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ABSTRACT 

Lysogenic bacteriophages, are considered as a major player for the introduction 

of foreign genes into bacterial strains. At the time of introduction foreign genes 

do not fit well into the translation system of the recipient host bacterium as they 

tend to retain the characteristics of the donor bacteriophages from which it has 

been transferred. Consequently foreign genes are poorly transcribed at the early 

phase of their evolution within the host bacterium. This is largely due to the 

difference in the codon usage pattern between the horizontally transferred genes 

and the host bacterium. In this study we present detail analyses of various 

parameters of the codon usages such as codon adaptation index (CAl), mean 

difference (MD) of the relative adaptiveness, synonymous substitution rate (SSR) 

of six different phage encoded toxin genes (cholera toxin, shiga toxin, diphtheria 

toxin, neurotoxin Cl, enterotoxin type A and cytotoxin) and proposed 

conceptual relationship between the evolutionary time of acquisition of the 

foreign genes and the selected set of parameters of the codon usage. On the basis 

of the observed data we hypothesize that CAl, MD and SSR of the phage 

encoded toxin genes are correlated with the evolutionary time of their 

acquisition and developed a novel approach based on the analyses of these 

parameters, that can be used to predict the evolutionary time of their acquisition 

by the corresponding host bacterium. 
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Chapter 1 
Introduction 

Degeneracy of the genetic code allows synonymous codons to code for the same 

amino acid. In a particular species several synonymous codons are utilized more 

frequently than others during protein synthesis. The pattern of choices between 

synonymous codons varies from one gene to another according to the type of 

genome the gene occurs in. Thus codon usage is mainly a genome strategy, contrary 

to amino acid usage in proteins. This non randomness in the utilization of the 

synonymous codons is believed to be arisen from the mutational biases and various 

selective forces. It is argued that the bias in synonymous codon usage observed in 

unicellular organisms is due to a balance between the forces of selection and 

mutation in a finite population, with greater bias in highly expressed genes reflecting 

stronger selection for efficiency of translation. A population genetic model is 

developed taking into account population size and selective differences between 

synonymous codons. A biochemical model is then developed to predict the 

magnitude of selective differences between synonymous codons in unicellular 

organisms in which growth rate (or possibly growth yield) can be equated with 

fitness. Selection can arise from differences in either the speed or the accuracy of 

translation. A model for the effect of speed of translation on fitness is considered in 

detail, a similar model for accuracy more briefly. The model is successful in 

predicting a difference in the degree of bias at the beginning than in the rest of the 

gene under some circumstances, as observed in EscJ/£richia coli, but grossly 

overestimates the amount of bias expected. G+C composition of the genome is a vital 

factor for codon usage variation. This variation mostly lies in the third position of the 

codons «20% to >90% G+C), as it is immune to changes. GC-rich organisms tend to 

prefer GC-containing codons over AT-containing ones. Consequently each organism 

has their optimal and nonoptimal codons. 
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Bacteria can acquire foreign genes through HGT (horizontal gene transfer). 

Bacteriophages are the major player in the HGT phenomenon. Bacteriophage can 

mobilize genetic material between distantly related bacterial species. At the time of 

introduction into the recipient host bacterium, the foreign genes tend to retain the 

characteristics of the donor bacterium and it may vary significantly from the native 

genes of the recipient bacterium in terms of optimal codon usage. For the detection of 

the horizontally transferred foreign genes various parameters of the codon usage 

such as relative adaptiveness (RA), mean difference of RA, codon adaptation index 

(CAl), synonymous substitution rate (SSR) between codons can be used. CAl is a 

measure of Similarity of a gene's synonymous codon usage to that of a standard set 

of highly expressed genes for that organism. The mean deference (MD) of the relative 

adaptiveness (RA) of the codons of the foreign genes from that of the native genes 

give us a clue about by what extent the foreign gene varies from the native genes in a 

host bacterium. Here we present a detailed analysis of a selected set of parameters 

such as RA, MD of RA, CAl, and SSR of the codon usage pattern of the six phage 

encoded toxin genes. These are cholera toxin, shiga toxin, neurotoxin C1, 

enterotoxins type A, cytotoxin and diphtheria toxin. To the best of our knowledge 

these parameters of the codon usage has not been utilized previously in predicting 

the time of acquisition of foreign genes. In previous method the rate of horizontal 

gene transfer was estimated, but not their evolutionary time of acquisition. In this 

study we proposed a hypothesis involving the conceptual relationship between the 

evolutionary time of acquisition of the foreign genes and the selected set of 

parameters of the codon usage and adopt a novel approach for the prediction of the 

comparative time of the acquisition of the foreign genes on the basis of the analyses 

the selected parameters. 

The genetic code uses 64 codons to represent the 20 standard amino acids and the 

translation termination signal. Each codon is recognised by a subset of a cell's 

transfer ribonucleotide acid molecules (tRNAs) and with the exception of a few 

codons that have been reassigned in some lineages (Osawa and Jukes 1989; Osawa et 

al. 1990) the genetic code is remarkably conserved, although it is still in a state of 

evolution (Osawa et al. 1992). 
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In general, codons can be grouped into 20 disjoint families, one family for each of the 

standard amino acids, with a 21" family for the translation termination signal. Each 

family in the universal genetic code contains between 1 and 6 codons. Where present, 

alternate codons are termed as synonymous. Although choice among synonymous 

codons might not be expected to alter the primary structure of a protein, it has been 

known for the past 20 years that alternative synonymous codons are not used 

randomly. This in itself is not startling as codon usage might be expected to be 

influenced at the very least, by mutational biases (Sharp and Matassi 1994). 

The hypothesis that natural selection might be able to select between synonymous 

codons (also known as synonyms) is not new. Ames and Hartmann (1963) proposed 

that the use of alternative synonyms might have a role in the regulation of gene 

expression. The proposal of the neutral theory of molecular evolution by Kimura 

(1968) started an intense debate amongst evolutionary biologists. To test this theory 

there was considerable interest in the identification of sites that were not subject to 

Darwinian selection. King and Jukes (1969) suggested that in the absence of 

mutational bias synonymous codons might be used randomly, this implied that 

synonymous mutations be evolving neutrally. However their basic proposition, that 

there was no selective difference between synonyms, was strongly challenged by 

Clarke (1970), who advanced several mechanisms whereby Darwinian selection 

could choose between synonymous codons. 

The first gene sequences, albeit pa rtial, were published in the early 1970s (for a 

review see Sanger et al. 1977). As the volume of sequence data began to increase, it 

was suggested that in some vertebrate and invertebrate tissues, protein amino acid 

frequencies and tRNA concentrations were co-adapted (Chavancy et at. 1979; Kafatos 

et al. 1977; Suzuki and Brown 1972). This adaptation apparently varied across a wide 

range of cell types and concomitantly with amino acid composition and with the 

subcellular location of translation (GareI1974; Maenpaa and Bernfield 1975). It was 

suggested that tRNA availability might regulate haemoglobin synthesis in 

developing blood cells (Smith 1975). Differences in the substitution rates between the 
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conserved and variant segments of beta-globin were attributed to differences in 

selective constraints of mRNA secondary structure (Kafatos, Efstratiadis and Forget 

1977). A negative correlation was found between mRNA stability (half-life) and 

frequency of rare codons, it was presumed that selection for stable mRNAs was 

either the same, or acted in parallel with, selection for the avoidance of non-optimal 

codons (Herrick e/ al. 1980). While a correlation between amino acid usage and tRNA 

frequencies appeared to be adaptive, in multicellular eukaryotes it is the exception 

rather than the norm, and is restricted to a relatively small number of proteins and 

cell types (Chavancy and GareI1981). 

Analysis of genes from the RNA bacteriophage MS2 identified differences between 

the codon usage of phage genes and genes from its host, E. coli (Elton e/ al. 1976; Fiers 

e/ al. 1975). Fiers e/ al. (1975) suggested that the observed codon bias in MS2 might 

result from selection for the rate of chain elongation during protein translation (Fiers 

e/ al . 1976; Fiers e/ al. 1975). Fitch (1976) noted a significant bias for cytosine (C) over 

uracil (U), and suggested that there may be selection against codon wobble pairing, 

avoidance of wobble pairing was also noted in yeast (Bennetzen and Hall 1982). It 

was suggested that the most frequent synonyms of MS2 were those translated by the 

major tRNAs of its host (Elton, Russell and Subak-Sharpe 1976). The observation of 

codon usage bias implied that not all synonymous mutations were neutral (Berger 

1977). The codon usage of the bacteriophage 0X174 (5,386 bp), the first genome to be 

sequenced entirely (Sanger e/ al . 1977), was found to be non-random, with a bias 

towards codons whose third position was thymidine (T) and away from codons 

starting with adenosine (A) or guanidine (G) (Sanger e/ al. 1977) . 

Pedersen e/ al. (1978) suggested that Escherichia coli codons might be translated at 

different rates. Post e/ al. (1979) noted that in E. coli there was a stronger bias in codon 

usage in the highly expressed ribosomal protein genes than in the weakly expressed 

regulatory gene lacl. It was also noted that the preferred synonyms in the ribosomal 

protein genes were recognised by abundant tRNA species and it was suggested this 

may be the result of selection for fidelity (Post e/ al. 1979). The constraint of 
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maintaining a stable RNA secondary structure was suggested as another influence 

on codon bias (Hasegawa et al. 1979). A strong correlation between Gu, (G+C 

content at the third position of synonymous codons) and the genomic G+C 

composition in the trpG gene region of a number of enterobacterial species indicated 

that, the choice of synonymous codons was, at least in part, influenced by the same 

factors that caused genomic G+C content to differ (Nichols et al. 1980). The 

suggestion that codons that have the potential to mutate to termination codons in a 

single step would be avoided (Modiano et al. 1981) has been rejected because the 

selective advantage of such a strategy, if it existed, would be too small to 

significantly influence codon usage and would involve second generation selection 

(Kimura 1983). 

The genetic sequence databases such as EMBL (Emmert et al. 1994), GenBank 

(Benson et al. 1994), PIR (George et al. 1994), and SwissProt (Bairoch and Boeckmann 

1994) have become an invaluable source of sequence information. While many of the 

early sequences were submitted as discrete gene fragments, genes or operons this is 

being rapidly superseded by the submission of entire chromosomes, genomes, and 

proteomes en bloc from dedicated genome projects. These projects have resulted in a 

significant increase in the quality of sequence data available. 

During the early 1990's it was generally thought that the first genomes of free-living 

organisms to be sequenced would be E. coli and S. cerevisiae. However, the first free­

living organism to be completely sequenced was H. influenzae (1 .8 Mb) by the non­

profit making TIGR Corporation (Fleischmann et al. 1995). This was rapidly followed 

by the sequencing of the Gram-positive Mycoplasma genitaliul1l, which possibly has 

the smallest genome of any freeliving organism (Fraser et al. 1995). These 

demonstrations, that large scale shotgun genome sequencing projects w ere both 

feasible and cost effective, have stimulated an eve r-increasing procession of genome 

sequencing projects. The next completed genomes were the me thanogenic archaeon 

Metilflnococcus jannasclTii (Bult et al. 1996), the unicellular cyanobacterium 

SYlleclTocystis (Kaneko et al. 1996), and obligate parasite Mycoplasma pneumoniae 

(Himrnelreich et al. 1996). The first eukaryotic chromosome to be sequenced was 
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Saccharomyces cerevisiae chromosome III (Oliver et al. 1992), the sequencing of the 15 

remaining chromosomes was completed by April 1996 (Goffeau et al. 1997). Two 

separate strains of the pathogen Helicobacter pylori have been independently 

sequenced (AIm et al. 1999; Tomb et al. 1997). The genomes of the model organisms E. 

coli and Bacillus subtilis have also been completed their progress lagged behind some 

of the other projects due to their greater emphasis on classical genetic mapping 

(Blattner et al. 1997; Kunst et al. 1997). Other completed genomes include: 

Methanobacterium thermoautotrophicum (Smith et al . 1997); Archaeoglobus fulgidus 

(Klenk et al. 1997); the spirochaetes Borrelia burgdorferi and Treponema pallidum (Fraser 

et al. 1998; Fraser et al. 1997); Aquifex aeolicus (Deckert et al . 1998); Mycobacterium 

tuberculosis (Cole et al. 1998) and Rickettsia prawazekii (Andersson et al. 1998) . 

There are more than 40 genome projects in progress including: the largest and most 

ambitious sequencing project "The Human Genome Project" due to have a one pass 

coverage completed by spring 2000 (Marshall 1999; Wadman 1999); the puffer fish 

Fugu rubripes (Aparicio et al. 1995); the fruit fly Drosophila me/anogaster (Rubin 1998); 

the human malaria parasite Plasmodium Jalciparum (Gardner et al. 1998); the model 

plant Arabidopsis thaliana (Bevan e al. 1999); and mouse (Blake et al. 1999). Every 

genome has a unique story to tell and will advance the understanding of genome 

evolution, genome comparison will help to resolve many questions about genome 

evolution. 

Perhaps one of the most surprising results is that so many of the genes that have 

been identified as putatively encoding protein (partially based on codon usage) have 

no known function or homologue. Between 15 and 20 percent of the potentially 

coding open reading frame (ORFs) remain unidentified and have no detectable 

sequence identity with another protein. This is perhaps most surprising in the case of 

M . gel1italiulII as it was sequenced because it has the smallest genome known to be 

self- replicating and presumably is, or has been, under selection to minimise its gene 

compliment (Bloom 1995). 
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1.2 Natural Selection of Codon Usage 

The exponential increase in the volume of sequence information during the early 

1980s facilitated for the first time detailed statistical analyses of codon usage. 

Multivariate analysis techniques were applied to the analysis of the codon usage in 

mammalian, viral, bacteriophage, bacterial, mitochondrial and lower eukaryote 

genes (Grantham e/ al. 1980a; Grantham e/ al. 1981; Grantham e/ al. 1980b). The 

results of Grantham and co-workers demonstrated that genes could be grouped 

based on their codon usage and that these groups agreed broadly with taxonomic 

groupings. Consequently, they proposed the Genome Theory, which was "that the 

codon usage pattern of a genome was a specific characteristic of an organism". 

Compilations of codon usage information have confirmed broadly this organism 

specific codon choice pattern (Aota e/ al. 1988; Aota and Ikemura 1986). It was 

suggested that this variation in codon usage might be correlated with variation in 

tRNA abundance (Grantham e/ al. 1980b), and that this might "modulate" gene 

expression (Grantham e/ al. 1981). 

The non-random usage of codons and variation in codon usage between species 

suggested some selective constraint on codon choice. The codon usage of thirteen 

strongly and sixteen weakly expressed E. coli genes was examined, again using a 

multivariate analysis technique, and was found to have a marked variation in codon 

usage (Grantham e/ al. 1981). A modulation of the coding strategy according to 

expression was proposed, such that codons found in abundant mRNAs were under 

selection for optimal codon-anticodon pairing (Grantham e/ al. 1981). A later codon 

usage analysis of 83 E. coli genes found that variation in codon usage was dependent 

on translation levels, and that codon usage of abundant protein genes could be 

distinguished from that of other E. coli genes (Gouy and Gautier 1982). Genes with a 

high protein copy number used a higher frequency of intermediate energy codons 

and codons that required fewer tRNA discriminations per elongation cycle (Gouy 

and Gautier 1982). 

The distribution of codon bias in E. coli was initially reported as bimodal (Blake and 

Hinds 1984), but it is now accepted that the distribution is unimodal, which 
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presumably reflects a continuum of expression levels (Holm 1986; Ikemura 1985; 

Sharp and Li 1987a). The distribution of codon bias in S. cerevisiae as calculated by the 

codon bias index and cluster analysis of codon usage, was also described as bimodal 

(Sharp and Li 1987a; Sharp et al. 1986). The original clear distinction between highly 

and lowly expressed genes was not as apparent in a later analysis but variation in the 

usage of optimal codons remained the main source of heterogeneity among S. 

cerevisiae genes (Sharp and Cowe 1991). 

Codon usage differs between species not only in the selection of codons but in the 

degree of bias. B. subtilis has less biased codon usage than E. coli, presumably 

reflecting a weaker selection, perhaps due to its different environment affecting its 

effective population size (Moszer e/ al. 1995; Ogasawara 1985; Shields and Sharp 

1987). On the other hand codon bias in S. cerevisiae is much stronger than in E. coli 

(Sharp et al. 1993). Difference in codon bias of homologous genes does not necessarily 

imply a difference in the expression levels, but rather, it suggests that the 

effectiveness of the selective pressures on codon usage are not the same. 

1.2.1 Co-adaptation of tRNA Abundance and Codon Bias 

Ikemura (1981a, 1981b, 1982, 1985) demonstrated that in E. coli, Salmonella 

ojphimuriulll, and Saccharomyces cerevisiae codon bias was correlated with the 

abundance of the cognate tRNA. A strong positive correlation was also found 

between the copy number of proteins and the frequency of codons whose cognate 

tRNA was most abundant (i.e. optimal codons) (Ikemura 1981a; Ikemura 1982). This 

correlation was strongest in the most highly expressed genes, which almost 

exclusively used "optimal" codons (Ikemura 1981a; Ikemura 1981b; Ikemura 1982; 

Ikemura 1985), but expression levels and codon choice for E. coli plasmid or 

transposon genes were not found to be Significantly correlated (Ikemura 1985). 

Codon choice at two-fold sites was found to agree broadly with the optimal energy, 

codon-anticodon interaction theory of Grosjean and Fiers (1982). Ikemura (1982) 

suggested that bias in codon usage might both regulate gene expression and act as an 

optimal strategy for gene expression. 

Introduction 8 



1.2.2 Regulation of tRNA Abundance 

The co-adaptation of codon usage and tRNA abundance presumably reflects some 

average growth condition (Berg and Martelius 1995). The total tRNA composition of 

E. coli increases by 50% as growth rate increases to a maximum (Emilsson and 

Kurland 1990a; Emilsson et al. 1993; Kurland 1993), with some tRNA genes being 

preferentially expressed at high growth rates in E. coli (Emilsson, Naslund and 

Kurland 1993). There are at least two independent regulatory mechanisms for tRNA 

genes. Some tRNAs are produced at a constant rate relative to cell mass, while others 

are coupled to the abundance of ribosomes. The tRNAs located in the rRNA operons 

are used preferentially as major codon species (Komine et al. 1990). The rate of the 

synthesis of these major tRNAs is related to rRNA synthesis, which is in turn related 

to the growth rate Oinks-Robertson and Nomura 1987). 

Minor codons are not associated with the rRNA operons, although at least one minor 

tRNA in E. coli increases in relative abundance during high growth rates (Kurland 

1991). This suggested that it was codon frequency and not the abundance of the 

cognate tRNAs that determined the response to changes in growth rate (Kurland 

1991). Apart from altering tRNA gene frequencies, the nature of genetic variation 

governing tRNAs is unknown. As a general rule, the major tRNAs are represented as 

multiple copies in the genome whereas minor tRNAs are represented as a single 

copy (Komine et al. 1990). The over-expression of gene products in E. coli produced 

no specific increases in the relative rates of synthesis of tRNA isoacceptors, but rather 

a cumulative breakdown of rRNAs and an accumulation of two heat shock proteins, 

suggesting that the concentrations of many tRNAs are not directly regulated (Dong 

et al. 1995; Nilsson and Ernilsson 1994). 

1.2.3 Selection for Optimal Codons 

Although the correlation between codon frequency and abundant cognate tRNAs 

was a compelling argument for natural selection choosing between synonymous 

codons, it could only partially explain the observed bias in codon usage. Ikemura 

(1981b) described an optimal codon as one that satisfied certain rules of codon 
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choice; the predominant rule is that they are translated by the most abundant 

cognate tRNA. The rules for the choice of optimal codons were amended and 

expanded by Ikemura and other investigators as more sequences became available 

(Bennetzen and HalJ 1982; Grosjean and Fiers 1982; Ikemura 1985; Ikemura and 

Ozeki 1982; Nichols et al. 1980). 

1.2.4 Translation efficiency 

Optimal codons are presumably under selection for some form of translational 

efficiency and although early in vitro measurements of translation rates could find no 

difference in the rate of translation of optimal and non-optimal codons (Andersson et 

al. 1984), more sophisticated experiments have detected differences in these rates 

(Sorensen et al. 1989). Codons that are recognised by the major tRNAs are translated 

3-6 fold faster than their synonyms (Sorensen, Kurland and Pedersen 1989). The rate 

of initial codon recognition can vary up to 25 fold with optimal codons being 

reCOgnised most rapidly (Curran and Yarus 1988). It does not necessarily follow that 

genes that contain a relatively higher proportion of optimal codons, and are 

presumably translated faster in vitro, have higher yields. Perhaps codon usage 

reflects selection for very fast and short lifetime responses to rapid environment 

changes (Bagnoli and Lio 1995). 

Many of the most highly expressed protein molecules are involved in cell growth 

and cell division. Rather than optimising the expression of individual genes, codon 

preferences or "major codon bias" may be part of an overall growth maximisation 

strategy (Emilsson and Kurland 1990a; Emilsson and Kurland 1990b; Kurland 1991). 

Kurland (1991) suggested that selection could act upon the translation machinery to 

improve efficiency, where efficiency implied protein production normalised to the 

mass of the translation apparatus, the rate of protein production being, most likely, 

determined by the rate of translation initiation (Kurland 1991). The consequence of 

faster translation is that ribosomes spend less time on the mRNA, thus elevating the 

number of free ribosomes and increasing the number of mRNAs translated per 

ribosome. This is important since the number of ribosomes is often limiting. It has 

been estimated that up to one third of the dry weight of a rapidly growing E. coli cell 
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is ribosomal RNA and protein, and that approximately 70% of the total energy flux in 

E. coli is used in the cellular process of protein synthesis (Ikemura 1985). It has been 

argued that if protein translation is optimised for the mass invested in the 

translational apparatus then the translation rate of individual genes cannot be 

regulated by codon usage (Ehrenberg and Kurland 1984). This is because the average 

rate at which a particular mRNA is translated will not influence the number of copies 

of the corresponding protein, since any mRNA represents only a fraction of the 

overall mRNA pool (Andersson and Kurland 1990). 

The three main parameters that affect translation efficiency are (i) the maximum 

turnover of ribosomes, (ii) the efficiency of aminoacyl-tRNA matching and (iii) 

ternary complex concentrations (Kurland 1991). Under this model the most efficient 

mechanism would presumably be the assignment of a single tRNA for each codon or 

amino acid and this may be analogous to the use of a reduced subset of codons to 

code abundant proteins and the adjustment of concentrations of individual tRNAs to 

this pattern. (Ehrenberg and Kurland 1984). The total mass of initiator factors and 

aminoacyl tRNA synthetases is negligible relative to the masses of the ribosomes. 

Analyses of isoacceptor concentrations suggest that at low growth rates in E. coli the 

ternary complexes are well below saturation of the ribosome (Kurland 1991). If the 

abundance of tRNA isoacceptor species match codon bias, the efficiency of 

translation is enhanced by minimising the mass of aminoacyl-tRNA-GTP-EF-Tu 

ternary complexes. The overall tRNA/ ribosomal ratio decreases with increased 

growth rate. Evidently the translation apparatus is both expanded and trimmed as 

growth rates increase; the faster the bacteria grow the more efficiently the mass 

invested in the translation system is used (Kurland 1993). This increased efficiency is 

in part due to the reduction in the amounts of tRNA, EF-Tu, and EF-G per ribosome. 

Accordingly, major codon bias is an aspect of genomic architecture that is selected by 

the physiological needs of rapidly growing cells (Kurland 1993). 

1.2.5 Accuracy and Fidelity in Translation 

Selection for fidelity may also be linked to expression level (Gouy and Gautier 1982). 

It has been estimated that in E. coli the non-optimal Asn codon AAU can be 
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mjstranslated ejght to ten times more often than jts optimal synonym AAC (Parker et 

al. 1983; Percup and Parker 1987). Similarly in some contexts the non-optimal codon 

UUU (Phe) is frequently m;sread as a leucine codon (Parker et al. 1992). 

An analysis of the usage of synonymous codons found strong evidence that in hlghIy 

expressed Drosophila genes codon bias is, at least partially, caused by a selection for 

translational effidency (Sharp and Matassi 1994). Akashl (1994) examined the codon 

usage of 38 homologous genes from Drosophila lIleiallogaster, D. pseudoobscura, and D. 

virilis and found that in genes with weak codon bias, conserved amino acids had 

higher codon bias than nonconserved residues. In regions encoding important 

protein motifs (homeodomams and zincfinger domains), the frequency of preferred 

codons was hlgher than in the remainder of the gene, and is was suggested that 

selection for translational accuracy caused this bias (Akashl 1995). However, a 

counter argument to this accuracy hypothesis was that the rates of synonymous and 

non-synonymous substitutions in the homologous genes were not significantly 

correlated (Akashl 1994). Another counter argument involves the adh and adhR 

genes, whlch encode similar but djvergent gene products. Although their primary 

amino add sequences have a similar level of conservation between ilifferent lineages, 

adh had a strong codon bias and a low J(, (synonymous mutation rate) whlle adhR 

had a low codon usage bias and a hlgh J(, (Sharp and Matassi 1994). Akashl (1995) 

found that selection for translational efficiency could influence the observed codon 

bias in hlghIy expressed Drosophila genes. It may be that both translational efficiency 

and translational accuracy are important in Drosophila (Sharp et al. 1995). An 

investigation of homologous E. coli and S. hJphi1lluriu11l genes found no signjficant 

differences in the bias of codons encoding conserved and non-conserved am;no acids 

(Hartl et aZ. 1994) . 

1.2.6 Rare Codons and Codon context 

While some codons are preferentially used in hlghIy expressed genes, some codons 

are almost absent. These codons are referred to in the literature as rare, unfavoured, 

or low usage codons. The clustering of rare or unfavoured codons near the start 

codon was first identified by Ikemura (1981b) in the hlghIy expressed ribosomal 
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protein genes rplK, rpl!, and rpsM. This was attributed to some functional constraint, 

perhaps a signal for special regulation (lkemura 1981a). The rarest E. coli codons 

AGA and AGG occur preferentially in the first 25 codons (Chen and Inouye 1994) 

and in E. coli the codon adaptation index (CAl) and synonymous substitution rate of 

sequence windows are correlated with distance from the initiation codon (Bulmer 

1986; Eyre-Walker and Bulmer 1993). However there is not a similar variation in CAl 

along B. subtilis genes (Sharp et al. 1990). The bias of conserved codons is also much 

higher in first 100 codons of homologous genes from E. coli and S. hJPhimllrium, than 

in the remainder of the gene (Hartl, Moriyama and Sawyer 1994). 

Codons are sometimes found in specific contexts. E. coli utilises codon pairs in a non­

random pattern (Gutman and Hatfield 1989). Strong correlations between 

nucleotides at codon interfaces and between wobble positions of adjacent codons 

suggest that the degeneracy of the genetic code is exploited to arrange codons in 

some optimal context (Curran 1995). Codon contexts are quite different in highly and 

lowly expressed genes (Gouy 1987; Shpaer 1986; Yarus and Folley 1985). Though 

codon contexts seem to be weaker than mutational biases, they may effect observed 

codon bias; i.e. a gene with a completely optimal synonym choice may not consist 

entirely of" optimal" codons. 

It has been suggested that these observations may be partially a result of avoidance 

of mRNA secondary structure or additional rRNA binding sites (Bulmer 1986; Eyre­

Walker and Bulmer 1993; Hartl, Moriyama and Sawyer 1994). Secondary structure is 

avoided around the initiation codon of mRNAs (Ganoza and Louis 1994; Wikstrom et 

al . 1992) where it can effect the initiation of translation (de Smit and van Duin 1994; 

van de Guchte et al. 1991). There is also evidence of additional pairing between 

mRNA and the ribosome after initiation of translation (Pe tersen et al. 19BB; Sprengart 

e/ al. 1990). Even single base pair substitutions that increase secondary structure in 

the initiation region can have very strong inhibitory effects (500 fold) on the initiation 

of translation (de Smit and van Duin 1990b). The presence of stable secondary 

structures in mRNA were not found to cause any appreCiable delay in translation; 
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but mRNA levels were reduced 10 fold, presumably the secondary structures were 

targeted by mRNA degrading enzymes (Sorensen, Kurland and Pedersen 1989). 

An analysis of gapA and ompA genes from 10 genera of enterobacteria found a 

strong bias in their codon usage and surprisingly that different synonymous codons 

were preferred at different sites in the same gene (Maynard Smith and Smith 1986). 

Site specific preferences for unfavoured codons were not confined to the first 100 

codons and were often manifest between two codons utilising the same tRNA. It was 

proposed that this was the result of sequencespecific selection rather than sequence­

speCific mutation (Maynard Smith and Smith 1986). 

1.3 Mutation Biases and Codon Usage 

Base composition is the most frequently reported DNA feature and is probably one 

of the most pervasive influences on codon usage. There is wide variation in the 

genomic G+C content of prokaryotes, ranging from less than 25% to more than 75% 

G+C content. The G+C content of synonymous third positions can vary by a factor of 

10 between species; this bias is always in the direction of the mutational bias. Base 

composition is a balance between mutational pressure towards or away from G+C 

nucleotide pairs (Sueoka 1962). The origin of such compositional constraints (GC/ AT 

pressures) is still a matter of debate. Either these compositional constraints are the 

results of mutational biases (Sueoka 1988; Wolfe et al. 1989), or natural selection plays 

the major role leading to preferential fixation of non-random dinucleotide and base 

frequencies (Bernardi 1993b; Bernardi and Bernardi 1986; Nussinov 1984). Almost all 

organisms are subject to directional mutational pressure, and in the absence of 

selection it is this pressure that shapes gene codon usage (Nichols et al . 1980; Sueoka 

1988). Dinucleotide composition also has an appreciable effect on codon choice and is 

genome specific in both eukaryotes and prokaryotes. For instance dinucleotide TpA 

appears to be a lmost universally avoided (Grantham et al. 1985) and in many 

vertebrates the dinucleotide is CpG is relatively rare (Bird 1984). The frequency of a 

dinucleotide is usually positively correlated with the frequency of its compliment 

indicating that these biases are characteristics of double-stranded DNA rather than 

coding mRNA (Nussinov 1981; Nussinov 1984). 
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The oligonucleotide frequencies in E. coli (Phillips et al. 1987b) and S. cerroisiae 

(Arnold et al. 1988) were found to be much more complex than predicted by the 

simple over- and underrepresentation of oligonucleotides and varied in a 

phylogenetically related way (Grantham, Gautier and Gouy 1980a; Karlin and 

Cardon 1994; Phillips et al . 1987a). Analysis of large genomic regions in both 

prokaryotic and human sequences, using Markov chain analysis, found regions in 

many genomes that were atypical. This may be due to unknown selective pressures, 

structural features or horizontal gene transfer (Scherer et al . 1994). The non-random 

characteristics of DNA sequences greatly complicate statistical modelling of large 

genomic DNA sequences (Scherer, Mcpeek and Speed 1994). These patterns include 

3,. codon position periodicity (Lio et al. 1994), a universal G-non-G-N codon motif 

(Trifonov 1987), and long-range power-law correlations (Ossadnik et al. 1994). 

Statistical analysis of eukaryotic DNA sequences using techniques derived from 

linguistics, found that non-coding sequences have characteristics that are similar to 

natural language, with smaller entropy and larger redundancy than coding 

sequences. This has been interpreted as evidence that "noncoding" sequences carry 

biological information, which is perhaps not surprising (Mantegna et al. 1994). 

1.3.1 Variation of Codon Usage with Genome Location 

Mammalian genomic DNA, originally thought to have quite a narrow range of G+C 

content (Sueoka 1961), has large regional differences in base composition. These 

relatively long tracts of DNA (300 kb), which differ in their local G+C content, are 

te rmed isochores (Bernardi 1989; Bernardi 1993b; Bernardi et al. 1985). The origins of 

isochores are still shrouded in some mystery (Sharp and Matassi 1994). Isochores 

have been classified into two light or AT rich classes (Ll and LZ) and three heavy 

G+C rich classes (HI, H2 and H3) (Bernardi 1993b). Gene density is non-uniform; 

low G+C isochores (Ll and L2) comprise approximately 60% of the human genome, 

but only one third of genes lie within these regions. A third of genes lie within H3, 

which only comprises 3-5% of the genome (Bernardi 1993a). There has been a 

suggestion that some housekeeping genes may be located preferentially in H3 

isochores (Bernardi 1993b). Hybridisation of the human H3 isochore with other 
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mammalian and avian genomes has shown that the structure of isochores is 

conserved remarkably weII between species (Caccio et al. 1994). 

Among 20 mammalian species belonging to nine different eutherian orders, only the 

myomorph rodents (mouse, rat, hamster, and mole rat), the pangolin, and the fruit 

bat were found to differ from the 'general' pattern (as found in humans). This was 

principally because they lacked the most G+C rich H3 isochores (Sabeur et al. 1993). 

It is not clear how these patterns have diverged (Bernard i 1993a). Avian species 

contain isochores and because birds speciated from the mammalian orders before 

reptiles, this has been interpreted as evidence for at least two independent origins of 

isochores (Bernardi 1993a). 

The pattern of codon usage in angiosperms indicates that they may also contain 

isochors (Matassi et al. 1989). Variation in the G+C content of silent sites is the major 

source of variation in codon usage (Fennoy and Baileserres 1993). It is difficult to 

identify whether this GG, base variation is due to regional effects or translational 

selection. Codon usage has been reported as being more biased in some highly 

expressed chloroplast genes, histones and anthocyanin biosynthetic enzymes 

(Fennoy and Baileserres 1993). The main difference in the codon usage between 

monocotyledons and dicotyledons is the average GG, of the genes. Those genes 

expected to be highly expressed are reported as having a more biased codon usage 

than genes expected to be moderately or lowly expressed (Murray et al . 1989; Tyson 

and Dhindsa 1995). 

In mammals codon usage varies enormously among genes (Mouchiroud and Gautier 

1990; Newgard et al. 1986). However, this probably only reflects the general 

phenomenon of G+C variation with location (Ikemura and Wada 1991) as there is 

scant evidence that it has been shaped by selection for translation efficiency (Sharp et 

al . 1993). There is a correlation between gene density and G+C content, but the 

location of genes appears to be independent of tissue, time or level of gene 

expression (Bernardi 1993b). There is also a correlation between the G+C content of 

the hand 3,dcodon positions of mammalian genes (Eyre-Walker 1991). Patterns such 
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as a preference for pyrimidine-purine codon boundaries also influence the observed 

codon bias (Galas and Smith 1984; Smith et al. 1985). 

The substantial GO, variation between prokaryotic genes has been used to infer the 

presence of isochores in prokaryotes (D'onofrio and Bernardi 1992; Sueoka 1992), but 

the influence of translational selection which is known to influence GC3, strongly was 

ignored. There is only enough sequence information to ask whether gene location 

influences codon usage for a small number of prokaryotic species (Sharp and Matassi 

1994). Genes that have weak codon bias display GO, variation that is associated with 

chromosomal position, with a lower GO, near the terminus of replication 

(Deschavanne and Filipski 1995). In E. coli chromosomal location influences 

substitution rates, genes located near the origin of replication have lower substitution 

rates (Sharp et al. 1989). This implies that either mutational biases or natural selection 

vary systematically with genomic location. The mechanisms by which location can 

influence gene evolution have received far less attention than the effect of natural 

selection on synonymous codon usage (Sharp and Matassi 1994). These regions of 

differing GO, have been termed chichores (Deschavanne and Filipski 1995). 

While the codon usage of S. cerevisiae had been extensively quantified (Ikemura 1982; 

Sharp and Cowe 1991; Sharp et al. 1988), the publication of the complete sequence of 

the S. cerevisiae chromosome III (Oliver e/ al. 1992), allowed codon usage variation to 

be examined as a function of chromosomal location. Chromosome UI is 

approximately 315 kb long, with the right arm slightly longer than the left (Oliver e/ 

al. 1992). Genes that are G+C rich at silent sites (i.e. with a high GC3') are located 

predominantly in two distinct chromosome regions. These approximate to the centre 

of the two chromosome arms (Sharp and Lloyd 1993), while regions poorer in G+C 

are found at the centromere and telomeres. This G+C variation is independent of the 

selection for optimal codons (only half of the S. cerevisiae optimal codons end in G or 

C). Multiple periodic G+C peaks were also reported for the next three chromosomes 

XI, II and VlII (Dujon et al . 1994; Feldmann e/ al. 1994; Johnston e/ al. 1994), with 

approximately one peak per 100 kb (Sharp e/ al. 1995). A correlation between silent 

site G+C (GO,) content and gene density was noted during the analysis of 
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chromosome XI (Dujon et al. 1994), this correlation was also found in chromosome III 

(Sharp and Matassi 1994) and in the subsequent primary publications for 

chromosomes II, IV, VITI, XITI, and XV (Bowman et al. 1997; Dujon et al. 1997; 

Feldmann et al. 1994; Jacq et al. 1997; Johnston et al. 1994). However, a recent analysis 

of all S. cerevisiae chromosomes found that there was no correlation between gene 

density and Gu, (Bradnam et al. 1999). While variation in GC3s is not completely 

random the observed clusters of ORFs of similar GC3s can be accounted for by very 

short-range correlations between neighbouring ORFs. Bradnam et al. (1999) also 

reported that high G+C ORFs are located preferentially on shorter chromosomes and 

that in many ways chromosome III was atypical of the other chromosomes. In 

Borrelia burgdorjeri it is a genes' orientation relative to direction of DNA replication, 

not its location on chromosome, which determines is codon usage pattern 

(Mcinerney 1998). An analysis of the genomes of spirochaetes Borrelia burgdorferi 

(Mcinerney 1998) and Treponema pallidium (Lafay et al. 1999) found that there was no 

evidence for translation selection operating on the codon usage of highly expressed 

genes. Codon and amino acid usage composition patterns djffer significantly 

between genes encoded on the leading and lagging strands. 

1.3.2 Time of Replication 

The mechanisms that cause G+C mutation patterns to vary have been the subject of 

considerable debate. At particular issue is whether these isochores are in some way 

adaptive or are the passive result of mutational processes. Kadi et al. (1993) explain 

the presence of isochores in warm-blooded animals as resulting from natural 

selection, but the mechanism by which this occurs is elusive. Other investigators 

prefer the hypothesis that variation in G+C content arises because the isochores are 

replicated at different points of the cell replication cycle. lf the G+C content of the 

nucleotide pools varied, they would presumably affect mutation bias (Wolfe, Sharp 

and Li 1989). This hypothesis has been supported by recent models of the origin of 

isochores (Gu and Li 1994). There is probably more detailed information about the 

replication of the first 200kb of yeast chromosome III than any other eukaryotic 
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chromosome (Sharp and Matassi 1994). Despite this, no obvious relationship has 

been found between replication timing and G+C content (Dujon et al. 1994). 

1.3.3 DNA Repair 

It has been suggested that the efficiency of DNA mismatch repair mechanisms might 

vary with chromosomal location (Filipski 1987; Hanawalt 1991) but this would 

presumably leave a Signal, in the form of a strong correlation between G+C content 

and substitution rates. This signal is not seen, suggesting that codon usage can only 

be explained in terms of a variation in DNA mismatch repair under a restricted set of 

circumstances (Eyre-Walker 1994a). Genes which are transcribed more often (i.e. 

highly expressed genes) may have lower mutation rates because they are subject to a 

more rigorous DNA repair response (Berg and Martelius 1995). The coupling of the 

repair of pyrimidine dimers with transcription has been identified in E. coli (Selby 

and Sancar 1993). The RNA polymerases pause at the pyrimidine dimers and this 

signals the repair machinery (Friedberg et al. 1994). It has been suggested that the 

efficiency of the very short repair mechanism changes with codon bias/gene 

expression (Gutierrez et al. 1994) but this correlation seems to be an artefact of codon 

bias as codon CT A is rare in E. coli and the codon TAG is absent which may go some 

way to explain the rarity of CT AG (Eyre-Walker 1995b). 

1.4 Codoll Usage 

1.4.1 Optimal Codons 

When Ikemura (1985) defined the optimal codons in E. coli, S. hJPhimurium, and S. 

cerevisiae, his definition was dependent on knowledge of the abundance and 

characteristics of their tRNA molecules. The number of species where the 

abundance and structures of tRNAs are known is limited relative to the number 

of organisms from which sequence data has been obtained. Indeed, what 

knowledge there is of tRNA abundance is potentially biased, because measurements 

are made under laboratory growth conditions. It is therefore desirable to define an 

optimal codon in terms of a more readily estimated characteristic. The most 

commonly used characteristic is the pattern of codon usage itself, the definition 
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used in this thesis is "an optimal codon is any codon whose frequency of usage 

is significantly higher in putatively highly expressed genes" (Lloyd and Sharp 

1991; Lloyd and Sharp 1993; Sharp and Cowe 1991; Sharp et aZ. 1988; Shields and 

Sharp 1987; Stenico et aZ. 1994). Significance is estimated using a two-way chi­

squared contingency test, with a cut-off at p<0.01. The most frequent codon for 

an amino acid is not necessarily an optimal codon, which is subtly different from the 

original definition of an optimal codon used by Ikemura (1981b), who defined 

optimal codons as those codons occurring most often in biased genes. 

1.4.2 Mutation Selection Drift 

Codon usage variation is represented by two major paradigms. Either mutational 

bias and selection determine codon usage, or it is determined by mutational bias 

alone. Although natural selection for efficient translation is a major influence on 

codon usage in many species, it is not always apparent in what form the selection is 

taking place and it does not explain all of the observed codon usage variation. Some 

genes have codon usage that is determined mainly by mutation and drift while 

others display codon usage that arises from a balance between mutational 

biases and selective pressures (Berg and Martelius 1995; Bulmer 1988; Sharp and 

Li 1986). Observed codon bias is an equilibrium between selection that favours the 

fixation of advantageous codons and genetic drift that enhances the probability of 

the fixation of disadvantageous codons (Akashi 1995; Bulmer 1988). 

While the development of a unified theory for codon usage has so far proved 

elusive, the mutation-selection-drift (MSO) theory has been described as a 

reasonable working hypothesis (Bulmer 1991) and is the most widely accepted 

(Akashi 1995; Hartl, Moriyama and Sawyer 1994; Kurland 1993; Sharp et aZ . 1993). 

The maintenance of codon preference for nearly neutral synonymous positions 

requires a slow but constant rate of adaptive fixation (Akashi 1995). If selection acts 

independently on each codon then selective differences between synonyms are 

probably very small, so codon selection will only be effective in species with 

very large population sizes (Bulmer 1991; Li 1987). Selection is likely to be stronger 
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in highly expressed genes because these codons are translated more often (Bulmer 

1988). Bulmer (1991) suggested that selection coefficients for optimal codons, based 

on protein expression levels, would be in the order of 10", but this value appears to 

be rather high as it implies that the E. coli N, would be of the order of la', which is 

much lower than estimates of N, in E. coli (Hartl, Moriyama and Sawyer 

1994). Other estimates for codon selection coefficients in E. coli have been of the 

order of 10" (Akashi 1995; Hartl, Moriyama and Sawyer 1994). The product of 

the effective population and selection coefficient N,s for disfavoured synonymous 

codons in the highly expressed gild and putD has been estimated as approximately -

1.3 (Hartl, Moriyama and Sawyer 1994). In the E. coli gild (6-phosphogluconate 

dehydrogenase) the selection against detrimental codons has been estimated as 

one third of the selection coefficient against detrimental amino acid replacements 

(Hartl, Moriyama and Sawyer 1994). 

1.4.3 Mathematical Models 

Within the framework of the neutral mutation-random drift theory, Kimura 

(1981) proposed that random drift around some optimum value (under stabilising 

selection) could explain the observed non-random or unequal usage of synonymous 

codons. Li (1987) felt that directional selection, rather than stabilising selection, was 

the most appropriate assumption for a codon usage model. Constant selection 

models require a very restricted range of selection intensity to explain the observed 

codon bias (Eyre-Walker 1994b). Akashi (1995) in turn has suggested that the 

synergistic model might be necessary to explain the available data where species 

with effective population sizes that differ by several orders of magnitude appear to 

have similar degrees of codon bias. Kimura (1981) felt that the most plausible 

explanation for preferential codon usage was that it represented an optimum state, 

where the choice of synonymous codons matched the cell's cognate tRNAs 

concentrations. This would reduce substitution rates at silent sites to maintain a 

given optimum equilibrium bias (Kimura 1983). 

Li (1987) described intermediate codon bias as a balance between genetic drift and 
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selection, and described the relative frequencies of synonyms as a function of 

mutational bias, selection coefficient (s), and effective population size (N,). To select 

between synonyms, the selective advantage must be greater than the inverse of the 

effective population size. Synonymous sites would be fixed when the absolute rate 

of mutation was low and the effective population size was small, such that 

population polymorphism would be negligible. If N,s fell much below unity, drift 

would overwhelm codon usage. If it rose above three or four (depending on the 

mutational bias), all codons would be fixed for the preferred codon. This assumes 

independent segregation of codons; linkage would substantially increase the 

accumulation of slightly deleterious codons. 

Bulmer (1987) combined aspects of previous translation models and investigated 

how bias may develop in organisms with a large enough population size, due to 

selection for translational efficiency. When selection was greater than the mutation 

rate, codon usage would co-adapt with the translational machinery such that the 

number of tests of non-<:ognate tRNAs would be minimised. This model has been 

described as unrealistic (Shields 1989). It assumed that the population size would be 

large enough to suppress the effect of stochastic fluctuations caused by random 

genetic drift, which would randomise codon frequencies. Under this model, the 

continued presence of disadvantageous codons was due to the continual 

occurrence of mutations in the population. These would be unlikely to become 

fixed, as selection would eliminate them from the population before their frequency 

became too great. A disadvantage of this model was that it predicted very high 

sequence polymorphism in lowly biased genes and, as long as codon preference 

was maintained, the absence of sequence divergence at silent sites over evolutionary 

time. Obviously DNA sequences have diverged and this must be caused by the 

fixation of mildly deleterious alleles, implying that the effective population must be 

finite. This model was later enhanced to take into account population size and 

selective differences between codons (Bulmer 1991). However when this newer 

model was tested, Bulmer (1991) found that it "grossly overestimated codon bias" in 

highly expressed genes (ribosomal protein and AA-tRNA synthetase genes). 
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Shields (1989) proposed a model for codon usage where selection, mutational 

bias, and effective population size shaped codon preference. Codon usage was 

dependent on both the magnitude and variability of selection pressures. The 

frequency of an optimal codon in highly expressed genes would be largely 

insensitive to changes in mutation bias, unless the bias exceeded a critical value. This 

could then result in a switch of optimal codon (Shields 1989). When selection was 

stronger, a stronger mutation bias against a codon would be required to alter it. 

This contradicted a previous prediction that selection pressures and mutational 

biases acted additively in highly expressed genes to influence codon usage (Osawa et 

al . 1988) . 

As the magnitude of species' e ffective population size varies considerably (Nei 

and Graur 1984) it seems probable that it has also fluctuated during evolution. 

Under Shield's (1989) model a decrease in population size could result in the 

selection for synonyms no longer being effective, such that codon usage would be 

entirely determined by mutational biases. A codon that was advantageous but not 

favoured by mutational bias could be replaced in abundance by a synonym that 

was more favoured by mutational bias. If the population size increased, the !RNA 

population would co-adapt with the more abundant codon and thus the optimal 

codon could switch. Changes in mutation patterns may be the major cause of 

switches in codon preferences (Shields 1990). This model of codon usage assumes 

that the tRNA population adapts to the more frequent codons, in such a way that 

they are translated more effiCiently. Analysis of the codon usage of Enterobacteria 

indicated that the observed data was largely consistent with this model (Shields 

1990). It also explained why the highly expressed genes in s. marcescells and E. coli 

have similar GC,,, in contrast to the lowly expressed genes which have a much 

higher GC,. in S. marcescells than in E. coli (Sharp 1990). Since the divergence of these 

species there has been little change in the optimal codons despite differences in 

mutation bias (Shields 1990). In Proteus vulgaris the optimal codons have diverged, 

reflecting that mutational bias has been strong enough to precipitate switches in 

Introduction 23 



codon preference. 

The models of Bulmer (1991) and Li (1987) provided useful limiting cases but a 

problem with Bulmer's (1991) model was that it overestimated the predicted 

frequency of rare codons in highly expressed genes. If any of the selection 

coefficients were less than the inverse of the effective population size, codon usage 

would be randornised by genetic drift. If selection coefficients were less than 

mutation rate, recurrent mutation would prevent selective codon usage evolving. 

The Shields (1989) model described how a change in mutation patterns or 

selective pressures or population sizes could change codon usage. While models 

of codon usage are useful tools for exploring the mechanisms by which the tRNAs 

and codon usage may have adapted to the "problem" of optimising translational 

efficient it is important to realise that these mechanisms are much more complex 

than current models can allow for. 

1.4.4 Codon Usage Patterns 

1.4.4.1 Prokaryotes and Unicellular Eukaryotes 

Though understanding of codon usage is more advanced for the prokaryotes than 

for the eukaryotes, much of this knowledge is based on the relatively few species 

that have been subjected to a concerted molecular genetic analysis. Our 

understanding of codon usage among the Gram-negative proteobacteria is much 

more advanced than in any other group of species. The codon usage of the model 

organism E. coli has been extensively investigated (Gouy and Gautier 1982; 

Grantham, Gautier and Gouy 1980a; Grosjean and Fiers 1982; Ikemura 1981a; 

Ikemura 1981b). In the Gram-positive bacteria (with the exception of Bacil/us subtilis), 

an understanding of codon usage patterns has been severely limited by the lack of 

sequence information. The importance of an adequate sample size in the analysis of 

codon usage cannot be over emphasised. An analysis of B. sub/ilis codon usage 

based on only 21 genes reported that all codons were used more or less equally 

(Ogasawara 1985) but later analyses with a greater number of genes reported 

translational selection among synonyms (Sharp et al. 1990; Shields and Sharp 1987). 
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In many prokaryotes with extreme G+C mutational bias, GC" is often so biased that 

functional open reading frames are easily recognisable (Bibb el al. 1984). In the A+ T 

rich Gram-positive M. capricolum, ribosomal proteins have a very high frequency 

of codons ending in A or T (Muto et al. 1984; Muto et al. 1985). Conversely the 

G+C rich Thermus thermophilus has a high frequency of codons ending in G or C 

(Kagawa et al. 1984; Kushiro et al. 1987). In some prokaryotes, particularly those with 

G+C rich or G+C poor genomes (e.g. Mycoplasma capricolurn, Micrococcus luleus, and 

Streptomyces species), if natural selection is choosing between synonymous codons it 

is much weaker than the influence of mutational bias and is swamped by the latter 

(Sharp et al . 1993). Mycobacterium tuberculosis and Conjnebacterium glulamicum are 

both G+C rich Gram-positive bacteria, and although neither is extremely biased 

in base composition putative translationally optimal codons have been identified in 

both species (Andersson and Sharp 1996; Malumbres el al. 1993). An exception 

to the generalisation that genomes with extreme genomic G+C biases do not 

display codon preference is the codon usage of Dichjosteiium discoideum (overall 

G+C content of 22%) (Sharp and Devine 1989). Codon usage in D. discoideum 

reflects its A+T richness but a subset of codons (mainly C ending) appears to be 

transiationally optimal. Some of these codons (UUC, UAC, AUC, AAC, GAC, 

GGU) are also optimal in E. coli, B. subtilis, S. cerevisiae, S. pombe and D. meianogaster 

and these codons have been described as universally optimal (Sharp and Devine 

1989). 

While in almost all lineages the genetic code has remained constant, codon 

usage and the choice of optimal codons have diverged. A detailed and accurate 

analysis of codon usage is an essential prerequisite to our understanding of how and 

why divergent patterns of codon choice evolved. There is no obvious reason why the 

subset of optimal codons should differ between species. Codon usage (i.e. the choice 

of optimal and non-optimal codons) is broadly similar in closely related species but 

diverges with increasing phylogenetic distance. The codon usage of S. typhimurium 

is the same as that of E. coli (Sharp 1991), which may simply be because an 
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insufficient number of substitutions have occurred for a difference to be 

detected. The similarity in the codon usage biases of homologous genes has been 

used to suggested that the selection pressure on synonymous codons has been 

similar since the species diverged 10' years ago (Ochman and Wilson 1987a). The 

codon usage and tRNA population of the more distantly related species S. 

l1larcescens (Ochman and Wilson 1987a) have also remained similar to those of E. coli 

(Ikemura 1985; Sharp 1990). The total codon usage and the choice of optimal codons 

of the Gram-positive species Bacillus subtilis are distinct from those of E. coli, the 

overall codon usage and choice of optimal codons has altered to the extent that AT­

rich codons predominate in B. subtilis, reflecting its lower genomic G+C content. 

However, many codons remain optimal in both species (Moszer, Glaser and Danchin 

1995; Ogasawara 1985; Shields and Sharp 1987). Within the phylogene tically diverse 

genus Lactobacillus, codon usage bias is correlated with expression, but varies 

between species (Pouwels and Leunissen 1994). 

Between E. coli and S. cerevisiae the most abundant tRNAs diffe r for apprOximately 

half of the amino acids, and there is a correlated change in the choice of optimal 

codons (Ikemura 1985). The choice of optimal codons is the same for the distantly 

related Kluyverol1lyces lactis and s. cerevisiae despite the saturation of their silent sites, 

which presumably arises from a similarity in the mutational biases and underlying 

tRNA pools of K. lactis and s. cerevisiae (Lloyd and Sharp 1993). Codon bias for some 

genes differs between these two species, but in a manner correlated with differences 

in expression level (Freirepicos et al. 1994). The codon usage of S. cerevisiae, the 

distantly related ascomycete fungi Aspergillus nidulans, and Sc11izosaccharol1lyces 

pOl1lbe have however diverged (Lloyd and Sharp 1991; Sharp and Wright 1988). 

Although codon usage changes over evolutionary time, the similarity of parameters 

that constrain codon usage can cause convergence in distantly related organisms 

(Sharp and Cowe 1991). When examining codon usage it is important to distinguish 

between interspecific and intraspecific variation. In addition, it is necessary to 

consider whether the variation is caused by a mutation bias or a selection for a 
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translationally efficient codon dialect. For example, the G+C rich Serratia 

marcescens (59% genomic G+C content) has a high variation in GC,. (G+C content at 

synonymous third positions) values. Although this has been attributed to a 

variation in genome mutation bias (Nomura et al. 1987), it is more readily explained 

as equilibrium between mutation and selection (Sharp 1990). 

1.4.4.2 Multicellular Eukaryotes 

Despite there being striking differences in codon usage and codon bias of 

mammalian genes, there is no codon usage preference in human genes per se 

(Bernardi 1993a; Ohno 1988; Sharp and Matassi 1994). Differences in codon choice 

can be attributed to variation in the GC,. of mammalian genes. The GC,. of 

mammalian genes is strongly correlated with the G+C content of introns, 5' and 3' 

sequences (Andersson and Kurland 1990; Aota and Ikemura 1986; Bernardi 

1993a; Ikemura 1985; Sharp et al. 1993), with neighbouring genes have similar GC,. 

values (Ikemura and Wada 1991). It was thought that there was a fundamental 

dichotomy between the codon usage of unicellular and multicellular organisms, 

with the codon usage of the unicellular eukaryotes (e.g. Saccharomyces cerevisiae, 

Sc/lizosaccharomyces pOlllbe) and prokaryotes being determined by mutation­

selection-drift, and that of multicellular organisms by mutational bias and drift 

(Ikemura 1985). However, Drosophila melanogaster and Caellorhabditis e/egans 

display a bias in their choice of codons which appears to be caused by selection for 

translation efficiency (Shie lds et al. 1988; Stenico, Lloyd and Sharp 1994). The 

absence of selection between synonyms in mammals is not simply a result of the 

subdivision of multicellular organism into different cell types. 

The codon usage of Drosophila melanogaster is more similar to the E. coli/yeast 

paradigm, than to that of mammals (Moriyama and Hartl 1993; Shields et al. 

1988). It seems that the subtle differences between one synonym and another have 

a discernible effect on the chance of a fruit fly surviving and reproducing (Sharp and 

Matassi 1994). Codon bias appears to be maintained among close relatives of D. 

melanogaster, such that genes with high codon bias exhibit less divergence at silent 
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sites (Moriyama and Gojobori 1992; Sharp and Li 1989). Isochores, which dominale 

mammalian codon usage, were not found in D. melanogaster (Bernardi et al. 1985). 

Histone genes are an exception to the trend of highly expressed Drosophila 

genes having biased codon usage. They are highly expressed and highly conserved 

proteins, but have low codon usage bias and a relatively high rate of synonymous 

substitution (Fitch and Strausbaugh 1993). Natural selection has great difficulty in 

distinguishing between the best variants at multiple sites if these sites are tightly 

linked (Kliman and Hey 1994). The rate of recombination is much reduced in 

regions near the telomeres and around the centromeres. Genes located in these 

regions, which include the histone genes, have lower codon bias (Kliman and 

Hey 1993). 

Nei and Graur (1984) have estimated the effective population size for 

Drosophila to be between 10' and 10', while Similarly derived N, values for 

mammals are of the order 104
• If the selective coefficients for codons in these 

eukaryotes are in the order of 10" and 10", this would account for the presence of 

selective bias in D. melanogaster. Since D. meianogaster and D. simulans diverged 

from their common ancestor there has been an apparent relaxation in selection 

at silent sites and in codon bias; D. melanogaster has an estimated absolute N,s of 

approximately one (Akashi 1995). The N,s of highly expressed D. simulans genes 

have been estimated by Akashi (1995) to be approximately 2.2; however the N, for 

these species has been estimated to vary 20-fold (Hartl, Moriyama and Sawyer 

1994; Nei and Graur 1984). This apparent relaxation is further supported by 

estimates of DNA heterozygosities (Aquadro 1992) although differences in selection 

intensity at different growth rates may also have an influence. 

Synonymous codon usage varies considerably among C. elegans genes, with a single 

major trend in the variation. The frequency of a subset of codons appears to be 

correlated with the level of gene expression (Slenico, Lloyd and Sharp 1994). There 

has a lso been a great deal of interest in the codon usage of parasitic helminths 
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and nematodes (Brugia, Echinococcus, Onchocerca, and Schistosoma). Codon bias has 

been reported but there is no evidence for translational selection (Ellis et af. 1993; 

Ellis et al. 1995; Ellis et al. 1994; Kalinna and McManus 1994). Analysis of the codon 

usage of Schistosoma mansoni found that bias was dependent on the overall base 

composition of the genes analysed (Ellis and Morrison 1995; MiIhon and Tracy 1995; 

Musto et al. 1994). 

The codon usage of chloroplast and mitochondrial genomes differ from the 

codon usage of their host cells in both their rate and patterns of evolution (Bonitz 

et al . 1980; Pfitzinger et al. 1987). The codon usage of psbA, the most highly 

expressed gene in the M. polymorplra chloroplast, is markedly different from other 

chloroplast genes. This has been attributed to selection for optimal translation 

(Morton 1994). 

1.4.5 Initiation and Termination Codon Usage 

There has been a great deal of interest in the evolution of codon usage around 

initiation and termination codons, the base composition, sense codon usage, and 

frequency of amino acids exhibit significant deviations from a random 

distribution, this is accentuated in highly expressed genes (Alffsteinberger and 

Epstein 1994; Brown et al. 1993; Brown et al. 1994; Sharp and Bulmer 1988). 

In E. coli, the 60-80 nucleotides that bracket the gene initiation codon generally 

promote translation. This extends beyond the mere presence of a Shine-Dalgarno 

element followed by a suitable start codon. Some general mechanism must 

protect these against sequestration by long-range base pairing. A reasonable 

guess is that the sequence around start codons is constrained to minimise the 

local structure of the ribosomal binding site to keep translational start sites available 

to ribosomes (de Smit and van Duin 1990a; Jacques and Dreyfus 1990). 

Base composition at silent sites is skewed at the start of genes, the frequency of A is 

higher and G lower in all three codon positions. Some of the codon bias near the 



initiation codon can be explained as amino acid selection, the excision of the N­

terminal methionine is dependent on the length of the following amino acid's side 

chain (Hirel et af. 1989). The N-terminal amino acid can have a large effect on the 

half-life of a protein (Tobais et af. 1991). 

The three standard termination codons have different properties; a very important 

one is the propensity to which a termination signal can be read through. The 

termination codon UAA is the least leaky (Tate 1984), while UGA is most likely to 

promote translational frame shifts (Weiss et al. 1987). The choice of termination 

codon correlates with gene expression level (Sharp et af. 1992). In highly expressed 

genes there is a strong bias for UAA (which is recognised by two release factors 

RF-1 and RF-2) (Sharp and Bulmer 1988). The concentrations of RF-1 and RF-2 

vary with growth rate in E. coli; RF-1 increases from 1,200 to 4,900 copies and RF-2 

from 5,900 to 24,900 copies as growth rate increases. Due to the net increase in the 

cellular mass involved in translation in the cell, this equates to a net 1.5 fold increase 

in the overall concentration of these release factors (Adamski et al. 1994). 

Suppressible mutations have shown that termination efficiency is strongly 

dependent on the 3' context, so much so that the stop signal has been described as a 

four base signal (Brown et a1. 1994). The efficiency of the 12 possible 'four base stop 

signals' (UAAN, UGAN and UAGN) vary Significantly depending on both the stop 

codon and the fourth base, ranging from 80% (UAAU) to 7% (UGAC) (Poole e/ al. 

1995). The rate of release factor selection varied 3D-fold at UGAN stop signals, and 

10-fold for both the UAAN and UAGN series. This correlates with the frequency 

that these signals are found in nature. It also provides a rationale for the presence of 

the strong UAAU signal in many highly expressed genes and the presence of the 

weaker UGAC signal at several recoding sites (Poole, Brown and Tate 1995). 

Preferred stop codon contexts are also found in human genes (Martin 1994). These 

contexts appear similar to those found in E. coli (Arkov et al. 1995). However it is 

not clea r if the identity of the 3' base is determined by genome wide changes in 

G+C composition, or selection to maintain a particular tetranucleotide stop signal 

(Martin 1994). 
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1.4.6 Horizontal Gene Transfer 

It is not yet clear to what ex tent inter-species recombination occurs among 

prokaryotes. Gene transfer is often associated with transposon-like elements or 

insertion sequences (Groisman e/ al. 1992; Groisman e/ al. 1993; Simon e/ al. 1980). 

Before horizontally transferred sequences can be established, they must overcome 

transfer barriers that prevent the delivery of genetic information from a donor cell 

and establishment barriers that block inheritance of newly acquired genes (Matic e/ 

al. 1995). Genes acquired by horizontal transfer often have atypical G+C content, 

codon bias and repetitive elements (Medigue e/ al. 1991), and only approach the 

characteristic codon usage and G+C content of their host after millions of years 

(Groisman e/ al. 1993). 

Medigu" el al. (1991) applied correspondence analysis and cluster analysis to the 

investigation of the codon usage of 780 E. coli genes, and described three classes of 

genes. Class III genes having codon usage that does not reflect the average 

distribution of specific tRNAs, so they have low CAl values. Oligonucleotide 

analysis indicated that in class III many of the rare oligonucleotides of classes II 

and I are evenly distributed (Medigue e/ al. 1991). It was concluded that class 

III genes are mostly comprised of genes that are exchanged horizontally and that 

they represented a significant fraction of the E coli chromosome (Medigue e/ al. 

1991). The classes II and I are similar to grouping identified by Gouy and Gautier 

(1982). The distributio~ of codons was quite unbiased in class III, for example the 

rare codon AUA is used for 26% of lie residues and no codon was used less than 7%. 

Analysis of genes known to be horizontally transferred such as lambda, plasmid and 

transposon genes indicated that they clustered with class III genes (Medigue e/ al. 

1991). 

Perhaps one fifth of E. coli genes undergo continuous exchange with other microbial 

genomes (Borodovsky e/ al. 1995). The majority of genes that have been suggested as 

candidates for horizontal transfer in E. coli are genes whose acquisition presents 

an immediate adaptive advantage; e.g genes encoding cell surface proteins and 
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antibiotic resistance genes (Matic et al. 1994; Matic, Rayssiguier and Radman 1995; 

Smith et al. 1990; Verma and Reeves 1989). Examples include the lac operon 

(Buvinger et al. 1984) and the unluCD operon, required for mutagenic DNA repair 

(Sedgwick et al. 1988). While the unluCD operon is present in both E. coli and S. 

typizinlllrillnl it is highly diverged between the two species (Sharp 1991). 

Other examples of horizontally transferred genes include the a antigen and 

phosphatase gene of S. typhinlurium (Groisman, Saier and Ouchman 1992; Reeves 

1993), and the caUfF operon of Acinetobacter calcoacelicus (Shanley et al. 1994). Genes 

involved in antibiotic resistance have been widely horizontally transferred, 

though this is generally under very intensive selective pressure (Martin et al. 

1992; Spratt e/ al. 1992). 

1.4.6.1 Overlap between E. coli Genes 

In E. coli, genes with a CAl below 0.45, (i.e. lowly biased genes) are much more 

likely to have the preceding gene overlap their start codon, most commonly by one 

or four base pairs. Genes with a CAl greater than 0.45 overlap with the preceding 

gene infrequently and the preceding gene infrequently terminates within 10 base 

pairs. Whether this is due to selection in lowly biased or highly biased genes is 

unclear (Eyre-Walker 1995a). 

1.4.7 Codon Usage and Phylogeny 

As codon usage divergence is correlated with evolutionary distance (Grantham et 

al. 1981; Long and Gillespie 1991; Maruyama et al. 1986), it has been suggested that 

codon usage (Goldman and Yang 1994; Nesti el nl. 1995; Pouwels and Leunissen 

1994) or amino acid usage (Schmidt 1995) can help unravel the evolutionary 

relationships between species. Although phylogenies based on codon usage may 

appear to have practical application, phylogenies are best investigated by 

comparative analysis of homologous sequences (Sharp 1986). 

As rather few genes have been found in many species, it is still not possible to 
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characterize the inter-species variation of codon usage in detail. Codon usage can 

converge in an evolutionary distant species due to similar mutational bias. A 

phylogeny of seven species from the phylum Apicomplexa, based on codon usage 

divergence; has been used to support the hypothesis that codon usage can be used 

to estimate phylogenies (Morrison et al. 1994). Nesti and co-workers (1995) also 

presented a phylogeny based on codon usage divergence, however their paper 

might equally be used as evidence for the drawbacks of such a technique. 

Although parts of their topology were valid, some were erroneous because the 

codon usage of distantly related species had converged. For example, the low G+C 

prokaryotes, S. aureus, and B. subtilis clustered with the low G+C eukaryotes 

Plasmodium fizlciparulll and DichJostelium discoideum, rather than with the other 

prokaryotes. 

1.4.8 Amino Acid Composition 

Though only working with eight E. coli genes, Ikemura (1981b) noted a strong 

positive correlation between amino acid composition and codon bias. This has 

been shown, after hydrophobicity, to be the second strongest trend in the amino 

acid composition of E. coli (Lobry and Gautier 1994). Surprisingly this is a more 

significant trend than aromaticity, amino acid volume, or charge (Lobry and Gautier 

1994). Many highly expressed proteins are quite basic, presumably because many of 

them are ribosomal proteins that must interact with DNA. As growth rate increases 

the basic amino acids Arg and Lys, increase in abundance by 20% and 8% 

respectively, relative to the total amino acid concentration. The aromatic amino acids 

Phe and Tyr decrease by 16% and 23 % respectively (Kurland 1991), this is possibly a 

growth optimisation strategy (Andersson and Kurland 1990). 

1.4.9 Complimentary ORFs 

The presence of "shadow codons" (Grantham et al. 1985) or complimentary codons 

has been found in both human and E. coli genomes (Alffsteinberger 1984). 

Complementary ORFs in coding sequences are not uncommon, but are probably 

artefacts of codon usage due to the relative scarcity in real genes of the codons 
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UUA, UCA, and CUA which are complementary to stop codons and due to an 

excess of RNY codons (Sharp 1985). Randomised sequences have a similar 

frequency of complimentary codons and higher order oligonucleotides (Forsdyke 

1995a; Forsdyke 1995b). It has also been suggested that complimentarily ORFs may 

be due to the wide distribution of inverted repeats in natural DNA sequences 

(Merino et al. 1994). 

1.5 Molecular evolution 

The evidence that natural selection could influence silent changes (Grantham et al. 

1981; Grantham et al. 1980b; Ikemura 1985; Kimura 1983), suggested that in some 

(perhaps many) genes in some (perhaps many) species, silent sites were not neutral 

(Sharp et al. 1993). The corollary of this, is that some synonymous substitutions a re 

effectively neutral and probably accumulate at frequencies approaching the 

mutation rate (Ikemura 1981a; Ikemura 1981b; Ikemura 1985; Ochman and Wilson 

1987b). Analysis of codon usage can infer both the nature and strengths of some of 

the selective forces to which the organism has been exposed (Sharp and Cowe 

1991) . They can reveal the rates and patterns of silent site evolution and allow the 

investigation of how natural selection selects between mutations that (presumably) 

cause very small differences in fitness (Akashi 1995). Weak selection allows non­

adaptive processes to be evident and with a large number of sites under broadly 

similar constraints, it is possible to perform the quantitative analyse of data. With 

the identification of advantageous codons it is possible to predict the relative 

advantage and disadvantage of alternative sequences and perhaps the prediction 

of a completely optimal sequence (Akashi 1995). 

1.5.1 Synonymous Substitution Rates 

Perhaps the most fruitful approach to gaining insight into the process of molecular 

evolution, and a useful means of gauging the functional significance of sites within 

sequences, is the comparison of homologous sequences between closely related 

species (Li and Graur 1991). Silent substitutions normally occur at a much higher 

frequency than non-synonymous substitutions (Kimura 1977; Li et al. 1985b). As the 
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process of substitution is readily identifiable, synonymous mutations have been 

subjected to intense study because they have the potential to reveal many of the 

forces that underlie molecular evolution (Sharp et al. 1995). 

The rate of evolution at synonymous sites has been used to investigate and validate 

some of the predictions of molecular evolution, such as the molecular clock 

hypothesis (Fitch and Strausbaugh 1993; Morton 1994; Wolfe, Sharp and Li 1989). 

The rate of silent substitutions is substantially lower in highly expressed genes 

than in genes expressed at lower expression levels (Ikemura 1985; Sharp 1991; 

Sharp and Li 1987b). The observation that constraint on codon usage reduces silent 

substitution rates and that this constraint can vary between genes, is consistent with 

the predictions of the neutral theory (Kimura 1983). Synonymous substitutions vary 

at a number of different scales of resolution, between genomes, across a single 

genome and within genes. Near the initiation codon of E. coli genes the rate of 

synonymous substitution is lower, suggesting additional selection pressure in 

this region (Eyre-Walker and Bulmer 1993). 

Synonymous substitutions can elevate the rate of substitution in an adjacent 

codon by about 10%; this appears to be unrelated to the level of gene expression 

and has a small ran~e of influence. This may be due to sequence directed 

mutagenesis, recombination and/or selection (Eyre-Walker 1994c). Neighbour 

mutation bias was estimated in E. coli and yeast, where a similar pattern was found 

in complementary sequences in the synonymous usage of A vs. G and U vs. C. 

This reflected a codon context effect on mutation patterns in weakly expressed genes 

(Bulmer 1990). Wide variation in neighbour substitution rates have also been found 

in other species, where again the nearest neighbour base can influence the 

substitution rates (Blake et al. 1992). 

The relationship between codon usage and the rate of substitution at silent 

sites is more complex than just selection for optimal codons. While the increase of 

expression increases the selection pressure on synonymous codons and directly 

reduces observed substitution rates, there is also a decrease in the mutation rate 

(Berg and Martelius 1995). In E. coli this decline in mutation rate appears similar 
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for the lysine family of codons which do not appear to be strongly selected for 

translational efficiency, and for phenylalanine codons, which are selected for 

translational optimality (Eyre-Walker and Bulmer 1995). 

Among the eukaryotes synonymous substitutions have been most extensively 

studied in mammals, where significant variations in K, have been found (Li et aZ. 

1985a). Synonymous substitution rates in mammals are gene specific and correlated 

with frequencies of non- synonymous substitutions. Silent site substitution rates 

between human and murid (mouse and rat) genes are similar for neighbouring 

genes but vary around the genome (Matassi et aZ. 1999). If synonymous 

substitutions are indeed essentially neutral it implies that mutation rates are 

varying systematically (Sharp et aZ. 1995). This is most easily explained when the 

presence of isochores is considered; presumably, the different isochore types have 

different local mutation biases/rates. This in turn may explain why the molecular 

clocks of mammalian genes differ (Wolfe, Sharp and Li 1989). 

By comparing polymorphism and divergence in DrosaphiZa between putatively 

favourable and deleterious codons, it was shown that even weak selection could 

substantially alter ratios of polymorphism to divergence from that expected under 

neutrality (Akashi 1995). 

1.6 Does Codon Usage Regulate Expression? 

Rare codons can be defined based on the overall codon usage, or the codon usage of 

highly biased genes (Kane 1995; Zhang et aZ. 1991). Rare E. coli codons include AGG 

(Arg), AGA (Arg), AUA (De), eGA (Arg), eUA (Leu) and GGA (Gly) (Grosjean and 

Fiers 1982; Sharp et aZ. 1988). The choice of low usage codons is relatively insensitive 

to gross base composition, with some codons (e.g. eGG) relatively infrequent in a 

wide range of species including E. coli, Drosophila, primates and yeast (Zhang, Zubay 

and Goldman 1991). 

The frequency of rare codons is higher in rarely transcribed genes. Often this is 

ascribed to adaptive pressures modulating gene expression. The low level of 
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expression of dnaG, which is co transcribed with the highly expressed rpsU and rpoD 

genes, was attributed to its higher frequency of rare codons, even though it was 

noted that dnaG had a weak ribosomal binding site (Konigsberg and Godson 1983). 

Models where the rate of polypeptide elongation is regulated by the presence of rare 

codons are frequently invoked by molecular biologists to explain their presence. 

Generally these models suppose that stabilising selection operates to maintain a 

certain level of codon usage bias. The models, which have been described by 

Kimura (1983) as pan-selectionist codon usage models, have gained wide 

acceptance. Much of the experimental literature on codon bias appears to be devoted 

to what is accepted as the self evident proposition that rare codons regulate gene 

expression by regulating translation rates (Grosjean and Fiers 1982; Hoekema e/ af. 

1987; Konigsberg and Godson 1983; Robinson e/ al. 1984; Varenne e/ al. 1984). 

Population geneticists frequently challenge these models however, by arguing that 

the presence of rare codons is due to drift randomising codon usage (Bulmer 1991; 

Holm 1986; Ikemura 1985; Kurland 1993; Li 1987; Sharp and Li 1986; Shields 1989). 

There is supporting evidence for the hypothesis that the higher frequency of rare 

codons in lowly expressed genes reflects mutation biases rather than positive 

selection for rare codons. Indeed it is not obvious how pan-selectionist models can 

explain the observed uniform patterns of codon usage (Sharp and Cowe 1991). 

Lowly biased genes display other influences of mutation bias; e.g., codon contexts 

are strongly influenced by neighbouring bases. The frequencies of dinucleotides and 

their complimentary dinucleotides are similar (Bulmer 1990). Rare codons in genes 

with low expression levels are not under strong selective pressures (Sharp and 

Li 1986). Substitutions accumulate as quickly in the regulatory genes, dllaG and arae, 

as in other lowly biased genes (Sharp and Li 1987b). Rather than being 

positively selected in lowly expressed genes, rare codons are under a strong 

negative selection in highly expressed genes. The level of expression determines rare 

codon usage and not vice versa. 

Although many experimental results apparently supported the hypothesis that the 

presence of rare codons directly effects yield of product, their interpretation may be 
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overly simplistic. For instance, Ivanov et al. (1992) demonstrated that the rare 

AGG doublet, which had been reported to have an inhibitory effect in E. coli 

(Robinson et al. 1984), had an equally inhibitory effect whether located 5' or 3' of the 

start codon. Similarly, Brown (1989) observed that part of the pgk gene mutatgenized 

by Hoekema et al. (1987) contained a transcriptional activator. It is also evident that 

small changes in the primary mRNA structure can have large effects on mRNA 

stability (Petersen 1987). Few of the papers on the effect of codon usage on 

expression level take into account any changes in mRNA half-life (Kurland 1991). 

In principle, strings of rare codons could synergistically increase translation time, 

but not translation rate unless they affect the rate of ribosomal binding 

(Sorensen, Kurland and Pedersen 1989). The insertion of nine consecutive low­

usage CUA (Leu) codons immediately downstream of codon 13 of a 313-<:odon test 

mRNA strongly inhibited its translation without apparent effect on translation of 

other mRNAs containing CUA codons (Goldman et al. 1995). In contrast, nine 

consecutive high-usage CUG (Leu) codons at the same pOSition had no 

apparent effect, and neither low nor high-usage codons affected translation when 

inserted after codons 223 or 307. The strong positional effects of the low-usage 

codons could not be explained by differences in stability of the mRNAs or in 

stringency of selection of the correct tRNA. It could be explained by translation 

complexes being less stable near the beginning of a message, slow translation 

through low usage codons early in the message might cause translation 

complexes to dissociate before completing the read through (Goldman et al. 1995). 

The rare UUA codon only affected product yields when located near the start codon 

(Goldman et al. 1995). The inhibitory effect was reduced when positioned more than 

50 codons from the initiation codon, or by overexpression of the argU gene 

(tRNA,'ll UCUjCCU) (Chen and Inouye 1994). This has been interpreted as 

evidence that the increased frequency of less commonly used codons near the start 

of genes plays an important role in the regulation of gene expression (Chen and 

Inouye 1990; Chen and Inouye 1994). 

Some proteins that contain a high percentage of low usage codons have been 
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described as belonging to families where an excess of the protein could be 

detrimental to fitness (Zhang, Zubay and Goldman 1991). Saier (1995) has discussed 

how the inappropriate expression of certain genes might be globaUy regulated by 

altering the pool of tRNAs at different stages of growth. For example, the codon 

usage of genes encoding the photosynthetic apparatus of the Gram-negative purple 

bacterium Rhodobacter spheroides differs from genes encoding the fructose 

pathway (WU and Saier 1991). This may in part be due to different tRNA pools 

under photosynthetic growth relative to heterotrophic growth (Saier 1995). In 

Clostridium acetobutylicum a mutation in the thrA genes (tRNAtJu- ACG) causes loss of 

solventgenesis, the codon ACG is rarely used and largely restricted to genes 

expressed after exponential growth (Saier 1995). 

Streptomyces species can enter a vegetative growth phase, during which they can 

produce antibiotics and other useful secondary metabolites. Mutations, including 

deletions, of the Streptomyces coelicolor bldA gene (tRNAleu UUA) prevent efficient 

phenotypic expression of several genes that are normally expressed during 

vegetative growth and which contain the rare leucine codon UUA (Ueda et al. 1993). 

In wild type ceUs tRNAl,u UUA accumulates in ever- increasing amounts as S. 

coelicolor ages. The deletion mutations of bldA did not prevent vegetative 

growth but stopped mycelium formation and the production of secondary 

metabolites. The presence of UUA codons in recombinant proteins also inhibits 

foreign gene expression in Streptomyces lividans (Ueda et al. 1993) . 

Again, the interpretation of these results is difficult. While there is a higher 

frequency of rare codons near the initiation codon of many regulatory genes there is 

also a higher frequency of rare codons near the initiation codons of highly 

expressed genes (Eyre-Walker and Bulmer 1993). The diffe rentiation of codon 

usage patterns a t different stages of growth is not necessarily a regulatory 

mechanism. It may simply reflect the difference in the mechanisms controlling tRNA 

abundance during exponential and stationary growth phase (discussed above) and a 

consequent adaptation to different tRNA pools. An early investigation involved the 

addition of four rare AGG (Arg) codons near the initiation codon of a reporter gene. 

The yield of product was compared with a control gene that contained four 
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common CGT (Arg) codons at the same positions (Robinson et al . 1984). Under 

conditions of maximum expression levels at least one third less protein was 

synthesised by constructs containing the rare codons, but at lower levels of 

expression the constructs produced a similar yield of products (Robinson et al . 1984). 

1.6.1 Programmed Frame Shifting 

Recoding is the term given to programmed alteration in the reading of the 

genetic code (Gesteland et al. 1992), and is observed in a minority of sequences in 

probably all organisms (Larsen et al. 1996). Where recoding occurs the re are often 

sites associated with elevating the frequency of recoding. The majority of these 

sites are 3' to the shift site, though there have been several 5' s timulators found . 

The first was found in the prjB gene, which encodes release factor 2 (RF-2). The RF-

2 protein mediates polypeptide chain release at UGA and UAA codons. The 

expression of RF-2 is autoregulated (Craigen et al. 1985) the zero frame of the protein 

has a stop codon UGA at the 25th codon. If RF-2 is limiting, the ribosome will +1 

frameshift to allow expression. This phenomenon is also exploited as an assay 

system for the measurement of codon recognition and accuracy (Curran 1995). 

The minimal sequence of prjB mRNA necessary for efficient +1 frameshifting 

includes the frameshift site and an additional crucial Shine Oalgarno (SO) like 

element (Weiss et al. 1987). Located three bases 5' of the CUU shift codon, this SO 

sequence (AGGAGG) is not involved in translational initiation, but pairs with the 

3' end of the elongating ribosome (Weiss et al. 1988). The spacing between this SO 

sequence and the shift site is critical to the frameshifting (Weiss et al. 1987). It seems 

reasonable to infer that the SO interaction acts to stimulate frameshifting by 

decreasing termination (Larsen et al. 1996). 

The translation of the AGG doublet can result in a 50% frame shift (Spanjaard and 

van Ouin 1988). The insertion of between two and five AGG codons six codons 

prior to the termination codon, at high expression levels, increases the production of 

aberrant proteins without affecting mRNA stability (Rosenberg et al . 1993). The yield 

of aberrant product increases as the number of AGG codons increases, this is 

consistent with the hypothesis that at sufficiently high concentrations of AGG-



containing mRNA, all the !RNA AGG is sequestered. Thus translation stalls at the 

AGG codons stimulating frameshift, hop or termination (Rosenberg et al . 1993) . 

1.6.2 Rare Codon Usage may be Correlated with Pause Sites 

Besides affecting the overall rate of translation, synonym choice may be 

involved in influencing fluctuations in the elongation rate along the mRNA. It has 

been suggested that rare codons may be clustered to facilitate ribosomal pausing 

at sites corresponding to protein domain boundaries (McNally e/ al. 1989; Purvis et 

al. 1987). This hypothesis was presented by Purvis e/ al. (1987) was based on the 

observation of an apparent cluster of rare codons in the S. cerevisiae P'Jk gene. This 

region was late r resequenced and was found to be a sequencing artefact, though the 

authors still felt that their theory was still tenable (McNally e/ al. 1989). It has also 

been proposed that translational pausing could favour protein export by increasing 

the time required for translation elongation, thus allowing time for nascent 

polypeptide to be exposed to the cytoplasm and facilitate chaperone binding. 

However the distribution of rare codons is independent of polypeptide length and 

thus does not seem to support the export theory (Collins et al. 1995). 

1.6.3 Codon usage and heterologous gene expression 

E. coli remains a popular choice for the expression of heterologous proteins. The 

presence of rare codons per se does not imply weak expression. Despite the poor 

overlap between the codon usage of Halobacterium Izalobium (70% G+C) and E. coli 

(50% G+C), genes from H. IzalobiulIl can be highly expressed in E. coli (Nassal e/ al. 

1987). Similarly the pepC gene from Lactobacillus delbrueckii ssp. lactis can be over 

expressed in E. coli (Klein e/ al. 1994). In E. coli mutation of the ribosomal binding 

site of atpH can increase its level of expression 20-fold (Rex et al. 1994). An 

oligonucleotide of rare codons within the coding sequence of B. subtilis sspB (small 

acid soluble spore-protein) did not have a discernible effect on yield (Loshon et al. 

1989). The addition of rare AGG codons near the terminus actually enhanced 

expression of chloramphenicol acetyltransferase in E. coli (Gursky and 

Beabealashvilli 1994). The frequency of rare E. coli codons in protozoan parasites had 
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been predicted to have implications for their expression in E. coli (Sayers et al. 1995). 

Despite this, expression of TnJPanosoma genes is up to 20 fold higher in E. coli then in 

their natural genome (Isacchi et al. 1993). 

However, the expression of heterologous genes can be adversely affected by 

unusual codon usage or context (Kane 1995). For example, the expression of bovine 

placental lactogen in E. coli results in a 2 codon frameshift (Kane et al. 1993) and the 

expression of human transferrin in E. coli results in 2% to 4% +1 frameshifting, at a 

CCC-UGA site (de Smit et al. 1994). The presence of rare codons in a recombinant 

gene can be compensated for by either adding the appropriate tRNA, or 

synthesising the gene to remove the rare codons. The expression in E. coli of the 

human granulocyte macrophage stimulating factor was enhanced after argU was 

induced (even though the recombinant protein had only a single AGG codon) 

(Hua et al. 1994). The human rap74 gene (RNA polymerase associating protein) was 

expressed more efficiently in E. coli after codon usage was adjusted, previously there 

are a large number of amino terminal fragments due to frameshifts (Wang et al. 

1994). Similarly altering the codon usage of avidin (Airenne et al. 1994), tropoelastin 

(Martin et al. 1995) and isovaleryl-coa dehydrogenase (Mohsen and Vockley 1995) 

enhanced their expression in E. coli. 

The influence of codon usage on gene expression has also been used as a 

rationale for the choice of recombinant host. Based on the similarity of codon usage 

Bacillus thuringiensis was recommended as a recombinant host for expressing plant 

genes from Brassica (Kumar and Sharma 1995). The codon usage patterns and 

ribosomal binding sites of highly expressed cyanobacterial genes, suggested that the 

cyanobacterium Synechococcus pcc-7942 would be an inappropriate host for the 

expression of the larvicidal B. thuringiensis cryiVB gene (Soltesrak et al. 1995). 

1.7 Codon Usage as a Tool for Gene Prediction 

Knowledge of codon usage preference can be applied to the prediction of open 

reading frames (Borodovsky et al. 1995; Krogh et al. 1994; Staden and Mclachlan 

1982). With the arrival of the large scale sequencing projects, the prediction of gene 
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introns and exons has become of paramount interest. Most of the many modern gene 

prediction programmes use codon usage patterns as well as dinucleotide and 

short oligonucleotide patterns to predict open reading frames (Karlin and 

Cardon 1994). The GeneMark prediction programme (Borodovsky et al. 1994a; 

Borodovsky and McIninch 1993; Borodovsky et al. 1994b) has been used to 

identify the coding sequences from two major shotgun genome sequencing projects 

(Fleischmann et al. 1995; Fraser et al.1995). 

Although modern gene prediction programs can learn from a sample of genes, a 

more in depth knowledge of codon usage variations can greatly improve their 

predictive properties (Borodovsky et al. 1995). Applying GeneMark to the prediction 

of genes in E. coli, found that the detection of class III genes (Medigue et al. 1991) 

was the most difficult and that they were easily overlooked by inappropriate 

parameters. Class III genes could only be identified by GeneMark with any degree 

of accuracy if the programme was trained on a representative sample of class III 

genes, unlike class I and class II genes which can be recognised with a low error rate 

when trained on either set (Borodovsky et al. 1995). 

1.8 Analysis of Codon Usage 

Compilations of codon usage are of limited value due to the complexity of the 

information. Too often, the tabulation of codon usage is the only codon usage 

analysis presented, even when there is enough data to generate an in-depth analysis 

of codon usage variation (Forsburg 1994; Wada et al . 1991; Wada et al. 1992; Winkler 

and Wood 1988). Early analysis of codon usage pooled the codon usage from 

different sets of genes and then calculated and compared the biases (Berger 1978). 

Such analyses required either the a priori grouping of genes or a prohibitive number 

of pair wise comparisons. The Significance of such tests was strongly influenced by 

sample size and was dependent on the assumptions used for the groupings. As 

the number of sequenc~d genes increased this type of analysis became impractical. A 

major advance in the analyses of codon usage was pioneered by Grantham and 

co-workers, when they applied multivariate statistical techniques to the 
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investigation of codon usage (Grantham, Gautier and Gouy 1980a; Grantham e/ al. 

1980b). A second major advance was the application of simple indices that could 

summarise optimal codon usage into useful descriptive variables, facilitating the 

comparison of codon usage patterns (Bennetzen and Hall 1982; Gouy and Gautier 

1982). 
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Chapter 2 

Proposal 

Degeneracy of the genetic code allows synonymous codons to code for the same 

amino acid. In a particular species several synonymous codons are utilized more 

frequently than others during protein synthesis. The pattern of choices between 

synonymous codons varies from one gene to another according to the type of 

genome the gene occurs in. Thus codon usage is mainly a genome strategy, contrary 

to amino acid usage in proteins. This non randomness in the utilization of the 

synonymous codons is believed to be arisen from the mutational biases and various 

selective forces. It is argued that the bias in synonymous codon usage observed in 

unicellular organisms is due to a balance between the forces of selection and 

mutation in a finite population, with greater bias in highly expressed genes 

reflecting stronger selection for efficiency of translation. A population genetic model 

is developed taking into account population size and selective differences between 

synonymous codons. A biochemical model is then developed to predict the 

magnitude of selective differences between synonymous codons in unicellular 

organisms in which growth rate (or possibly growth yield) can be equated with 

fitness. Selection can arise from differences in either the speed or the accuracy of 

translation. A model for the effect of speed of translation on fitness is considered in 

detail, a similar model for accuracy more briefly. The model is successful in 

pred icting a difference in the degree of bias at the beginning than in the rest of the 

gene under some circumstances, as observed in Escherichia coli, but grossly 

overestimates the amount of bias expected. G+C composition of the genome is a 

vital factor for codon usage variation. This variation mostly lies in the third poSition 

of the codons «20% to >90% G+C), as it is immune to changes. GC-rich organisms 

tend to prefer GC-containing codons over AT-containing ones. Consequently each 

organism has their optimal and nonoptimal codons. 

Bacteria can acquire foreign genes through HGT (horizontal gene transfer). 

Bacteriophages are the major player in the HGT phenomenon. Bacteriophage can 
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mobilize genetic material between distantly related bacterial species. At the time of 

introduction into the recipient host bacterium, the foreign genes tend to retain the 

characteristics of the donor bacterium and it may vary significantly from the native 

genes of the recipient bacterium in terms of optimal codon usage. For the detection 

of the horizontally transferred foreign genes various parameters of the codon usage 

such as relative adaptiveness (RA), mean difference of RA, codon adaptation index 

(CAl), synonymous substitution rate (SSR) between codons can be used. CAl is a 

measure of similarity of a gene's synonymous codon usage to that of a standard set 

of highly expressed genes for that organism. The mean deference (MD) of the 

relative adaptiveness (RA) of the codons of the foreign genes from that of the native 

genes give us a clue about by what extent the foreign gene varies from the native 

genes in a host bacterium. Here we present a detailed analysis of a selected set of 

parameters such as RA, MD of RA, CAl, and SSR of the codon usage pattern of the 

six phage encoded toxin genes. These are cholera toxin, shiga toxin, neurotoxin Cl, 

enterotoxins type A, cytotoxin and diphtheria toxin. To the best of our knowledge 

these parameters of the codon usage has not been utilized previously in predicting 

the time of acquisition of foreign genes. In previous method the rate of horizontal 

gene transfer was estimated, but not their evolutionary time of acquisition. In this 

study we proposed a hypothesis involving the conceptual relationship between the 

evolutionary time of acquisition of the foreign genes and the selected set of 

parameters of the codon usage and adopt a novel approach for the prediction of the 

comparative time of the acquisition of the foreign genes on the basis of the analyses 

the selected parameters. 

Proposal 46 



3.1.1 Codon usage indices 

Chapter 3 

Mathematical Indices 

This document describes the indices calculated by CodonW, by default only the 

G+C content of the sequence is reported. The others being dependent on the genetic 

code selected. More than one index may be calculated at the same time. 

3.1.2 Codon Adaptation Index (CAl) (Sharp and Li 1987). 

CAl is a measurement of the relative adaptiveness of the codon usage of a gene 

towards the codon usage of highly expressed genes. The relative adaptiveness (w) of 

each codon is the ratio of the usage of each codon, to that of the most abundant 

codon for the same amino acid. The relative adaptiveness of codons for albeit a 

limited choice of species, can be selected from Menu 3. The user can also input a 

personal choice of values. The CAl index is defined as the geometric mean of these 

relative adaptiveness values. Non-synonymous codons and termination codons 

(dependent on genetic code) are excluded. 

To prevent a codon absent from the reference set but present in other genes from 

having a relative adaptiveness value of zero, which would cause CAl to evaluate to 

zero for any genes which used that codon; it was suggested that absent codons 

should be assigned a frequency of 0.5 when estimating w(Sharp and Li 1987). An 

alternative suggestion was that w should be adjusted to 0.01 where otherwise it 

would be less than this value (Bulmer 1988). CodonW does not adjust the w value if 

a non-zera-input value is found; zero values are assigned a value of 0.01. 

3.1.3 Frequency of Optimal codons (Fop) (Ikemura 1981). 

This index, is the ratio of optimal codons to synonymous codons (genetic code 

dependent) . Optimal codons for several species are in-built and can be selected 

using Menu 3. By default, the optimal codons of E. coli are assumed. The user may 

also enter a personal choice of optimal codons. If rare synonymous codons have 

been identified, the re is a choice of calculating the original Fop index or a modified 
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Fop index. Fop values for the original index are always between 0 (where no optimal 

codons are used) and 1 (where only optimal codons are used) . When calculating the 

modified F op index, negative values are adjusted to zero. 

3.1.4 Codon Bias Index (CBI) (Bennetzen and Hail 1982). 

Codon bias index is another measure of directional codon bias, it measures the 

extent to which a gene uses a subset of optimal codons. CBI is similar to Fop as used 

by Ikemura, with expected usage used as a scaling factor. In a gene with extreme 

codon bias, CBI will equal 1.0, in a gene with random codon usage CBI will equal 

0.0. Note that it is possible for the number of optimal codons to be less than expected 

by random change. This results in a negative value for CBI. 

3.1.5 The effective number of codons (NC) (Wright 1990). 

This index is a sinlple n1easure of overall codon bias and is analogous to the effective 

number of a lleles measure used in popula tion genetics. Knowledge of the optimal 

codons or a reference set of highly expressed genes is unnecessary. Initially the 

homozygosity for each amino acid is estimated from the squared codon frequencies 

(see Wright 1990). 

If amino acids a re rare or missing, adjustments must be made. When there are no 

amino acids in a synonymous family, Nc is not calculated as the gene is either too 

short or has extremely skewed amino acid usage (Wright 1990). An exception to this 

is made for genetic codes where isoleucine is the only 3-fold synonymous amino 

acid, and is not used in the protein gene. The reported value of Nc is always 

between 20 (when only one codon is effectively used for each amino acid ) and 61 

(when codons are used randomly). If the calculated Nc is greater than 61 (because 

codon usage is more evenly distributed than expected), it is adjusted to 61. 

3.1.6 G+C content of the gene 

D The frequency of nucleotides that are guanine or cytosine. 

3.1.7 G+C content 3rd position of synonymous codons (GC3.) 

The fraction of codons, tha t are synonymous at the third codon position, w hich have 
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either a guanine of cytosine at that third codon position. 

3.1.8 Base composition at silent sites. 

Selection of this option calculates four separate indices, i.e. Go" Co" A;" & To,. 

Although correlated with GCo" this index is not directly comparable. It quantifies 

the usage of each base at synonymous third codon positions. When calculating GCo, 

each synonymous amino acid has at least one synonym with G or C in the third 

position. Two or three fold synonymous amino acids do not have an equal choice 

between bases in the synonymous third position. The index A3s is the frequency that 

codons have an A at their synonymous third position, relative to the amino acids 

that could have a synonym with A in the synonymous third codon position. The 

codon usage analysis of Caenorhabditis elegans identified a trend correlated with the 

frequency of G3s. Though it was not clear whether it reflected variation in base 

composition (or mutational biases) among regions of the C. e/egans genome, or 

another factor (Stenico et al. 1994). 

3.1.9 Length silent sites (Lsil). 

o Frequency of synonymous codons. 

3.1.10 Length amino acids (Laa). 

o Equivalent to the number of translatable codons. 

3.1.11 Hydropathicity of protein 

The general average hydropathicity or (GRAVY) score, for the hypothetical 

translated gene product. It is calculated as the arithmetic mean of the sum of the 

hydropathic indices of each amino acid (Kyte and Doolittle 1982). This index has 

been used to quantify the major COA trends in the amino acid usage of E. coli genes 

(Lobry and Gautier 1994). 

3.1.12 Aromaticity score 

The frequency of aromatic amino acids (Phe, Tyr, Trp) in the hypothetical translated 

gene product. The hydropathicity and aromaticity protein scores are indices of 

amino acid usage. The strongest trend in the variation in the amino acid composition 
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of E. coli genes is correlated with protein hydropathicity, the second trend is 

correlated with gene expression, while the third is correlated with aromaticity 

(Lobry and Gautier 1994). The variation in amino acid composition can have 

applications for the analysis of codon usage. If total codon usage is analysed, a 

component of the variation will be due to differences in the amino acid composition 

of genes. 



4.1 Materials 

4.1.1 Bacterial Strains 

4.1.1.1 Vibrio choleare 01 

Chapter 4 

Methods and materials 

Vibrio cho/erae, a Gram-negative bacterium belonging to the V-subdivision of the 

family Proteobacteriaceae is the etiologic agent of cholera, a devastating diarrheal 

disease which occurs frequently as epidemics. Any bacterial species encountering a 

broad spectrum of environments during the course of its life cycle is likely to 

develop complex regulatory systems and stress adaptation mechanisms to best 

survive in each environment encountered . Toxigenic V. cho/erae, which has evolved 

from environmental nonpathogenic V. cholerae by acquisition of virulence genes, 

represents a paradigm for this process in that this organism naturally exists in an 

aquatic environment but infects human beings and cause cholera. The V. cho/erae 

genome, which is comprised of two independent circular mega-replicons, carries the 

genetic determinants for the bacterium to survive both in an aquatic environment as 

well as in the human intestinal environment. Pathogenesis of V. cho/erae involves 

coordinated expression of different sets of virulence associated genes, and the 

synergistic action of their gene products. Although the acquisition of major 

virulence genes and association between V. cho/erne and its human host appears to 

be recent, and re flects a simple pathogenic strategy, the establishment of a 

productive infection involves the expression of many more genes that are crucial for 

survival and adaptation of the bacterium in the host, as well as for its onward 

transmission and epidemic spread. While a few of the virulence gene clusters 

involved directly with cholera pathogenesis have been characterized, the potential 

exists for identification of yet new genes which may influence the stress adaptation, 

pathogeneSiS, and epidemiological characteristics of V. cho/erne. Coevolution of 

bacteria and mobile genetic elements (plasmids, transposons, pathogenicity islands, 

and phages) can determine environmental survival and pathogenic interactions 

between bacteria and their hosts. Besides horizontal gene transfer mediated by 
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genetic elements and phages, the evolution of pathogenic V. cholerae involves a 

combination of selection mechanisms both in the host and in the environment. The 

occurrence of periodic epidemics of cholera in endemic areas appear to enhance this 

process. 

Vibrio cholera. 
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Figure 1: Classification of Vibrio dlOlerae serogroups into epidemic and non-epidemic groups is shown; 
the respective biotypes within a serotype are also represented. The 01 and 0139 serogroups are 
currently the only ones associated with epidemic cholera. 

4.1.1.2 Pseudomonas aenlginosa 

Pseudomonas aeruginosa is a versatile Gram-negative bacterium that grows in soil, 

coastal marine habitats, and on plant and animal tissues. Pseudomonas aeruginosa 

is a ubiquitous environmental bacterium that is one of the top three causes of 

opportunistic human infections. People with cystic fibrosis, burn victims, and other 

patients in intensive care units are particularly at risk of disease resulting from P. 

aeruginosa infection. A major factor in its prominence as a pathogen is its intrinsic 

resistance to antibiotics and disinfectants. At 6.3 million base pairs, this is the largest 

bacterial genome sequenced, and the sequence provides insights into the basis of the 

versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger 

Methods and materials 52 



genome size and environmental adaptability, P. aeruginosa contains the highest 

proportion of regulatory genes observed for a bacterial genome and a large number 

of genes involved in the catabolism, transport and efflux of organic compounds as 

well as four potential chemotaxis systems. 

4.1.1.3 Staphylococcus aureus 

Natural populations of Staphylococcus are mainly associated with the skin, skin 

glands and mucous membranes of warm-blooded animals. Staphylococcus aureus, the 

type organism for the genus, is a Gram-positive coccus occurring Singly or in pairs, 

in which division occurs in more than one plane, giving rise to characteristic 

clusters. It is a facultative anaerobe with an overall G+C content of 32-36%, 

phylogenetically related to B. subtilis (see Figure 4-1). It is a pathogen in a wide 

range of infections including furuncles, carbuncles, wound infections, toxic shock 

syndrome, food poisoning (via enterotoxins), and mastitis in man and domestic 

animals. Most strains possess the species-specific protein A, surface-bound and 

secretory coagulase and DNAse. Acid is produced aerobically and anaerobically by 

most strains when grown with lactose as a sole carbohydrate source. At least four 

different exotoxins (u-j}-y and 6-hemolysins) are produced, with some strains also 

producing bacteriocins. DNA/DNA hybridisation studies of strains of S. aureus 

have shown that they have not diverged by more than 3%, but they have also 

confirmed that S. aureus is not closely related to other Staphylococcus species (Kloos 

and Schleifer 1986). 

4.1.1.3.1 Analysis of Codon usage of S. aureus. 

The codon usage of S. aureus was examined using a similar protocol to that 

described for L. lactis. All annotated coding sequences for both species were 

extracted from GenBank release 95. This produced a 739 sequence dataset for S. 

aureus, those sequences which were partial or likely to have been horizontally 

transferred using the criteria described above were removed. The lac operon genes 

were also removed. There was an unusually large amount of sequence redundancy 

in the original dataset due to the presence of numerous copies of sequences 

associated with strain-specific virulence determinants of S. aureus. This process 

reduced the dataset to 179 genes. As expected for a Low G+C species there is a 
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predominance of A/Vending codons. 

E. coli 

Synechocystis 

Synechococclls 

B. sllbti lis 

S. allrellS 

S. mlltans 

L. lactis 

Figure 2: Diagramma tic representation of the relationship between species analysed in this thesis and E. 
coli and B. slIbtilis. 

4.1.1.4 Escherichia coli 0157 

Escherichia coli 0157:H7 is one of hundreds of strains of the gram-negative 

bacillus E. coli. Most strains are harmless, colonizing the intestines of healthy 

humans and animals, where they uppress the growth of pathogenic bacterial 

species and synthesize appreciable amounts of vitamin K and vitamin B 

complex. But a few strains cause gastroenteritis in humans by 4 mechanisms: 

adherence to small-bowel mucosa, direct invasion of mucosal cells, and 

disruption of the microvillous brush border and toxin release. The class 

enterohemorrhagic E. coli, which includes E. coli 0157:H7, produces 

hemorrhagic colitis by elaborating one or more cytotoxins closely related to 

the Shigella toxin. These toxins, variably called Shiga's toxins or verotoxins, 

damage intestinal epithelium and appear to possess neurotoxic and 

enterotoxic properties.l E. coli 0157:H7 was not recognized as a human 
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pathogen until 1982, when the serotype was identified in stool specimens 

from American patients with bloody diarrhea.2 Since then at least 65 

outbreaks of the infection have been reported, 3 most recently in Walkerton, 

ant., where at least 7 residents died after drinking contaminated municipal 

water.4 Most outbreaks occur after people eat undercooked ground beef that 

is likely contaminated during slaughtering and subsequent meat processing. 

Outbreaks have also been caused by unpasteurized milk and similar 

products. 

4.1.1.5 Clostridium botulinum 

Clostridium botulinum (c. botulinum) is a spore-forming bacterium that 

produces a very powerful neurotoxin that causes botulism. The toxin is 

among the most toxic of all naturally occurring substances. Botulism is 

usually associated with consumption of the toxin in food. However, in rare 

cases the toxin can be produced in infected wounds or in the intestinal tracts 

of young infants. 

C. botulinum spores can be found in soil and are very resistant to heat and 

other treatments. Because naturally occurring levels of spores are low, growth 

is required to produce toxin. C. botulinum grows under anaerobic (no oxygen) 

conditions. 

4.1.1.6 Corynebacterium diphtheriae 

Corynebacteria are Gram-positive, aerobic, nonmotile, rod-shaped bacteria 

classified as Actinobacteria. Corynebacteria are related phylogenetically to 

mycobacteria and actinomycetes. They do not form spores or branch as do the 

actinomycetes, but they have the characteristic of forming irregular, club­

shaped or V-shaped arrangements in normal growth. They undergo snapping 

movements just after cell division, which brings them into characteristic forms 

resembling Chinese letters or palisades. 
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The genus Corynebacterium consists of a diverse group of bacteria including 

animal and plant pathogens, as well as saprophytes. Some corynebacteria are 

part of the normal flora of humans, finding a suitable niche in virtually every 

anatomic site, especially the skin and nares. The best known and most widely 

studied species is Corynebacterium diphtheriae, the causal agent of the 

disease diphtheria. 
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Figure 3: Stained Conj1l£bacterilllll cells. The "barred" 
appearance is due to the presence of polyphosphate 
inclusions called metachromatic granules . Note also 
the characteristic "Chinese-letter" arrangement of 
cells. 

milder form of diphtheria can be restricted to the skin. 

Diphtheria is a contagious disease spread by direct physical contact or 

breathing aerosolized secretions of infected individuals. Once quite common, 

diphtheria has largely been eradicated in developed nations through wide­

spread use of the OPT vaccine. For example, in the U.s., between 1980 and 

2004 there were 57 reported cases of diphtheria. However, it remains 

somewhat of a problem worldwide (3,978 reported cases to WHO in 2006) in 

the face of efforts to achieve global vaccination coverage. 

Diphtheria is a serious disease, with fatality rates between 5% and 10%. In 

children under 5 years and adults over 40 years, the fatality rate may be as 

much as 20%. Outbreaks, although very rare, still occur worldwide, even in 
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developed nations. Following the breakup of the former Soviet Union in the 

late 1980s, vaccination rates in the constituent countries fell so low that there 

was a surge in diphtheria cases. In 1991 there were 2,000 cases of diphtheria in 

the USSR. By 1998, according to Red Cross estimates, there were as many as 

200,000 cases in the Commonwealth of Independent States, with 5,000 deaths. 
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4.1.2 Toxin Genes 

4.1.2.1 Cholera toxin 

Cholera toxin (sometimes abbreviated to CTX, Ctx, or CT) is a protein 

complex secreted by the bacterium Vibrio cholerae. CTX is responsible for the 

harmful effects of cholera infection. 

4.2.2.1.1 Cholera toxin Structure 

The cholera toxin is an oligomeric complex made up of six protein subunits: a 

single copy of the A subunit (part A), and five copies of the B subunit (part B). 

The two parts are connected by a disulfide bond. The three-dimensional 

structure of the toxin was determined using X-ray crystallography by Zhang 

et al. in 1995. 

The five B subunits-each weighing 12 kDa, and all coloured blue in the 

accompanying figure-form a five-membered ring. The A subunit has two 

important segments. The Al portion of the chain (CT AI, red) is a globular 

enzyme payload that ADP-ribosylates G proteins, while the A2 chain (CTA2, 

orange) forms an extended alpha helix which seats snugly in the central pore 

of the B subunit ring. 

This structure is similar in shape, mechanism, and sequence to the heat-labile 

enterotoxin secreted by some strains of the Escherichia coli bacterium. 

4.1.2.1.2 Mechanism of poisonous action on humans 

The pentameric part B of the toxin molecule binds to the surface of the 

intestinal epithelium cells. Part A detaches from the pentameric part upon 

binding, and gets inside the cell via receptor-mediated endocytosis. Once 

inside the cell, it permanently ribosylates the Gs alpha subunit of the 

heterotrimeric G protein resulting in constitutive cAMP production. This in 
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tum leads to secretion of H20, Na+, K+, Cl-, and HC03- into the lumen of the 

small intestine resulting in rapid dehydration. 

4.1.2.1.3 Origin of Cholera toxin 

The gene encoding the cholera toxin is introduced into V. cholerae by 

horizontal gene transfer. Virulent strains of V. cholerae carry a variant of 

lysogenic bacteriophage called CTXf or CTXcp. 

4.1.2.1.4 Working Mechanism of Cholera toxin 

Once secreted, the B subunit ring of CTX will bind to GMl gangliosides on 

the surface of the host's cells. After binding takes place, the entire crx 
complex is internalised by the cell and the CTAl chain is released by the 

reduction of a disulfide bridge. 

CTAl is then free to bind with a human partner protein called ADP­

ribosylation factor 6 (Arf6); binding to Arf6 drives a change in the 

conformation (the shape) of CT Al which exposes its active site and enables its 

catalytic activity. 

The CTAl fragment catalyses ADP ribosylation from NAD to the regulatory 

component of adenylate cyclase, thereby activating it. Increased adenylate 

cyclase activity increases cyclic AMP (cAMP) synthesis causing massive fluid 

and electrolyte efflux, resulting in diarrhea. 

4.1.2.1.5 The Actions of Cholera Toxin 

When cholera toxin is released from the bacteria in the infected intestine, it 

binds to the intestinal cells known as enterocytes (epithelial cell in above 

diagram) through the interaction of the pentameric B subunit of the toxin with 

the GMl ganglioside receptor on the intestinal cell, triggering endocytosis of 

the toxin. Next, the AlB cholera toxin must undergo cleavage of the Al 

domain from the A2 domain in order for Al to become an active enzyme. 

Once inside the enterocyte, the enzymatic Al fragment of the toxin A subunit 
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enters the cytosol, where it activates the G protein Gsa through an ADP­

ribosylation reaction that acts to lock the G protein in its GTP-bound form, 

thereby continually stimulating 

adenylate cyclase to produce 

cAMP. The high cAMP levels 

activate the cystic fibrosis 

transmembrane conductance 

regulator (CFTR), causing a 

dramatic efflux of ions and water 

from infected enterocytes, 

leading to watery diarrhoea. 

One area of anti-diarrhoea 

treatment lies in the stimulation 

of enkephalins, which regulate 

Figure 4: A, B (cholera toxin subunits); GMI (GMI 
ganglioside receptor); Gsa (G protein); AC (adenylate 
cyclase); G; (G protein); cAMP (cyclic AMP); CFfR 
(cystic fibrosis transmembrane conductance 
rp 0111 .:l tf'lr' 

intestinal secretion by acting directly on enterocytes. Enkephalins bind to the 

opioid receptors on enterocytes, which act through G proteins to inhibit the 

stimulation of cAMP synthesis induced by cholera toxin, thereby directly 

controlling ion transport. 

4.1.2.1.6 Applications of Cholera toxin 

Because the B subunit appears to be relatively non-toxic, researchers have 

found a number of applications for it in cell and molecular biology. It is 

routinely used as a neuronal tracer. 

GMl gangliosides are found in lipid rafts on the cell surface. B subunit 

complexes labelled with fluorescent tags or subsequently targeted with 

antibodies can be used to identify rafts. 

4.1.2.1.7 Diversity in Cholera Strains 

The effects of cholera involve the actions of other Vibrio clto/erae toxins that aid 

the pathogen in its colonisation, coordinated expression of virulence factors, 
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and toxin action. These additional proteins include zona occludens toxin (zot, 

involved in Vibrio cholerae invasion by acting to decrease intestinal tissue 

resistance), accessory cholera toxin (ace, increases fluid secretion), toxin­

coregulated pilus (tcpA, essential colonisation factor and receptor for the 

CTXf phage), NAG-specific heat-labile toxin (st), and outer membrane porin 

proteins (ompU and ompT). The expression of virulence factors is controlled 

by the transcriptional factors ToxR, TcpP and ToxT. Different strains of Vibrio 

eholerae produce differing sets and amounts of these auxiliary toxins, which in 

tum affect the clinical symptoms of cholera and its responsiveness to 

treatment. 

For example, the cholera outbreak in Russia in 1942 was caused by the El Tor 

biotype strain of Vibrio ellolerae, rather than the classical biotype that caused 

the pandemics in the 19th and early 20th centuries. The El Tor biotype can 

carry several extra copies of CTXf bacteriophage that contains the toxin genes 

ctxAB (encodes cholera toxin A and B subunits), zot (encodes zona occludens 

toxin) and ace (encodes accessory cholera toxin), leading to an increase in 

cholera toxin production. The El Tor biotype can also produce haemolysin, 

which is capable of lysing red blood cells by attacking their membranes. In 

addition, unlike the classical biotype, the El Tor biotype generates novel toxin 

strains through CTXf phage conversion. These El Tor strains produce 

different, milder clinical symptoms, with many patients showing 

asymptomatic cholera not accompanied by dehydration. 

4.1.2.2 Shiga toxin 

Shiga toxins are a family of related toxins with two major groups, Stx1 and 

Stx2, whose genes are considered to be part of the genome of lambdoid 

prophages. The toxins are named for Kiyoshi Shiga, who first described the 

bacterial origin of dysentery caused by Shigella dysenteriae. The most 

common sources for Shiga toxin are the bacteria S. dysenteriae and the 
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Shigatoxigenic group of Escherichia coli (STEC), which includes serotype 

0157:H7 and other enterohemorrhagic E. coli. 

4.1.2.2.1 Nomenclature of Shiga toxin 

There are many terms that microbiologists use to describe Shiga toxin and 

differentiate between different forms of it. Many of these terms are used 

interchangeably. 

1. Shiga toxin (Stx) - true Shiga toxin is produced by Shigella dysenteriae. 

2. Shiga-like toxin 1 and 2 (SLT-l and 2 or Stx-l and 2) - the Shiga toxins 

produced by some E. coli strains. Stx-l differs from Stx by only 1 amino 

acid. Stx-2 shares 56% sequence homology with Stx-I. 

3. Cytotoxins - an archaic denotation for Stx, used in a broad sense. 

4. Verocytotoxins - a seldom used denotation for Stx, from the 

hypersensitivity of Vero cells to Stx. 

4.1.2.2.2 Structure of Shiga toxin 

The toxin has two subunits-designated A and B-and is one of the AB5 

toxins. The B subunit is a pentamer that binds to specific glycolipids on the 

host cell, specifically globotriaosy1ceramide (Gb3). Following this, the A 

subunit is internalised and cleaved into two parts. The Al component then 

binds to the ribosome, disrupting protein synthesis. Stx-2 has been found to 

be approximately 400 times more toxic (as quantified by LD50 in mice) than 

Stx-I. 

GbJ is, for unknown reasons, present in greater amounts in renal epithelial 

tissues, to which the renal toxicity of Shiga toxin may be attributed. Gb3 is 

also found in CNS neurons and endothelium, which may lead to 

neurotoxicity. 

The toxin requires highly specific receptors on the cells' surface in order to 

attach and enter the cell; species such as cattle, swine, and deer which do not 



carry these receptors may harbor toxigenic bacteria without any ill effect, 

shedding them in their feces, from where they may be spread to humans. 

4.1.2.2.3 Mechanism 

Shiga toxins act to inhibit protein synthesis within target cells by a mechanism 

similar to that of ricin toxin produced by Ricinus communis. After entering a 

cell, the protein functions as an N-glycosidase, cleaving several nucleobases 

from the RNA that comprises the ribosome, thereby halting protein synthesis. 

4.1.2.3 Neurotoxin C1 

Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and 

cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng/kg, 

they pose a biological hazard to humans and a serious potential biD-weapon 

threat. On the other hand, BoNTs have become a powerful therapeutic tool in 

the treatment of a variety of neurological, ophthalmic, and other disorders 

manifested by abnormal, excessive, or inappropriate muscle contractions. 

Experimental studies are also underway that explore the use of BoNTs in the 

management of chronic pain, such as headache and migraine. BoNTs bind 

with high specificity at neuromuscular junctions and they impair exocytosis 

of synaptic vesicles containing acetylcholine through specific proteolysis of 

SNAREs which constitute part of the synaptic vesicle fusion machinery. The 

molecular details of the toxin-cell recognition have been elusive. 

4.1.2.3.1 Biochemical mechanism of toxicity 

The heavy chain of the toxin is particularly important for targeting the toxin 

to specific types of axon terminals. The toxin must get inside the axon 

terminals in order to cause paralysis. Following the attachment of the toxin 

heavy chain to proteins on the surface of axon terminals, the toxin can be 

taken into neurons by endocytosis. The light chain is able to cleave 
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endocytotic vesicles and reach the cytoplasm. The light chain of the toxin has 

protease activity. The type A toxin proteolytically degrades the SNAP-25 

protein, a type of SNARE protein. The SNAP-25 protein is required for the 

release of neurotransmitters from the axon endings. Botulinum toxin 

specifically cleaves these SNAREs, and so prevents neuro-secretory vesicles 

from docking/fusing with the nerve synapse plasma membrane and releasing 

their neurotransmitters. 

Though it affects the nervous 

system, common nerve agent 

treatments (namely the injection 

of atropine and 2-pam-chloride) 

will increase mortality by 

enhancing botulin toxin1s 

mechanism of toxicity. Attacks 

involving botulinum toxin are 

distinguishable from those 

involving nerve agent in that 

NBC detection equipment (such 

as M-8 paper or the rCAM) will 

Figure 5: Target molecules of botulinum 
(BoNl) and tetanus (TeNT) toxins inside the 
axon terminal. 

not indicate a "positive" when a sample of the agent is tested. Furthermore, 

botulism symptoms develop relatively slowly, over several days compared to 

nerve agent effects, which can be instantaneous. 

4.1.2.4 Enterotoxins type A 

Superantigens (SAgs) are bacterial and viral proteins that share the ability to 

activate a large fraction of T-lymphocytes (Marrack and Kappler, 1990). The 

staphylococcal enterotoxins are the best characterized of the SAgs. They have 

been shown to bind as unprocessed proteins to major histocompatibility 

complex (MHC) class II molecules on antigen presenting cells, and 
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subsequently activate T -cells through interaction with the variable region of 

the T-cell receptor a-chain (TCR-Vp) encoded by certain families of TCR-Vf 

genes (Marrack and Kappler, 1990). This results in the activation of between 2 

and 15% of all T-cells ultimately leading to proliferation, production of a 

variety of cytokines as well as expression of cytotoxic activity (see review 

edited by Mbller, 1993). 

Staphylococcal enterotoxins (SEs) are a major cause of food poisoning and 

bacterial Gram-positive shock in humans. Excessive induction of cytokines 

has been implicated as a central pathogenic factor in SAg-related toxicity. 

SEs can be divided into two groups based on sequence homology comprising 

SEA/SED/SEE and SEB/SEC 1-3 (Marrack and Kappler, 1990; Ren et ai., 

1994). The sequence homology ranges from 25 to 83% with SEA and SEE 

being the most closely related (Betley et ai., 1992). In addition, SEA and SEE 

have been shown to share the ability to bind zinc which has been proposed to 

be crucial for their interaction with MHC class II (Fraser et ai., 1992). 

Recent studies have suggested that SEA has two distinct MHC class II binding 

regions (Hedlund et ai., 1991; Betley et ai., 1992; Fraser et ai., 1992; Abrahmsen 

et ai., 1995). These consist of a moderate affinity site, which is Zn2+ 

dependent, and a lower affinity site which resembles the binding site found in 

SEB. Alanine substitution mutagenesis of SEA has revealed that the two 

binding sites cooperate to form a strong MHC class lI-SEA interaction 

(Abrahmsen et ai., 1995). 

4.1.2.5 Cytotoxin 

Pseudomonas aeruginosn is an opportunistic pathogen that is capable of 

producing life-threatening disease in immunocomprornised individuals. 

Those who are especially at risk include patients with severe burns, cancer, 

diabetes, or cystic fibrosis. In those with cystic fibrosis, P. aeruginosa can cause 
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persistent lung infections, indicating that the host immune system is 

incapable of clearing the bacteria. As macrophages represent one of the 

primary lines of defense against infections, it has been suggested that these 

phagocytes may not be functioning correctly in the lungs of patients with 

cystic fibrosis. One of the ways in which P. aeruginosa may protect itself from 

such basic host defenses is through production of a cytotoxin. P. aeruginosa 

cytotoxin, previously named leukocidin, has been isolated from autolysates of 

P. aeruginosa cells and appears to be associated with all isolates of P. 

neruginosa. It inactivates eucaryotic cells by forming lesions or pores in the 

membrane of target cells of the immune system. This results in increased 

plasma membrane permeability to small molecules and ions. Such 

intoxication has been documented in granulocytes, endothelial cells, Ehrlich 

ascites tumor cells, and human leukemic cells. In the case of granulocytes, 

treatment with the cytotoxin causes an inhibition of the ability of the 

granulocytes to kill P. aeruginosa cells. The present study was designed to 

determine the bacterial cellular localization of cytotoxin and to examine its 

effect on macrophages. Toward this end, various bacterial cell compartments 

were tested for the presence of cytotoxin, and osmotic shock fluid 

(periplasmic contents) and a purified preparation of cytotoxin were observed 

for their interaction with mouse macrophage cell line P388Dl. Results of 

previous studies have indicated that this cell line is an appropriate model for 

unelicited mouse peritoneal macrophages and cultured human peripheral 

blood monocytes in the assessment of opsonized phagocytosis of P.aeruginosa. 

4.1.2.6 Diphtheria toxin 

Diphtheria toxin is an exotoxin secreted by Corynebacterium diphtheriae, the 

pathogen bacterium that causes diphtheria. 

4.1.2.6.1 Structure 

Diphtheria toxin is a single polypeptide chain of 535 amino acids consisting of 

two subunits linked by disulfide bridges. Binding to the cell surface of the less 
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stable of these two subunits allows the more stable part of the protein to 

penetrate the host cell. 

4.1.2.6.2 Mechanism 

It catalyzes the ADP-ribosylation of eukaryotic elongation factor-2 (eEF2), 

inactivating this protein. It does so by ADP-ribosylating the unusual amino 

acid diphtharnide. In this way, it acts as a RNA translational inhibitor. 

The exotoxin A of Pseudomonas aeruginosa uses a similar mechanism of 

action. 



4.1.3. Softwares utilized for analysis 

4.1.3.1 The Institute for Genome Research (TIGR) 

The Institute for Genomic Research (TIGR) was a non-profit genomics 

research institute founded in 1992 by Craig Venter in Rockville, Maryland, 

United States. It is now a part of the J. Craig Venter Institute. 

TIGR sequenced the first genome of a free-living organism, the bacterium 

Haemophilus influenzae, in 1995. This landmark project, led by TIGR scientist 

Robert Fleischmann, led to an explosion of genome sequencing projects, all 

using the whole-genome sequencing technique pioneered earlier but never 

used for a whole bacterium until TIGR's project. TIGR scientist Claire Fraser 

led the projects to sequence the second bacterium, Mycoplasma genitalium in 

1996, and less than a year later TIGR's Carol BuIt led the project to sequence 

the first genome of an Archaeal species, Methanococcus jannaschii. TIGR 

followed these accomplishments with the genomes of the pathogenic bacteria 

Borrelia burgdorferi (which causes Lyme Disease) in 1997, and Treponema 

pallidum (which causes syphilis) in 1998. In 1999 TIGR published the 

sequence of the radioresistant polyextremophile Deinococcus radiodurans. 

TIGR went on to become the world's leading center for microbial genome 

sequencing, and it also participated in the Human Genome Project and many 

other genome projects. Its bioinformatics group developed many of the 

pioneering software algorithms that were used to analyze these genomes, 

including the automatic gene finder GLIMMER and the genome aligrunent 

program MUMmer. 

Following the 2001 anthrax attacks, TIGR partnered with the National Science 

Foundation and the FBI to sequence the strain of Bacillus anthracis used in 

those attacks. The results of this analysis were published in the journal 

Science in 2002[2]. The genetic evidence was later credited by the FBI with 
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helping to pinpoint the precise sample of anthrax bacteria, from a lab in Fort 

Detrick, Maryland, that was the source of the attacks. 

TIGR's Genome Projects are a collection of curated databases containing DNA 

and protein sequence, gene expression, cellular role, protein family, and 

taxonomic data for microbes, plants and humans. The access to the data is 

facilitated by TIGR's Intemet2 high-speed research network connection which 

is supported in part by the National Science Foundation under grant ANI-

0333537. Anonymous FTP access to sequence data is also provided. 

4.1.3.2 Graphical codon usage analyzer (GCUA) 

Differences in codon usage preference among organisms lead to a variety of 

problems concerning heterologous gene expression but can be overcome by 

rational gene design and gene synthesis. The gcua tool displays the codon 

quality either in codon usage frequency values or relative adaptiveness 

values. 

4.1.3.3 EMBOSS (European biology open software suite) 

EMBOSS is "The European Molecular Biology Open Software Suite". EMBOSS 

is a free Open Source software analysis package specially developed for the 

needs of the molecular biology (e.g. EMBnet) user community. The software 

automatically copes with data in a variety of formats and even allows 

transparent retrieval of sequence data from the web. Also, as extensive 

libraries are provided with the package, it is a platform to allow other 

scientists to develop and release software in true open source spirit. EMBOSS 

also integrates a range of currently available packages and tools for sequence 

analysis into a seamless whole. EMBOSS breaks the historical trend towards 

commercial software packages. 

The uses and interfaces to EMBOSS have long grown beyond our ability to 

keep track of them. EMBOSS is used extensively in production environments 
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rather than being the sort of "research project" code that gets presented at 

conferences, but never actually deployed. 

EMBOSS has several important advantages: 

• A properly constructed toolkit for creating robust bioinformatics 

applications or workflows. 

• A comprehensive set of sequence analysis programs. 

• All sequence and many alignment and structural formats are handled. 

• Extensive programming library for common sequence analysis tasks. 

• Additional programming libraries for many other areas including 

string handling, pattern-matching, list processing and database 

indexing. 

• It is free-of-charge. 

• It is an open-source project. 

• It runs on practically every UNIX you can think of and some that you 

can't, plus MS Windows and MacOS. 

• Each application has the same style of interface so master one and 

you've mastered them all. 

• The consistent user interface facillitates GUI designers and developers. 

• It integrates other popular publicly available packages. 

• It is free of arbitrary size limits: there are no limits on the amount of 

data that can be processed. For the programmer, memory management 

for objects such as sequences and arrays is simplified 

4.1.3.4 TCat Uava Codon Adaptation Tool) 

The CodonAdaptationTool (TCAT) presents a simple method to adapt the 

Codon Usage to most sequenced prokaryotic organisms and selected 

eukaryotic organisms. The codon adaptation plays a major role in cases where 

foreign genes are expressed in hosts and the codon usage of the host differs 
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from that of the organism where the gene stems from. Unadapted codons in 

the host can for example lead to a minor expression rate. 

The adaptation is based on CAl-values proposed by PM Sharp et.al. The CAI­

values were calculated by applying an algorithm from A Carbone et. al. The 

eukaryotic genomes of mouse and human contain different kinds of biases 

along the chromosomes and the algorithm is not perfectly suited for this 

problem. Results in this field should be handled with care. The mean codon 

usage for a certain organism was derrived by summing over all CAl-values of 

all genes of this organism (except genes without an amino acid sequence, e.g. 

RNAs) devided by the number of genes. This data is also presented in the 

graphical output of the codon adaptation. 

As a further option for the codon adaptation the opportunity to avoid rho­

independent trancription terminators is provided. The algorithm for the 

prediction of these structures is based on a model from MD Ermolaeva et. al. 

Another feature is the possibility to avoid restriction enzyme binding sites in 

the adapted DNA. The data for the restriction enzymes was therefor derrived 

from the "The Restriction Enzyme Database" (REBASE). 

Methods and materials 71 



4.2 Methods 

4.2.1. Constructing the codon usage tables for toxin genes and 

corresponding host bacteria: 

The nucleotide sequence of the six toxin genes were retrieved from the TIGR 

(The institute of genome research) database (www.tigr.org). Codon usage 

table with the relative codon frequencies of individual codons for each of the 

toxin gene was constructed by the The Sequence Manipulation Suite web tool 

(14). The codon usage tables of selected set of host bacteria (Vibrio choleare 01, 

P. aentginosa, S. aureus, E.cali 0157, C. botulinum, C. diphtheriae) which harbor 

the toxin genes to be analyzed, were retrieved from the codon usage databse 

of CUTG (Codon Usage Tabulated from GenBank (ftp distribution) : Codon 

usage tables for NCB! listed organisms. 

4.2.2 Graphical analyses of relative adaptiveness of codon usage 

frequencies: 

Graphical codon usage analyzer (GCUA) web tool was utilized for comparing 

the codon usage tables of a particular toxin gene and the host bacterium in 

which the toxin gene resides. Here the bar diagrams were generated based on 

the relative adaptiveness of codon frequencies . The basic principle for 

deriving relative adaptiveness values out of codon usage frequency values is 

the following: for each amino acid the codon with the highest frequency value 

is set to 100% relative adaptiveness. All other codons for the same amino acid 

are scaled accordingly. The graphical codon usage analyzer tool is accessible 

under http://gcua.schoedI.de/. 
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4.2.3 GC content analysis of toxin genes and corresponding host bacterial 

genome: 

The GC content of the toxin gene nucleotide sequences and the bacterial 

genome were established by the EMBOSS (European biology open software 

suite). Third letter G+C % was also counted by the web tools of the same 

package. 

4.2.4 Calculating Codon adaptation index: 

The CAl value indicates the expressivity of a given gene. It is also useful to 

identify the poorly expressed genes. For the calculation of CAl each codon is 

given a weight with respect to the subset of highly expressed genes defined 

for the considered organism. JCat, Oava Codon Adaptation Tool), a very rapid 

and easy method for the estimation of CAl, was employed in this study to 

calculate the CAl values of the six toxin genes. 

Appendixl 

Wi = fi / max {fj, all synonymous for iI, 
L 

CAl (gene) = L ../o Wi 
1= 1 

64 

In CAl (gene) =.1: gi In Wi= ( In Wi ) gene 
1- 1 

fi= Frequency of Codon I, calculated over reference set S 

L= Number of all codons in a gene 

gi = Frequency of codon I on a gene 

4.2.5 Estimating sysnonymous substitution rate in the toxin genes: 

Substitution rate at the different synonymous sites in the toxin genes were 

calculated by a computational method developed Adam Eyre-Walker and 

Michael Bulmer et a1. This method was slightly modified to calculate the SSR 

in the phage encoded toxin genes with respect to their corresponding host 

genome. 
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Appendix 2 

Let us consider Ci and Cj are relative frequencies of two synonymous codons 

for a particular amino acid. For toxin genes Ci and Cj is denoted by Citox and 

Cjtox where as in the host bacteria these are called Cibac and Cjbac 

Substitution rate between these two codons by the following formula, 

S ~-b1n(l - p/b) 

Where, 

b ~ 1 - {( f 1 +f2) (fl + f 3 ) / n2 - (f3 +f4)(f2 + f 4 ) / n2) [ fl ~ Citox / Cibac , 

Citox / Cjbac, Cjtox / Cibac , Cjtox / CjbacJ; p~ (f3 + f 3 ) / n where n~ Sum 

of all the four frequencies . 
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Chapter 5 

Results 

5.1 Comparison of Relative adaptiveness of toxin gene codons: 

Relative adptiveness (RA) of the codon frequencies of the six phage encoded 

toxin genes with respect to their corresponding host genome were 

determined. The comparison was drawn between the RAs of both toxin gene 

codons and overall codon frequencies of the host bacteria and mean variance 

of the RA for each toxin gene from their host was calculated. The difference 

between the RAs of each codons of the toxin genes and corresponding hosts 

were shown in figure 6. 

150 

100 

50 

... Shiga toxin 

o X Neurotoxin 

70 X Enteroroxin 

-50 • Cytotoxin 

+ Oiptheria toxin 

-100 

-150 

Figure 6: Difference in RA of the each cedons between toxin gene and host bacteria: The difference of 

the relative adaptiveness (RA) of the codons between toxins genes and respective bacteria was 

calculated and is shown scatter plo t. When RA of Codon toxin gene < RA of the Codon host bacteria, the 

difference was considered as positive values where as negative values were obtained when Codon toxin 

gene > RA of the Codon host bacteria. Each symbol in the graph represents RA difference for a 

particular toxin. Each pOint in the sca tter plot represents the difference in RA for a particular codon and 

the corresponding host bacterium. 
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Form figure 6 it is evident that the differences of the RAs are greater for 

shiga toxin, diphtheria toxin and cytotoxin from their respective hosts where 

as difference in the RA is low for neurotoxin and cytotoxin. Mean difference 

(MD) between the RA of toxin genes and respective host bacterium was also 

calculated. Lowest MD was found for neurotoxin which implies its 

similarities of with the host bacterium Clostridium botulinum. High MD was 

seen for shiga toxin, Diphtheria toxin and cholera toxin. Among these, MD for 

diphtheria toxin was highest. (Table 1). 

Table l' 

Gene Total Host CAl Mean GC GC Nooi 3rd letter 3rd letter 
no. of organism difference content content codons GC%in GC%in 
codons ofRA in % of host with GC the toxin the total 

at 3rd gene CDs in 
pos ition the host 

Cholera 384 Vibrio 0.31 31.5 35.27 47.488 90 27.81 
toxin cllolerae 

Shiga toxin 316 E.coli 0.16 35.03 41 .56 50.40 103 31 
0157 

Neurotoxin 1292 C. 0.63 5.91 26.16 28.21 1292 12.77 
C1 bohdinum 

Cytotoxin 287 P. 0.25 22.53 53.77 66.56 198 68 
aenlginosa 

Enterotoxin 258 S. lIurellS 0.38 15.61 31.13 32.85 61 22.68 
Type A 

Diptheria 561 C. 0.15 35.73 42.54 53.48 192 34.22 
Toxin diphtheriae 

Table 1: CAl values and GC content and of the toxin genes 

5.2 Analysis and comparison of GC content of toxin genes with 

corresponding host organisms: 

GC content of the six phage encoded toxin genes was estimated and 

compared with the total GC content of the specific set of bacteria in which 

they occur. Significant similarity was observed for two toxins (neurotoxin and 

enterotoxin) with their hosts in terms of G+C percentage. The G+C% of four 

toxin genes, (Shiga, Cytotoxin, cholera toxin and diphtheria toxin) 
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significantly lower than their corresponding host bacteriu m (Table 1). The 3rd 

letter GC% in the toxin gene was also compared with that of the 

corresponding host bacteria (Table 1). For neurotoxin and enterotoxin the 3rd 

letter GC% are very similar to their host bacteria where the rest of the toxin 

genes showed variation in the 3rd letter GC% when compared with their 

respective bacteria (Table 2). 

Table 2 

Gene Total Host CAl Mean GC GC No of 3rd letter 3ed letter 
no. of organism difference content content codons GC% in CC'/I) in 
codons ofRA in % of host withGe the toxin the total 

at 3rd gene COs in 
position the host 

Cholera 384 Vibrio 0.31 31.5 35.27 47.488 90 27.81 
toxin c1lo1erae 

Shiga toxin 316 E.coli 0.16 35.03 41.56 50.40 103 31 
0157 

Neurotoxin 1292 C. 0.63 5.91 26.16 28.21 1292 12.77 
CI botulinum 

Cytotoxin 287 P. 0.25 22.53 53.77 66.56 198 68 
aemgillosa 

Enterotoxin 258 S. aureU5 0.38 15.61 31.13 32.85 61 22.68 
Type A 

Diptheria 561 C. 0.15 35.73 42.54 53.48 192 34.22 
Toxin diphtheriae 

Table 2. CAl values and GC content and of the tOXin genes 

5.3 Estimating Codon Adaptation Index (CAl): 

The codon adaptation index was calculated by Jcat web tool for each of six 

toxin genes and shown in table 1. On the basis of CAl values genes can be 

categorized into 4 classes: very highly expressed genes (CAI>0.6), highly 

expressed genes (0.5>CAI>0.6), moderately expressed genes and 

(0.35>CAI>0.5) and weakly expressed genes (CAI<0.35). Neurotoxin Cl (CAl: 

0.63) and enterotoxin type A (CAl: 0.38) genes can be considered as very 

highly expressed and moderately expressed genes respectively. CAl value of 

the rest of the toxin genes were below 0.35 and can be considered as weakly 

expressed genes. Diphtheria and shiga toxins have the two lowest CAl values. 
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5.4 Calculating synonymous substitution rate (SSR) 

SSR between eight pairs of synonymous codons (encoding eight amino acids: 

Ala, Leu, Arg, Gin, Gly, Lys, Phe and TIe) were calculated (Table 2). These 

amino acids were selected for the SSR calculation, because significant 

difference in the RA of the codons was observed for these amino acids. 

Among the eight substitutions, two were transversion and the rest were 

transition type. The geometric mean of the SSR for one particular toxin was 

determined (Table 3). The highest SSR was seen for neurotoxin Cl. 

Enterotoxin and cytotoxin gene relatively value of SSR where as shiga toxin, 

diphtheria toxin and cholera toxin exhibited similar values. 

Table 3. 

substitution Substitution Corresponding Substitution Rate (SR) 
mode Amino acid 

CfxAin Shiga toxin Cytotoxin Enterotoxin Diptheria Neurotoxin 

the genetic in the in the in the toxin in the 
in the 

genetic 
background genetic genetic genetic genetic background 

of 
of Vibrio Background background background background C.botuli,rum 
cholerae of E.coli of of S. au reus of 

0157 P.aernginosa C.diphtheriae 

Gcr~GCC Transition Ala 0.79 0.77 1.61 1.26 0.86 

TIA -+TIG Transition Leu 0.79 0.73 2.39 0.80 0.79 

CGG~CGT Tranversion Arg • 0.74 1.29 . 0.89 

CAA~CAG Transition Gin 0.93 0.82 0.94 0.62 0.% 

GGT_GGe Transition Gly 0.95 0.85 1.42 1.17 0.78 

ATA_ ATC Tranversion ne 0.70 0.65 2.57 0.71 0.89 

AAA- AG Transition Lys 0.65 0.63 0.60 1.27 0.78 

TTT~TTC Transition Phe 0.73 1.18 1.69 1.44 0.83 

MeanSR 0.7%8 0.8024 1.56 1.039 0.817 .. indIcates nul SSR values, Cholera tOXIn and Enterotoxm do not have eGG codon and hence SSR values 

could not be calculated. 

Table 3: Synonymous substitution rate (SSR) between the eight pairs of synonymous codons in the toxin 

genes. 

5.5 Predicting the evolutionary time of acquisition of phage encoded toxin 

gene. 

We hypothesized that the CAl, MD and SSR of the codon of the toxin genes 

should correlate with their evolutionary time of acquisition. We proposed that 

CAl and SSR should have a linear relationship with the time of acquisition of 
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the toxin gene, whereas the MD of the relative adaptiveness is inversely 

correlated with the evolutionary acquisition time (Fig 2). In line of our 

proposed hypothesis we estimated the relative time of acquisition of the six 

phage encoded toxin genes by their respective host bacteria. By considering 

all the parameters, we concluded that neurotoxin Cl and Enterotoxin type A 

was acquired in the distant past by Clostridium botulinum and Staphylococcus 

allrellS. On the other hand shiga toxin and diphtheria toxin were introduced in 

the genome of E.coli and C.diptheriae respectively in relatively recent past. 

Cholera toxin and cytotoxin were acquired in between the previous events of 

acquisition. 

Time of Acquisition 

Distant past L J Somewhere in between J Recent past 

2 
1.8 ... 
1.6 _ . ......... 

......... .... 
1.4 

~ ~ 

1.2 
./ ...... 1 

./ " --- r--..... 0.8 IA ~ __ SSR 
0.6 ...... 
0.4 r--..... __ CAl 

0.2 
-... log(MD) 

0 -
<-'" fl,~ ~<:- ~<:- ~<:- ~(;;-

~<:- ",4,~ ,,0 ,,0 ,,0 ,,0 
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Figure 7(Chakraborty et al): Comparison of the evolutionary time of acquisition of toxin genes: The 

span of evolutionary time, in which the six toxin genes were introduced into their corresponding host 

bacteria, is divided into 3 zones: Distant past, Recent past, and time span between distant and recent 

past. This graph was based on three parameters (CAl, SSR and log (MO) of the toxin genes. The circles 

represent the different zones of evolutionary time. 



Chapter 6 

Discussion 

Detail analyses of the CAl and RA, MD of the selected set of six phage 

encoded toxin genes showed that neurotoxin Cl and enterotoxins type A fits 

well in the translational system in their respective host as they show high CAl 

values and low MD. On the other hand shiga toxin and diphtheria toxin have 

low CAl but high MD values. This implies that these two toxins are weakly 

expressed as they show major difference in codon usage with host bateria. 

The remaining two toxins showed relatively medium CAl and MD value. The 

synonymous substitution rates (SSR) for eight pairs of synonymous codons 

were estimated and the geometric mean of SSR for each toxin genes was 

calculated. Three toxins (neurotoxin Cl, enterotoxins type A and cytotoxin) 

showed high SSR values. The remaining three toxins fall into the low SSR 

group. The high CAl and low MD value for neurotoxin Cl and enterotoxins 

type A can be correlated with their high SSR values. In these two toxins high 

substitution rate in the synonymous codons may help in the conversion of 

non-optimal codons to the optimals ones and this explains their high CAl 

values and low MD values. Horizontally transferred genes are subjected to 

the mutational processes that also affect the recipient genome (REF). With the 

progression of the evolutionary time the acquired foreign gene sequences will 

accumulate substitutions and eventually reflect the DNA composition of the 

recipient host genome. This process of adjustment of a foreign gene sequence 

in order to match up the base composition and codon usage of the resident 

genome is known as 'amelioration". So the high SSRs in the neurotoxin Cl 

and enterotoxin type A actually reflect the amelioration process by which the 

foreign genes gradually adjusted its base composition of the nonoptimal 

codons and convert it into an optimal one. Relatively low SSR values were 

found for three toxins (cholera toxin, shiga toxin and diphtheria toxin). These 

n: ...... ~~ ... "'; ....... 83 



toxins also showed low CAl values and high mean difference than neurotoxin 

Cl and enterotoxin type A. For cytotoxin high SSR value was observed which 

is unusual because it also showed medium CAl value and moderate MD 

values. In our proposed hypothesis of the conceptual relationship between the 

evolutionary time and codon usage parameters (CAl, MD, SSR), we assume 

that the evolutionary time has a linear relationship with CAl and SSR but 

inverse correlation with MD. We hypothesize that a foreign gene must be 

subjected a high rate of substitution for a longer period of evolutionary time 

in order to achieve a high adaptation index. We divide the evolutionary time 

of acquisition of the toxin genes into three zones. These are distant past, 

recent past and time span between the distant and recent past. As both the 

neurotoxin Cl and enterotoxin type A showed high CAl and low MD value 

they are supposed to reside in the recipient host genome for a relatively 

longer period of time. The longer period of evolutionary time and high 

synonymous substitution rate allowed these toxins to adjust its codon usage 

to according to the host bacteria and this is reflected by their high CAl and 

low MD values. Inversely when a horizontally transferred gene resides within 

a host bacterium for a relatively short period of time, it will be subjected to 

less substitution and consequently it might not be able to achieve optimal 

codon usage pattern for efficient translation. Similar incident might happen to 

shiga toxin and diphtheria toxin. They showed relatively low SSR, CAl and 

high MD value. Consequently we assume that these foreign genes may be 

acquired in the recent past, as they possess many non optimal codons with 

respect to their recipient host. Similarly by considering all the parameters we 

assume that both cholera toxin and cytotoxin were introduced within the time 

span between distant and recent past. The method that we proposed here is a 

novel one for of deducing the evolutionary time of acquisition of the foreign 

genes by prokaryotic genome. Moreover, this method can be applied to any 

horizontally transferred genes in the prokaryotic genome because the 

amelioration processes is the same in all prokaryotic genomes but their rate 
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varies bacteria to bacteria. Here in this method, we utilized the difference of 

the amelioration rate among different foreign genes to estimate their 

acquisition time. 
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Chapter 7 

Conclusion 

We conclude that, the codon usage analyses of a foreign gene form a basis to 

estimate their evolutionary time of acquisition by the host bacteria. The 

uniformity of the amelioration process and codon adaptation of the 

horizontally transferred genes among different bacteria helps this method to 

be applied globally to the prokaryotic genomes, which are believed to be 

assembled by horizontal gene transfer. 
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