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Abstract
Prostate cancer is a ubiquitous form of cancer detected among men all over the
world. It is currently the second leading cause of cancer death worldwide among
men. Research shows that about 11% of men worldwide are affected by prostate
cancer at some point during their lives. In our thesis, we have used a Transfer
Learning approach for the Deep Learning model to compare the precision in results
using machine learning classifiers. We have also evaluated performance in terms of
classification with different evaluation measures using a Deep Learning pre-trained
network (VGG16). Parameters such as Precision, Recall, F1 score and Loss vs Ac-
curacy were assessed thoroughly as different performance measures. After applying
the Transfer Learning approach, we have recorded the peak performance using the
VGG16 architecture. We used the convolutional block and dense layers of VGG16
architecture to extract features from image datasets. We forwarded those features
to Machine Learning classifiers for the final classification result. We have procured
outstanding accuracy using the Deep Machine Learning method in our research.

Keywords: Prostate Cancer; Deep Learning; ImageNet; Transfer Learning; VGG16;
Image Classification; Machine Learning classifier
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Chapter 1

Introduction

1.1 Introduction
Prostate cancer is a form of cancer that is diagnosed frequently among men. The
prostate is a gland that sits between the bladder and the urethra of men. It pro-
duces fluid that washes semen in addition to keeping sperm healthy for successful
fertilization. In the initial stage of prostate cancer, it starts growing within the
edges of the prostate. Gradually, it spreads through the lining and around the
edges of the prostate. About 1 in 7 men are detected with prostate cancer at some
point in their lives all around the globe. Prostate cancer is usually fatal if it is
not detected and treated at the early stage of prognosis [18]. The current principal
assessment techniques for Prostate Cancer detection are computerized rectal assess-
ment, Prostate-Specific Antigen (PSA) test and Transrectal Ultrasound (TRUS)
[17]. Among all the available methods for diagnosis, PSA remains the most com-
monly known method of screening and detecting cancer. Prostate-Specific Antigen
test detects cancer by examining the level of PSA in the patient’s blood cells. How-
ever, there remain significant impediments when it comes to the reliability of PSA
tests. One of those impediments is the high rate of false positives due to prostate hy-
perplasia or inflammations. Such specific conditions often result in an increased level
of PSA, which could render a wrongful prognosis report [9]. Currently, a Transrec-
tal Ultrasound-guided biopsy remains the most reliable method of prostate cancer
prognosis. However, a biopsy is regarded as the last resort, as the procedure tends
to be expensive and inefficient. Research shows that roughly 30% of benign tumours
(Stage I and II) are not detected during the initial phase of prognostication, owing
to the unguided approach of TRUS-guided biopsy. We can reduce the mortality rate
of prostate cancer by making the diagnosis thorough and precise. Studies show that
we can reduce the fatality rate from prostate cancer significantly; if we can diagnose
the patients at an earlier stage of their ailments [9].

1.2 Problem Statement

1.2.1 Problem Statement
The Prostate-Specific Antigen test is the most commonly used diagnosis method
of prostate cancer. However, PSA has constraints of its own where we can achieve
improvements [2]. The accuracy of the PSA diagnosis goes down if the serum values
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hover between the range of 4 g/L to 10 g/L. Many components can cause fluctu-
ations in serum values which can ultimately render a wrongful diagnosis. In addi-
tion, factors such as Benign Prostatic Hyperplasia (BPH), inflammation and chronic
prostatitis can also inflate the PSA levels of some patients. To overcome such im-
pediments, we have erected Decision Tree models to assimilate the prostate cancer
classification [4]. After using this model, we have recorded that Prostate-Specific
Antigen Density has a higher correlation with prostate cancer than PSA. Among
the other available tools, Magnetic Resonance (MR) images can play an extensive
role in providing detailed analytical information regarding the prostate. However,
opaque boundary lines at the peak and the bottom remain a significant obstacle to
this procedure. Some networks try to apply a patch-to-pixel method to obtain a
prediction; although, it does not extract the expected amount of efficiency or qual-
ity in terms of results. Fully Convolutional Neural Networks can also pave the way
to training the system picture-on-picture while training a large volume of samples
simultaneously. Although, it can be hard to implement FCN in prostate segmenta-
tion as the challenges such as mentioned above continue to persist. Likewise, if we
want to implement the same method with U-net, we would see the prostate images
derived from the segmentation of representative samples have smeared boundaries.
We would also notice the distributions of the pixel intensity as inhomogeneous on
both sides of the prostate. The segmentation can get conspicuously difficult if the
prostate and non-prostate areas show similar contrast and potency distributions [5].
Zhu Q et al. discussed a possible solution to this problem by suggesting a network
that can advance the features drawn out from the initial stages to the latter in a bid
to avert a potential loss of information. If hidden layers have components manufac-
tured with logical meaning, we can add additional deeply supervised layers at every
stage. This recommended network by the writers mentioned above is called Deeply-
Supervised CNN with an end-to-end training model. It can also segment the gland
on Magnetic Resonance (MR) images thoroughly and expediently. Deeper Network
can help us attain a lofty level of precision. Although, there are two obstacles to
overcome if we are to implement Deeper Network. Firstly, Deeper Network requires
a lot of attributes, which can cause the network to be vulnerable to overfitting
problems. Also, another obstacle would be to counteract the increased use of com-
putational sources [7]. Author Zhu Q has proposed using a 1×1 convolutional layer
which has two distinct upsides. First of all, it can drastically reduce the proportions
and the number of variables, diminishing computational backlogs significantly. It
can also enhance the depth of the network significantly and improve the accuracy of
image segmentation. Lastly, to summarize, differentiating between PCa and BPH
could be difficult as both are related to PSA levels in patients. Besides, some neu-
ral networks are inefficient, time-consuming and lacking in precision. However, as
discussed above, we can use the DT algorithms for differentiating PCa and BPH
and use different Machine Learning techniques such as SVM Kernels and K-Fold
Cross-Validation to train certain phases. We can also use feature extraction tech-
niques to implement CNN with transfer learning to overcome all the impediments
and procure an optimal result.
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1.3 Research Objectives
Our research aims to improve deep neural network’s generalization capabilities sig-
nificantly in prostate cancer detection. Transfer learning for deep machine learning is
the process of first training a base network on a benchmark dataset (i.e., ImageNet)
and then transferring the best-learned network features (the network’s weights and
structures) to a second network to train on a target dataset. The objectives of this
research are as follows:

1. To deeply understand the working principles of CNN and various machines.

2. To implement the transfer learning approach for CNN to increase efficiency.

3. To develop an effective classification method of prostate cancer images using
Deep CNN architecture with Machine Learning classifiers.

4. To evaluate the model. To offer recommendations on improving the model.

3



Chapter 2

Literature Review and Relevant
Work

2.1 Deep Convolutional Neural Network
Deep Learning models have shown significant breakthroughs in medical image seg-
mentation over the last few years [24]. Authors Wang et al (2018) have discussed
various CNN models for image segmentation, such as MR images, pancreas in CT
images and glands in pathology images. They have also found the proposed 3D Deep
dense multipath CNN model for segmentation of prostate MRI dataset. This model
could achieve a high level of accurate segmentation. It affirms the stark advantages
of using 3D CNN models compared to 2D CNN models in medical image analysis
[16]. Inputs in the traditional CNN are screened through convolutional layers, using
filters and non-linearity activation functions. ReLU is implemented on the group
of feature maps element-wise, generated from the convolutional and max-pooling
layers. ReLU, defined as f(x) = max(0, x) is a simpler and quicker activation com-
pared to other available activation functions. If we compare CNN to traditional
Neural Networks inputs, it looks to be a 2D image or a 3D volume. Therefore, input
properties are not dropped while they are translated to vector forms. CNN has a
shared weight among its neurons where Neural Network is not feasible. Tradition
Neural Network lacks the pooling layers which CNN generally provides [14].
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Figure 2.1: Architecture of the Convolutional Neural Network [26]

2.2 Transfer Learning
The Transfer Learning method is a widely used technique in Machine Learning. It
is adept at handling big and demanding datasets upon which we train our Deep
Learning models [25]. The deep Learning method has proved to be revolutionary
in Biomedical Science as the field involves extensive datasets. However, we can
overcome the limitations by using Transfer Learning techniques, Data Augmentation
or Generative Methods [23]. Transfer learning is efficient in reducing the issue of
inapt training datasets. The trained attributes of Transfer Learning in the lower
layers of the network are non-specific, which, therefore, can be stored after the pre-
training [13]. Transfer Learning is suitable in handling implementations where we
have a scarcity of training datasets [10].
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2.2.1 ImageNet
ImageNet is an open source database consisting of thousands of pictures with classes.
It is a reserve of more than a million images which can be used to supplant the
classification layer [18]. Researchers of this era rely heavily on ImageNet as it is a
vital cog in training Machine Learning and Deep Learning models. In addition, it
can also be used to train a system with a specific task or assignment such as plant
leaf discrimination. According to Abbasi et al (2020), ImageNet helps equip the
first layers of the system to distinguish the generalizable options from the larger
datasets, which in turn enables the latter layers of the network to enlist the precise
details of the smaller dataset for the transformed model [19]. According to Wang
et al (2018), here is a list of CNN models which were used to extricate the features
from the datasets: MobileNet, DenseNet121, VGG16 and VGG19. We can collect
the weights from the ImageNet dataset by the means of the transfer learning method
rather than training the datasets from the very beginning [20].

2.2.2 VGG16
Visual Geometry Group (VGG16) is a model which happens to be a specific archi-
tecture of CNN. The model was invented at the University of Oxford back in 2014.
It is one of the best vision models of Convolutional Neural Networks (CNN) [12].
Visual Geometry Group (VGG16) is a model which happens to be a specific archi-
tecture of CNN. VGG16 performs better than all the other networks in Area Under
the Receiver Operating System (AUROC). The frameworks with CRFs do better
than XmasNet in training and testing while comparing AUROC values acquired by
XmasNet and CRF-XmasNet [22]. VGG16 architecture has an input layer of (224,
224), with three channels for RGB. The pictures pass through a stack of convolu-
tional layers, with a pixel size of 3x3 and a stride of 1. The purpose of the spatial
padding of CONV2d layer input is to keep the spatial resolution preserved, even
after the convolution. Following this, the CONV2d layers follow the Max Pooling
operation over a 2x2 pixel window and stride of 2 [15]. In total, three fully connected
layers, in addition to a stack of convolutional layers, are used in a VGG16 model.
The first two of the three layers have 4096 channels each, with the last one having
a thousand with activation softmax. The hidden layers of the VGG16 model have
activation ReLU equipped inside [3].
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Figure 2.2: Architecture of the VGG16 [27]

2.2.3 MobileNet
Lopez et al (2020) used different methods with their acquired dataset to compare
the precision of the system [20]. After using MobileNet with the SVM classifier,
they have recorded accuracy very close to our model, with a difference of only 0.9%.
Although, if the execution time is calculated to process a WSI, their model proves to
be 75% faster than MobileNet with Machine Learning classifier. It is an important
factor to consider while working alongside real-time CAD systems [18]. The Mo-
bileNet model is dependent on depthwise separable convolutions, which factorizes
a standard convolution into a depthwise convolution. The depthwise convolution
implements a single filter for all the input channels separately. A pointwise convolu-
tion applies a 1×1 convolution to merge the results with the depthwise convolution.
A standard convolution filters and combines inputs into a new set of results in a
single step. The depthwise separable convolution cuts it into two distinct layers
for filtering and combining. This process of factorization can significantly dwindle
the computation time and model size. All layers follow a batch normalization and
ReLU nonlinearity except the fully connected layer as it has no nonlinearity and
takes up the softmax layer for classification purposes [6]. Figure 3 depicts a layer
with regular convolutions, batch norm and ReLu nonlinearity to the factorized layer
with depthwise convolution. It also shows a 1×1 pointwise convolution, in addition
to the batch norm and ReLu after each layer [7].
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Figure 2.3: Architecture of the MobileNet [30]

2.2.4 ResNet
The ResNet model is a linchpin to drawing out features from input images. Ex-
tracted feature maps are loaded into two separate branches. The Region Proposal
Network (RPN) generates suggestions on the left side of the branch to determine
which regions the Grading Network Head (GNH) should keep in its focal point. The
GNH is mainly responsible for assigning Gleason graded to the epithelial cell areas
[5]. On the right side of the branch, Epithelial Network Head (ENH) is used to
locate any potential epithelial tissue in the image. The final result is dependent on
the outcomes of the ENH. The model churns out an image as stroma if there are
no epithelial cells found. Conversely, if any epithelial cells are detected, the model
renders its results from the GNH [16]. Results suggest the models that focus on
base architectures (i.e., CRF-RNN) and deep networks (i.e., VGG16 and AlexNet)
render far better outcomes to architectures such as ResNet and XmasNet. ResNet
is a complex network with a limited number of training resources available to it. It
is one of the main reasons for ResNet’s poor accuracy compared to other network
models [25]. Most convolutional layers tend to have 3×3 filters. The layers have
the same number of filers for the same output feature size. Also, if the map size
gets cut in half, the number of filters is doubled to preserve the time complexity per
layer. Downsampling can be directly implemented on convolutional layers that have
a stride of 2. The network ends with an average pooling layer and a thousand way
fully connected layer alongside softmax [7].

Figure 2.4: Architecture of the ResNet [29]
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2.3 Machine Learning Classifiers
Machine Learning classifiers are a system of supervised learning where targets are
equipped with input data. Applications of machine learning classifiers are widespread
as it is vastly used in medical prognosis, credit approvals and target marketing. Clas-
sifiers are divided into two separate categories; lazy learners and eager learners. The
training data of ML classifiers are extracted from prior works while awaiting testing
datasets [1]. The classification is accomplished on the relevance of the new datasets
provided, compared to the training datasets. The training is carried out by erect-
ing a classification model, based on the given training datasets. The prediction is
generated based upon the test dataset rendered from the constructed model. The
training time is significantly less in Lazy Learning compared to testing time whereas
it works in the reverse in the case of Eager Learning [8].

2.3.1 Random Forest Classifier
Random Forest Classifiers (RFC) were developed to improve the performance of
Classification and Regression Trees (RFC). RFC entails an ensemble of Classifica-
tion and Regression Trees, trained on an arbitrary subset of training features and
datasets. Bootstrap Aggregation is a classic example of a Random Forest Classifier
[11]. The final classification is produced by an amalgamation of all existing trees
within the RFC, likewise a majority vote. RFCs are regarded mostly as Ensemble
Classifiers (EC) that can take advantage of multiple weak learners to derive a con-
clusion. Intersection Over Union (IOU) of Random Forest Model for “Low Grade”
is computed by combining both low and high grades together. Our proposed path
R-CNN has achieved the highest performance in both the single class evaluation and
the four-class Mean Intersection Over Union (MIOU) [23].

2.3.2 Gradient Boosting Classifier
Gradient Boosting Classifiers are Machine Learning algorithms that collect weak
learning models to create a strong prognostication model. The boosting algorithm
is used to reduce the bias error of the model. It is also commonly referred to as
the Greedy Algorithm. Gradient Boosting Machines can be used on binary classi-
fication problems, multi-class classification problems and even regression problems.
The model is used for binary classification of the image dataset with appropriate
hyperparameter tuning for the research. It can procure a new way to solve the
existing image classification problem. Extreme Gradient Boosting (XGBoost) is a
blended learning algorithm, based on Gradient Boosting. It is mainly used to accom-
plish precise classification outputs through repetitive calculations of weak classifiers.
XGBoost is frequently applied in various domains because of its expediency and ex-
actness [11].

9



2.3.3 SVM Classifier
Among the various machine learning classifiers, such as SVM Gaussian, SVM RBF
and SVM Polynomial, Jain et al (2001) achieved the highest performance using
different combinations of features. (i.e., texture plus morphological, EFDs plus
morphological using SVM Gaussian). Murray et al (2014) have used R-CNN and
Fast R-CNN to extract features from their images. They have also introduced a
ROIPooling layer to combine the feature scale of all images [12]. Finally, they
removed the softmax function with the SVM classifier to merge classification and
border regression which helped them in enhancing the accuracy and calculation time
[22].
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2.4 Challenges of Training Deep Learning Models

2.4.1 Overfitting
When it comes to validation, one of the most frequent problems faced in Machine
Learning is that the classifier constitutes the input data vaguely and comprehen-
sively, which does not translate into new samples. This particular issue is known
as overfitting. A classifier needs to be confirmed on a set of unrevealed samples
to avoid such occurrence. It can be executed by following the ”holdout” method,
where authors Irvin et al (2017) differentiated a subgroup of samples that are used
in the ending classifier [26]. Also, among other ways to implement such models are
K-Fold Cross-Validation (KFCV) and Leave-One Out Cross-Validation (LOOCV).
In KFCV, the training sets are distinguished in K subgroups. These subgroups of
data validate a classifier trained on different subsets. LOOCV is a special case of
KFCV, where K equates the number of independent samples in a given training set.
If there is an inadequate number of images available, it will produce a model ailing
from overfitting. The data augmentation technique was used to expand the training
dataset. This technique enhanced sturdiness and reduced the overfitting problem
[13].

2.4.2 Training Time
As the algorithm offered in this paper has a high degree of complexity in its com-
putation of the ROIAlign layer, the total time consumed is higher than the FCN
algorithm. The time required to train datasets hinges upon many different factors
such as hyperparameters and the choice of optimizers. Therefore, the training and
prediction times are not the ultimate benchmarks on the networks [16]. Using the
batch normalization layer reduces the time needed for training purposes. It per-
mits the Convolutional Neural Network to utilize high learning rates to regulate the
weightage issue [21].

2.4.3 Gradient Vanishing
Recurrent Neural Networks (RNNs) have a struct that should make them adept
at handling long-term dependencies. However, Vanilla Recurrent Neural Network
significantly struggles from Gradient Vanishing problems. Therefore, it has difficul-
ties in learning the dependencies in the long sequences [21]. Hinton et al (2006)
proposed in their paper a greedy technique, which is similar to the Restricted Boltz-
mann machine. In this technique, they trained one layer at a time. This method
averted the Gradient Vanishing problem and created a gateway for deeper networks
[19]. Deeply supervised layers can help to improve the learning ability of hidden
layers. According to Zhu et al, adding eight additional layers in the network vastly
improved the efficacy of the hidden layers. These supervised layers can help to over-
see the process of training. Also, since the network entails a huge depth, additional
supervised layers can help in propagating the gradients through preservation from
an early stage [14] .
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Chapter 3

Dataset Handling, Implementation
and Research Methodology

3.1 Dataset
The data used in this model is collected from ’The Cancer Imaging Archive (TCIA)’,
the dataset is publicly available at the wiki cancer imaging archive. From this
dataset, we have used MRI images of 678 patients [28].

3.2 Data Pre-processing
The “Target Data_2019-12-05.xlsx” was analyzed to split the images into “Malig-
nant” and “Benign”, based on the UCLA scores provided. Any score greater than 2
is considered a risk of Malignant and the images are extracted in a malignant folder
to series UID. A similar thing is done for Benign for a UCLA score of less than 2. We
have used Python OS Library to iterate over the directories to find a path to MRI
images in dicom format. Subsequently, we enlisted the MRI images against their
series instance UID. A general CSV file was generated for all the datasets. The file
named ”df_patient_MRI_details.csv” entails columns of data labelled as ’Patient
ID’, ’Series Instance UID’ and ’DicmPath’. DicmPath contains the path to each
dicom image against their PatientID and SeriesInstanceUIC which was generated
using an OS library. Initially assigned SeriesInstanceUID for Malignant and Benign
was originally extracted from the ”df_patient_MRI_details.csv” file as two addi-
tional CSV files were generated for Malignant and Benign patients having similar
columns. Two newly obtained datasets and CSV files were loaded into two separate
data frames. We took two variables to load the ’DicmPath’ column which contained
the location of each dicom image. Subsequently, it was converted to a list. We
imported CV2 and NumPy in addition to importing images from the PIL Library.
Two separate folders were created to extract the images in PNG format from the
dicom files and the pydicom library was used to execute this operation. We worked
with 5158 MRI images in total where we had an equal number of images for the
two classes, benign and malignant. The train and validation split was done on 4126
images with the ratio of 0.2 for validation. We kept a total of 1032 image data for
testing which was kept separate for prediction using our model.
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3.2.1 Reshaping
For VGG16, we reshaped the images to keep the data intact to find a better accuracy.
After reshaping the image, we found our dimensions to be (224, 244). Also, we
added Channel 3 to the input shape as (224, 224, 3) it is the standard input shape
for VGG16 model architecture. We restructured the image to 16*16 sizes and added
Gabor filters to each image in Machine Learning classifiers. It aided in texture
analysis of images. 1D convolve, Fourier-ellipsoid, Fourier-gaussian and 1D Gaussian
filters were recorded using Gabor filters. Parameters for Gabor filters were used
appropriately for our dataset.

3.2.2 Splitting
We imported the ImageDataGenerator to load our dataset using the image_dataset_from_di-
rectory, which provides the pathway to training and testing data to infer Benign and
Malignant labels. After passing the training labels, we set the validation labels to
the (to_categorical) function that converts the class to a binary class matrix. Af-
ter all the necessary preprocessing, Class “1” indicates Maniglant and Class “0”
indicates Benign in data visualization.

Figure 3.1: Labelled MRI dataset after Preprocessing.

We saved our datasets in TFRecords format for optimal performance and expe-
diency. Each record contained the information of 323 images. We also set the
experimental deterministic to false to allow order-altering optimizations. In addi-
tion, we used 13 records for training where 65 batches were used to train each epoch,
15 batches were used for every validation run and 3 records were used for testing.
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3.3 Implementation of ML Classifier
We have used Random Forest, Gradient Boosting and Support Vector Machine Al-
gorithms for MRI image classification. We also added Gabor Filters for texture
analysis of each image after preprocessing. After performing the necessary hyper-
parameter tuning of each ML classifier, we have performed training on the MRI
image datasets. We obtained the prediction accuracy and classification report after
concluding our training.

3.4 Hyperparameter Optimization

3.4.1 N_estimators
N_estimators define the number of trees we wish to assign to our model. Having
a higher number of trees tends to render better accuracy. However, adding a large
number of trees can slow down the overall computation time while training. It is
imperative to build the complete tree before taking the maximum voting or averages
of predictions. We conducted the best fit parametric search on the random forest
to increase the efficiency of our model. We set the Gradient Boosting classifiers
with n_estimator range (1 to 200) and fit best fit our dataset. In addition, we also
recorded the best number of n_estimator used in our model for classification. We
found the best n_estimator to be 100 for both the classifiers in our dataset.

Figure 3.2: Hyperparameter tuning of n_estimator for Gradient Boosting
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Figure 3.3: Hyperparameter tuning of n_estimator for Random Forest

3.4.2 Learning Rate
Gradient Boosting often exhibits a common problem while being at use. It tends to
learn the training data quickly and ends up overfitting the dataset. Learning Rate is
used as a speed bump to control the speed of learning in Gradient Boosting models.
Gradient Boosting creates trees to the existing model in a sequential manner. It
helps eradicate prediction and residual errors by adding new trees. We have used
a Parametric search on the Gradient Boosting classifier to make our model more
convenient for the dataset. We set the range to 0.5 to 0.01 to best fit our dataset
and recorded the best value of 0.01 to use in our model for classification.

Figure 3.4: Hyperparameter tuning of learning rate for Gradient Boosting

3.4.3 Tree Depth
Depth in Random Forest indicates how the model will perform with the data; a
deeper mean tree can split and capture more information than trees with low depth.
We set the tree depth by the same process of parametric search to determine the
required depth of each tree in our Random Forest model. We have found our model
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to give consistent training and validation accuracy at max_depth of 30 from the
AUC score.

Figure 3.5: Hyperparameter tuning of max_depth for Random Forest

3.5 Implementation of VGG16
We have used ImageNet based CNN architecture, such as MobileNet, ResNet and
VGG models to train our image datasets. We maintained an equal weight to that of
ImageNet for our training. Afterwards, we recorded the Loss Vs Accuracy for both
training and validation run and chose the best model following the output. We have
found VGG16 to be the optimum model for implementation. In addition, we added
the hidden layer and optimizer tuning to use in our fusion method.

3.5.1 Adjustment to the Model and using transfer learning
We followed VGG16 architecture to implement the model based on our dataset and
made the following adjustments.

1. We loaded the VGG16 model from Keras API, initialized the weights to Ima-
geNet and set the input shape to standard (224,224,3). We also removed the
top layer and set the trainable to false.

16



2. We will be using the pertained model of VGG16, with its weights equal to
ImageNet and extract features from our images.

• Vgg16 functional Layer type input
• Flatten:
• Dense: unis: 2048, activation: relu
• Dense: unis: 1024, activation: relu
• Dense: unis: 512, activation: relu
• Dense: unis: 256, activation: relu
• Dropout: (0.05)
• Dense: unis: 128, activation: relu
• Dropout: (0.05)
• Dense: units: 64, activation: relu
• Dropout: (0.05)
• Dense: units: 32, activation: relu
• Dropout: (0.05)
• Dense: 2, activation: softmax

We have set the activation function for each convolutional and hidden layer to Recti-
fied Linear Unit (ReLU), except for the output layer. Additionally, we used Softmax
activation for our last output layer. We compiled the model with Adam optimizer to
compile the model and kept the loss function as ”binary_crossentropy” and metrics
as “accuracy”. We implemented a dropout ratio of 0.05 to overcome the overfitting
problem.

3.5.2 Activation function, Optimization Algorithm and Loss
Function

We have used activation functions such as ReLU and Softmax for image classification
tasks while building the model. ReLU performed the best for solving the gradient
vanishing problem in addition to performing faster computation. For our final layer,
we have used the Softmax activation function, as VGG16 was trained for multi-
classification output and ImageNet dataset. However, it worked well even for our
binary classification. As the probability of positive and negative results summed up
to 1 for image classification, we used Softmax due to the compatibility in results.
The best fit optimizer used in our model was the Adam optimization algorithm,
which is an extension of stochastic gradient descent. It has good computational
efficiency and less memory consumption. Adam optimizer was well structured in
dealing with a high number of parameters and the complexity in datasets. We
also set the learning rate to 1e-3 and matrics to accuracy. We used the Binary
Cross-Entropy for a better fit with our optimizer and the loss was calculated as:

Hp(q) = − 1

N

N∑
i=1

yi. log(p(yi)) + (1− yi). log(1− p(yi))Π (3.1)
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3.6 Methodology Used for our VGG and ML Fu-
sion

After appropriate data preprocessing and train and test split, we used the VGG16
pre-trained model to extract features from our test dataset. After feature extraction
and reshaping the features for input to ML classifiers, we have trained the classifiers
on the extracted features. We used the hyper tuned ML classifiers, Random Forest,
Gradient Boosting and SVM classifiers to train the dataset. Afterwards, we used
the VGG16 model to extract the features on the test set. After reshaping the test
features, we predicted test features and recorded the accuracy. A comprehensive
workflow of the methodology is given below:

Figure 3.6: Feature extraction using VGG16 and classification done by ML classifiers
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Chapter 4

Result Analysis

4.1 Machine Learning Classification
After implementation of our ML classification model we got the following accuracy
for each of the ML classifiers and their fit time and prediction time was also recorded.
Given in the table below:

Classifier Accuracy Fit time (s) Prediction time (s)
Gradient Boosting Classifier 0.8730 1479.6313 0.3087
Rendom Forest Classifier 0.8672 37.7754 1.0045
SVM Classifier 0.7722 242.7738 131.3345

Table 4.1: Accuracy for our selected ML classifier without hyperparameter opti-
mization

Machine Learning classifiers with Precision, Recall and F1 scores are shown in the
following table without hypertuning:

precision recall f1-score support
Benign 0.86 0.89 0.87 516
Malignant 0.88 0.86 0.87 516
Accuracy 0.87 1032
Macro avg 0.87 0.87 0.87 1032
Weighted avg 0.87 0.87 0.87 1032

Table 4.2: Classification report of Gradient Boosting without hyperparameter opti-
mization
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precision recall f1-score support
benign 0.87 0.87 0.87 516
malignant 0.87 0.86 0.87 516
accuracy 0.87 1032
macro avg 0.87 0.87 0.87 1032
weighted avg 0.87 0.87 0.87 1032

Table 4.3: Classification report of Random Forest without hyperparameter opti-
mization

precision recall f1-score support
benign 0.76 0.80 0.78 516
malignant 0.79 0.74 0.76 516
accuracy 0.77 1032
macro avg 0.77 0.77 0.77 1032
weighted avg 0.77 0.77 0.77 1032

Table 4.4: Classification report of SVM without hyperparameter optimization

4.2 Transfer Learning approach with VGG16, Mo-
bileNet, ResNet

We have conducted the training and prediction on our image data using the transfer
learning approach with equal weights to ImageNet. We found the following Accuracy
Vs Loss graph of training and validation.
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Figure 4.1: Training and validation loss and accuracy of VGG16

Figure 4.2: Training and validation loss and accuracy of MobileNet
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Figure 4.3: Training and validation loss and accuracy of ResNet

We have found VGG16 to be the most accurate and precise model for our image clas-
sification problem. Our obtained accuracy got better with every epoch for training
and validation. The only drawback we have witnessed from our model was the higher
training and validation time compared to the other two architectures. Although Mo-
bileNet was fast in training and validation, it rendered overfitting problems which
resulted in a low validation accuracy. Likewise, the ResNet model had significantly
high training accuracy but it faltered in validation score due to overfitting as well.
Therefore, we chose the VGG16 as the ideal candidate for extracting features from
images. The mean validation accuracy for three separate models is shown below in
a Bar Chart.
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Figure 4.4: Mean validation accuracy of VGG16 compared to other pretrained mod-
els

4.3 Result Analysis of our Deep ML Fusion Model
After using VGG16 as our feature extraction layer, the obtained outputs were for-
warded to our existing hyper tuned ML classifiers. We found notable improvements
in accuracy and predictions. We saw a significant rise in Precision, Recall and F1
Score.

Classifier Accuracy Fit Time (s) Prediction Time (s)
Gradiant Boosting Classifier 0.9166 5402.2925 1080.4585
Random Forest Classifier 0.9079 25.2677 0.1554
SVM CLassifier 0.8507 385.6882 95.7803
Decision Tree CLassifier 0.73643 47.28203 0.03991

Table 4.5: Improved accuracy of our Deep ML model

23



precision recall f1-score support
0 0.91 0.92 0.92 520
1 0.92 0.91 0.92 512
accuracy 0.92 1032
macro avg 0.92 0.92 0.92 1032
weighted avg 0.92 032 0.92 1032

Table 4.6: Classification report of Gradient boosting as classification layer in Deep
ML network

precision recall f1-score support
0 0.91 0.91 0.91 520
1 0.91 0.91 0.91 512
accuracy 0.91 1032
macro avg 0.91 0.91 0.91 1032
weighted avg 0.91 0.91 0.91 1031

Table 4.7: Classification report of Random Forest as classification layer in Deep ML
network

precision recall f1-score support
0 0.82 0.90 0.86 520
1 0.88 0.80 0.84 512
accuracy 0.85 1032
macro avg 0.85 0.85 0.85 1032
weighted avg 0.85 0.85 0.85 1032

Table 4.8: Classification report of SVM as classification layer in Deep ML network
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Chapter 5

Conclusion

5.1 Conclusion
Prostate cancer is responsible for claiming thousands of lives each year all around
the globe. Early and efficient prognosis can be an efficient way of reducing the
mortality rate of prostate cancer significantly. Our research has aimed to develop
an effective classification method of prostate cancer images by using Deep Convolu-
tional Networks with Machine Learning Classifiers. We put a special emphasis on
thoroughness as we tried to obtain the highest level of accuracy and validation score
possible from our model. We earnestly hope that our work would bring along a few
noteworthy novelties in this particular research field and inspire others to add their
contributions to the vast explorations of prostate cancer.

5.2 Challenges
Working with a large dataset was a challenge we had to meet during our research.
Also, due to the Covid-19 pandemic, it was hard to collect the dataset we wished
to use for our thesis. Although we initially struggled to find the large amount of
data required to run the models; however, in the end, after going through a lot of
resources, we managed to gather the dataset best suited for our thesis work. Lastly,
it was hard to get good accuracy using the weights of ImageNet, even with hyper
tuning and adjustments to the dense layers due to the dissimilarity in datasets used
to train the pre-trained model. Nonetheless, we were able to get acceptable accuracy
using the Deep ML method we used.
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5.3 Future Work Plan
We have largely focused on the architecture of a CNN model for transfer learning,
such as VGG16, ResNet, MobileNet in our paper along with Machine Learning
classifiers. However, our future approach should be extended to large MRI images
datasets with Federated Learning. The Federated Learning technique might be
more efficient in detecting prostate cancer. We aim to see how well it works with
Federated Learning and bring additional improvements to our work.
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