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Abstract

Infrastructures in the modern era are incorporating the Internet of Things (IoT) in
everything from complex building automation systems (BAS) to individual small
devices, emphasizing the importance of Predictive Maintenance. As a result, early
fault detection is required, especially in sensitive and massive structures such as
hospitals, industries, and multipurpose buildings. In such infrastructures, even mi-
nor failures can result in tragedies such as fires or slow down productivity. In
our research, we have used several machine learning fault detection and diagnos-
tics (FDD) algorithms in building fault detection data. We collected two datasets,
MZVAV-1 (SET-A) and MZVAV-2-1 (SET-B), which were split into train-test sets
to deploy LogisticRegression, KNearestNeighbours, Naive Bayes classifier, Support
Vector Classifier, RandomForestClassifier, Decision Tree, MLP Classifier and Ex-
tra Tree Classifier. We achieved the highest accuracy of 98.91% using the Decision
Tree classifier and the lowest accuracy of 14.17% from Naive Bayes classifier on the
MZVAV-1 dataset. RandomForestClassifier and ExtraTree classifier outperformed
all other algorithms with 99.91% accuracy on the MZVAV-2-1 dataset.

Keywords: Internet of Things, Fault Detection, Building Systems, Machine Learn-
ing, FDD Algorithms, Predictive Maintenance.
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Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AHU Air Handling Unit

APAR AHU Performance Assessment Rules
BAS Building Automation System
DTC Decision Tree Classifier

FDD Fault Detection and Diagnostics
FN  False Negative

FP  False Positive

GAN Generative Adversarial Network
GMM Gaussian Mixture Model
GNB Gaussian Naive Bayes

HV AC Heating, Ventilation, and Air Conditioning
10T Internet of Things

KNN K-Nearest Neighbor

LR  Logistic Regression

M LP Multilayer Perception

PCA Principal Component Analysis
RFC Random Forest Classifier
SFTP Secure File Transfer Protocol
SV C Support Vector Classifier

TN  True Negative

TP  True Positive

VAV Variable Air Volume
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Chapter 1

Introduction

For the past few years, energy consumption in building systems has been rapidly
increasing. This industry accounts for 35 percent of the world’s overall energy
consumption each year [25]. HVAC, which stands for heating, ventilation and air-
conditioning makes up the majority of energy usage in today’s buildings. Inadequate
maintenance and malfunctioning system components can result in energy waste,
lowering HVAC system efficiency and rising operational expenses. As a result, a
building automation system (BAS) with predictive maintenance and fault detection
and diagnosis (FDD) capabilities is now necessary for efficiency.

The primary goal of FDD algorithms is to detect faults in the system as quickly as
they occur. Different approaches can be taken to implement FDD algorithms in a
system. When extensive knowledge about the system is available, rule-based FDD
[5]-[7] and physical-model-based approaches [18] can be good options, but they are
not feasible every time. In particular, when we deal with more complex systems
such as the HVAC system in a large shopping mall, generating rules from expert
analysis or creating a prediction model will be computationally expensive, which
makes these approaches not feasible. Though system complexity is continuously
increasing, industries are becoming more data-rich, making data-driven approaches
more prevalent.

Building systems can be incorporated with enormous sensors to get data about
systems, and we can connect those sensors to the internet. This concept can be
connected to the concept of smart buildings and the Internet of Things (IoT). When
devices, often known as ”things,” become automated and connected to the internet,
it is known as Internet of Things (IoT). Building systems that are connected to
the internet can simplify the control process, and FDD algorithms can easily be
incorporated into this system. In our research, we will use an IoT architecture
proposed by Yu et al. [19], and use various supervised learning algorithms on
the datasets and analyze them to find the most efficient and accurate data-driven
supervised FDD method.



1.1 Research Problem

For years, researchers have been concerned about predictive maintenance and FDD.
While different researchers use different methods to solve the problem, there are
some similar challenges that arise when using a fault detection and diagnosis (FDD)
method in building systems.

First of all, the system must be capable of processing large amounts of data. The
data generated by building systems is enormous. To deal with that, we’ll need to
come up with a framework that can handle such a large volume of data. The system
must then be able to deliver results in real-time. It will not be a fruitful method
to deal with predictive maintenance and fault detection and diagnosis (FDD) ap-
proaches if we do not detect the faults in the system in real-time. Fault detection
must be done in real-time, and the system must be able to store and analyze histori-
cal data. This data should be used to train the system, making the detection process
more precise and accurate based on the system’s behavior. Another issue is that
it is difficult to find an adequately labeled dataset to apply the supervised FDD
algorithm. Despite the fact that multiple types of research have been conducted
in this area, finding a perfect dataset for training classification algorithms remains
challenging. The absence of proper datasets in this domain makes it difficult for
researchers to carry out performance analysis of algorithms.

1.2 Research Objectives

In our research, we follow a data-driven approach of fault detection and diagnosis
(FDD) methods and intend to find a proper supervised FDD algorithm to detect
faults in building systems. For this, performance analysis on several algorithms is
done using some labeled HVAC datasets. Through this research we are focusing on
some objectives which are:

e Detecting faults in building systems in a quick and accurate manner.
e Describe an IoT ecosystem that will be integrated with the building system.

e Finding the best supervised FDD algorithm to detect faults.



Chapter 2

Literature Review

2.1 Predictive Maintenance and FDD Algorithms

Different types of faults can affect a building system’s components, ranging from
a single component to a whole system. It has the effect of lowering performance
while also increasing energy consumption. As a result, detecting these faults as
soon as possible is crucial. Predictive maintenance and fault detection and diagnos-
tics (FDD) algorithms can be used to monitor those systems while also detecting
irregularities or faults, which can reduce the operational cost of the systems.

Predictive maintenance keeps track of the current state of the components in or-
der to notify the system and determine whether or not corrective maintenance is
required [6]. With the increasing trend of smart buildings, it is a wise decision to in-
tegrate predictive maintenance or fault detection and diagnosis techniques into those
systems. Fault detection and diagnosis is one of the industry’s most well-accepted
predictive maintenance principles, on which we can find extensive research in the
literature. We can classify FDD into three generalized types based on the existing
research in the literature, i.e., physical model-based, rule-based, and data-driven
approaches [16]. The physical model-based approach uses physical principles and
knowledge of the system’s underlying fundamental behavior to create a physical
model that represents a faultless state of the system. Then, this state is com-
pared with the current state of the system to detect faults. It is simple to utilize a
model-based approach if significant knowledge and information about the system is
available [16], but obtaining sufficient knowledge about a system becomes costly and
impractical if the system is complex. Rule-based modeling techniques utilize prior
knowledge and domain expertise to create a rule space, which is then used to detect
the fault symptoms in the system. According to the rule space, any present state of
data that exceeds a specified threshold determined by expert analysis is considered
a fault [16]. The data-driven method uses real data for analysis. To analyze and
detect faults using a data-driven method, the system’s historical data is necessary.
The data availability of automated building systems is rapidly rising nowadays. As a
result of the availability of appropriate datasets, data-driven methods are becoming
more prevalent. Data-driven approaches that use historical datasets as a training
model can also be classified into three categories, i.e., unsupervised approaches, su-
pervised approaches, and hybrid approaches [26]. To analyze unlabeled data, an
unsupervised learning strategy is required. When working with labeled data, on the



other hand, supervised learning approaches are used. We will mainly concentrate
on detecting faults using data-driven supervised approaches in this paper.

2.2 Internet of Things (IoT)

The Internet of Things (IoT) is a network comprised of things, where things are wire-
lessly connected via smart sensors [10]. Devices that we previously used without
being connected to the internet are now being connected to it. Smart air condition-
ers, smart refrigerators, and smart televisions are just a few examples. In addition,
we can see that the concept of smart buildings has become increasingly popular in
recent years. Control of building systems is being centralized, and those systems are
being linked to the internet. Centralized HVAC systems, in particular, are becoming
popular and are being adopted to building systems at a rapid pace. In this paper,
we will use Yu et al.’s [19] IoT architecture to connect a building system to the
cloud, where we will conduct our fault detection analysis.

2.3 Related Works

Different studies used different approaches in the domains of predictive maintenance
and FDD. In the early stages of literature, most studies focused on model-based ap-
proaches, such as rule-based or physical model-based approaches. It is primarily due
to the lack of appropriate datasets in this domain and less complexity of systems.
However, the trend has steadily evolved toward a data-driven approach, owing to
the increased availability of data regarding building systems in recent years.

Schein et al.  [6] employed a rule-based approach to detect faulty air handling
units (AHU) in their study. In the AHU controllers, they implemented AHU perfor-
mance assessment rules (APAR). APAR comprises of some expert rules about the
system. They gathered data from a variety of field sites, including an office build-
ing, a restaurant, a community college, and a university campus, and used APAR
to analyze those data. In another study, Schein et al. [5] applied a hierarchical
decision-making framework to create a hierarchical FDD algorithm that consists
of rules for detecting system faults. Qin and Wang [4] used a study on faults in
VAV terminals of a site survey and examined the results of it. They took a hybrid
approach to detect faults. To detect faults, they used expert rules, performance in-
dicators, and statistical process control models, which were backed up by a pattern
recognition method. To get around fault isolation, they used two distinct pattern
recognition indexes. A PCA-based technique was utilized to detect VAV terminal
flow sensor biases and reconstruct the defective sensors. Lo et al. [7] developed
an approach based on a fuzzy genetic algorithm (FGA). A fuzzy system is a fault
detection method based on rules. It can be viewed as a classification problem, where
the fuzzy system acts as a classifier, allowing it to distinguish between distinct faults
based on rules. The precision of the fuzzy rules is important because it determines
how accurately faults can be detected. Fault detection using fuzzy rules was once
widely popular. Several other academics [1]-[3] have proposed fuzzy system-based
fault detection and diagnostic systems.



In recent years, the focus of study in this field has shifted to data-driven approaches.
The number of building systems is growing. As a result, it is now easy to obtain
accurate data about systems in order to implement a data-driven method. Accord-
ing to Amruthnath and Gupta [13], unsupervised learning is preferable for fault
detection because of the limited availability of historical data on the systems. To
identify the right features and reduce the dimensionality of the dataset, they used
principal component analysis (PCA). They then used the dataset to test a variety
of unsupervised learning algorithms, including hierarchical clustering, K-means and
Fuzzy C-means clustering, and the Gaussian mixture model (GMM). In recent re-
search from Yan et al. [28], a framework that utilizes the generative adversarial
network (GAN) is proposed for detecting faults in AHU to solve the imbalanced raw
data problem. They first use GAN to rebalance the dataset, then use supervised
methods to classify the faults in the system.

It is very difficult and time-consuming to model a complex and non-linear system,
such as a large-scale building system, using expert analysis, mathematical functions,
and physical models [8]. Rule-based approaches are only reliable with accurate
expert analysis and comprehensive knowledge of the system. Nevertheless, if the
system is complex, they become an expensive and unfeasible choice. As a result,
adopting rule-based and physical model-based methodologies for complicated and
large-scale projects is no longer a viable option. Data-driven models, on the other
hand, are becoming increasingly popular in the field of FDD. Even in complex
and large-scale systems, they are reliable, feasible, and powerful [8]. We are using
supervised learning algorithms in our research since they are the best way to generate
an optimal and efficient output when labeled data about a system is available.



Chapter 3

Methodology

Our model’s initial task is to obtain data from the sensor deployed in the system
based on the IoT ecosystem. It will generate a large amount of data, which will
be stored in the cloud, from which we will extract the information. Then, using
a variety of machine learning algorithms, we’ll look for any potential flaws in the
system. Even minor flaws in the system will be predicted by the model, and the
user will be notified for preventative maintenance. Furthermore, the data will be
used to improve the system and will aid in the reduction of energy waste and the
smooth operation of the system.
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Figure 3.1: Work Flow of the proposed model system



3.1 10T Ecosystem

We'll use Yu et al.’s IoT architecture [19]. They created an ecosystem to deal with
big data issues in the [oT domain. The data ingestion layer, data management layer,
data analytics layer, and data visualization layer are the layers that make up the
architecture. Its architecture is based on edge nodes, cloud clusters, and data lakes
(ECD-architecture). The data ingestion layer, which is the initial layer in the archi-
tecture, is responsible for sending a massive volume of sensor data to the Hadoop
system. In this layer, data is stored on several servers and the metadata server
keeps record of structured data measurement logs, whereas the OPC server handles
numerical sensor data. They also use historical servers to store data and the OPC
Collector to retrieve and output values from the OPC Server to a text file. After a
predetermined time-interval, a compressed version of the text file is uploaded to the
AWS cluster via Secure File Transfer Protocol (SFTP). A VPN gateway is deployed
to secure the entire network.

oPC

SAP

Edge Node
Tag Dala Ingestian
SAP Data Ingestion | -
Agoeration Oueries

Figure 3.2: IoT Ecosystem (ECD)

The big data management layer is responsible for managing massive data and storing
them efficiently [19]. Each batch of data in the edge node gets replicated three times,
as per the architecture. After that, utilizing HDF'S, these data are randomly spread
out across the cloud nodes. In this layer, data lake is used to keep data from the
edge node Data lake is a cloud-based data storage architecture, where every kind of
data at any scale can be stored. After a preliminary data analysis and processing,
structure data is obtained from the raw data and then converted into DataFrame
format. Yuet al. [19] then use two different storages, namely Apache Hive, It serves



as a central data warehouse, and the MapR database, which is a NoSQL database.
The stored data in the Apache Hive acts as historical data for data analysis, and
the data stored in the MapR database is used for real-time analysis. Apache Spark
is used as the data processing engine to process the massive volume of data in an
efficient manner. In the analytics layer, we will use several algorithms to analyze
the performance of different supervised learning algorithms.

3.2 Implemented Algorithms

In our proposed model we tried to implement 8 algorithms with testing and training
the data we got from our described dataset. These 8 algorithms have different
accuracy rates with different characteristics in terms of machine learning techniques.
Here we will briefly discuss all the algorithms we used.

3.2.1 Logistic Regression

Logistic Regression is another supervised algorithm which is basically used for pre-
dicting the probability of outcome we desire from a model. This method basically
follows the rules of the binary regression model and tries to find the desired output
based on two classes. By the value 1 it shows the success ratio and by 0 it shows the
failure part. Theoretically this algorithm runs its process based on binary regression
but based on the categories of those numbers, it can be divided into two parts. One
is binomial and the other one is multinomial. The binomial method focuses on the
numerical process such as 0 and 1 through which it predicts the case as a win or
loss. On the other hand, the multinomial process focuses on three or more variables
which don’t have any kind of numerical attributes. [17]

Algorithm Used: P(Y — 1) as a function of X.

I' -

— .‘-i':.:'l." = —

Figure 3.3: Logistic Regression.



3.2.2 K-Nearest Neighbors Classifiers

K-Nearest Neighbor also known as K-NN is another popular supervised algorithm
technique used in machine learning models. This method is a simple and constructed
method. This algorithm predicts the similarity in its stored data and shows its
output based on the class it creates from its predictions. This algorithm is also
used for regression and classification problems. This algorithm is also known as lazy
learner algorithm because it can not train the dataset earlier rather than it takes
its action while it’s time for the classification. Afterwards, when it gets a new data
related to the maximum type of the dataset then it predicts it through it. This
method uses the euclidean distance process while processing the dataset. [15]

Algorithm Used: \/Zle(xz —yi)?
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Figure 3.4: K-NN Classifier.

3.2.3 Naive Bayes Classifier

Another popular supervised algorithm which is used in many sectors of our daily life
projects is called the Naive Bayes Classifier. This method is majorly used in text
classification which requires a high dimensional training dataset. This algorithm
is effective in terms of making fast machine learning models and predicting more
accurately through them. This method predicts its outputs based on the objectified
probability of any case. This method basically works on the basis of bayes theorem.
In terms of the working methodology, this algorithm first tries to convert the dataset
into a frequency table. Afterwards, it tries to make a similar table by predicting the
existing table and its actions. Finally, it uses the bayes theorem to calculate the
final prediction and output. [30]



Algorithm Used: P(A| B) = %
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Figure 3.5: Naive Bayes Classifier.

3.2.4 Support Vector Machine Classifier

Support Vector Machine also known as SVM is another renowned supervised algo-
rithm in the sector of machine learning. This algorithm is also being vastly used in
terms of classification and regression problems. This method basically creates the
best decision boundary and tries to fit in the data that are going to be predicted.
The boundary line that is being created by the method is also known as hyper-
plane. This algorithm can be classified into two parts. One is linear SVM and the
other one is the non-linear SVM. Linear SVM basically separates the data linearly
where the non-linear SVM does the opposite action of linear SVM. While creat-
ing the hyperplane SVM tries to choose the highest vector point for the prediction
purpose. [14]
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Figure 3.6: Support Vector Machine Classifier.

3.2.5 Random Forest Classifier

Random Forest Classifier is another popular classification based algorithm that is
used for predicting and making accurate decisions about finding error data. This

10



method also belongs to the supervised learning model and works based on the idea
of ensemble learning process. For solving problems of classification and regression
it is vastly used. Random forest classifier combines multiple trees and predicts the
output by a voting system from all the leaf nodes of those trees. Compared to other
algorithms, Random forest classifier takes less time to detect the errors. Moreover,
it shows accurate results even with large dataset. Additionally, this method shows
accurate results even if there is loss of data in the dataset. In terms of its working
procedure, this method first creates a random combination of several trees and
predicts its output based on the maximum nodes of the same data. Hence, it repeats
all the steps one by one and shows the predicted outcome. [29]

tree 1
tree 2 tree n

Class A
class A Class B

Majority Voling

v

Final Class (Class A)

Figure 3.7: Random Forest Classifier.

3.2.6 Decision Tree Classifier

Decision Tree is one of the finest supervised machine learning techniques which is
being used vastly all over the technical world. This algorithm is modeled like a tree
shaped algorithm with branches, nodes and leafs. This method is basically used for
classification and regression problems. To demonstrate the features of a dataset it
uses the nodes, the decision rules are being represented via the branches and the
outcome could be predicted via the leafs of the tree. The Decision Tree algorithm
is distinguished among two parts. One is the decision node and the other one is the
leaf node. The algorithm makes its decision via the decision node and its branches.
It shows it outputs from the decisions via the leaf node. [21]

Algorithm Used: £, =TP — FP
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Figure 3.8: Decision Tree Classifier.

3.2.7 MLP Classifier

MLP Classifier which is elaborately known as multi layer perceptron is a learning of
neural network algorithm. This method also solves the classification and regression
based problems and predicts accuracy of any dataset. This algorithm is different
from others because this algorithm uses underlying neural network techniques for
its classification purpose. This method creates layers to predict its classifications.
Such as, input layer, hidden layer, output layer etc. The depth of the hidden layer
describes the depth of classification and attributes. [27]

"/_‘h\\ hidden layers

output layer

input layer {

Figure 3.9: MLP Classifier.

12



3.2.8 Extra Tree Classifier

Extra tree classifier also known as extremely randomized tree classifier is a method
which is also vastly used for solving classification and regression problems. This
method tries to classify any dataset by creating a forest which stores related decision
trees from a dataset. This method is an extended version of the random forest
classifier with some different attributes. It creates every decision tree from the
notation of the authentic training data and predicts the result combining those
trees outputs. Afterwards, it is captured with some random sample of features from
the dataset and it classifies the best and worst values from those samples. [24]
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Figure 3.10: Extra Tree Classifier.
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Chapter 4

Data Representation

4.1 Dataset description

Despite the widespread use of IoT in building management systems, there is a
scarcity of publicly available data for fault detection and predictive maintenance.
As a result, obtaining appropriate data to serve our purpose was difficult. Building
fault detection data [23] was chosen for our model since it is designed for fault de-
tection and diagnostics (FDD) methods. They’ve gathered data that’s been sorted
into two categories: occupied and vacant. The presence of humans inside a building
determines its occupancy. Some of the datasets are gathered from real experiments,
while others are computer simulations. We employed two datasets for our model:
one is experimental data, and the other is a simulation result.

Dataset Name Creation Process
SET-A Simulated MZVAV- HVACSIM+ and an

1(Multi-zone variable EnergyPlus-Modelica  co-

air volume AHU dataset) simulation were used to

create this model.

SET-B Experimental MZVAV-2-1 Created at the Lawrence
(Multi-zone variable air vol- Berkeley National Labora-
ume AHU dataset) tory in Berkeley, California,

using three experimental re-
search facilities

Table 4.1: Used datasets and the approach of creation.

4.2 Exploratory Data Analysis

The datasets are created in different ways, but they both have the same character-
istics. The values of various sensors are represented by each feature (or column).
Both datasets have two classes: faulty and faultless, where 0’ denotes no faults and
1’ denotes data that is faulty. The purpose is to find errors in the ’Fault Detection
Ground Truth’ column. Figure 4.1 and 2.2 describes the features of the datasets
respectively
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AHU: Supply

AHU: Supply Air AHU: Outdoor AHU: Mixed AHU: Return AHU: Supply AHU: Return AHU: Supply
Air Temperaturs Adr Air Air Adr Fan Afr Fan  Alr Fan Speed
Temperature Set Point Temperature Temperature Temperature Status Status Control Signal C
count  21600.000000 21600.000000  21600.000000  21600.000000  21600.000000 21600000000  21600.000000 21600000000
mean 62996525 57000463 58220122 67 488618 72611413 0534722 0533611 0474657
std 7.372700 4000440 21.458405 7875141 1679548 0498804 0498881 0261236
min 0.000000 55000000 -0.490000 0.000000 0.000000 0000000 0.000000 0.000000
5% 55.150000 55.000000 44.920000 654100000 71.340000 0.000000 0.000000 0200000
50% 64.840000 55000000 63.640000 68.660000 72.810000 1.000000 1.000000 0.620000
75% 70.430000 55.000000 74.550000 72.590000 73.440000 1.000000 1.000000 0.720000
max 79690000 65000000 91 850000 108 240000 79 120000 1000000 1.000000 1.000000
AHU: Exhaust  AMU: Outdoor  AHU: Return  AHU: Cooling  AHU: Heatin AHU: SuPLYy  pay suppl
5 2 5 % 2 i £ Air Duct = MY Occupancy
Air Damper Alr Damper Air Damper Coil Valve Coil valve stati Air Duct Mode
Control Control Control Control Control asg Static e
Signal Signal Signal Signal Signal ““r:nint Pressure ST
21600.000000 21600.000000 21500.000000 21600.000000 21600.000000 2.160000e+04 21600.000000  21600.000000
0341757 0.331989 0.443025 0.168748 0.083330 1.400000e+00 0.738494 0.500000
0.372642 0363341 0400821 0252140 0249985 5278122e-13 0685622 0500012
0.000000 0.000000 0.000000 0.000000 0.000000 1.400000e=00 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 1.400000e+00 0.000000 0.000000
0.400000 0.400000 0.400000 0.000000 0.000000 1.400000e+00 1.340000 0.500000
0.470000 0.470000 1.000000 0.290000 0.000000 1.400000e+00 1.380000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.400000e+00 2.370000 1.000000
Figure 4.1: Description of the SET-A features.
; AHU: Supply
m: Supply AW 5“"’3}" AHU: Outdeor  AHU: Mixed AHU: Return  AHU: Supply  AHU: Return Air Fan
Alr T “w; Air Adr Adr Air Fan Alr Fan
Temperature Y. Temperature Temperature Temperature Status Status Control
Set Point g
Signal
count  21600.000000 2 160000e+04 21600.000000 21600.000000 21600.000000 21600.000000 21600000000  21600.000000
mean 53.797004 5 .504000e+01 48531414 65089730 71437411 0.872037 0.672087 0482238
sid 2557170 1.678341e-11 20.281195 7.390938 3710836 0.468432 0458432 0.353356
min 45010000 5 504000e+01 -14.190000 23.720000 55.080000 0.000000 0000000 0.000000
25% 52.010000  5.504000e+01 36.550000 57.180000 T0.010000 0.000000 0000000 0.000000
50% 54.080000 5 .504000e+01 52 590000 65. 710000 T2.010000 1.000000 1.000000 0.640000
5% 55040000  5.504000e+01 B2 TE0000 T2 050000 T4 280000 1.000000 100000 OLET0000
max T1.760000  5.504000e+01 90.140000 78450000 85 680000 1.000000 1.000000 1.000000
pals AHU: Suppl
AHU: OQutdoor Return AHU: Cooling AHU: Heating i.ir BEC{ AHU: Supply Occupancy
Air Damper Air Coil Valve Coil Valve Static Air Duct Mode
Control Damper Control Control Static F
< =t _ Pressure Set Indicator
Signal Control Signal Signal 3 Pressure
P Point
Signal
21600.000000 216000 21600.000000 21600.000000 2 160000e+04 21600.000000 21600.000000
0.211304 00 0.043344 0.000046 4.000000e-02 0.034456 0485463
0.324680 0.0 0.082865 0.006804  9.534261e-15 0.032932 0.499800
0.000000 0.0 0.000000 0.000000 4.000000e-02 -0.020000 0.000000
0.000000 0.0 0.010000 0.000000  4.000000e-02 0.000000 0.000000
0.000000 0.0 0.020000 0.000000 4.000000e-02 0.040000 0.000000
0.240000 0.0 0.040000 0.000000 4.000000e-02 0.040000 1.000000
1.000000 0.0 0600000 1.000000  4.000000e-02 0.120000 1.000000

Figure 4.2: Description of the SET-B features.
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From figure 4.3 and 4.4 we get the idea about the Density of the various key features
in both datasets is presented in this section.
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Figure 4.3: The density of different SET-A features that highly correlate to the two
classes
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Distplot of AHU: Supply Air Temperature Distplot of AHU: Cooling Coil Valve Control Signal
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Figure 4.4: The density of different SET-B features that highly correlate to the two
classes.
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4.3 Data Pre-Processing

To begin, we are using Machine Learning models, and data preprocessing is the first
step in the process. We will acquire the raw data generated by the sensors when
sensors are integrated with real-world systems and value is retrieved from there.
While processing, all of the data may not be required to reach our goal, or the data
may be incomplete, contain irrelevant information, or be missing certain critical
variables. As a result, we must preprocess or transform raw input into relevant data
in order to achieve the most efficient outcome.

Data Cleaning

Data Integration

Data Transformation

Data Reduction

Data Discretization

Figure 4.5: Steps of Data Preprocessing

The initial step was to clean up the data, removing extraneous features such as
'Datetime’ from both datasets. The SET-A data rows with null values are elimi-
nated. The SET-A dataset was created using summation and has 272160 rows, with
233280 rows belonging to the Faulty class (denoted by 1) and 38880 rows belonging
to the Faultless class (denoted by 0). The SET-B dataset, on the other hand, is
based on real-world experiments and contains 21600 sets of data, 18720 faultless
and 2880 faulty. It demonstrates that 86% of the data in SET-A is faulty, causing
an imbalance. We used the undersampling approach to solve this problem, which is
a collection of techniques for balancing the class distribution. It removes examples
from the training sample that correspond to the majority class in order to improve
the class distribution’s balance,for example, lowering the skew from 1:100 to 1:10,
1:2, or even 1:1. We reduced the SET 1 dataset to 21600 samples making it equal
to the SET-B dataset for better comparison and results in few algorithms. We also
used the StandardScaler and MinMaxScaler feature scaling algorithms to acquire
more precise results. After adding MinMaxScaler, we were able to achieve better
results.
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4.4 Data Analysis Metrics

For a single algorithm, we calculated the training and testing scores, as well as the
precision, recall, and accuracy metrics for the particular model. The key metrics of
any pattern recognition technique that aids in the detection of a specific pattern in
a given set of data are precision, recall, and accuracy.

4.4.1 Confusion Matrix

Confusion matrix compares the actual targets values with the machine learning
model’s predictions. This provides us with a comprehensive picture of how well our
classification model is working and the types of errors it makes. Positive or Negative
are the two possible values for the target variable. Where the columns reflect the
target variable’s actual values and the rows represent the target variable’s predicted
values [20].

Predicted Class

Faultless Faulty
Recall
Faultless TP FN P
K TP+FN
=
g False positive rate
< | Fauly FP TN FP
TN+FP
Precision Specificity Accuracy
TP TN TP+TN
TP+FP | TN+FN  TP+TN+FP+FN

Figure 4.6: Confusion matrix with advanced classification metrics

The target variable has two values as displayed in figure 4.6, True Negative (TN) is
an output that displays the number of correctly diagnosed negative situations. The
terms FP and FN refer to False Positive and False Negative values, respectively. FP
refers to the number of actual negative cases categorized as positive, while FN refers
to the number of actual positive examples classified as negative. [22]
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4.4.2 Advanced classification Metrics

Precision - - Precision basically gives the benefits in the times of high value of
False Positive. It tries to demolish the highness of false positive value and show its
result based on that. The ratio of accurately predicted positive observations to the
total predicted positive observations is known as precision. [11] Mathematically it
is

TP

Precision = TPLFP

Accuracy - For the assumption of the perfect training and testing set, accuracy
is used. As the datasets contain scattered data, we have to train and test them for
our prediction purpose. The most intuitive performance metric is accuracy, which
is just the ratio of accurately predicted observations to total observations. [11].
Mathematically it is

TP+TN

Accuracy = TP+TN.FP+FN

Recall - Recall basically used for demolishing the high values of False Negative.
The ratio of accurately predicted positive observations to all observations in the
actual class is referred to as recall. [11]. Mathematically it is

_ TP
Recall = TPLFN

F1 Score - The F1 Score is a balance among precision and recall. The F1 score is
often used to assess performance of binary classification, but it may also be applied
to multi-class classifications. This score considers both false positives and false
negatives. When the F1 score is 1, the model is deemed perfect, but when it is 0, the
model is considered a complete failure. Although it is not as intuitive as accuracy,
F1 is frequently more useful than accuracy, especially if the class distribution is
unequal. When false positives and false negatives have equivalent costs, accuracy
works well. Mathematically it is

_ 2x(RecallxPrecision)
FlScore = (Recall+Precision)

Specificity - Specificity basically meets the criteria by screening the test and
detect the accurate True Negative value. It refers to the ratio of true negative to
the summation of true negative and false positive. Mathematically it is

TN

Specificity = 7y Fp

Receiver Operating Characteristic (ROC) Curve -A probability curve that
compares the TPR against the FPR at different threshold levels.

TPR = Sensitivity and FPR =1 — Speci ficity.
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Chapter 5

Analysis & Results

We will discuss the performance of our model on both simulated (SET-A) and exper-
imental data(SET-B) in this section. After performing the necessary preprocessing,
we trained our models with 70% of the data and left 30% for testing as shown in
Table 5.1.

Dataset Category Values

SET-A Faulty 233280
Faultless 38880
Training set 190512
Testing set 81648
Total 272160

SET-B Faulty 2880
Faultless 18720
Training set 15120
Testing set 6480
Total 21600

Table 5.1: Dataset Description.

5.1 SET-A: MZVAV-1 (Simulation data)

In the SET-A simulation dataset, we initially acquired 83.7% accuracy for Logistic
Regression (LR), however after applying standard scalar, the accuracy improved to
83.84%. As a result, it was unable to anticipate 13.6 percent of the erroneous data.
LR has an precision rate of 85.94 percent, a recall rate of 97.05 percent, and a speci-
ficity of only 3.81%. Lastly, the {1 score is 91.16%.

We utilized 5 nearest neighbors for KNN, and SET-A yields a testing accuracy of
91.45% with the default parameters. After scaling the data, however, it increased
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to 98.82. With a fl-score of 99.32%, the recall was 99.60 %. It had a precision of
99.03 % and a specificity of 94.16 %.

Again for SET-A dataset, the decision tree outperformed LR. Entropy was used to
assess the quality of the data split. On the testing dataset, our model had a 98.91%
accuracy rate. We reduced biases using undersampling method because the dataset
was imbalanced with high proportion of faulty class, with 13.70% of samples clas-
sified as "faultless” and 85.22 % as "faulty,”. obtained a fl-score of 99.37% and a
recall of 99.42%. It had a 99.31% precision and a 95.87% specificity.

We achieved an accuracy of 98.89% using the Random Forest classifier model in the
SET-A, with a precision level of 98.89 % While we had a recall of 99.82 %, we only
had a specificity of 93.30 %. 99.35 % was the fl-score.

Using the Naive Bayes classifier model, we were able to attain very low accuracy of
14.17 % and a precision of 0 %. While its recall was also 0 %, its specificity was
only 100 %. But The fl-score was 0%. The high amount of categorical data within
that dataset is to account for the poor performance. We found that several of the
columns are totally made up of ones and zeros. As a result, it lacks a normal distri-
bution and GNB cannot perform effectively in the absence of normal distribution [9].

The results achieved when implemented on the SVC model were around 85.83 %;
although SVC works better on a short dataset [12], we trimmed the dataset to get
better results. There are no real negatives because when specificity is 0 percent, and
all data without the condition is false positive. Since 100% of the TP was discovered,
we received a recall of 1 where the Fl-score is 92.38.

We also used the MLP classifier model and fetched an accuracy score of 85.83% with
precision of 85.83%. It has a recall of 100% and specificity of 0%. It also obtained
a fl-score of 92.38%.

Finally, we implemented the Extra Tree Classifier algorithm which gave us an accu-
racy of 98.10% with a precision of 98.21%. It has a recall of 99.60% and specificity
of 89.13%. It ends up giving a fl-score of 98.90%.

5.2 SET-B: MZVAV-2-1 (Experimental data)

We initially achieved 94% accuracy for Logistic Regression (LR) in the SET-B
dataset (Experimental data), however after Feature Scaling with StandardScaler,
the accuracy improved substantially to 96.44 %. LR has an 83.56 % precision rate,
a 91.2 % recall rate, and a specificity of 97.24 %.

With the default parameters, KNN produces a testing accuracy of 99.35 %, while
SET-B generates a testing accuracy. However, after scaling the data, it increased
to 99.65%. The recall was 98.38 %, with a fl-score of 98.67 %. It had a 99.95%
precision and a 99.84 % specificity.
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The decision tree model performs well in the SET-B (experimental dataset). With
an accuracy of 99.74%, predicted from the test data. The recall and fl-score were
respectively 98.96% and 99.02%. In this dataset, we discovered that random forest
has a training accuracy of 100%, however the decision tree did not.

Random forest classifier performs incredibly well on testing dataset, with the best
result of 99.91 % accuracy among the models. The recall, specificity, and fl-score
of SET-B were all 99.42%, 99.98%, and 99.65%, respectively.

When using the SVC model to train and test, the results were 95.74% accurate. We
achieved better results compared with SET-A because SVC works better on a little
dataset. Recall is 100% percent, while specificity is 95.09%. A precision of 75.79
percent was achieved.

We were able to get an accuracy of 79.26 %, the lowest among the modes, and a
precision of 39.13 percent using the Naive Bayes classifier model. While it had 100%
recall, it only had 76.07 percent specificity. The fl-score came in at 56.25 %.

While implementing the MLP classification model, we achieved an accuracy of
95.05% with a precision of 73.15%. It shows a recall of 99.31% and specificity
of 94.39%. It gives a fl-score of 84.24%.

Additionally, we used the Extra Tree Classification model and achieved an accuracy
of 99.91% which is the best testing result of this project. It gives us a precision of
99.77% and recall of 99.54%. It rounds up its result analysis by giving a specificity
of 99.96% and fl-score of 99.65%.
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5.3 AUC-ROC Curve

On selected datasets, we used ROC and AUC curves to compare different algorithms.
In the curves sensitivity is reported in the horizontal plane, and specificity is reported
in the vertical plane. The term AUC refers to the area under the curve. The ROC
curve is created by combining the points from plotting the ROC for various criteria.
The algorithm performs better with a larger AUC.
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Figure 5.1: ROC Curve of SET-A

The AUC of all the algorithms we utilized in SET-A shown in Figure 5.1. We can
observe that KNeighbors, Random forest, Decision tree, and Extra trees are all near
the y-axis and thus provide the best possible results. In contrast Naive Bayes and
MLP algorithms are falling behind in the curve denoting poor performance.
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Figure 5.2: ROC Curve of SET-B
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The AUC of all the algorithms we utilized in SET-A shown in Figure 5.1. We can
observe that KNeighbors, Random forest, Decision tree, and Extra trees are all near
the y-axis and thus provide the best possible results. In contrast Naive Bayes and
MLP algorithms are falling behind in the curve denoting poor performance.

5.4 Confusion Matrices

Confusion matrices are used to compare the right / wrong estimations of labels
"faultless” and "faulty” in fault detection ground truth values.

5.4.1 Logistic Regression Confusion Matrices

LR Confusion Matrix for Set A in % LR Confusion Matrix for Set B in %
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Figure 5.3: Confusion matrices of Logistic Regression (a) SET-A (b) SET-B

The confusion diagram obtained for the SET-A using the Logistic Regression (LR)
classifier is shown in Figure 5.3(a). The LR model could only predict approximately
0.54% of the faultless values and 83.3% of the faulty values, resulting in a testing
accuracy estimate of 83.7 %. Because the dataset was uneven, we calculated the
recall and found an estimated value of 98.37 %. The confusion matrix for the LR
model when training is performed on the SET-B is shown in Figure 5.3(b). In
this case, around 12.16% of the faulty data and 84.27% of the faultless data were
accurately predicted. The calculated recall was around 91.20%.

5.4.2 KNeighborsClassifier Confusion Matrices

When trained and evaluated on the SET-A Simulated dataset, the KNN model
estimated that 83.49 % of the data is faulty and 8.94% of them are faultless, with
a 98.82% accuracy rate, resulting in a recall score of around 96.82%, as shown in
5.4.(a). On the SET-B dataset we can see in 5.4.(b), it has 86.53% faultless labels
and 13.12% fault labels, with 99.65% accuracy and recall score of 98.38%.
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KNN Confusion Matrix for Set A in %
KNN Confusion Matrix for Set B in %
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Figure 5.4: Confusion matrices of KNeighborsClassifier (a) SET-A (b) SET-B
5.4.3 Naive Bayes Classifier Confusion Matrices

GNB Confusion Matrix for Set A in %
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Figure 5.5: Confusion matrices of Naive Bayes (a) SET-A (b) SET-B

On the SET-A dataset, Naive Bayes performed the worst, and it likewise did poorly
on the SET-B dataset. For 5.5(a), we can observe that 14.17% True Positive and
85.83% False Positive which leads to only 14.17% accuracy. SET-B, on the other
hand, has 65.93 % TP and 13.33 % TN. As a result, we were able to achieve higher
accuracy than SET-A.
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5.4.4 Support Vector Classifier Confusion Matrices

SVM Confusion Matrix for Set A in % SVM Confusion Matrix for Set B in %
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Figure 5.6: Confusion matrices of Support Vector Classifier (a) SET-A (b) SET-B

The SVC model’s confusion matrices for SET-A and SET-B are exhibited in Fig-
ures 5.6(a) and 5.6(b).. When is was trained and evaluated on the SET-A dataset,
displaying FN of 14.17 % and TN of 85.83 %, Therefore it could predict with an
accuracy of 85.79% and recall of 100%. The SET-B on the other hand, has a FN of
4.26% and a TN of 13.33%, Moreover There is TP of 82.41%. As a result, it has a
prediction accuracy of 87.22%, which is higher than SET-A.

5.4.5 RandomForestClassifier Confusion Matrices
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Figure 5.7: Confusion matrices of RandomForestClassifier (a) SET-A (b) SET-B

Figure 5.7(a) shows the comparisons for Random Forest Classifier in SET-A. The
Confusion matrix indicated that RFC discovered 13.33 % True Positive values and
85.56% True Negative values. It had a False Positive rate of 0.16 % and a False
Negative rate of 0.96 %. As a result The model provides an accuracy of 98.89%
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and recall of 99.82%. In the case of experimental SET-B RFC predicted 86.64%
TP, 13.26 TN, 0.08%FP and 0.03% FN. Thus the model came up with the highest

accuracy of 99.91 %.

5.4.6 DecisionTreeClassifier Confusion Matrices
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Figure 5.8: Confusion matrices of DecisionTreeClassifier (a) SET-A (b) SET-B

The SET-A confusion matrix employing the DecisionTreeClassifier is presented in
Figure 5.8(a). Approximately 85.22 % of the faulty values were anticipated, while
13.70% of the faultless values were detected. False Positive and False Negative are
respectively 0.50 % and 0.59 %. As a consequence, We received a 93.07% accuracy
score, a 95.97 % recall, and a 95.96 % Fl-score. On the other hand SET-B has
86.54% TP and 13.19% FP. Which results in 99.74% accurate prediction, Recall
and fl-score were 98.96% and 99.02%, respectively.

5.4.7 MULP Classifier Confusion Matrices
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Figure 5.9: Confusion matrices of MLP Classifier (a) SET-A (b) SET-B
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From the confusion matrix of 5.7(a) we can see that in SET-A the MLP Classification
is showing us 14.17% faultless labels of data and 85.83% of faulty label data with
accuracy of 85.83%, recall of 100% and fl-score of 92.38%. On the contrary, in
5.7(b) it is focused that in SET-B the method is showing 85.14% of the data are
faultless and 13.18% of of the data are faulty. Where the accuracy score is 95.05%,
recall score is 99.31% and fl-score is 84.24% which is better than SET-A.

5.4.8 Extra Tree Classifier Confusion Matrices
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Figure 5.10: Confusion matrices of ExtraTreeClassifier (a) SET-A (b) SET-B

This confusion matrix visualizes from 5.10(a) that in SET-A the ExtraTree classifier.
It suggests that 13.73% of the data are faultless and 85.37% of them are faulty data
with an accuracy of 98.10%, recall of 99.60% and fl-score of 98.90%. Hence, from
5.10(b), in terms of SET-B we can observe that the method is giving us 85.65%
faultless labels and 13.27% of faulty labels of data. Therefore, It has gained an
accuracy score of 99.91%, where the recall is 99.54% and fl-score is 99.65% which
is also better than SET-A.

5.5 Comparison among the models and datasets

In this section, we compare the results of modes for both SET-A (simulated data of )
and SET-B (experimental data). We analyzed accuracy, precision, recall, specificity,
and Fl-score to assess our model’s performance.We were able to determine that
K-Nearest Neighbors, Random Forest, Decision Tree, and Extra Trees are most
convenient in terms of accuracy rates and all other Data Analysis Metrics.

Figure 5.11 and table 5.2 demonstrate that Naive Bayes provides just 14.17% accu-
racy for the SET-A. The primary reason for this is because the dataset contains a
large amount of category data. We noticed that several of the columns are made up
entirely of zeros and ones (binary values). We see, SVC also couldn’t perform well
due to the size of the dataset (over two hundred thousand records). The outliers
in the dataset are to account for the low performance of MLP. Moreover, due to
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Figure 5.11: Column chart comparison of the models in SET-A
Model Accuracy | Precision | Recall Specificity | Fl-score
(70) (%) (70) (%) (%)
LR 83.84 85.94 97.05 3.81 91.16
KNN 98.82 99.03 99.60 94.16 99.32
GNB 14.17 0 0 100 0
SVC 85.83 85.83 100 0 92.38
RFC 98.89 98.89 99.82 93.30 99.35
DTC 98.91 99.31 99.42 95.87 99.37
MLP 85.83 85.83 100.00 0.00 92.38
ExtraTree 98.10 98.21 99.60 89.13 98.90

Table 5.2: SET-A Results

the imbalance in the dataset, the performance of Logistic regression was not up to
the mark. Apart from the aforementioned algorithms, KNeighbors and tree-based
methods DTC, RFC, and ExtraTree scored remarkably well.

The results of the SET-B experimental data are shown in Fig. 5.12 and Table 5.3.
Despite the fact that the dataset contains a considerable amount of category data,
Naive Bayes 79.26% accuracy (lowest among all). We see, SVM also performed
better in this case due to the smaller size of the dataset. The performance of
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Figure 5.12: Column chart comparison of the models in SET-B

MLP also improved in the second dataset. Similarly, the performance of Logistic
regression was better. For this lesser set of data, KNeighbors performed admirably.
Beside the fact of using experimental data The tree-based methods DTC, RFC, and
ExtraTree scored remarkably well and came up nealy 100% accurate. Because of
their adaptability to anomalous distribution and their ability to represent any type
of data, whether numerical or categorical.

Model Accuracy | Precision | Recall Specificity | Fl-score
() () (70) (70) (70)
LR 96.44 83.56 91.2 97.24 87.22
KNN 99.65 99.95 98.38 99.84 98.67
GNB 79.26 39.13 100 76.07 56.25
SVC 95.74 75.79 100.00 95.09 86.23
RFC 99.91 99.88 99.42 99.98 99.65
DTC 99.74 99.07 98.96 99.86 99.02
MLP 95.05 73.15 99.31 94.39 84.24
ExtraTree 99.91 99.77 99.54 99.96 99.96

Table 5.3: SET-B Results
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

Our research’s initial objective was to develop a system that would make life easier in
smart buildings or infrastructures by ensuring early detection of any system or device
malfunctions and allowing for predictive maintenance. To do that we researched on
IoT ecosystem and machine learning algorithms of fault detection and diagnostics.
Precisely we worked on a couple of building fault detection datasets and predicted
faulty data. Hence, we implemented eight different algorithms on the two datasets
(SET-A and SET-B) as a model to detect and predict faulty data in any central IoT-
based building management system. We did preprocessing, scaling and resizing the
data where required. We worked with widely used as well as new algorithms among
them K-Nearest Neighbors, Random Forest, Decision Tree, Extra Tree came out very
useful with accuracy upto 99.91%, We have seen SET-B was more predictable which
was from experimental data. Naive Bayes performed poorly with the simulated
SET-A data, Support Vector Machine, Logistic Regression and MLP algorithms
was average.With the simulated data, we discovered several limitations and set a
goal to enhance the performance of algorithms with similar data in the future. We’ll
also focus on incorporating our model system into real-world building management
systems to save energy, time, and cost.

6.2 Future Work

Implementing automated IoT systems in building management systems is becoming
a must day by day. With our analyzed report, we can easily now detect the ab-
normality of any centrally installed device and can attempt to fix the issue within
a lesser time. Moreover, in industrial building automation systems, this proposal
can bring a diverse and impactful perspective because the devices that are used
there are too sensitive and risky to integrate. Finally, we would like to expand the
research and increase the chance of predicting more accurate data across format for
the safety measurement of any smart building in near future.
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