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Abstract

Machine learning algorithms help to automate the process in many different problem
domains. In the field of Software engineering. Requirement engineering is one of the
first stages of software development. This research aims to automate the process of
requirements engineering by integrating machine-learning algorithms, which should
reduce the development cost and the possibility of human errors in several stages
of the software engineering process. The thesis requires extensive machine learning
algorithms to identify the best-suited technologies in the software engineering arena.
Finally, we will identify some evaluation matrix to identify the effectiveness of our
proposed algorithms for real-life software requirements specification.

Keywords: Machine Learning, Automate; Integrating, Extensive; Identify, Re-
quirement engineering, Software engineering, NLP, BERT.
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Chapter 1

Introduction

Requirement engineering offers language and technology to bridge the gap between
informal, imprecise, and ambiguous user requirements. In successive software devel-
opment phases, these formal requirements build software systems to meet potential
users’ needs[1]. Requirements Engineering Process consists of Requirements elicita-
tion, Requirement specification, Requirements verification and validation, Require-
ments management. By using this process, a system analyst generates system speci-
fications. System specification helps to achieve user requirements. Machine learning
helps to produce output by learning through previous data. The use of machine
learning in requirement engineering can reduce the error. Since software require-
ment specification is primarily in natural language, so natural language processing
algorithms can play a great role in terms of processing the software requirements
specification. Neural network works like human brain and nerve system . This tech-
nology find pattern in the data by itself. So, neural network can be used to find
pattern in the SRS data.

For not defining practical system requirements, over 25 percent of all software
projects still fail entirely and also cost billions of dollars to organizations. Require-
ment Engineering is a crucially important aspect of software engineering. Errors
produced at this stage, if undetected until a later stage, can be very costly[7]. Ma-
chine learning methods should be used for requirement engineering. But we see
that there is not a lot of work automation in this section. Most of the research on
requirement engineering is on classification between functional and nonfunctional
requirements. If we can use automation, then it will make the software development
process faster. There are already existing methods that perform the requirement
gathering process, and the system analyst employs them to gather requirements, but
they continue to encounter numerous issues. We will try to Use machine-learning
algorithms to build a framework that will generate software requirement specifica-
tions based on user requirements. To train the algorithm, we will collect existing
SRS data from different sources. After that we will process those requirements by
using NLP libraries and will use those data to train in a neural network.

In this paper, we first attempt to analyze a thorough study of the related works
of our thesis. The literature review and background of NLP, Machine-learning al-
gorithm as well as the BERT model we applied, are discussed in the next Chapter.
The Dataset Analysis part, which includes data collecting, data cleaning, and data
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organization, is covered in the next chapter. A detailed description of the dataset
we collected using existing SRS data from different sources. After that we process
those requirements by using NLP libraries and will use those data to generate re-
quirements for the user given system. The subsequent chapter of Implementation
describes the implementation procedure of our models. Finally, in the Conclusion
section, we finalize our thesis and make recommendations for further research.
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Chapter 2

Literature Review

2.1 Related Works

In this chapter of our report, we’ve discussed some of the previous research papers
that we’ve looked into. Here are a few examples of prior projects:

The Authors Winkler, J., Vogelsang, A.[10] introduced a Natural language require-
ments specification is a type of requirement specification that is frequently used to
capture the results of the requirements engineering process. Additional information,
such as explanations, summaries, and statistics, can be found in these papers. This
paper describes a method for classifying content items in a natural language require-
ments specification as requirements or information automatically. They employed
a set of 10,000 content pieces taken from 89 criteria specifications of our industry
partner to train the neural network. Our method achieves a steady classification
accuracy of 81 percent by using 90 percent of the content pieces as training data and
10 percent as test data. The Authors used a single link text clustering technique
on the dataset to increase its quality. Within big clusters, the author manually
changed the classification of incorrectly categorized items. The resulting dataset
was unbalanced, with requirement content components nearly five times greater
than information content elements. After training the neural network, the method
can accurately categorize new requirements documents, comparable to the accuracy
of CNNs used for other tasks.

Zhao et al.[19] introduced NLP as a theoretically grounded set of computer ap-
proaches for evaluating and modeling naturally occurring texts at one or more levels
of linguistic analysis in order to achieve human-like language processing for a variety
of tasks or applications. The majority of those who took part in the poll said that
NL was commonly used at their workplaces. Used to describe and specify software
and system requirements They extracted data for the publication facet’s categories
and subcategories in Phase 1. The data for each of the remaining three aspects
was removed in Phase 2. They carried out thematic synthesis on the descriptions of
input document kinds in Phase 3. They also did thematic synthesis on descriptions
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of NLP techniques, NLP tools, and NLP in general. To make certain that our study
selection was as accurate as possible, free of researcher bias and human mistake.
They used a strict study selection approach that was led by well- specified inclusion
and exclusion criteria and enforced by crosschecking and independent checking of
selected and deselected studies. The first systematic mapping investigation of the
landscape of NLP4RE research was published in this article. The mapping study
includes 404 primary studies from 11,540 search results, which were rigorously an-
alyzed. This mapping study demonstrates how far NLP4RE research has come in
the last 15 years, especially in terms of publishing and tool development. There is
now a palpable sense of anticipation that NLP4RE research will soon be translated
into a useful tool to aid RE practice.

Because goals that are more realistic are more likely to lead to future disappoint-
ment, Ryan, K.et al. claim in their research study [2] that the potential importance
of natural language processing in the Requirement engineering process has been
overstated in the past. The system is thought to be viable and desired, and it
would make requirements engineering specification easier and more precise. A sys-
tem that generates sample case scripts for the client’s approval. The topics could
be selected to represent both extreme (limited) and ordinary (anticipated) situa-
tions. One source of these misunderstandings about NLP could be the perception of
RE as primarily a difficulty in interlanguage communication. For two reasons, this
isn’t feasible. For starters, there are many languages to study rather than just one.
Second, and most importantly, other professionals’ clients (e.g., lawyers, architects)
rely on them to comprehend their wishes and convert them into specialist jargon.
They avoid claims of computers that will “understand” language in any meaningful
way for all of these reasons. The complexity of large-scale systems is a reflection
of their inherently complex nature, rather than a result of properly and completely
defining them. We can expect plans to be mathematically described and confirmed
in terms of technical performance. Nonetheless, their adherence to need will be
assessed throughout time in a fluid and mostly undefined social setting.

Dalpiaz et al. proposed in another study [13] that even stakeholders with limited
knowledge in requirements engineering may write and comprehend NL requirements.
Furthermore, manually examining large collections of NL requirements to get an
overview, detect inconsistencies, redundancies, and missing prerequisites is difficult.
The goal is to conduct significant research on the application of NLCP tools and
techniques in RE practice, as well as to evaluate requirementsrelated documents
automatically. NLP is rapidly becoming a foundational technology in a variety of
fields and applications. The challenge now is one of sustainability. They intend to
hold NLP4RE in the future. In the years to come, they will be looking for a stronger
integration with other communities. They discussed holding a workshop as an event
of a conference such as the Association of Computational Linguistics (ACL), the
International Conference on Computational Linguistics (COLING), or the Empirical
Methods in Natural Language Processing (EMNLP) in 2019. (EMNLP).
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Dias Canedo et al. investigated textual function extraction techniques and machine-
learning algorithms to respond two significant queries: “Which fits best for cate-
gorizing Software Requirements into Functional Requirements and Non-Functional
Requirements, and the subclasses of non-functional Requirements. In the paper [16],
the research was conducted using the PROMISE exp dataset, a freshly constructed
dataset that enhances the already known PROMISE repository, a repository pro-
viding software requirements. Logistic Regression, Support Vector Machine, Mult-
inuclear Naive Bayes, and k-Nearest Neighbors were the classification techniques
employed. They looked how to improve the classification of system requirements
and evaluate which text vectorization techniques, such as Word Bag, Term Fre-
quency and Inverse Document Frequency, and Chi-Squared, are the most efficient,
and which learning algorithm has the best performance in the task of classifying
requirements. They use the PROMISE exp database to evaluate the combination
of various techniques, increasing the PROMISE database. They discovered that
TF-IDF and LR together had the best performance metrics for binary classifica-
tion, non-functional classifications, and requirements in general, with an F-size of
91 percent for binary categories, 74 percent for 11-granularity classification, and 78
percent for 12. The findings of the research can be used as a reference or guideline
for future study by developers who want to automate a wide range of software needs.
Researchers in this field as a guideline for future research can also use it.

The author Nazir et al. [11] discovered a method for extracting the elements of
interest from raw plain text documents automatically. As a result, it is used to refine
and eliminate acceptable system requirements from natural language artifacts. The
software requirements are gathered and written in plain text in a human-readable
natural language. Such linguistic criteria, on the other hand, are of little use to
technical stakeholders. As a result, it is critical to fine-tune the initial requirements
in order to get the most out of them. They devised a review methodology that
includes six categories for choosing 27 research, as well as selection and rejection
criteria. For the search, they utilized precise phrases connected to the subject. To
narrow the search results, they used several criteria. They discovered that NLP
approaches produce positive results when it comes to extracting relevant aspects
from plain text software requirements. At lower levels of NLP, such as tokenization
and POS tagging, however, a few human steps are frequently required. As a result,
it is difficult to predict that NLP totally automates requirement refinement from
raw text. However, the suggestion of the most up-to-date instruments in this regard
is advantageous.

Machine learning methods have been demonstrated to have substantial functional
importance in various application domains, according to Iqbal et al. in their work
[14]. This is especially true in domains where large databases are available. The
engineering of requirements is an important part of software engineering. ML can
be advantageous by simulating human processing. DOORS, a free-form text-based
tool with lightweight structural features, has become the standard in practice. They
have shown that ML has the potential to be a cornerstone in RE. For the time being,
it appears that the domain is undergoing a pre-scientific process. They ask for a

5



more comprehensive survey to confirm the tentative conclusions presented in this
paper. The stakes are really high. While requirements engineering is currently a
topic of intense research, academic attempts to address its issues have yielded few
practical outcomes.

Parra et al. proposed in their research paper [9] Low-quality requirements might
lead to mistakes throughout project development. If low-quality needs are not rec-
ognized in a timely manner, they are regarded as the most expensive to rectify.
The following are the primary aspects that give tools for requirement management:
Validation, storage management, and traceability Quality Management The method
tries to construct classifiers using induction rule-based machine learning techniques.
By altering the learning cases or discovering various ways of applying them, the clas-
sifiers’ accuracy can be increased. The proposed changes are to analyze the same
requirements using classifiers.

The software engineering presented by Ning et al. [4] is now one of the key research
points in the area of software engineering. Prior to beginning development, the
author’s focus of issue analysis is to obtain a better knowledge about the situation. In
the article, the primary role is to bridge the communication gap between the user and
the system admin. RE (Requirement Engineering) of objectification and modeling
facilitated by MOR Editor. It may be utilized as a guide for implementing actual RE
procedures. This is solely appropriate for functional requirement needs. To utilize
this paradigm, users must have fundamental knowledge of software engineering.

Hayes et al.[8] argued that in RE there is a set of issues that lend themselves nicely
to ML approaches. In the paper, it shows Weka is a set of classification trees,
which are directed instructional methods. The author proposes two uses of the
component as a first idea validation. Trace Labs WekaClassifiersTrees TraceLab
makes categorization easy, efficient, and repeatable. The author also thinks that
a number of additional RE issues may benefit from this aspect. They intend to
provide more elements to make it easier to utilize TraceLab for a wide range of RE
issues.

Oster et al. argued in article [6] that the main objective of RE is an effective method
for defining requirements for a system. For the method to be satisfactory, the
functionality defined by the model’s purposes should be implemented. Preferences
over soft goals are important in the main objective of RE. The Preferred Reasoned
finds the goal assignments that are most favored for an objective structure. From
a text input file, the Objective Concept Analyzer builds the target framework. So,
the framework has the potential to greatly enhance the documentation and use of
design preferences.
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From another research article, we get to know that the authors Zhu et al. [3]
developed a RAAS framework to assist the RE process, a report that researched
automated implementation details for RE. RASS supports the decomposition of the
formal specification through knowledge acquisition tools. The RASS project aims to
decompose the problem of specifying a large-scale complicated software into several
much simpler and smaller-scale problems. Two key problems must be solved to
achieve the practical usability of the proposed approach. This section discusses the
RASS’ solution to these problems. Experimenting with an automated framework
for RE at the requirement stage can result in substantial automation.

The RE process, according to the authors Jiang et al. [5], is an integral element of the
whole software lifecycle and plays a significant role in maintaining the performance of
the overall system. The advantages of RE are now well documented in the journals.
Several approaches are used to address various parts of the RE process and system.
In this paper, there were three case studies done. In this whole development; the
author has been highly involved. The analysis and categorization of RE methods
have made great progress thanks to this research paper.

Alessio Ferrari et al. [15] proposed a natural language processing strategy for identi-
fying ambiguous terms across domains and ranking them by ambiguity score in an-
other work. The strategy relies on the creation of domain-specific language models
for each stakeholder. They tested the method on seven different elicitation scenarios
involving five different fields. Ambiguity is mostly studied in written NL require-
ments; nevertheless, because the focus in spoken NL is on requirements elicitation
meetings per form, it is useful to refer to recognized classifications of ambiguity
in written requirements. The skip-gram with negative sampling (SGNS) method,
which is implemented in the word2vec software package, is used to create word em-
bedding based on Harris’ distributional hypothesis. The task’s first purpose is to
compare the similarity of the automatically generated rank (sample ranking) to the
humanly generated one (ground-truth ranking). This assignment tries to explain
ranking mistakes of two types: (a) items that are rated lower in the ground-truth
order and appear in H in the sample ranking; and (b) elements that are ranked
higher in the ground-truth order but appear in H in the sample ranking. (b) In the
sample ranking, features that are higher in the ground-truth ranking appear in L.
They compare the ambiguity rankings generated automatically with those obtained
manually by the authors and many annotators hired through Amazon Mechanical
Turk in the evaluation. The approach generates a scale with a maximum Kendall’s
Tau of 88 percent. Two individuals to ensure the authenticity of the annotations
made on the sentences during the Manual Annotation task carry out the annotation
process independently. Cohen’s Kappa is used to calculate inter-rater agreement
(Lan- dis and Koch 1977). The Ground-Truth Ranking is based on (a) the averages
of the scores supplied by different annotators and (b) the averages of the scores
received by three separate sentence sets comprising the same phrase. However, the
application of the technique proved ineffective in terms of performance for numerous
elicitation circumstances. Their ultimate goal is to use the current research’s find-
ings in real-world elicitation scenarios. This assessment is planned as a long-term
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goal due to the design’s complexity, and it should come after our short-term future
effort aimed at fine-tuning the method.

Peinelt, N., Nguyen, D., and Liakata, M. [18] present a new topic-informed BERT-
based architecture for pairwise semantic similarity detection in their work. Across
a number of English language datasets, the BERT model performs better in terms
of acceptable and proper baselines. Until recently, language models could only read
text input in one of two ways: left-to-right or right-to-left. BERT is one of a kind
in that it can read in both directions at once. Bi-directionality is the term for this
capability, which was made available by the development of Transformers. The tight
integration of NLP and SbSE is a crucial strategy, with data gained over time be-
ing used to improve the system with each consecutive iteration of the requirements
specification.

According to Lash, A. et al research the majority of requirements are written in NL.
Many concerns, such as ambiguity, specification issues, and incompleteness, must be
reported. These problems are divided into three categories: word, word sentence,
and document. It uses tools to compare requirements statements according to their
grammatical subject. The program (FMTV) will analyze an example set of criteria
from a family of military tactical vehicles. The device aims to show how requirement
analysis may address the semantic processing level. It can be used to identify specific
areas in need of more research and development. Many difficulties, like as ambiguity,
specification challenges, and completeness, are inherent with writing requirements
in NL. An objective and reproducible way of analyzing requirements is provided by
a linguistic approach. NLP approaches, on the other hand, can be used to automate
the analysis process [12].

S. Panichella et al. [17] proposed The ability to collect feedback from end-users
and the success of requirements engineering (RE) sessions are both associated with
software quality. Requirements-Collector, a tool for automating requirements speci-
fication and user input analysis, was suggested in this paper. Machine learning (ML)
and deep learning (DL) computational processes are used in the tool. According to
the research, it can reliably classify RE requirements and user review feedback. The
paper argues that it has the potential to transform the work of software analysts,
resulting in a significant reduction in manual activities, improved collaboration, and
a greater focus on analytical tasks. They also introduce Requirements-collector,
a tool that automatically classifies requirements using machine learning and deep
learning. Preliminary results show that it is accurate at extracting requirements.
The findings can be used to determine how appropriate ML and DL models are for
achieving high accuracy.
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Chapter 3

Proposed system Model

3.1 Problem Statement

To build our desired framework learning model that will generate the requirements
for the system, at first, we need to take some initial requirements from the user.
For example, the user will give the end-to-end feature that the user wants from the
system. The user will then provide the project domain, like what kind of system
the user wants to build. For example, E-commerce system, Online Banking System,
etc. After that, the user would be asked for the scalability of the system. To meet
the desired software requirements, a budget is also essential. So, then the user will
be asked for the budget. Then, we will generate the system feature, requirements of
functional and non-functional for the system from user input.

Formal model of the learning algorithm will be:

1. Domain set: An arbitrary set, X which contains system domain, D, scalabil-
ity S, budget B set: The label set, Y will contain three-element. Those are
system features (Sf1 ,Sf2 ,....Sfn), functional requirements (Fr1 ,Fr2 ,....,Frn),
Nonfunctional requirements (Nfr1 ,Nfr2,....,Nfrn)

3.2 Proposed Architecture

Figure 3.1, depicts the workflow of how the learning algorithm is trained and gener-
ate the output from the existing data. To build the desired framework and learning
algorithm, we needed a lot of software requirements specification data. Using this
data, we would train our algorithm, and the more data we use to train our algo-
rithm, the more it will give an accurate output. So, the data collection part was one
of the main challenges to make the learning algorithm more rigid. As we collected
data from different sources, the format of data was different from one another. So,
we need to clean our data so that we can fit these data into our learning algorithm.
After that, we organized the data into different groups for training purposes.
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After working with data, we divide our data into two parts. A total of 80% of
the random data was taken for training the learning algorithm, and the rest 20%
data was taken for testing the learning algorithm.

In the learning phase, we need to do sentiment analysis, lemmatization, classifi-
cation, and for that, we will use some natural language processing libraries. As
we are working mainly with text data, it is convenient to use NLP libraries that
work with text data. For that reason, the system will use BERT algorithm to make
vectorize data as machine learning algorithms do not work with text data. After
encoding text data to vectorize form-using BERT, we will use those data into cosine
similarity to find similarity score. Finally, from similarity score of the features of the
existing dataset we will generate some requirements for the user-preferred system.

After we finish creating the machine learning model and calculating similarity score,
then we will ask the user for the preferred system information. Then, we will put
that information in our machine-learning model, and then it will generate the rec-
ommended requirements for that system.

10



Figure 3.1: System Architecture Diagram
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Chapter 4

Dataset Analysis

In this chapter, we have provided details of the data collection process, data cleaning
and data organization.

4.1 Data Collection

The project needed a large set of data to train the neural network so that the
machine-learning model performs more accurately. For collecting software require-
ments specification data, we have gone to several software companies to collect SRS
(software requirements specification) data. We collected data through the responses
to the questions that form the basis of understanding the problem or exploring our
objective’s idea. We also collect data from online open source. We used the Google
search engine for searching available datasets on the internet. We have to go through
some websites to collect software requirement data. Our institution’s faculties also
help us in collecting data. We faced some problems in collecting data, such as few
companies not wanting to share their data said it is confidential. In addition, there
are not many resources available on the internet regarding the SRS dataset.

4.2 Data Cleaning

The data set was collected from multiple sources. Some data were found on the
internet, some came from the mail, and some were handwritten. So all datasets
needed to merge in one format. After merging, the dataset contained some unnec-
essary data and a few incorrect data. Therefore, incorrect, corrupted, incorrectly
formatted, duplicate, or incomplete data was removed from the dataset. The dataset
then contained only the format so that it can fit into the training input. If inaccurate
data is not removed from the dataset, then outcomes and algorithms are unreliable,
even though they may look correct.

4.3 Data Organization

After cleaning the dataset, we organize the database so that the data can be used
more effectively. The dataset was created to learn the machine learning algorithms
input, and the organization of the dataset was done accordingly. To make the train-
ing dataset, we made two datasets as the training dataset and labelled them as
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Project dataset (Figure 4.1) and Feature dataset (Figure 4.2). Project dataset con-
tains all the project names of the SRS document with a unique project Id of each
project.

Figure 4.1: Project Dataset

Feature dataset (Figure 4.2) contains project id from where those exact require-
ments are taken. This project ID is the same as the project dataset project ID.For
each individual requirement, the feature dataset has its own Feature ID, name of
that feature and description of that feature. Feature name describes a use case of
the system. Feature Description elaborates process of the requirements functionality.

Figure 4.2: Feature Dataset

4.4 Entity Relationship Diagram

Basically, there will be three entities in our system (Figure 4.3). First One will be
project. Project’s primary key will be project ID. Then we have another entity is
feature. In feature entity, Feature ID will be primary key and project ID will be
foreign key and it will be taken from project ID. Lastly, we have another entity is
Similarity Check. In similarity check, Similarity score ID will be primary key and

13



Project ID1, Feature ID1 will be foreign key. This will be generated through the
implementing algorithm from project and feature. One project can have one or
many features.

Figure 4.3: Entity Relationship Diagram
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Chapter 5

Model Specification

5.1 Natural Language processing (NLP)

NLP is an artificial intelligence (AI) branch that is mainly focused on communica-
tion between computers and human languages. NLP refers to a computer program’s
capacity to interpret human language as it is spoken and written – also known as
natural language. It isn’t easy to teach computers the linguistics of human language,
but we have made several breakthroughs in this sector in recent years. Natural lan-
guage processing enables computers to interact with people in their native language
and handle other language-related tasks. For example, NLP enables computers to
read text, hear a voice, analyze it, gauge sentiment, and identify which aspects are
essential. NLP has been around for approximately 50 years and has its roots in
linguistics.

5.2 BERT

BERT is an initial for Bidirectional Encoder Representations from Transformers.
BERT is an open-source NLP machine-learning framework. BERT is intended to
assist computers in understanding the meaning of unclear words in the text by es-
tablishing context through the use of surrounding material. The BERT framework
was trained using Wikipedia text and may be improved with question-and-answer
datasets.

Historically, language models could only interpret text input sequentially – either
right-to-left or left-to-right – and not both. BERT is unique in that it can read in
both directions at the same time. This capacity, made possible with the introduc-
tion of Transformers, is referred to as bi-directionality.

three key reasons why BERT is so excellent in my opinion. No. 1: Pre-trained
on a large amount of data. No. 2: Take into account the context of a word. No. 3:
Opensource software.

In our paper, we have collected data (such as feature name, feature description
etc.) from lots of research papers. By using BERT, we have compared the similarity
of one document to another document. The similarity score shows if the mean-
ings of two texts are similar or different. To calculate the similarities, we have to
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use semantic similarity and cosine similarity sklearn. The similarity between texts
or documents is scored using a defined metric in semantic similarity. And Cosine
similarity is a measurement that assesses how similar papers are independent of size.

Semantic similarity, this attribute scores words depending on how similar they are,
even if they are not exact matches. It utilizes Natural Language Processing (NLP)
techniques such as word embedding.

5.3 Cosine Similarity

Cosine similarity is a statistic that determines how similar texts are independent of
their size. It computes the cosine of the angle formed by two vectors projected in
a multi-dimensional space. The similarity measure is helpful because, even if the
Euclidean distance (due to size) separates two similar documents, they might yet
be closer together. The greater the cosine similarity, the smaller the angle.

similarity(A,B) =
A ∗B

||A|| ∗ ||B||
=

n∑
i=1

Ai ∗Bi√
n∑

i=1

A2
i ∗

√
n∑

i=1

B2
i

(5.1)
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Chapter 6

Requirement Generation

6.1 Algorithm

Figure 6.1: Algorithm

This research used semantic similarity for generating the requirements from the ex-
isting dataset. BERT model and Cosine similarity process is used to measure the
semantic similarity between two sentences. To get the semantic similarity score,
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Figure 6.2: Algorithm (Continued)

We calculate every individual project feature name with another project feature
names. At first, the names are passed to the BERT semantic similarity model, which
will encode and vectorize the text data so that the data can be ready to apply for
calculation on different machine learning algorithms. After that, this vectorize data
will be passed to the cosine similarity function which will generate the similarity
score. Each of the feature name of a project will have a similarity score with other
project features name. After that, with same procedure of the feature name simi-
larity score calculation, feature description similarity will be measured amongst the
individual project feature description each other of the different projects.

After getting these two scores, we will calculate the final similarity score against
the two requirements of different projects.
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Figure 6.3: Similarity Check Dataset

Once similarity check dataset calculation is ready, this system can take user in-
put of the system name from the user. Then, the user given system name will be
performed semantic similarity check with each project name of the project dataset.
If the score between the user given system and other project matches the thresh-
old limit condition then the project will be taken for the future calculation. After
getting all the projects that meets the threshold limit condition with the user given
system name, the requirements will be generated form the similarity scores of each
projects features similarity scores with the other projects that matched the thresh-
old.
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6.2 Experimental Result and Analysis

After taking the input from the user (figure 6.4), the system will provide with the
suggested requirements.

Figure 6.4: Taking input from the user

In figure 6.5, The output shows that, the system generates both functional and non-
functional requirements for the user given system based on the existing project’s
requirements. Each feature contains a description according to that feature, so
that, user can understand the requirements technical aspect. Also, as this system
generates output based on the existing system, so they can get idea of the other
systems feature related to the user given system and use those requirements.

Figure 6.5: Requirement Generation
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Chapter 7

7.1 Future Perspectives

The algorithm is still in its development stage. So far, we are checking the similarity
check with the project name but in future we will also match the similarity check
with the project description and also look at the project volume. By observing
the project volume, we will generate requirements according to the user-preferred
scale. For example, If the volume scale is large, we will suggest requirements from
the system that for large scale and for low scale we will generate low scale projects
requirement from our system. In addition, we will use some clustering techniques
to cluster projects and features of the same type using different project and feature
metrics.

7.2 Conclusion

This paper proposed a framework that creates an automated system that can gener-
ate automated requirements for any system or software by using machine learning.
Machine learning has been one of the essential parts of computer science. Machine
learning models are capable of learning, recognizing patterns, and making decisions
with little or no human interaction. In principle, machines enhance accuracy and ef-
ficiency while reducing (or considerably reducing) the possibility of human mistake.
For building our desired framework-learning model, which generates the system’s
requirements, taking initial user requirements, and from this information, we will be
able to know the features that the user wants, and we can fill them. We will mainly
create high-level descriptions that can clearly describe what the system will do and
what it will not do.
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