
for efficiency improvement, yet it replaces the original category Xki of kth training
variables with a single feature equivalent to some target statistic x̂i

kTS, we must
obtain x̂i

k ≈ E y|xi = xi
k .Such that the random permutation for choosing the tree

structure first calculates the average of leaf values.
If a permutation is θ = [σ1, . . . , σn]Tn , it is replaced with

xσp,k
=

∑p−1
j=1

[
xσj,k

= xσp,k

]
.Yσj

f.P∑p−1
j=1

[
xσj,k

= xσp,k

]
.Yσj

f.P
(3.10)

After altering the equation, we obtain the estimated E y|xi = xi
k by using the

average value of y over the dataset for training with the same category xi
k.

Decision Tree Classifier
This is a supervised technique for building a tree using Classification and Regression
Tree (CART) algorithm where internal nodes represent the features of the signal
dataset, decision nodes with multiple branches represent the decision rules and leaf
nodes represent the outcome. It is an illustration of all the likely solutions to a
decision based on specified conditions. The algorithm continuously calculates the
measure of purity of the sub split for each feature after every split that helps us
build a suitable decision tree by choosing the best feature to split accordingly. This
is called entropy and it is given by;

H (s) = −P (+) log2P (+) − P (−)log2P (−) (3.11)

P (+)

P (−)
=

% of + ve class

% of − ve class
(3.12)

Alternatively, Gini impurity of features after splitting can be used to split the tree
appropriately, it can be computed by formula below;

GI = 1 −
n∑

i=1

P 2 (3.13)

30



GI = 1 −
[
P (+)2 + P (−)2

]
(3.14)

Voting Classifier
This is an ensemble combination of different multiple models to overcome bias of a
single model towards particular factors in order to attain a generalized and confident
fit of all models. The two implementations of Voting are Soft Voting where we
sum and average the predicted probability vectors of the combined models and
Hard Voting where we classify model output then obtain the final output value by
calculating the mode value of combined individual model output. E. ML Model
Interpretability and Explainability. Black-box Machine Learning (ML) predictions
and decisions require explanation for trust and reliability in the field of medicine.

Explainability of the CTG Signal Classification Models. In this paper, we
used ELI5 Python package XAI Libraries to explain the ML models using weights
associated with each feature to depict the feature’s importance in of each ML model
for reduced ambiguity and better interpretability of CTG Signals [113]. Since ELI5
shuffles the removed variable attribute values and randomizes the chosen variable
to analyze the model’s performance decrease, we used it to compute and interpret
the global explainability of the selected models in analysis of the variable global
influence in the fetal health evaluation [48].

3.3 XAI-4-NICU-Admissions | LcMCH: II

3.3.1 Summary

Neonatal Intensive Care Units (NICU) service costs are rapidly growing due to the
higher resource utilization intensity. This in turn increases the healthcare costs for
NICU patients besides the inaccessibility and unpreparedness of both NICU service
providers and patient caretakers hence an increase in neonatal mortality and mor-
bidity. There are a lot of contributors to NICU admissions but the existing methods
consider very limited features to precisely predict NICU admissions. In this paper,
we present a robust Explainable Artificial Intelligence approach that allows machines
to interpretably learn from a pool of possible contributing features in order to pre-
dict an NICU admission. Our machine learning approach interpretably illustrates
the thought process of admission prediction to the physician and patient. This pro-
vides transparent and trustable insights for the precise, proactive, personalized and
participatory NICU medical diagnostics and treatment plans for the patient. We
statistically and visually present Random Forest and Logistic Regression prediction
explanations using SHAP, LIME and ELI5 techniques. This predictive technologi-
cal approach can preventively increase success of maternal and neonatal monitoring
and treatment plans. It can also enhance proactive management of NICU facili-
ties (resources) by the responsible facility administrators most especially in resource
constrained settings.

In this research work, we achieved the objectives a,b and c thus, we proved the con-
cept of predictive, preventive and precision medicine using Machine Learning (ML)
and Artificial Intelligence (AI) techniques for Maternal and Child Health (MCH)
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using a real dataset, improved ML and AI interpretability for MCH physicians and
care takers by using explainable AI techniques in more transparent and insightful
means for predictive, preventive and precise MCH medical decision making, then
derived and comprehensively illustrate the most important features (factors) that
require extra attention for specific MCH predictive, preventive and precise medical
decision making.

3.3.2 Methodology

Approach

Explainable ML for predicting NICU Admission.

Figure 3.8: High Level diagram for the proposed NICU XAI approach

We are proposing an Explainable Machine Learning (ML) approach to NICU Ad-
mission prediction. It will help patients cut costs for preventable NICU services and
help the Neonatologists improve the precision in maternal and neonatal medicine.
This approach will improve neonatal treatment plans with interpretable Machine
Learning (ML) predictions for NICU service interventions. In this paper, ambigu-
ity and technophobia to Neonatal AI preventive medicine is achieved by explaining
driven NICU predictions with feature importance as outlined in the Illustration of
Figure 3.8.

XAI Approach Description

The three Explainability Techniques used in this approach are;
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SHapley Additive exPlanations (SHAP):
In 2017, Lundberg and Lee published a game theoretical approach that explains
outputs of ML models by connecting optimal credit portions with local descriptions
using the Shapley values of game theory and their related extensions which created
the SHAP AI framework. This average marginal contribution of a feature value
over all possible coalitions defines the Shapley values which are unified measures of
a feature importance derived by;

φi (v) =
∑

SN{I}

|S|!(|N | − |S| − 1)!

|N |!
(v (S ∪ {i}) − v(S) (3.15)

where marginal contribution of the feature [v (S ∪ i) − v (S)] is computed out of all
the subsets S to get the Shapley value for a feature i, such that model estimates of
all subsets with and without the feature are calculated and added to get the Shapley
value for that feature to make the Additive exPlanations [116].

Local Interpretable Model-Agnostic Explanations (LIME):
This algorithm illuminates black box predictions of any classifier (f) in a correct
way, by estimating it locally with an interpretable model g Gg ∈ G. where G is
a class of interpretable models such as a linear classifier or a decision tree. The
measure of complexity Omega (g)Ω(g) of the model is also a significant factor of
how easily the explanations are generated. In addition, the error of g is calculated
by approximating f using a loss or distance function, denoted as L(f, g). Finally the
explanation (g)(g) is calculated from the optimization of;

(g)Ω = argminL(f,g) +Ω(g) (3.16)

LIME is used to train a linear model to approximate the local decision boundary
for that instance in the dataset. It is used by non-experts to pick classifiers that
generalize better in the real world and improve trustworthiness of classifiers by doing
feature engineering with guidance on when and why to trust a model. With respect
to a single prediction, this model-agnostic method generates an explanation by train-
ing a local interpretable classifier where its training data is generated by taking a
specific input, permuting it, and labeling the permutations using the model [118][31].

Explain it Like I’m 5 (ELI5)
It is a python package with in-built support for several ML frameworks inspect ML
classifiers and explain their predictions. It allows for visualization and debugging
of various machine learning algorithms such as sklearn regressors and classifiers,
XGBoost, CatBoost, Keras etc. using a unified API by providing weights of the
features from most common Python Libraries. Since it has local (how and why a
specific prediction is made) and global (how an overall model works) properties,
ELI5 explains the ML models interpretably and computes the contribution selected
features to execute feature importance for final prediction [114][46].

Dataset Description and Features.

From IEEE Data port, we obtained a multidisciplinary Mother’s Significant Feature
(MSF) Dataset for multidisciplinary collaborative scientific research towards woman
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and child health improvement for use. With 450 records and 130 maternal and child
health feature attributes, features are traced about the mother, father and health
outcomes. The 5 categories of the features are; physical, social, lifestyle, stress level,
and health outcomes. All child health, maternal health and pregnancy outcomes of
all possible abnormalities are covered in the dataset based on thorough literature
review and brainstorming phases with doctors (gynecologists and pediatricians) [86].

Data Preparation and Processing

We performed general data visualization to recognize and learn any features that
are indicative of NICU admission. We used decision trees to predict the missing
values for (miscarriage history and weight before delivery) in our dataset before
replacement. Then we explored the data by first inspecting the numeric variable
distribution as illustrated in Figure 3.9.

Figure 3.9: Display of some variable distribution curves of features

We implemented Synthetic Minority Over- sampling Technique (SMOTE) to balance
the dataset.

Handing Imbalanced Data

Synthetic Minority Over-sampling Technique (SMOTE)
In 2002, Chawla proposed SMOTE as an algorithm to add synthetic minority class
observations based on the k-nearest neighbors’ algorithm for the minority class ob-
servations to add minority class observations data to smoothen the imbalance be-
tween the classes. It interpolates between the original minority class samples and
its neighboring samples by:

Xnew = Xorigin + rand (0, 1) × (Xi −Xorigin) , i = 1, 2, . . . N (3.17)

where Xnew represents the minority class samples which are newly synthesized;
Xorigin between 0 and 1; Xi denotes a sample that is selected from original sample
randomly and used to create new samples; rand(0, 1) denotes a random number
which is between 0 and 1; Xi denotes a sample that is randomly chosen of the
minority class sample Xorigin from the k neighboring samples. Although SMOTE
results in over generalization, it generates synthetic instance with the same number.
Therefore the minority class after applying SMOTE can look very different from the
original data and may not return the fundamental distribution of the minority class.
In order to beat the null accuracy of NICU admission, we took the inverse of the
baseline to predict the most common outcome of our ML models.
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Model Selection and Description.

We build Logistic Regression, SVM and Random Forest ML models with a 10 fold
cross validation then selected the best predictor based on F1 scores as the primary
metric due to the dataset imbalance.
Logistic regression
This preferred simple classification model for multiple explanatory variables is given
by;

p(Yi|Xi,...,Xp) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
(3.18)

where X = (X1, . . . , Xp) are p explanatory variables for predicting the response
variable Y, it can also be expressed as;

log

(
p (Yi | Xi, . . . , Xp)

1 − p(Y i |Xi, . . . , Xp)

)
= β0 + β1X1 + · · · + βpXp. (3.19)

where the logit function of p to exhibits linearity in explanatory variables for esti-
mated multiple logistic regression models to classically predict the probability of a
given observation as positive or negative for correct classification of new observa-
tions in untrained labels. Here, the tested error rate is reduced by assigning each
observation to its most likely class trained on the values of the explanatory variables
hence a test observation with explanatory vectors x1, . . . xp should be assigned to
the class j for which

p (Y = j | X1 = x1, . . . , Xp = xp) (3.20)

is largest. This corresponds to assigning a test observation to class 1 if

p (Y = 1 | X1 = x1, . . . , Xp = xp) > 0.5 (3.21)

and to class -1 otherwise in binary setting [11].
Support Vector Machines (SVM)
This group of similar classifiers generalizes the maximal margin classifier using a
separating hyper-plane to classify observations. Consider a hyper-plane to be a
subspace of p − 1 dimensions in p-dimension space defined by;

β0 +

p∑
i=1

βixi = 0 (3.22)

For feature space of dimension 2, the hyper-plane is a straight line such an observa-
tion x = (x1, . . . , xp) given by;

β0 +

p∑
i=1

βixi > 0, (3.23)

OR

β0 +

p∑
i=1

βixi < 0 (3.24)

The Hyper-plane can only be used as a classifier if observations are classified without
errors. For divided data, there numerous possible hyper-planes of which maximal
margin classifier selects one that lies extreme of the training observations (support
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vectors). SVM is a linear classifier extending support vector classifier with accom-
modation of non-linear class boundaries represented as;

f (x) = β0 +
n∑

i=1

αi ⟨x, xi⟩ , (3.25)

Where αi, (i = 1, ..., n) are parameters, one per observation. The inner product
computation of new point x and each of the training points estimates the parameter
which are nonzero for the support vectors only. On replacing every inner product
with a generalization K(xi, xí) where K is a function that measures the similarity
of two observations (kernel), expression becomes;

f (x) = β0 +
n∑

i∈S

αiK (x, xi) . (3.26)

Where S represents a set of all observations that are support vectors. The radial
basis kernel is generally given by;

K (xi, xi) = exp(−γ +

p∑
j=1

(xij − xíj)
2) (3.27)

where is a cross validation positive constant determinant.

Random forest
It is a decision tree based classifier for predicting qualitative responses by dividing
the predictor space into different and non-overlapping regions for the same prediction
to be made for every observation in that region (majority group) during classification
which can be regarded as Bayes classifier. Predictor space is partitioned iteratively
based on the highest reduction of some measure of classification error by recursive
binary splitting often using the Gini index;

G =
K∑
k=1

p̂mk(1 − p̂mk) (3.28)

where p̂mk is the quantity of training observations that belong to the kth class in
the mthregion. Overfitting data during learning is addressed by bootstrap driven
bagging where the model is trained on the individual bootstrapped training sets in
order to get B classification functions by;

f ∗1 (x) , . . . , f ∗B(x) (3.29)

In order to average the predictions of all the models for the final result as;

f̂bag (x) =
1

B

B∑
b=1

f̂ ∗b(x) (3.30)

,observation prediction is done by recording the class prediction by each of the
B trees and summing the predictions with the most frequent class among the B
predictions as a majority vote. As extension of bagged trees, random forest aims at
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model variance reduction by choosing a random sample of the m predictors as split
candidates from the full set of p predictors at each split which is given by; m ≈ √

p.
Thus reducing the total variance of averaged models with a slight increase in bias
when deco-relating the trees.
On comparing performance of the 3 models on positive seen data (1) and negative
seen data (0), the report below was obtained as illustrated in table 3.1

Metric Precision Recall F1-Score support
Negative(o) 0.84 0.83 0.84 238
Positive (1) 0.49 0.51 0.50 77
Accuracy 0.75 315
Macro Average 0.67 0.67 0.67 315
Weighted Average 0.75 0.75 0.75 315
Accuracy Score: 0.75

Table 3.1: Random Forest (RF) Classification Report

RF exhibited good accuracy but poor recall so we optimized it with a grid-search,
bootstrapped with a maximum of 5 features and 100 estimators to find its optimal
parameters and obtained the results in table 3.2.

Metric Precision Recall F1-Score support
Negative(o) 0.84 0.87 0.85 238
Positive (1) 0.55 0.51 0.53 77
Accuracy 0.75 315
Macro Average 0.70 0.66 0.69 315
Weighted Average 0.77 0.78 0.77 315
Accuracy Score: 0.77
F1 Score: 0.52

Table 3.2: Tuned Random Forest (RF) Classification Report

Since Logistic Regression (LR) had the highest F1 Score, we tuned its parameters
for better results in table 3.3.

We also tuned the SVM to obtain the results in Figure 3.4 to make a fair comparison.
Despite the low accuracy, Logistic Regression had the best recall amongst all ML
models.

The comparison illustrated in Figure 3.10 showed that a tuned RF gave a higher
accuracy score, it was likely that the model would best predict the likelihood of
NICU admission rather than the less likelihoodness of admission.
We visually compared the performance of the selected ML models to assess their
performance on each prediction. RF performs the best for overall accuracy in Figure
3.11
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Metric Precision Recall F1-Score support
Negative(o) 0.85 0.72 0.85 238
Positive (1) 0.41 0.60 0.49 77
Accuracy 0.69 315
Macro Average 0.63 0.66 0.63 315
Weighted Average 0.74 0.769 0.71 315
Accuracy Score: 0.69
F1 Score: 0.48

Table 3.3: Parameter Tuned Logistic Regression (LR) Classification Report

Metric Precision Recall F1-Score support
Negative(o) 0.82 0.76 0.79 238
Positive (1) 0.39 0.47 0.42 77
Accuracy 0.69 315
Macro Average 0.60 0.61 0.61 315
Weighted Average 0.71 0.69 0.70 315
Accuracy Score: 0.68
F1 Score: 0.42

Table 3.4: Parameter Tuned Support Vector Machine (SVM) Classification Report

Figure 3.10: Summary of the Machine Learning Model Performance Comparisons

In this domain of maternal and neonatal healthcare, the healthcare medical prac-
titioners’ choice of predictive model depended on the purpose of prediction. When
we opted to use the model for medical advice or preventive maternal-fetal medicine
(treatment), the model with the highest recall was preferably Logistic Regression
(LR) with detail illustrated in Figure 3.15.
This LR option is not final for all maternal and neonatal medical decisions because
the recall variance of the models and accuracy of the models are great factors to
consider for model selection in this medical domain.
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Figure 3.11: Individual Performance of each Model on Each Prediction

Figure 3.12: Logistic Regression Overview

3.4 XAI-4-StemCell-Transplantation | LcMCH: II

3.4.1 Summary

Pediatric bone marrow failure syndromes are therapeutically and diagnostically
strenuous, costly and yet extremely risky to pediatric patients despite their ne-
cessity for pediatric survival. To make matters worse, the current approach to
the treatment of hematology and blood disorders in pediatric patients is extremely
patient-centred and uncertainly lethal. In this work, we innovatively leveraged ma-
chine learning and artificial intelligence techniques to predictively and explainably
identify important factors influencing the success or failure of cell transplantation
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in pediatric patients using SHapley Additive exPlanations (SHAP). We also demon-
strated a reliable approach to predict the survival of the pediatric patient based on
the important feature interactions before the cell transplantation is performed. For
this role, Catboost, LigtGBM and XBoost algorithms obtained 82%, 92% and 94%
accuracy respectively. As much as we validate Kaw lak’s hypothesis that increas-
ing the CD34+ cells/kg dosage prolongs general survival time of patients without
synchronous occasion of unpleasant events affecting patients’ quality of life (Kaw lak
et al., 2010), we discovered that pediatric risk group and recipients’ age are likely
to be more influential determinants of prolonged survival as compared to CD34+
cell reception. Our predictive and preventive approaches to pediatric medical trans-
plantation beat the existing delayed interventional approaches of reactive pediatric
medicine. They can greatly reduce child mortality and improve the survival of chil-
dren with personalized medicine hence transparently improving maternal and child
healthcare.

In this research work, we achieved the objectives a,b and c thus, we proved the con-
cept of predictive, preventive and precision medicine using Machine Learning (ML)
and Artificial Intelligence (AI) techniques for Maternal and Child Health (MCH)
using a real dataset, improved ML and AI interpretability for MCH physicians and
care takers by using explainable AI techniques in more transparent and insightful
means for predictive, preventive and precise MCH medical decision making, then
derived and comprehensively illustrate the most important features (factors) that
require extra attention for specific MCH predictive, preventive and precise medical
decision making.

3.4.2 Methodology

Approach

Explainable Predictive Artificial Intelligence for Hematologic Pediatric Patient Sur-
vival upon Stem Cell Transplantation using Model-agonistic Interpretation methods.
Our explainability approach flexibly depends on intrinsic model architectures to ex-
clusively relate the input to outputs by feature relevance techniques. The proposed
explainability approach is based on coalitional Game theory (Shapley values) where
Shapley Additive exPlanations (SHAP) focus on the instance to be interpreted in or-
der to build liner models, then use feature importance as the explanation coefficients
for the used machine learning algorithms.
SHapley Additive exPlanations (SHAP): In 2017, Lundberg and Lee published a
game-theoretical approach that explains outputs of ML models by connecting opti-
mal credit portions and related extensions which created the SHAP AI framework.
This average marginal contribution of a feature value over all possible coalitions
defines the Shapley values which are unified measures of feature importance derived
by;

φi (v) =
∑

SN{I}

|S|!(|N | − |S| − 1)!

|N |!
(v (S ∪ {i}) − v(S) (3.31)

Where the marginal contribution of the feature [v (S ∪ i)−v (S)] is computed out of
all the subsets S to get the Shapley value for a feature i, such that model estimates
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of all subsets with and without the feature are calculated and added to get the
Shapley value for that feature to make the Additive exPlanations.

Dataset Description.

We obtained a pediatric hematologic dataset with 187 examples of pediatric pa-
tients characterized by 37 attributes describing hematologic diseases and malignant
disorders among pediatric patients who were subjected to unmanipulated allogeneic
unrelated donor hematopoietic stem cell transplantation [16].

Artificial Intelligence Model Selection and Description

LightGBM
It is an algorithm that uses Gradient-based One Side Sampling (GOSS) and Exclu-
sive Feature Bundling (EFB) methods to overcome limitations in Gradient Boosting
Decision Tree frameworks [15].
For the given training dataset

X = {(ai, bi)}m1=1. (3.32)

LightGBM aims to search for an approximation f̂ (x) to the function f ∗(x) for
minimizing expected values of specific loss functions;

L (y, f (x)) : f̂ (x) argminEL (y, f (x)) (3.33)

LightGBM then combines many T regression trees for predicting the eventual model
defined as;

fT (X) =
T∑
t=1

ft (X) (3.34)

The model then trains in the additive form at step t as illustrated below;

Pt
∼=

M∑
j=1

L (yi, Ft−1 (ai) + ft (ai)) (3.35)

Equation 3.35 is simplified when the constant term is removed

Pt =
M∑
j=1

(gift (ai) +
1

2
hif

2
t (xi)) (3.36)

Equation 3.36 is further converted to 3.37 if the sample set of leaf j is represented
byIj:

Pt =
J∑

j=1

((
∑
i∈Ij

gi)cj +
1

2

∑
i∈Ij

hi + λ

 c2j) (3.37)

In terms of the tree structure q(x), the optimum leaf weights of the leaf nodes c∗j
and extreme values of Pt are figured out by Equation 3.38 and Equation 3.39:

c∗j = −
∑

iεIj
gi∑

iεIj
hi + λ

(3.38)
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P ∗
T = −1

2

J∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
(3.39)

where is the weight function measuring the quality of tree structure q(x). The
objective function is eventually obtained by integrating the split:

Q =
1

2
(

(
∑

i∈Il gi)
2∑

i∈Il hi + λ
+

(
∑

i∈Ir gi)
2∑

i∈Ir hi + λ
+

(
∑

i∈I gi)
2∑

i∈I hi + λ
) (3.40)

where Il and Ir are samples of the left and right branch respectively.

Extreme Gradient Boosting (XGboost): It is a an algorithm that implements
optimized distributed gradient boosting decision trees in an open-source gradient
boosting framework using ensemble learning techniques [93]. This model inputs
a training set as {(xi, yi)}Ni=1,a differentiable loss function L(y, F (x)), a number of
weak learners M and a learning rate α. Then we run the inputs through an algorithm
where we initialize a constant value to pass through M when m=1. After which we
fit the weak learner ( base learner, e.g. tree) using a selected training set to compute
an optimization who’s output can be used to update the model such we obtain an
output defined as;

f̂ (x) = f̂M (x) =
M∑

m=0

f̂m (x) (3.41)

Categorical Boosting (CatBoost): It is an algorithm developed by YANDEX as
gradient boosting framework [93]. It uses target statistics (TS ) to improve efficiency
in classification tasks by replacing the original category of features Xkiof kth training
variables with a single feature equivalent to some target statistic x̂i

kTS. We must
obtain x̂i

k ≈ E y|xi = xi
k Such that the random permutation for choosing the

tree structure first calculates the average of leaf values. If a permutation is θ =
[σ1, . . . , σn]Tn , it is replaced with;

xσp,k
=

∑p−1
j=1

[
xσj,k

= xσp,k

]
.Yσj

f.P∑p−1
j=1

[
xσj,k

= xσp,k

]
.Yσj

f.P
(3.42)

After altering the equation, we obtain the estimated E y|xi = xi
k by using the average

value of y over the dataset for training with the same category xi
k.
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3.5 XAI-4-Pulmonary-Health-Evaluation | LcMCH:

III

3.5.1 Summary

Biomedical Instrumentation is one of the fastest health emerging innovative tech-
nologies with proven contribution towards the interdisciplinary medicine, it helps
physicians to diagnose complex medical problems and provide treatment to patients
precisely and safely. With this technological trend, explainable artificial intelligence,
biomedical image processing and augmented intelligence can provide a tool that can
help pediatricians and other experts in the fields of pulmonology and otolaryngol-
ogy as well as experts from epidemiology and pediatric practice to interpretably and
reliably offer clinical and diagnostic services to infants, children, and adolescents
with acute and chronic respiratory disorders. In this work, we presented a reli-
able interpretable deep transfer learning approach for pediatric pulmonary health
evaluation regardless of the scarcity and limited annotated pediatric chest X-ray Im-
age dataset sizes that affect the reliability of digital image processing for pediatric
pulmonary disease diagnosis. This approach leverages a combination of computer
vision tools and techniques to reduce child morbidity and mortality through pre-
dictive and preventive medicine for reduced surveillance risks and affordability in
low resource settings. With open datasets, the deep neural networks classified the
generated augmented images into 4 classes namely; Normal, Covid-19, Tuberculosis
and Pneumonia at an accuracy of 97%, 97%, 70%, and 73% respectively with recall
of 100% for Pneumonia and overall accuracy of 79% at only 10 epochs for both
regular and transferred learning.

In this research work, we achieved the objectives a,b and c thus, we proved the con-
cept of predictive, preventive and precision medicine using Machine Learning (ML)
and Artificial Intelligence (AI) techniques for Maternal and Child Health (MCH)
using a real dataset, improved ML and AI interpretability for MCH physicians and
care takers by using explainable AI techniques in more transparent and insightful
means for predictive, preventive and precise MCH medical decision making, then
derived and comprehensively illustrate the most important features (factors) that
require extra attention for specific MCH predictive, preventive and precise medical
decision making.

3.5.2 Methodology

Approach

Explainable Augmented Intelligence and Deep Transfer Learning for Pediatric Pul-
monary Health Evaluation. With collaborative interventions of Computer Science in
Biology, we took advantage of scientific innovations like Image augmentation, Inter-
pretable Artificial Intelligence, Deep and Transfer Learning to propose a transparent,
accurate pulmonary disease detection and classification approach that leverages a
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combination of deep and transfer learning of chest X-ray images to detect and dif-
ferentiate the most deadly pediatric pulmonary diseases for precise and personalized
diagnosis, treatment and management. Since specific signs and symptoms common
to COVID-19, Pneumonia and TB facilitate a rapid access to imaging services, we
proposed use of Explainable AI as a reliable tool for biomedical image processing of
the newly augmented extracted chest X-ray images dataset.

Dataset Description.

We obtained three different well annotated chest image datasets. One was a small
COVID-19 chest X-ray (CXR) dataset collected from Northern Italy by a major
emergency hospitals during peak of the COVID pandemic, this dataset is hosted at
github [112]. We obtained another small pediatric Pneumonia dataset of Labeled
Optical Coherence Tomography (OCT) and Chest X-Ray Images from with directo-
ries CNV, DME, DRUSEN, and NORMAL from Mendeley [38], we the obtained one
last small chest X-ray Tuberculosis image dataset form kaggle including (training,
testing and validation) images [117]. In total we managed get up to a total of 7135
x-ray images for the work. We then created a Google cloud repository to host the
obtained datasets with in their organized folders and subfolders. Then we build a
data pipelines towards the Google cloud directory for efficient assess by Keras dur-
ing data processing.A sample of the images obtained in the datasets is illustrated in
Figure 3.13.

Figure 3.13: Sample Chest X-ray Images of used datasets before Augmentation

Image Data Augmentation for Augmented Intelligence
Since conventional image processing uses statistical or machine learning classifiers
as a computer vision methodology to segment images and recognized objects/ pat-
terns, they often require large well labeled datasets to effectively predict or classify
objects. This is a very huge problem in the medical setting most especially pediatric
pulmonology.

Due to the scarcity of pediatric chest X-ray image datasets and limited access to
annotated chest X-ray images for biomedical image processing, we proposed and
deployed image data augmentation in order to generate a relatively large, balanced
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and sufficient dataset for effective machine learning and computer vision. For this
particular experiment, we set up and executed a Keras image generator through the
dataset cloud directory hosting the dataset with a configured validation split of 0.2,
rotation range of 5, width shift of 0.05, height shift of 0.05, zoom range of 0.05 and
a compulsory horizontal flip with some samples shown in Figure 3.14.

Figure 3.14: Generated Augmented Pediatric Chest-X-ray Images

Deep Learning with Convolutional Neural Network
We proposed and built a deep convolutional neural network (CNN) to accurately
learn, detect and classify the pediatric pulmonary diseases within the newly gen-
erated augmented pediatric chest X-ray images at only 10 epochs as demonstrated
in Table 3.6. The deep network will also act as the base for transfer learning in
order to reduce computation costs of pulmonary disease detection among pediatric
patients. The CNN often generates image abstracts for representative classification
as a way of improving biomedical image classification although it requires compu-
tationally intensive equipment and demands vast amounts of training samples for
accurate pattern recognition and image processing. This is what necessitates trans-
fer learning for pediatric pulmonary health evaluation. We set up a two Dimension
(2D) sequential CNN with a total of 3,409,688 parameters which were all trainable
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as illustrated by the CNN architecture in Table 3.5

Model: ”sequential”
Layer (type) Output Shape Param
conv2d (Conv2D) (None, 198, 198, 16) 448
maxpooling2d(MaxPooling2D) (None, 99, 99, 16) 0
conv2d1(Conv2D) (None, 97, 97, 32) 4640
maxpooling2d1(MaxPooling2 (None, 48, 48, 32) 0
dropout (Dropout) (None, 48, 48, 32) 0
conv2d2(Conv2D) (None, 46, 46, 64) 18496
maxpooling2d2(MaxPooling2 (None, 23, 23, 64) 0
flatten (Flatten) (None, 33856) 0
dense (Dense) (None, 100) 3385700
dropout1(Dropout) (None, 100) 0
dense1(Dense) (None, 4) 404
Total params: 3,409,688
Trainable params: 3,409,688
Non-trainable params: 0

Table 3.5: Convolutional Neural Network Architecture

Validation loss: 0.001136499340645969
Validation accuracy: 1.0
Test loss: 2.2075932025909424
Test accuracy: 0.7872892618179321

Table 3.6: Convolutional Neural Network Training Metrics with 10 epochs

The base model saved for transfer learning exhibited a test loss of 2.20 and test
accuracy of 0.78 yet it was able to attain a total percentage of 97%, 97%, 73%, and
70% for the pattern recognition and detection of covid-19, normality, pneumonia and
tuberculosis respectively. It even exhibited a total recall of 100% for pneumonia yet
36% for the normal state of patients as illustrated in Figure 3.15 and Table 3.7
Transfer Learning
We proposed and used a pretrained CNN model to accelerate deep learning of the
augmented pediatric X-ray chest dataset for accurate pediatric pulmonary disease
detection. Besides low computational requirements for accurate pulmonary health
evaluation of pediatrics, transfer learning is faster by using backward propagation
and a feed-forward neural network. It fine-tunes lower layer weights during pattern
detection and retains upper layer weights for unique feature recognition for necessary
image classification. The first adopted base model for transfer learning exhibited
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Figure 3.15: Confusion matrix of detected pulmonary diseases before transfer learn-
ing

Classification Report
precision recall f1-score support

COVID19 0.97 0.88 0.92 106
NORMAL 0.97 0.36 0.53 234
PNEUMONIA 0.73 1.00 0.85 390
TURBERCULOSIS 0.70 0.98 0.82 41
accuracy 0.79 771
macro avg 0.84 0.80 0.78 771
weighted avg 0.83 0.79 0.76 771

Table 3.7: Pediatric pulmonary classification report before Transfer Learning

a total validation loss of 0.001 and a validation of accuracy of 1.0 at 10 epochs as
shown in Table 3.6 while the later exhibited a loss validation loss of 0.002 with the
same validation accuracy as the base model as shown in Table 3.8 after transfer
learning.
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Validation loss: 0.002720192074775696
Validation accuracy: 1.0
Test loss: 1.4745935201644897
Test accuracy: 0.7859922051429749

Table 3.8: Training Metrics of the transferred learning model with 10 epochs

3.6 QLL-XAI-4-Fertility-Treatment | LcMCH: IV

3.6.1 Summary

The global trends of women in the reproductive age have significantly altered due
to their personal and career development engagements besides adoption of contra-
ceptive methods. Since women are extending birth to their late ages where natural
conception is quite hard besides other factors, it has globally boosted the fertil-
ity service market which is a projected 41.4 billion industry by 2026. Despite the
growing market for fertility services, infertility evaluation is still uncomfortable, ex-
pensive, inaccessible and ambiguous for both the customers and the fertility service
providers. In this work, we deploy Machine Learning and Explainable Artificial
Intelligence to predict the outcomes of fertility treatment using interpretable Ma-
chine Learning Lattice Models for predictive, preventive and precision reproductive
medicine. We also introduced the concept of Quantum Lattice Learning in Artificial
Intelligence for Machine Learning Interpretability.

In this research work, we achieved the objectives a,b, c and d thus, we proved the con-
cept of predictive, preventive and precision medicine using Machine Learning (ML)
and Artificial Intelligence (AI) techniques for Maternal and Child Health (MCH)
using a real dataset, improved ML and AI interpretability for MCH physicians and
care takers by using explainable AI techniques in more transparent and insightful
means for predictive, preventive and precise MCH medical decision making, then
derived and comprehensively illustrated the most important features (factors) that
require extra attention for specific MCH predictive, preventive and precise medical
decision making and we created a new Explainable Predictive Machine Learning
Model that is capable of transparently illustrating feature interaction of the most
influential features leading to a precise medical decision for MCH.

3.6.2 Methodology

Approach

We are proposed an Explainable Artificial Intelligence (XAI) approach to reproduc-
tive medicine that births a fragmented market of Fertility care solutions to serve
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reproductive endocrinologists and fertility patients with immediacy. This approach
is a combination of interpretable Machine Learning (ML) predictors for fertility
health interventions using Lattice Models (LM). In this paper, this transparency
is achieved by simulating the process of lattice model prediction of fertility inter-
vention outcomes in lattice space. This simulation is what interpretably explains
the ‘blackbox’ machine learning prediction process to aid understandability of the
predictive models.

Dataset Description

We obtained a Mother’s Significant Feature (MSF) Dataset [86] intended for scien-
tists aiming at women and child health improvement. With 450 records and 130
attributes entailing mother’s features, father’s features and health outcomes, the
features are divided into 5 categories namely physical, social, lifestyle, stress level,
and health outcome. All probable complications related to child health, mother’s
health and gestation results are covered in the dataset, which were realized after
comprehensive literature review and brainstorming sessions with doctors (gynecol-
ogists and pediatricians) [86].

Data Preparation and Processing

We first explored the dataset for data balance and missing values. We performed
mean substitution (imputation) to handle missing values. It worked by substituting
missing values of the defined variables with the mean of non-missing cases of de-
fined variable. We plotted all features against the targeted variable to assess their
numeric variation and relationship as shown in Figure 3.16.

Figure 3.16 shows a strong relationship between mothers’ age and conception suc-
cess. The higher the age, the lower the conception success after fertility medical
intervention. It also shows numerous other features contributing to the success of
reproductive medicine for example the father’s age, Body Mass Index (BMI) of the
mother among others.

Secondly, we split our data into train and test sets. Due to the heavy imbalance
in the output variable, we stratified the split with ’Fertility Treatment’ to fix the
proportion of Fertility Treatment events. We applied sample weighting to our al-
gorithm by assigning a weight to each observation according to the prevalence of
‘Fertility Treatment’. In practical terms, this means that ‘Fertility Treated’ indi-
viduals weighed about 20 times more than non-‘Fertility Treated’ individuals since
‘Fertility Treated’ individuals constituted around 5% of the total population. We
then applied stochastic gradient descent to our models and correctly specified a
‘Fertility Treated’ individual in order to reward the model 20 times as much as a
non-‘Fertility Treated’ individual [13].

3.6.3 Lattice Learning

We have utilized Quantum Lattice Learning which is a supervised approach to Ma-
chine Learning that builds mathematical models between inputs and outputs of the
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Figure 3.16: Partial Seaborn pair plot of the dataset features

datasets based on the Feynman’s Path Integral.

With lattice learning, Quantum Lattice learns the structure of the problem and the
probability fields of spatial paths within the lattice space and updates them such
that the best mathematical model to explain the input data becomes more likely.
The search is a list of probable functions A = f (B) sorted by match efficiency (ex-
planation simplicity} given a set of observations B [3].

The premise of Feynman’s technique is that; to explain something well, it must
be explained simply. The way the simplicity of the explanation is attained by
continuous repetitive learning of what works best with discard of what least works
as demonstrated in Figure 3.17.

In the Quantum Lattice Space :

1. We sample thousands of models at a time,

2. Fit them using a form of back propagation, and assess them on a selected
criteria (e.g. variety of loss function and information criteria).
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Figure 3.17: Feynman’s Learning Technique

3. Abandon the worst models based on a couple of options such as dropout and
decay,

4. Lattice Learning happens as we update Quantum Lattices with structures of
the best mathematical models ( usually the top 10 structures that are divergent
enough to ensure decent optimal learning.

5. We start over from 1, and add a couple of new samples to our list of math-
ematical models to evaluate. The newly added sample models then compete
with the ones which were kept from the previous loop.

Each model is tested from the Quantum Lattice space, then its probability distri-
bution is considered and modified over time. Initially, this distribution is uniform
but through this process, the Quantum Lattice converges to multiple shapes the
distributions towards better solutions.

Lattice Models take advantage of samples of each built model based on probability
distribution turned over time to unite shapes and distributions towards an optimal
solution. It takes advantage of lattice and quantum properties to simulate discrete
paths from numerous inputs through lattice space paths before emerging to outputs.

Lattice Models utilize random sampling which is form of selection of computational
functions (interactions). This Random sampling continuously transforms the inputs
along the path integral formation until a solid path is formed such that convergence
happens to the path most likely to explain the problem. Lattice model random
sampling via path integral formation is illustrated by the model in Figure 3.18 with
probability distributions on top of each interaction towards the predicted decision.
The probability based Function (interactions) are directed by repetitive reinforce-
ment of the best solutions discovered as numerous models are fitted. During repeated
reinforcement, quantum islands with independent evolution form in the Quantum
Lattice space hence narrowing the search space, and giving way to many separate
evolutionary spaces.
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Figure 3.18: Lattice Model illustrating the function interactions with 4 inputs to
form an explainable solid convergence path towards prediction the outcome of the
fertility intervation

Model Interpretability and Explainability.

Lattice Learning allows to keep track of disintegrated representations (rules) of a
signal by its probability distribution. Each rule is a coarsened signal executed to
gain some human-interpretable perception of what could govern the nature of the
original signal.
The multiple disentangled rules arranged in a hierarchy are used to summarize
the signal based on the formalized lattice structure. Lattice learning focuses on
explainability and generalizability from “small data” and it aims for rules similar to
those humans extract from experience instead of an illustration improved for specific
tasks like classification.
If a signal exists, the Quantum Lattice will always find it. Therefore, we can trust
the model prediction if our problem is best explained with a complex non-linear
mathematical equation, or a simple linear model.

Figure 3.19: An explainable simple Linear Lattice Model of 2 inputs with a double
scalar error along the predictive convergence path.

For all illustrations, Pearson correlation demonstrated in Figure 3.20 is color-coded
for:

Figure 3.20: Feature Correlation Scale.

52



3.6.4 Quantum Lattice Learning Preliminaries

Lattice and Quantum SPACE

The feasibility of conditional probability approaches in spatial processes makes them
preferable to joint probability approaches. This is because conditional probability
approaches are intuitively applicable to Statistical Analysis of Lattice Space com-
pared to joint probability approaches.
With the application of Hamersley-Clifford theorem, consistency problems are al-
most entirely removed which makes it easy to use as a tool for constructing condi-
tional probability models in multiple situations [18].
This makes lattice models yield great results with the conditional probability tech-
niques to a very simple parameter estimation procedure (the coding technique) for
the binary and Gaussian variants to a straightforward goodness-of-fit tests such that
Gaussian variants [18], maximum likelihood appears equally available for both si-
multaneous and conditional probability models of similar complexity [36].
The strength of genetic programming approaches to symbolic regression [42] coupled
with the predictive power of dynamic particles taking multiple paths as evidenced
by Feynman’s in quantum mechanics through the Richard Feynman’s path integral
formation reveal implication of crossing symmetry or distribution probabilities to
allow for building predictive models in the lattice space [1][79].

Quantum Lattice Learning (QLL)

QLL is a supervised ML approach that is inspired by the Feynman’s Technique
derived from Feynman’s Path Integral. In this approach, the algorithm iteratively
searches through an infinite list of potential mathematical models generated to solve
the problem until it selects the most optimal model.
The quantum properties of this learning technique stir simulation of decision path-
ways through data exploration to give better understanding of the data relationships
thus connecting scientific inquiry to data science. Quantum Lattice Learning is fully
based on theories of Feynman’s path integral to Quantum Mechanics.

The path Integral Formation.

In 1933, Dirac observed that action performed a central role in classical mechan-
ics but that it assumed to have no critical role in Quantum Mechanics even if he
wondered about possible explanations before he proposed the propagator (Green’s
function) to approve the essence of proportionality.
The matrix elements of the scattering matrix (S-matrix) in momentum space in
Quantum Mechanics must be proportional to the phase factor given by eiS/h; where
S is the classical action evaluated along the classical path.
Feynman developed Dirac’s idea and completed deriving the path integral formula
of Quantum Mechanics in 1948. Since the propagator can be written as a sum over
all possible paths between the initial and final points, each path contributes with a
weight and the probability, the formed amplitude given by;

P (A → B) = |ℜ (A → B)|2 =
∑
paths

ω (A → B) e
iSC
h (3.43)
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While Dirac only studied the classical path, Feynman showed that all paths con-
tribute.
From the Path Integral; Quantum Lattice models form (generate) infinite possible
spatial paths of A to B as mathematical expressions which are interpreted as math-
ematical equations by their interactions amongst themselves in lattice space. The
model searches this space for the parameter and expressions that best explain the
output prediction in terms of the input [29][67].
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Chapter 4

Results and Recommendations

4.1 ML-4-Osteoporosis-Treatment | LcMCH: I

4.1.1 Predictive Modeling and Classification.

Gaussian Naive Bayes Model

Based on Bayes’ theorem, it performs classification by assuming independence be-
tween predictors where presence of a particular feature in a class does not depend on
the presence of any other feature as illustrated in Figure 4.1. This model is useful for
very large datasets and it is relatively easier to build. It is fast, simple, and suitable
for very high-dimensional datasets. It can be optimized if used with SMOTE-SVM

Figure 4.1: Gaussian using SMOTE-SVM

Logistic regression Model

As part of the linear classifiers, this Model is necessary for binary classification as
shown in Figure 4.2. It is faster with easy result interpretation and effective at
handling multiclass problems. This Model also gives optimal results if deployed
with SMOTE-SVM.

Extreme Gradient Boosted Model

This Model deploys both linear and tree learning algorithms which give it great
predictive power of almost 10x faster than already existing gradient boosting tech-
niques. It is suitable for handling structured data as it tolerates several objective
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Figure 4.2: Logistic Regression using SMOTE-SVM

functions as well as regression, classification and ranking. It is gives the best results
when deployed with SMOTE-SVM in this domain as shown in Figure 4.3.

Figure 4.3: XGB using SMOTESVM

Gradient Boosted Model

It deploys ensemble boosting for both classification and regression tasks when han-
dling plenty of data for high prediction. This model combines prediction of several
base estimators to expand robustness over a single estimator. For prediction ac-
curacy on the validation set, we can assess the model by checking its accuracy on
confusion matrix creation and then specify the finest learning rate based on results.
It gives optimal results if deployed with SMOTE-SVM as demonstrated in Figure
4.4.

Figure 4.4: Gradient Boosting using SMOTE-SVM

Decision Tree Model

This supervised ML model is generally used for classification problems with both
categorical and continuous dependent variables as shown in Figure 4.5. It has faster
training time compared to neural network models. It is a distribution-free or non-
parametric model, independent of probability dissemination assumptions and can
resolve high dimensional data with better accuracy. It yields optimal results if
deployed with SMOTE.
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Figure 4.5: Decision Tree using SMOTE

K-nearest Neighbors (KNN) Classification Model

This model is computationally expensive despite its comprehensibility and adapt-
ability. It is often deployed for classification than regression, modest, and one of
the best machine learning models. It requires variable normalization to prevent bias
from high range variables and results if 0 and 1 are the ranges used for the same scale
data. This model need dimensionality reduction for better performance, therefore
it is unfitting for the large dimensional data. Its performance can also be improved
by controlling missing data. It yields optimal results if deployed with ADASYN as
shown in Figure 4.6.

Figure 4.6: KNN using ADASYN

Light Gradient Boosted Machine Model

This gradient boosting Model framework deploys tree based learning algorithms with
a quicker training speed and higher efficiency. It utilizes lower memory, parallelism,
GPU learning with better accuracy at handling large-scale data as demonstrated
in Figure 4.7. Since it is a leaf-wise algorithm decreases extra loss compared to
the level-wise algorithm, its accuracy is higher compared to other boosted models if
deployed with SMOTE.

Figure 4.7: LGBM using SMOTE-SVM
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Random Forest Model

This Model ensembles learning by merging dissimilar types of algorithms or similar
algorithms multiple times to form a more powerful prediction model usable for both
regression and classification tasks as shown in Figure 4.8. It is very stable, effective
with a mixture of categorical and numerical features, efficient with missing or poorly
scaled data. It is computationally expensive due to the massive combination of
decision trees and expensive to train compared to other models.

Figure 4.8: Random Forest using BSMOTE

Extra Trees Classification Model

This ensemble machine learning model works by generating numerous unpruned de-
cision trees from the training dataset to enhance prediction. It is handy at prediction
of the decision trees in the case of regression or using majority voting in the case of
classification as shown in Figure 4.9.

Figure 4.9: Extra trees using SMOTE-SVM

4.1.2 Summary of the Machine Learning Classical Results

The summary of the performance of all the used ML algorithms in this work to
achieve Objective ”a” are illustrated in Table 4.1.

Receiver Operating Characteristic curve of the best Model.

We then plotted the ROC curve in Figure 4.10 of the best Machine Learning Clas-
sifier that predicted therapeutic adherence in comparison to to other algorithms.
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Model & Optimal Sampling
Technique

Training
dataset

Testing
Dataset

Overall ROC curve
(AUC)

Random Forest Model with
SMOTE-SVM

100 85.0 94.4 0.941

KNN Classification Model
with ADASYN

100 73.05 90.7 0.905

Logistic Regression Model
with SMOTE-SVM

78.0 79.5 79.7 0.788

Gaussian Näıve Bayes
Model with SMOTE-SVM

75.7 75.9 76.7 0.778

Decision Tree Model with
SMOTE

97.5 76.7 90.1 0.894

Extra Trees Classifier with
SMOTE-SVM

100 85.0 94.5 0.943

Gradient Boosted Model
with SMOTE-SVM

92.2 83.0 87.7 0.868

Extreme Gradient Boosted
Model with SMOTE-SVM

85.3 84.0 84.0 0.825

Light Gradient Boosted Ma-
chine Model with SMOTE-
SVM

97.4 86.5 92.8 0.919

Table 4.1: Therapeutic Adherence Table of Results

Figure 4.10: Extra Tree Classification Model ROC curve

Feature Permutation Importance
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Figure 4.11: Feature Permutation Importance in the test set

Figure 4.12: Feature Permutation Importance in the train set
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4.2 XAI-4-Fetal-Health-Evaluation | LcMCH: I

Since we had randomly split our CTG dataset of 2126 instances in a ratio of Training:
Testing, we obtained 3:1, thus 1594.5 Training and 531.5 Testing sample instances
in the respective sets. We evaluated each algorithm based on various performance
expressions on the 3 signal classes as illustrated in Table 4.2.

4.2.1 Biomedical Signal Class Interpretation and Evaluation

Gradient Boosting Classifier

Often used as a supervised signal detection tool, this signal classifier is effective
for feature extraction based on classification generalization of boosting to arbitrary
differentiable loss functions and effective for both classification and regression in-
stances.

Figure 4.13: GBC Model Explainability

CatBoost Classifier

Yandex introduced Categorical Boosting in 2018 for efficient classification of cate-
gorical data of various data types with short learning time [7]. It calculates the leaf
values during tree structure selection using ordered boosting and processes extracted
categorical signal features during training.

LGBM Classifier

By using decision tree learning algorithms, this gradient boosting framework handles
high dimensional CTG extracted signal features in large amounts with a distributed
and faster training efficiency [7]. It uses a leaf-wise algorithm to grow trees vertically
and exclusive feature bundling algorithm to handle sparsity in the signal dataset.
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Figure 4.14: Fetal Health classical results using CAT

This ensemble classifier combines mutually exclusive extracted signal features in
a lower lossless way to reduce the number of features while reserving the most
informative ones.

Figure 4.15: LGBM Model Explainability
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Figure 4.16: Fetal Health classical results using CAT (Partial)

Voting Ensemble Classifier (VEC)

It is an ensemble classifier of numerous models that aggregates the results of all
models into a voting classifier to predict the output class depending on the highest
majority of voting. By soft voting, the 3 ensemble models output a prediction based
on their average probability for an optimal voting classifier which was made of CAT,
LGBM, and DT.

Figure 4.17: Fetal Health classical results using VEC

4.2.2 Summary of the Biomedical Signal Classification Re-
sults

Feature Importance provided insights into the signal dataset, and influenced the
predictive modeling of the classifier since it gave us a basis for dimensionality re-
duction and feature extraction to help us improve the efficiency and effectiveness of
our signal classifiers.
Feature Importance
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We obtained feature importance for all classifiers.

Figure 4.18: CTGs Signal Feature Importance

Table of Results.
Since we had randomly split our CTG dataset of 2126 instances in a ratio of Training:
Testing, we obtained 3:1, Thus 1594.5 Training and 531.5 Testing sample instances
in the respective sets. We evaluated each algorithm based on various performance
expressions on the 3 signal classes as illustrated in Table 4.2.

Metric Fetal Signal
Classes

Gradient
Boost-
ing
Classi-
fier

Categorical
Boost-
ing
Classi-
fier

Light
Gradient
Boosting
Model

Decision
Tree

Voting
En-
semble
Classi-
fier

Accuracy 0.981 0.990 0.990 0.984 0.989
AUC 0.986 0.99 0.993 0.988 0.992
Macro
Average

0.98 0.99 0.99 0.98 0.99

Weighted
Average

0.98 0.99 0.99 0.98 0.99

Precision Normal 1 1 1 1 1
Suspect 0.95 0.96 0.97 0.95 0.97
Pathological 1 1 1 1 1

Recall Normal 0.95 0.96 0.97 0.95 0.97
Suspect 1 1 1 1 1
Pathological 0.97 1 1 1 1

F1-Score Normal 0.97 0.98 0.99 0.98 0.98
Suspect 0.97 0.99 0.99 0.98 0.98
Pathological 1 0.99 1 1 1

Table 4.2: CTG classification Table of Results
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4.3 XAI-4-NICU-Admissions | LcMCH: II

Random Forest (RF) Feature Selection Since accuracy is not the appropriate
metric for assessing suitability of Machine Learning models for NICU predictions,
Random Forest was dropped but a detailed study of accuracy can greatly contribute
to understanding and bench-marking features for optimizing the selected ML model
i.e. Logistic Regression.

4.3.1 Feature Importance

Studying the feature importance and interaction of how RF attains a higher accuracy
in an interpretable manner (white box) can help us tune the Logistic Regression
model based on the insights obtained by explaining the Random Forest accurate
predictions as illustrated in 4.19.

Figure 4.19: Feature weights of RF feature importance

We began by assessing the feature importance to NICU admission prediction in the
perspective of RF for easy understanding during interpretation. Figure 4.19 and
Figure 4.20 justifies that the Weight of the baby, Hemoglobin and PreTerm birth
risk history are the most influential factors of NICU admission.

4.3.2 Interpretable and Explainable Feature Learning.

SHapley Additive exPlanations (SHAP)

SHAP values show the impact of each feature whose comparative possession yields
interpretation of predictions based on baseline values. The SHAP summary plot in
Figure 4.21 provides comprehensive information about the impact of the features by
merging feature importance with its effects. The color of the dots denotes the value
of the feature (Blue: low value, red: Higher value). Features are well-organized
depending on their importance during the interaction.
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Figure 4.20: Random Forest NICU optimal feature importance

Figure 4.21: SHAP explanation for effects of data points (features) on NICU admis-
sion using RF
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Local Interpretable Model-agnostic Explanations (LIME)

By focusing on one example at a time, we used LIME to explain feature interaction
in the LR model. Figure 4.22 demonstrates that the positivity changes of NICU
admission are mainly influenced by Weight of the Baby, Number of Hospital Stay
days and Preterm Birth History.

Figure 4.22: LIME unpacked explanation for LR NICU admission prediction

Explain like I am 5 (ELI5)

ELI5 offers interpretability by displaying the coefficient for each variable, hence
displaying what the LR ML model puts most value in. Figure 4.23 illustrates Hours
in Labor, Number of Hospital Stay days and PreTerm birth history as the most
influential factors that contribute to NICU admission.

Figure 4.23: ELI5 feature coefficient explanation of LR NICU admission prediction

Generally, the number of hospital stay days, preterm birth history and baby weight
are the major influencers on NICU admission. They need strict monitoring and
attention for effective NICU resource management and health policy making.
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4.4 XAI-4-StemCell-Transplantation | LcMCH: II

In this section, we illustrate the results using various python libraries like numpy,
matplotlib, seaborn among others. We obtained the predictive results for CatBoost,
LightGBM and XBoost Models. The results include Confusion Matrices to demon-
strate the predictive results of each of the Models, SHAP Feature Importance to
demonstrate the most important metrics that determine pediatric patient survival
upon stem cell transplantation, SHAP Summary Plots, SHAP Dependency Plots,
SHAP Decision Plots, SHAP Waterfall Plots and SHAP Force Plots.

Results for Hematologic Pediatric Patient Survival Prediction

With a split ratio of 7:3 of Training to Testing Data, we obtained an overall pedi-
atric survival predictive accuracy of 82%, 92% and 94% for CatBoost, LightGBM
and XGBoost respectively. The summary of results is presented in table 4.3 with in-
dividual confusion matrices to illustrate the classical results of each model in Figure
4.24, Figure 4.26 and Figure 4.25.

Algorithm Accuracy Recall Auc Precision
CatBoost 0.8246 0.76 0.8175 0.8261
LightGBM 0.9211 0.875 0.9148 0.9543
XGBoost 0.9474 0.92 0.9444 0.9583

Table 4.3: Table of Results for Survival Prediction

Individual Confusion Matrices of the AI Models

Figure 4.24: CatBoost
Confusion Matrix

Figure 4.25: LightGBM
Confusion Matrix

Figure 4.26: XGBoost
Confusion Matrix

4.4.1 Feature Importance for Pediatric Patient Survival

Identification of the most important metrics that influence patient survival is ex-
tremely necessary for proactive stem transplantation interventions. It gives physi-
cians an idea of the most influential factors that determine the success or failure of
a transplantation medical procedure before the real bone marrow transplantation
happens. This can greatly improve the survival rates of the children since were are
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focused on predictive, preventive and personalized pediatric medicine to improve
pediatric patient survival. In this subsection of our work, we illustrate the feature
importance of the the three AI models.The Most Important Factors influencing Pe-
diatric Patient survival upon stem cell transplantation are illustrated in Figure 4.27,
Figure 4.28 and Figure 4.29.

Figure 4.27: LightGBM Feature Importance
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Figure 4.28: XBoost Feature Importance

Figure 4.29: catboost Feature Importance
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4.4.2 Feature Interaction for Pediatric Patient Survival

SHAP Summary Plots of Feature Interaction for Pediatric Patient Sur-
vival

The SHAP summary plot gives detailed information about the influence of the fea-
tures (factors) by combining feature importance with its effects. The color of the
dots represents the value of the feature (Blue: low value, red: Higher value). Fea-
tures are ordered based on their importance during the interaction. We illustrated
the summary plot of the three algorithms Thus; LightGBM in Figure 4.30, XBoost
in Figure 4.31 and CatBoost in Figure 4.32.

Figure 4.30: LightGBM Summary Plot
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Figure 4.31: XGBoost Summary Plot

Figure 4.32: Catboost Summary Plot
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4.4.3 SHAP Dependency and Decision Plots of AI Models
during Pediatric Patient Survival Prediction.

From the simulations in Figure 4.30, Figure 4.31, Figure 4.28 and Figure 4.27,
we can justify Kaw lak’s hypothesis that increasing the CD34+ cells /kg dosage
generally prolongs survival time of patients. But we also observed that there are
more influential factors that are important for patient survival for example the
risk group and pediatric recipient’s age. We therefore explainably explored the
dependency of some of influential factors for pediatric patient survival as illustrated
in Figure 4.33. We observe a strong positive dependency of CD34+ efficiency with
increasing age of pediatric recipient’s for survival.

Figure 4.33: SHAP Dependency plot of CD3+ and Recepient’s age for survival

We also demonstrate the decision plots of the first 15 pediatric patients in Figure
4.34 to show how the AI Models interacts with the hematologic Pediatric Patient
feature to while predicting the survival of each patient before performing a stem cell
transplantation procedure. We used the logit function to change log-odds numbers
into probabilities or survival displayed at the top of the Decision Plot bar in Figure
4.34.

SHAP Force Plot of AI Model during Pediatric Patient Survival Predic-
tion

From the plot in Figure 4.35, we observe the prediction probability value of 0.90.
The base value of 0.4513 would be the predicted value if no feature of the current
instance was known. That base value is the mean of the model output out of the
training dataset. The feature value of this observation (instance) is given by the
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Figure 4.34: SHAP Decision plot of patient survival

Figure 4.35: CatBoost SHAP Focrceplot

numbers on the plot arrows. The features that pushed the model score higher are
represented by the red color while blue represents the features that pushed the model
score lower. The longer (bigger) the arrow, the larger the impact of the feature on
the model output. The increase or decrease in impact is observed at the X-axis.
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4.4.4 SHAP WaterPlot of AI Model during Pediatric Pa-
tient Survival Prediction

We display explanations for individual pediatric survival predictions using SHAP
waterfall plots for a single row of objects as inputs. The base of a waterfall plot
begins as the estimated value of the model output such that each row shows how
the positive (red) or negative (blue) contribution of each feature moves the value
from the expected model output over the hematologic pediatric dataset to the model
output for pediatric survival prediction as illustrated in Figure 4.36, Figure 4.37 and
Figure 4.38.

Figure 4.36: LightGBM SHAP Water Plot
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Figure 4.37: XGBM SHAP Water Plot

Figure 4.38: Cat SHAP Water Plot
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4.5 XAI-4-Pulmonary-Health-Evaluation | LcMCH:

III

4.5.1 Pulmonary Health Evaluation

We deployed pattern recognition and biomedical image processing to accurately
classify the generated augmented images of pediatric chest X-ray images using a
deep convolutional neural network which also acted as our base model for transfer
learning into a specialized Inception network for validation and re-classification pat-
tern recognized generated biomedical images in order to evaluate the health of the
pediatric patient as illustrated in Figure 4.39.

Figure 4.39: Confusion matrix after transfer learning

Classification Report
precision recall f1-score support

COVID19 0.97 0.88 0.92 106
NORMAL 0.97 0.36 0.53 234
PNEUMONIA 0.73 1.00 0.85 390
TURBERCULOSIS 0.70 0.98 0.82 41
accuracy 0.79 771
macro avg 0.84 0.80 0.78 771
weighted avg 0.83 0.79 0.76 771

Table 4.4: Pediatric pulmonary classification report of augmented chest X-ray im-
ages after transfer learning
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We sampled the entire set up with 3 epochs first, then executed full with a maximum
of 10 epochs for both networks. For both predictions, a total accuracy of 79% was
attained as illustrated in Table 4.4.

4.5.2 Explainable AI with Layer-Wise Relevance Propaga-
tion (LRP).

We finally deployed Layer-Wise Relevance Propagation (LRP) as a transparent ap-
proach to explain the classification results by creating instance-level explanations for
the neural networks. We used LRP to visualize the significance of individual pixels
that contributed to the classification of each generated pediatric chest X-ray image
during pulmonary health evaluation. With explainable AI for pediatric medicine,
pediatricians can confidently diagnose and decide on the best treatment plans of the
patient with comprehensible informed decisions. The safety and trustworthy of AI
for pediatric medicine enables physicians to reliably recommend the better alterna-
tive treatment plan, further medical diagnosis or pediatric monitoring plans based
on the interpreted pulmonary health evaluation metrics obtained. In our study, LRP
exhibited the best and most interpretable explanation compared to other explainers
like occlusion and smoothening gradient.
LRP is a machine learning explainable technique used to demystify black box neu-
ral networks and kernel machines [51]. It’s applications have been demonstrated by
number of authors including but not limited to [51][19][25][27][50][45] and [43] for
decomposing nonlinear decision output functions in terms of their variable inputs
to create vectors of feature inputs scores that make up their explanations.
LRP produces a decomposition;

R = (R1, . . . , Rd) (4.1)

of that prediction on the input variables satisfying

d∑
p=1

Rp = f (X) (4.2)

where X = (x1,...,xd) is the input vector and f (X) is prediction at the output of the
neural network.
It is Important to note that LRP explains the output of the function rather than its
local variation [41] unlike sensitivity analysis methods [5]. By uniformly applying
backward propagation mechanisms on all neurons where;

aj = p

(∑
i

aiwij + bj

)
(4.3)

Is the such neuron, i and j denotes the neuron indices at consecutive layers while
Σ i, Σ j denotes the summation over all neurons in these respective layers such that
the propagation mechanism of LRP is defined as;

Ri =
∑
j

Zij∑
i Zij

Rj (4.4)
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where Zijis the contribution of neuron i to the activation aj, and normally depends
on the activation aiand the weight Wij.
The backward propagation function is applied beginning from the neural network
output f (X) until the input features (pixels or variables) are reached. The output
scores are then visualized as a heatmaps of the same dimensions as the input as
illustrated in image 4.5. The explainability of LRP is justified when the propaga-
tion rules are illustrated as particular instances when embedded in the theoretical
framework of deep Taylor decomposition [33]. LRP rules have also been designed for
other machine learning models other than neural networks. These include LSTMs,
Fisher Vector Models and Bag of words.
Figure 4.5 has six (6) rows. Row 1 illustrates raw Images of form the dataset labeled
as Covid-19, Pneumonia and Tuberculosis respectively, Row 2 illustrates the syn-
thesised augmented images according to the above listed pulmonary disease classes,
row 3 illustrates the occlusion explanations of the classified augmented images, row
4 illustrates the smoothening gradient explanations of the images, row 5 and 4 il-
lustrate the LRP explanations of the classified augmented images.

Occlusion Analysis is a type of perturbation analysis that repeatedly tests the effect
of occluding patches or individual features in the input image on the neural network
output. SmoothGrad.is a gradient-based explanation method where the function’s
gradient is averaged over a large number of locations corresponding to small ran-
dom perturbations of the original data point. Like the method’s name suggests, the
averaging process ‘smoothes’ the explanation which in turn addresses the shattered
gradient problem. The Layer-wise Relevance Propagation (LRP) method makes ex-
plicit use of the layered structure of the neural network and operates in an iterative
manner to produce the explanation. LRP attributes relevance scores to the network
model inputs or immediate neurons.

From Figure 4.5 row 3, we observe that Occlusion-based explanations are coarse
and are representative of relevant regions instead of relevant pixel features. Figure
4.5 row 4, smooth Integrated Gradients produces very fine pixel-wise explanations
with substantial evidence in favor of and against the prediction (red and blue pixels)
while in Figure 4.5 row 5 and 6, LRP preserves the fine explanation structure but
tends to produce less negative scores and attributes relevance to all features instead
of individual pixels.
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4.6 QLL-XAI-4-Fertility-Treatment | LcMCH: IV

4.6.1 Quantum Lattice Learning Implementation

We modeled a total of 61748 mathematical computational interactions for each simu-
lation towards a convergent optimal result obtained and interpreted in lattice space.
We examined the model best fitting the assigned ‘bic-criterion’ . Then we painted
the simulated graph with Pearson correlation to display the signal flow through the
Lattice Space as illustrated by a model of 4 inputs at in Figure 4.40.

Figure 4.40: A 4 input Explainable Lattice Model Simulation.

Since each lattice model is a list of graphs sorted by accuracy, each model illustrates
how the selected fertility health features (inputs) interact with others to attain an
accurate fertility intervention predictive outcome (output) as illustrated in Figure
4.40, Figure 4.41, Figure 3.18 and Figure 3.19.

The most optimal Model is one that gives an accurate fertility intervention prediction
with the least number of fertility health feature inputs. For this experiment, Figure
4.41 was the most optimal among all simulated models since it only required 2 inputs
to give a correct fertility intervention predictive outcome.
Figure 4.41 illustrates the unbelievable performance accuracy of Lattice Models in
Quantum Space. With only two fertility health features (Contraceptive Type and
thyroid-s), the mathematical lattice based model can accurately predict the outcome
of any fertility health intervention fertility for a patient.
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Figure 4.41: Summary of the Simulated Lattice Model

4.6.2 Results and Evaluation

We evaluated the training accuracy of the mathematical model as reflected in Figure
4.42.

Figure 4.42: Training Metrics of Lattice Models

We tested and evaluated the most optimal lattice model illustrated in Figure 4.41.
The model correctly predicted 127/127 of positive outcomes of fertility treatment
and 8/8 of negative outcomes which is 100% accuracy, 100% recall and 100% preci-
sion as reflected in Figure 4.43.
We also evaluated the testing metrics used by the quantum lattice model for better
diagnostic assessment for negative impacts like model fitting. The results obtained
in Figure 4.43 justified the sufficiency of testing metrics with 100% recall, 100%
precision on base of 135 data points.
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Figure 4.43: Testing Metrics of Optimal Lattice Model
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Table 4.5: Explained augmented chest X-ray images after transfer learning83



Chapter 5

Conclusion

5.1 Summary of Major Observations and Lessons

Learnt (How the Research paper Outcomes

connect)

5.1.1 LcMCH: I | A Machine Learning Approach for Pre-
dicting Therapeutic Adherence to Osteoporosis Treat-
ment

In this work, Nine Optimized Machine Learning (ML) models were presented to
predict therapeutic Adherence of patients for strategic osteoporosis treatment and
pharmacologic management. A combination of the optimized multi-category classi-
fication approaches proposed with the existing Biomakers can greatly improve the
management of osteoporosis and overall monitoring of adherence with response to
therapeutic medicine and development of suitable adherence-improving interven-
tions.
Tree-based boosted algorithms performed better at classification of large amounts
of data with little parameter tuning. Unfortunately, we could not really understand
how any of the algorithms worked out the classification to obtain the good classical
results. We therefore chose to use tree-based algorithms with the aim of investigating
their thought process of attaining accurate classical results in Paper ID: 2.

5.1.2 LcMCH: I | Cardiotocogram Biomedical Signal Clas-
sification and Interpretation for Fetal Health Evalua-
tion

In this work, we built ML models and extracted features to analyze and classify fe-
tal cardiac biomedical signals with reduced ambiguity, high accuracy and easy Fetal
Heart Rate (FHR) trace interpretations. It was observed that feature extraction
greatly affected the accuracy of ML models, in fact it allows some individual ML
models to perform better than Voting Ensemble ML model. Therefore, the best clas-
sification models can be confidently integrated or deployed for various fetal cardiac
signal processing frameworks.
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We paid extra attention to how the algorithms derived feature importance, each
algorithm ranked important had different features leading to its accurate classical
results. We therefore chose to focus on feature learning and feature importance
derivation using multiple Explainable AI (XAI) techniques in Paper ID: 3.

5.1.3 LcMCH: II | Explainable Feature Learning for Pre-
dicting Neonatal Intensive Care Unit (NICU) Admis-
sions

We explored maternal significant multidisiplinary features for NICU admission pre-
diction. We observed that certain features, such as mother’s height and hemoglobin
initially looked to be good indicators for predicting NICU admissions. After ex-
tensive visualizations, we built and tested some ML predictive models like Random
Forest, SVM, and Logistic Regression, tuned hyper-parameters of all models for pre-
dictive result improvement. Although Random Forest had the highest accuracy, the
tuned Logistic Regression model exhibited the best recall and F1 score. We therefore
chose the tuned Logistic Regression as our model for NICU admission prediction.
However, we tried to understand how Random Forest was using our data to get
the highest accuracy score. We therefore deployed Explainable Machine Learning
for Feature Learning where we explored feature importance for NICU admission
prediction. We implemented SHAP to understand how the model made predictions,
and also where they might be going wrong. Then we used LIME & ELI5 on our
chosen Logistic Regression model to demonstrate feature interaction for the NICU
admission prediction.
We observed that the various explainable techniques provided different tests (prefer-
ences) of feature importance. This was very noticeable with the SHAP plots display
where we observed that Feature Importance display differed among the SHAP expla-
nations. We therefore chose to focus on investigating SHAP explanations in detail
for Paper ID: 4.

5.1.4 LcMCH: II | Explainable Artificial Intelligence for Hema-
tologic Pediatric Patient Survival Prediction upon Stem
Cell Transplantation

Having discovered that pediatric risk group and recipients’ age are likely to be more
influential determinants of prolonged survival as compared to CD34+ cell recep-
tion in Transplantation and Cellular Therapy, we strongly call for interdisciplinary
research collaboration with special attention to the innovative application of Ma-
chine Learning (ML) and Artificial Intelligence (AI) in pediatric medicine. Besides
validating Kaw lak’s hypothesis that increasing the CD34+ cells /kg dosage gener-
ally prolongs survival time of patients without synchronous occasion of unpleasant
events affecting patients’ quality of life (Kaw lak et al., 2010), we demonstrated the
potential of transparent Machine Learning and Artificial Intelligence at insightful
precision medicine.
Extra attention was put on feature relevance for precision medicine. We observed
that the importance of some features at precision medicine is greatly influenced by
their availability and relevance in precision medicine. Some algorithms actually ar-
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rived to the correct predictive results but dropped out some of the features which are
important for the physicians to understand. Physicians also need to understand how
the existence of some features shadows and skews the predictive results in precision
medicine most especially in cases of limited data availability (limited features) for
drawing medical decisions. We therefore focused on investigating feature relevance
for precision medicine in case of data scarcity for extreme emergencies in Paper ID:
5.

5.1.5 LcMCH: III | Explainable Augmented Intelligence and
Deep Transfer Learning for Pediatric Pulmonary Health
Evaluation

Transfer learning can boost the application of biomedical instrumentation in both
high and low resource settings for pediatric medicine regardless of scarcity of biomed-
ical image data and high computational resources. Therefore augmented intelligence
and deep transfer learning for Pediatric Pulmonology for digital healthcare is a great
contributor to healthcare towards the 4th Industrial revolution.
Pediatric medical image processing can be made understandable, trustable, and
comprehensible for pediatricians to assess connections and transparently analyze
the most important features for precise predictive and preventive pediatric medicine
using Explainable AI. Pixel wise pattern and feature interpretability analysis can
allow clinicians like pediatricians to understandably trust, comprehensively assess
connections and transparently analyze and use the features marked as important
for precision pediatric medicine and pulmonary health evaluation hence a safe and
trustable approach to preventive and precision medicine using Layer-Wise Relevance
Propagation (LRP) explanation techniques.
We paid attention to feature relevance propagation and discovered how important it
was in precision medicine. We therefore focused on building our own machine learn-
ing algorithm that could accurately predict the target outcome with strict tracking
and traceability of relevant features as they interactively propagate towards the
medical decision in Paper ID: 6.

5.1.6 LcMCH: IV | An Explainable Lattice based Fertility
Treatment Outcome Prediction Model for TeleFertil-
ity

We introduced the concept of quantum lattice learning using Richard Feynman’s
technique and we developed lattice based Machine Learning models for explain-
able prediction of fertility treatment intervention outcomes. With Quantum Lattice
Learning (QLL), we could implement principles of quantum physics in Computer
Science and Data Engineering to trace the path of interactive features as they prop-
agate towards the final medical decision. Despite the fact that explainable genetic
programming can be of significant importance for healthcare quantum computing,
the steps and procedures taken during data collection need extra attention since
uncertainty caused by human cognitive bias during healthcare data collection can
have a significant negative impact if the algorithm is executed on biased data.
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5.2 Conclusion

Since we used the default kernel for all SVM applications these research methods, we
hope to boost algorithmic performance and improve the accuracy by tuning SVM pa-
rameters like Gamma, Margin, Regularization and Kernel to deal with non-linearity
and higher dimensions. We hope the research findings facilitate other researches in
this domain to select classifiers and data preprocessing methods accordingly to build
more generalizable ML predictive models.
Having developed Interpretable models and for predicting NICU admissions, we
strongly recommend further research about the health center practices related to
NICU admissions. That would help us understand if and determine any hidden
patterns and features contributing to the increasing NICU to avoid unnecessary
neonatal emergencies. Those investigations will greatly help in improving the ro-
bustness of the Explainable Machine Learning models for preventive maternal and
neonatal medicine.
Since most pediatric pulmonary diseases have similar symptoms, more datasets
are required with better annotation of bacterial, fungal or viral labels for better
lethal pulmonary pattern recognition most especially in predictive and preventive
medicine. A bigger contribution towards dataset access for pediatric patients is
highly recommended to build better safer and trustable AI medical solutions for
infants and children.
Generally, we strongly encourage and recommend further research and experimen-
tation of machine learning and artificial intelligence explainability techniques in
predictive, preventive and personalized medicine for maternal and child wellbeing.

5.3 Future Works

Future work will be focused on integration of the proposed models with in clinical
decision making and pharmacologic tools for improved medical adherence. We hope
to use the obtained results in developing a standardized Electronic Fetal Monitoring
(EFM) Interpretation & Management Framework for fetal surveillance and evalu-
ation in pregnant women to support new medication advancements and treatment
procedures in maternal-fetal medicine. We also hope to use our findings towards de-
veloping a Standardized Explainable NICU Admission Evaluation and Management
Framework for patients and neonatologists. We also hope to support researchers
and innovators in developing better maternal and neonatal solutions for mother
and child wellbeing. We shall work towards developing a Standardized Explain-
able Transplantation and Cellular Therapeutic Evaluation Framework for pediatric
physicians to insightfully prescribe efficient treatment plans for their patients. Our
future works shall also focus on supporting the improvement of robustness and
lowering uncertainty of biomedical image processing applications in predictive and
preventive medicine.
Generally, the obtained results shall guide us on advocating for the development of a
Standardized Explainable Maternal and Child Health Evaluation and Management
Framework for trustable and reliable Maternal and Neonatal Medicine for patients
and physicians. We shall also support researchers and innovators in developing
new medication advancements and treatment procedures in Maternal, Neonatal and
Reproductive Medicine.
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Appendix

Detailed Simulations of the Research Papers

Figure 5.1: Full View of Correlation Heat map of features in train dataset
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Figure 5.2: Full View of Correlation Heat map of features after restricting variables
with low correlation results

Figure 5.3: Full View of Correlation Heat map of features in test dataset
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Figure 5.4: Fetal Health curves based on Uterine Contractions
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Figure 5.5: Expanded Tree for Fetal Health CAT
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Figure 5.6: ForcePlot-of-first-50-patients

Figure 5.7: ForcePlot-of-patient-at-index-15

Figure 5.8: ForcePlot-of-patient-at-index-35

Figure 5.9: Shap-Decision-plot-of-first-50-patients

101



Figure 5.10: Shap Decision Plot of Patient at index-15

Figure 5.11: Shap Decision plot of patient at index-35
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Figure 5.12: Shap dependency plot CD34 x1e6 per Kg

Figure 5.13: Shap Dependency Plot of CD34 x1e6 per Kg and Survival

Figure 5.14: Shap Dependency plot of Donor Age
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Figure 5.15: Shap Dependency Plot Recipient Age
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