A Deep Face-Mask Detection Model using DenseNet169 and
Image Processing techniques

by

Durjoy Bhowmik
17301153
Mohd.Rahat Bin Abdullah
17301215
Mohammed Tanvirul Islam
17301056

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2022

© 2022. Brac University
All rights reserved.



Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Durjovy Bho wmik

Durjoy Bhowmik Mohd.Rahat Bin Abdullah
17301153 17301215

—U]A\gzm’ ARATA”

Mohammed Tanvirul Islam
17301056



Approval

The thesis/project titled “FaceMask Detection using Deep learning” submitted by
1. Durjoy Bhowmik(17301153)
2. Mohd.Rahat Bin Abdullah(17301215)
3. Mohammed Tanvirul Islam(17301056)

Of Fall, 2021 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 16, 2021.

Examining Committee:

Supervisor:
(Member)

Dr. Jia Uddin
Assistant Professor (Research Track)
Department of Technology Studies, Endicott College
Woosong University, Daejeon, South Korea Associate Professor (On leave)
Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Md. Tanzim Reza
Lecturer
Department of Computer Science and Engineering
Brac University

i



Thesis Coordinator:

Dr. Md. Golam Rabiul Alam
Associate Professor
Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor
Department of Computer Science and Engineering
Brac University

1ii



Abstract

The world stood still during the massive breakout of the Covid-19 worldwide. This
massive outbreak of this contagious disease was occurred by being airborne. Not
only COVID but also there are many other contagious disease which spread through
air. So at present time, mask has become an essential part of our life which protects
us from being affected from getting affected by COVID along with small diseases like
cold, flu etc. We can get rid of these diseases and stop them from spreading just by
wearing a face mask properly. In our research we would propose a way to identify or
detect weather a person is using a face mask properly or not. For this we have used
image data. The dataset that we have use are being made by us. Which consists
of 1,45,537 images. We have divided this dataset into three segments. Which are
with mask, without mask and misplaced mask. Among them 1,45,537 number are of
images are of Asian region and rest is of the other countries. The main idea was to
detect masked face properly using Deep learning architecture. We have implemented
DenseNet169 and VGG19 to train the model and test it on images and videos. The
accuracy that we got by using DenseNet169 is 91.47% in color images and 88.83%
in grayscale. On the other hand in VGG19 we have got accuracy of 88.52% in color
images and 92.4% in grayscale. Which makes this model more reliable than the rest.
When we implemented this on video we got accuracy of 75.36% in DenseNet169. On
the other hand, in VGG19 we have got 92.30% from gray scale. We have tried to
provide a brief understanding of this architecture along with statistical results that
we got from our dataset with a view to identify a person wearing mask properly
or not. In addition it can identify the persons without wearing mask or persons
wearing mask improperly.

Keywords: COVID-19; Machine Learning; Transfer learning; CNN; Densenet169;
VGG19; Face Mask; Video detection; Softmax.

v



Dedication

It is our genuine gratefulness and warmest regard that we dedicate this work to all
our loved ones for their love and inspiration.



Acknowledgement

Firstly, all praise to the Almighty for whom our thesis have been completed without
any major interruption.

Secondly, to our supervisor Dr. Jia Uddin sir for giving his precious time to us and
special thanks to our co-supervisor Md. Tanzim Reza sir for his kind support and
advice in our work. He helped us whenever we needed help. He was always there
for us no matter what time it was. His helping nature and dedication inspired us
even more to work for the research.

Thirdly, we are very happy to express our appreciation and gratitude to the Depart-
ment of Computer Science and Engineering, BRAC University and our educators
for assisting us with all the fundamental help.

And finally to our parents without their throughout support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

vi



Table of Contents

Declaration

Approval

Abstract

Dedication

Acknowledgment

Table of Contents

List of Figures

List of Tables

Nomenclature

1 Introduction

1.1
1.2
1.3
1.4

Problem Statement . . . . . . . .. ... ...
Motivation . . . . . . . ..o
Research Objectives . . . . . . . . ... .. ..
Thesis Outline . . . . . . . . . . . . .

2 Related Work

3 Dataset and Workflow Analysis

3.1
3.2

3.3

3.4

3.5

3.6

Dataset and Workflow Analysis . . . . . . ... ... ... ... ...
Data and Analysis . . . . . . ... ..o
3.2.1 Data Collection Statistics . . . . .. .. .. .. ... .. ...
Preprocessing . . . . . . . ...
3.3.1 Data Augmentation . . . ... ... ... ... ...
3.3.2 Grayscale Conversion . . . . . . . ... ... .. .. ......
3.3.3  Activation Function: Rectified Linear Units(ReLu) . . . . ..
Classifier . . . . . . . . .
3.4.1 Softmax . . . .. . ...
Optimizer . . . . . . . ..
3.5.1 Adam optimizer . . . . .. ... ...
Sample Dataset . . . . . . . ...
3.6.1 Dataset Analysis and Statistics . . . . . . ... ... ... ..

vii

ii

iv

vi

vii

ix



4 Methodology
Convolutional Neural Network . . . . . . . . . . .. ..

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Transfe
Machin

r Learning . . . . . . ... oL
e Learning . . . . . . ... ... L.

Save and Load Function . . . . . . .. .. . ... ...
Densenet-169 . . . . . . . ...

VGG-19 . . . .
Confusion Matrix . . . . . . . . . . . .. ... ... ..

5 Implementation and Result Analysis

5.1

5.2

5.3 Comparison of result between DenseNet169 and VGG19

Densenet169 . . . . . ... ... ...
5.1.1 Implementing DenseNet169 on Images . . . . .
5.1.2 Implementing DenseNet169 on video . . . . . .
5.1.3  Confusion matrix for Densenet169(Color Image)
5.1.4  Confusion matrix for Densenet169(Grayscale Image) . . . . .
5.1.5  Iteration of checking loss and accuracy(Densenet169) . . . . .
VGG19 . . .o
5.2.1 Implementing VGG19 on Images . . . . . . ..
5.2.2  Implementing VGG19 on video . . . . . .. ..
5.2.3  Confusion matrix for VGG19(Color Image) . .
5.2.4  Confusion matrix for VGG19(Grayscale Image)
5.2.5 Iteration of checking loss and accuracy(VGG19)

6 Conclusion and Future Work

Bibliography

viil

19
19
20
22
23
24
26
27

28
28
28
29
29
29
29
33
33
33
33
33
36
36

38

41



List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
9.3
5.4
9.5
5.6
5.7
0.8
9.9
5.10
5.11
5.12
5.13

Workflow Diagram . . . . . . . ... ..o
Grayscale Image . . . . . . . . ..o
Residual learning: a building block . . . . . ... ... ... ... ..
With,Without,Misplaced Mask . . . . . . ... ... ... ......
With,Without,Misplaced Mask . . . . .. ... ... ... ......
Statistical analysis of the colored image data sets . . . . .. .. ...
Statistical analysis of the colored train image data sets . . . . . . ..
Statistical analysis of the colored test image data sets . . . . . . . ..
Statistical analysis of the Gray Scale image data sets . . . . . . . ..
Statistical analysis of the Gray Scale Train image data sets . . . . . .
Statistical analysis of the Gray Scale Test image data sets . . . . . .

Convulational Neural Network Architecture . . . . . .. .. ... ..
Transfer Learning . . . . . . . . . . ... ..
Transfer Learning with Pre-trained Deep Learning Models as Feature

Extractors . . . . . . . .
Fine Tuning Off-the-shelf Pre-trained Models . . . . . . . .. .. ..
Classification of save and load function . . . . . . . . ... ... ...
DenseNet Architecture . . . . . . . . . . ... ... ... ... ...
DenseNet Architecture . . . . . . . . . . ... ... ... ...
A DenseNet Architecture with 3 dense blocks . . . . . . .. ... ..
The Structure of VGG-19 Network . . . . . . . ... ... ... ...
VGG19 network model . . . . . . . ...
Training frame of mask detection model . . . . . . . ... ... ...

Accuracy of DenseNet169 on color images . . . . . ... .. ... ..
Accuracy of DenseNet169 on grayscale images . . . . . . .. ... ..
Confusion Matrix of DenseNet169 on Color image . . . . . . . . . ..
DenseNet169 Color image Fl-score . . . . . . . .. ... ... ....
Confusion Matrix of DenseNet169 on Grayscale image . . . . . . . . .
DenseNet169 Grayscale image Fl-score . . . . . . . . ... ... ...
Accuracy of VGG19 on color images . . . . . . . .. ... ... ...
Accuracy of VGG19 on grayscale images . . . . . . . .. .. ... ..
Confusion Matrix of VGG19 on Color image . . . . . . . .. .. ...
VGG19 Color image Fl-score . . . . . . . .. ... ... .. .. ...
Confusion Matrix of VGG19 on Grayscale image . . . . . . . . . ...
VGG19 Grayscale image Fl-score . . . . . . . ... ... ... ....
Accuracy comparison between Densenet169 and VGG19 . . . . . ..

ix



List of Tables

4.1

5.1
5.2
9.3
5.4

TP, TN, FP and FN parameter definitions . . . . . . ... ... ... 27
Iteration table of DenseNet169 on color images training & testing . . 32
Iteration table of DenseNet169 on gray scale images training & testing 32
Iteration table of VGG19 on color images training & testing . . . . . 36
[teration table of VGG19 on gray scale images training & testing . . 36



Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

Q@ Alpha

6] Beta
Delta

€ Epsilon

o Sigma

Al Artificial Intelligence

CCTV Closed Circuit Television

CNN Convolutional Neural Networks
MI  Machine Learning

ReLu Rectified Linear Units

SARS Severe Acute Respiratory Syndrom

VGG Visual Geometry Group

X1



Chapter 1

Introduction

CoronaVirus, which is also known as the COVID-19 or COVID, is actually a pan-
demic on a global scale that is ongoing because of Coronavirus disease. SARS-CoV-2
is another common name for this disease, which is also known as COVID-19. When
this happens, you might have SARS (severe acute respiratory syndrome). The ill-
ness COVID-19 is extremely infectious. The virus was discovered for the first time
in Wuhan, China. That December, the incident happened [19]. CoronaVirus was
therefore designated a public health danger of worldwide concern by the WHO on
January 30th, 2020. On March 11, 2020, it was declared a pandemic. In reality,
between May 31, 2020, and May 31, 2021, COVID-19 was responsible for over 281
million confirmed illnesses and 5.41 million confirmed deaths which made this one
of the worst pandemics in the history of mankind [30]. One of the major safety
measures for being safe from getting affected by coronavirus is wearing a face mask
which has been instructed by WHO. Because this virus spreads through the channel
of air. So at the time when someone who is affected, sneezes or makes commu-
nication with another person, the droplets of water disseminate through the air
coming out from their nose and mouth which affect other people. As a result, the
gravitate of wearing a facemask in public places is on the rise because of this Coro-
navirus epidemic caused by COVID-19 is happening throughout the world. Before
this pandemic people used to use a face mask to avoid air pollution mostly from
their self-consciousness. But now using a face mask has become a must for everyone
for their own safety. Scientists have discovered that wearing a face mask works as
a way of stopping COVID-19 transmission from one person to another[14]. World
wide scientific co-operations got an extraordinary degree of rising by the coronavirus
epidemic.Al that is based on Machine Learning (ML) and even Deep Learning can
be very useful in the fight against COVID-19 in many ways. ML allows evaluating
the huge quantity of data for evaluating the situation and gives directions before it
spreads more from the data of the collective. It can also detect infections. Such as,
Al can detect infection from the chest X-ray of a patient. The situation is getting
challenging day by day because of the spreading of COVID-19 and its transmission
perpetuation got so bad that some countries had to impose the law of wearing face
masks in public. This law was made because of the huge death rate of affected
patients. It’s a tough task to monitor such a huge population of the countries. The
process of monitoring includes the detection work of anyone who’s not wearing a
mask on their face. Face-mask detection applications have grown popular as a re-
sult of the COVID-19 epidemic. When other sanitizing and social distancing issues



have previously been solved, the face mask detection issue has yet to be adequately
handled. At this point wearing a mask on the face in this pandemic situation is an
important preventive measure. It’s a must to do for the people who are at great
risk of illness at a severe level because of COVID-19. According to researchers,
COVID-19 is transferred by persons who come into touch with one another within
6 feet. It can also be transferred by persons who are sick but have no symptoms or
are unaware that they are infected. Because of this CDC (Centers Disease Control
And Prevention) has recommended wearing a mask on the face in public areas for
all people over 2 years of age. So the detection of face-mask has become a problem-
atic issue in the domain of computer vision and processing of the image. We can
have various use cases from face recognition to facial motion capturing and revealed
with high precision. Because machine learning algorithms have improved so quickly,
the risks of not utilizing face-mask detection technologies have yet to be adequately
addressed. Furthermore, this is a more important technique because it is utilized
for more than only face identification in static pictures and movies. In addition,
real-time supervision and inspection. At present the advancement of convolution
neural networking and deep learning, we can get high accuracy in the classification
of images and detection of objects. As a security measure, France has installed Al
software in the Paris Metro system’s cameras which are used for surveillance, to de-
tect people not wearing a mask. In addition, it gathers statistical data anonymously
which can be used in the work of prediction of the authorities and help the poten-
tial outbreak of the COVID-19. The software system was developed by Datakalab.
As a matter of fact, in this paper, we are working on a face-mask detection model
which will be based on classical machine learning classifiers and deep transfer learn-
ing. This can be used to detect people not wearing masks on their faces to make the
COVID-19 transmission less. This project is going to be an integrated form of deep
transfer learning and classical machine learning algorithm. We will try to find out
the best algorithm which gives the best accuracy and consumes less time to detect
and train procedures.

1.1 Problem Statement

Facemask detection is a classification and detection issue as it involves detecting the
faces of individuals in digital photographs and then deciding whether or not they
are wearing a mask. The first component of this issue has garnered a lot of interest
in computer vision literature because of the extensive deployment of detect people
face-detection methods. Secondly, the used component, on the contrary(determin-
ing if a face is covered or not), has only lately piqued the interest of academics in
the aftermath of the coronavirus epidemic, despite substantial work on this in the
previous year. In most situations, it just checks to see if the image has a mask.
There is no extra effort taken to ensure that the masks are correctly applied to
the face and therefore used in line with the recommendations of health specialists.
This lowers the effectiveness of current face-mask detection methods, necessitating
additional computer vision research into not just identifying the existence of face
masks in photographs but also assessing whether they are worn correctly. MAsked
FAces(MAFA) is among the most often used datasets for face-mask detection train-
ing, and it consists of only primary labels specifying whether or not face-masks are
visible in the pictures, which is similar to most other publicly accessible datasets



for this purpose. Facial pictures in such datasets generally fall into one of two
categories: face with properly maintained masks (marked green), and face with
poorly maintained masks (marked red). Because the precision of mask installation
is unknown, mask detectors that exist often get learned from excessive noisy data
(given the detector’s intended function) and don’t flag faces when doesn’t cover
their mouth but a mask is present, nose or chin. We've noticed that most existing
face-mask detection experiments have this problem. In most cases, we can see any
information for confusing images without masks datasets. we will be able to avoid
the above-mentioned problems on a bigger note.

1.2 Motivation

Since the emergence of COVID-19, the World Health Organization has released
various preventative measures in order to combat the spread of coronaviruses. One
of the most obvious rules is to keep one’s distance from others and keep one’s
surroundings clean. Face masks inhibit the corona from spreading across a whole
city. There are now mandatory face mask rules in the majority of countries. Keeping
an eye on a face mask manually may be difficult, especially in congested areas like
hospitals, airports, train stations, and shopping malls. This prompted researchers
to develop an automated approach for detecting face masks.

1.3 Research Objectives

This research aims to develop a Facemask detection system for detecting facemasks
in also confusing images/videos. We will use computer vision and deep transfer
learning to determine whether or not the individual in the image or video stream
has worn a face mask. Usually, transfer learning uses feature detection capabilities
of the pre-training methods and applies them to our simple model. The research
objectives of our thesis project are given below:

o To deeply understand Transfer learning, and how it works.

e To develop a model for Densenet169 and VGG19 which will give us better
results and apply it to deep transfer learning.

e To develop the datasets for the proposed model and evaluate the model.

e To deeply understand facemask detection techniques and offer recommenda-
tions on improving the model.

1.4 Thesis Outline

Chapter 1 Introduction. In this chapter, we’ve provided an overview of our
project’s issue description, motivation, research aims, and methodology.

Chapter 2 Literature Review. We discussed publications from the field of computer
science that addressed a similar subject. Additionally, the background study’s ob-
jective was to ascertain the shortcomings of earlier studies. Furthermore, we have
mentioned our contribution and the rationale for collecting primary data.



Chapter 3 Workflow and Data analysis.Details of our research methodology are
covered in-depth, as are the many classification schemes that were employed in the
various algorithms.

Chapter 4 Methodology. Densenet169 and VGG19 are explained in this section,
as well as their designs and mathematical formulae.

Chapter 5 Results and Accuracy. In this section, we show the graphs of the ac-
curacy and loss of all the methodologies and classifiers we used in our thesis work.
There were also comparisons between the algorithms, as well as confusion matrices
and compared between the algorithms.

Chapter 6 Conclusion and Future work.We conclude our study with a quick review
of our findings and some suggestions for how we may enhance our work in the future.



Chapter 2

Related Work

Due to the worldwide COVID-19 coronavirus outbreak, the use of face masks in pub-
lic is becoming more popular. People used to use masks to protect their health from
air pollution before Covid-19. Other people hide their feelings from the world by
masking their faces, while others feel self-conscious about their appearance. COVID-
19 can be slowed down by wearing a face mask, according to research. COVID-19
transmission is slowed by wearing face masks, according to scientists [14].Object
detection and recognition in numerous application areas have seen considerable ad-
vances in deep learning throughout time. The majority of the research focuses on
image reconstruction and facial recognition to confirm identity. The primary goal
of this study, however, to prevent the spread of COVID-19, is necessary to identify
persons who do not use masks in public places. The manuscript separates the clas-
sification into two categories: an individual wearing a mask and no mask identified.
This whole system is going to make contributions in crowded places like shopping
malls, airports, railway stations or supermarkets.This part aims to critically review
previous relevant work in the field of Facemask Detection Systems in the context of
transfer learning and specifically in the context of Deep learning. We will analyse
the different techniques used for the main results achieved and we will show how to
stop COVID-19 from spreading further, identify those who don’t use masks in pub-
lic places, the limited computational capabilities and the massive number of people
that makes the facemask detection systems harder.

According to [20], The author proposes RetinaFaceMask, an efficient and high-
accuracy facemask detector. The proposed RetinaFaceMask detector is a one-step
detector that combines high-level semantic information with different feature maps
through a Pyramid Feature Network (FPN) and a novel context module to identify
face masks. They provide a context attention detection and cross-class object re-
moval head method to enhance detection. Furthermore, since the face mask dataset
is tiny and features may be difficult to extract, Transfer learning is used to trans-
fer learnt kernels from networks trained on a large dataset for a comparable face
recognition job. RetinaFaceMask yields state-of-the-art face and masks detection
precision, respectively, of 2.3% and 1.5% higher than the baseline result, and 11.0%
and 5.9% better than the baseline result in a recall.

According to [11], The author offered many methods for Multi-scale face mask cat-
egorization and real-time detection for the medical industry in this COVID-19 Pan-
demic Situation. Crowd monitoring on the roadways and in shopping malls is more



useful. They employed two separate face mask datasets of 680 and 1400 pictures,
respectively, and constructed two different detection models, FMY3 employs the
Yolov3 Algorithm, whereas FMNMobile employs the NASNetMobile and Resnet
SSD300 Algorithms. Both models achieved the 34 percent Mean Average Precision
(mAP) and 91.7 per cent Recall rate on the FMY3 Model and 98 percent and 99
percent accuracy and recall rate on the FMNMobile Model by calculating various
probabilistic accuracy measures.

According to [25], the authors experimented on networks train detection precision of
three. The first dataset was of 90,000 unmasked faces and 5000 masked faces.10,000
images were being used to dataset balance of RMFD dataset were being used for val-
idation, testing and training. The second dataset utilized was the SMFD (Simulated
Masked Face Dataset), which included 1570 images. Among them, for the validation
and testing stages, 785 was for uncovered faces and 785 was for simulated masked
faces. The third dataset was LFW(Labeled Faces in the Wild). which contained
masked faces of 13,000. Which consisted of celebrities from all around the world
and was solely utilized as a benchmark testing dataset throughout the testing phase.
However, the suggested model was never trained on it. Here two models were being
proposed. The first proposed model was used by ResNet50. Which was featured as
an extractor. The second proposed model was classical machine learning. Such as
SVM(Support Vector Machine), ensemble and decision tree. Here, ResNet50 was
used for the traditional machine learning and the extraction phase. It was used
for validation, testing and training. Logistic Regression, K-Nearest Linear Regres-
sion, and Neighbors Algorithm are the Ensemble techniques utilized. MATLAB was
used for implementation. 70% of the dataset was used for training, 10% for vali-
dation and 20% for the testing phase. Following installation and testing, the DS1
testing accuracy ranged from 93.44 percent using a decision tree classifier to 99.64
percent using an ensemble classifier. When utilizing the decision tree classifier for
DS4 testing, accuracy varied from 99.76 percent to 100 percent. When using the
SVM classifier, accuracy ranged from 99.76 percent to 100 percent. The decision
tree classifier achieved 99.54 percent accuracy on the face mask dataset, while the
SVM classifier achieved 99.49 percent accuracy. The author achieved 99.50 percent
accuracy with the decision tree classifier and 99.35 percent using the SVM classifier
on the combined mass dataset. The author used deep transfer learning models to
approach the mask faces from the neurotrophic environment. Here they got the
highest accuracy using the SVM classifier. Such as 99.49% in SMFD, 100% in LFW
and 99.64% in RMFD.

In the paper [23], the author utilized a deep learning model built by ”Yolov5” to de-
velop an excellent approach for detecting face masks. The YoloV5 trains the model
across several epochs ranging from five to ten. Epochs are: 20, 50,100, 300 and
500. There were 853 pictures in the public face mask collection, with three labels:
"Without Mask,” "Incorrect Mask” and "With Mask.” The face mask dataset’s 853
pictures were separated into three groups: model testing required 86 images, model
training required 682 photos, and result validation required 85 images. The author
separated this model into two parts: the face mask detection model and the training
model. The training dataset of 685 pictures with annotations in the VOC format
was used to construct the face mask detection model using YoloV5. An epoch, or
several runs over the whole training dataset, has been demonstrated in the training
model process to impact the model’s performance. The generated deep learning



models are also evaluated on the face mask dataset of 86 images. The number of
processing steps rises as the number of epochs increases, which improves mask de-
tection performance. However, the experimental findings revealed that the model
trained with 300 epochs performed the best, even outperforming the model trained
with 500 epochs. Face mask detection using 300 epochs provides the best accuracy,
with a precision and recall of 96.5 percent.

According to [15], the authors used a deep learning method known as Facemasknet
and got an accuracy of 98.6%. They’ve designed their project into two phases which
are implementing and training the detector. A total of 15 photos of inappropri-
ately worn people were included in the dataset. 10 photos with masks, 10 photos
without masks. They created their detector model using MATLAB programming.
FacemaskNet architecture was used to train the model. With a total of 20 training
epochs, the initial learning rate is le-4. The pictures in the input image are scaled
to 227x227x3 pixel intensity. Following that, the model was built to be trained, and
it was tested on the test set. The input image is loaded and preprocessed. Face
detection, as well as the region of interest, are used to determine where all of the
image’s faces are located. Their constructed model is of 8 layers. Images are taken
by the input layer and The 2D convolution layer is employed since it accepts three-
dimensional input (red, blue, and green) pixels. In convolutional neural networks,
the Rectified Linear Unit (ReLu) layer is utilized to activate output functions. The
norml layer allows for faster training and greater accuracy. Images are scaled using
the max-pooling layer. The needed classification, which identifies a face and a mask,
is generated after employing the softmax layer.

According to [27], MobileNetV2, a convolutional neural network that requires short
processing resources and can be easily integrated into mobile apps and computer
vision, is used in the model design. As a consequence, it will be able to create an
inexpensive mask detection system that can help determine if a person is wearing
a mask or not as well as function as a surveillance system because it can handle
both real-time videos and still pictures. With 99.56% accuracy on validation data,
99.75% accuracy on testing data, and 99.98% accuracy on training data, the face
detector model was a success. There are 11,792 photos in the dataset, with 992 in
the testing set, 10,000 in the training set, and 800 in the validation set. There are
two types of images in each set: faces wearing masks and faces don’t wear masks.
In [28], The author created the MAsked FAces (MAFA) dataset, which comprises
30,811 pictures, and constructed the LLE-CNNs model, getting an Average Preci-
sion of 76.4 percent, according to the author. On the RMFD, ResNet-50 and SVM
achieved 99.49 percent accuracy. In a subsequent article, For object detection, they
utilized YOLO-V2, which is based on ResNet-50 and obtained an average preci-
sion of 81 percent on the Face Mask Dataset (FMD) and Medical Masks Dataset
(MMD). They used an InceptionV3-based model to achieve 99.9 percent accuracy
on the Simulated Masked Face Dataset. The final training dataset included 4065
MAFA pictures, 3894 WIDER FACE images, and 1138 extra internet images. In
all, 9,097 pictures with 17,532 labelled boxes were separated into two groups: 80
percent training and validation, and 20 percent testing. By using consumers’ cur-
rent devices, our serverless edge-computing approach reduces hardware expenses.
Convert the PyTorch model to an NCNN model with a model size of 582 KB using
the NCNN library. Then, using the NCNN library for inference, we developed a
new C++ application to automate the detection process from picture preprocessing



to eventually outputting the box location, category, and confidence. [24] The iden-
tified bounding boxes were rendered with original face pictures using HTML and
CSS to show the detection findings. The trained YOLO model achieved an average
precision of 0.52 after 120 epochs with a batch size of 16. On typical edge devices,
the detection FPS is shown. Using YOLOV2 and ResNet-50, Mohamed Loey et al.
achieved an AP of 81 percent. The accuracy of their model was 89 percent.

From the above-mentioned discussion, we can see that the majority of the researchers
use the YOLOV3 algorithm for its efficiency and accuracy. Though there are so many
other efficient algorithms available, Such as CNN. On the other hand, in terms
of using architecture. InceptionV3, Xception, MobileNet, MobileNetV2, VGG16,
ResNet50 all are efficient. But ResNet50, MobileNetV2 and VGG16 are mostly
used by the researchers for getting the most accuracy. So, for not only detecting
facemask, the approach should be detecting and if not found then give notification
or buzz alarm so that the purpose of the matter is greatly served and be a success.



Chapter 3

Dataset and Workflow Analysis

3.1 Dataset and Workflow Analysis

This Chapter describes the process through which we will carry out our task.
Flowcharts have been used to depict our workflow in Section 3.1 of this document.
Our research began with the collection of as many photos as possible of individuals
wearing masks, people who were not wearing masks, and people who had misplaced
their masks, as well as the collection of a large data set of persons who were wearing
masks. It is necessary to resize all of the photographs to a single size of 100X100
pixels after they have been collected. It is the first step in the Pre-processing pro-
cess. Pre-processing also covers the act of tagging and categorizing the photos that
have been captured. As a classifier layer, we employed two algorithms, Softmax and
Relu, which were both developed by us. We are pre-training using the Densenet-169
model and then applying transfer learning to improve performance. When it came
to the hardware parameters we employed to run our models, we went with a Ryzen
7 1700 Eight-Core Processor, an Nvidia gtx 1050ti GPU, 16GB of RAM, and a 1TB
hard drive. Last but not least, when we have run all of the models and gotten the
results, we compare them with another model and with the two distinct classifiers,
and we examine the data even further by comparing the findings with those from
comparable research.

Collect Image N

- i Split data and image
Datasats »  Pre-pocessing

augmentation

9

' !

Training Datasets Test Datasets

!

Data pre-training

Compare the Adding Classifier as
accuracy results with Run the data final layer and using

VGG-19 adam optimizer

FY
-~

0

Figure 3.1: Workflow Diagram



3.2 Data and Analysis

3.2.1 Data Collection Statistics

One of the most challenging aspects of any learning-based research project is prepar-
ing the data for analysis. As a result, each dataset is unique and particular to the
project. We’ve compiled a global sample of people to use in our research for this
new model. Face masks are being worn by nearly everyone to protect themselves
against COVID-19, and we have gathered over 146,000 images of people using var-
ious types, forms, and materials of face masks. Currently, our data collection has
precisely 145537 normal photos, but we hope to expand it in the future to include
data from other sources, allowing us to catalog nearly every sort of mask in exis-
tence. A mix of men and women are also seen wearing face masks appropriately
and badly. We gathered data from a wide range of ages to ensure that our findings
were as precise as possible. It’s worth noting that we used a total of 124472 images
in the process of training the model. Only 67440 of them are appropriately masked,
3828 are unmasked, and 53204 of them are incorrectly masked. Additionally, there
are 21065 photos available for use in testing. Photos with masks make up 5848 of
the images, while images without masks make up 1687 of them.

3.3 Preprocessing

3.3.1 Data Augmentation

All of the images in this research have been scaled for the purpose of image training
and testing. Image resizing refers to the process of altering the image’s scale. It
allows for the selection of fewer pixels, which in turn reduces the training time
required for the intended experiment. The greater the number of pixels that we
must employ, the more difficult it will be for the model to perform because the
pixels are our inputs for the model. This also makes it easier for us to scale down
the images later on for the sake of zooming in or out on the picture. We used
ImageDataGenerator to generate the data sets for our test, train and validation
data sets. During the training-

 rescale=1./255; Where we are converting the RGB value from the range of
0-255 to a 0-1 number.

o rotation range=20; The degree to which the image will be rotated at random.

o shear range=0.15; Changing the angle in the opposite direction of the clock.
The value is expressed in degrees.

o fill mode="nearest’; It establishes rules for the pixels in the input region that
have been moved.

o width_shift range=0.1; It moves the picture to the left or right (horizontal
shifts). If the value is float and less than 1, it will use the percentage of the
total width as a range for the value.

o height shift range=0.1; It functions in the same way as width shift range.

10



o zoom range=0.15; When photos are randomly zoomed in and out, this function
range will be used.

» horizontal flip=True; Horizontal image flipping at random.

o vertical flip=False; Image flipping at random, which is not something we will
be doing. Just to make things easier for testing and validating the data set,
we rescale the photos down to the range of 0 to 1.

When it comes to input, all of the images are 100X100 pixels in size and are shot in
batches of 32. After that, the data is fed into the models we’'ve built. First, we use
Densenet169 and VGG19 models to build our models before putting them through
the two separate methods.

3.3.2 Grayscale Conversion

Grayscale conversion from a color image necessitates a deeper understanding of the
color image. Red, Green, and Blue are the three hues that make up an image’s
pixel color (RGB). The properties of brightness, chroma, and hue are used to depict
the RGB color values in three dimensions (XYZ). The quality of a color image
is determined by the number of bits that the digital device can represent in each
color. There are four different types of color images: 8 bit, 16-bit high color, 24-
bit true color (the closest thing to the real thing), and 32-bit deep color picture.
The maximum number of colors permitted by the digital device is determined by
the number of bits. The combination of Red, Green, and Blue occupies 24 bits
and allows 16.7 million possible colors if each color fills 8 bits. A pixel’s color
is represented by 24 bits in a color picture. An 8-bit number is used to indicate
brightness in a grayscale picture. 0 to 255 is the brightness scale for a grayscale
picture. This means that the RGB values (24-bit) of a color image may be used as
the basis for a grayscale image (8 bit). In this research, we are using RGB color
images to train and test our model as well as we also using grayscale conversion
images to train and test our model.

Figure 3.2: Grayscale Image

3.3.3 Activation Function: Rectified Linear Units(ReLu)

Convention dictates that immediately following each convolutional layer, a nonlinear
layer or activation layer is applied. This layer’s function is to add nonlinearity to a

11



system that has previously only computed linear processes during the convolution
layer. While nonlinear functions such as tanh and sigmoid have been utilized in
the past, researchers have shown that ReLU layers perform significantly better since
the network can train much quicker (due to the computational efficiency) despite
making a substantial impact to the accuracy. Because the gradients drop exponen-
tially across each layer, the bottom levels of a network train at a much slower rate.
This layer uses f(x) = max(0-x) as the function applied to all of its input volume.
Everything in this layer is set to 0, so it’s really simple. Since it doesn’t alter convo-
lutional receptive fields, this layer improves model nonlinearity and overall network
robustness.

0 if,z<0

f(z) = argmax(0, z), Where f(z) = {1 £z om0

g

weight layer
F(x) | relu y
weight layer | identity

F(x) + x B
relu

Figure 3.3: Residual learning: a building block
[5]

3.4 Classifier

3.4.1 Softmax

One way to represent a set of numbers as probabilities is to use the Softmax math-
ematical function, which multiplies all the values in a set by the scale at which they
appear in the vector. This is a classifier that we are use. Additionally, Softmax is
an activation function. It is a type of classifier that is frequently used in deep learn-
ing architectures. It multiplies all values received, regardless of their nature, and
converts them to a total of a number that will always be between 0 and 1. This is
a probability function that converts a vector distribution of a number’s probability
distribution to a real distribution[12]. This is one of the classifiers that is used to
validate the models’ accuracy. Softmax is defined by the equation

. e
U(Z>z = K

Ej:l €%

12



Where, o = softmax

Z = input vector

e* = standard exponential function for input vector
K = number of classes in the multi-class classifier

e* = standard exponential function for output vector
e% = standard exponential function for output vector

3.5 Optimizer

3.5.1 Adam optimizer

Adam is an optimization technique that, in place of the standard stochastic gradient
descent procedure, may be used to iteratively update network weights using training
data. The approach is extremely efficient when dealing with complex problems
with a large number of variables or data. It is memory-efficient and consumes less
memory. On the surface, it appears to be a mix of the 'gradient descent with
momentum’ and the '/RMSP’ algorithms[16]. Two gradient descent methods are
combined in the Adam optimizer.

Momentum: This approach uses the ’exponentially weighted average’ of the gradi-
ents to speed up the gradient descent algorithm. A faster convergence to the minima
is achieved by using averages.

Wiq1 = Wy — QM

where,

my = Bmy_1 + (1 - ) {5—L1

owy
my = aggregate of gradients at time ¢ [current] (initially, m; =0 )
my_1 = aggregate of gradients at time ¢ — 1 [previous]
W, = weights at time ¢
Wi = weights at time t+1
ay = learning rate at time ¢
0L = derivative of Loss Function
OW; = derivative of weights at time ¢

B = Moving average parameter (const, 0.9 )

Root Mean Square Propagation (RMSP): Adaptive learning method that aims to
enhance AdaGrad is RMSprop. In place of AdaGrad’s cumulative sum of squared
gradients, the ’exponential moving average’ is used instead.

sy — (9L
t+1 = W (Ut+5)l/2 dw;

13



where,
Ak
5’(1)15

Ut:BUt—l+(1—B)*|:

W; = weights at time ¢

Wiy = weights at time ¢ 4 1

a; = learning rate at time ¢

0L = derivative of Loss Function

OW, = derivative of weights at time ¢

V; = sum of square of past gradients. [i.e sum(/-1)] (initially,

B = Moving average parameter (const, 0.9)

e = A small positive constant (10 ~° )

As a result, Adam Optimizer incorporates the strengths of the previous two ap-
proaches into a more efficient gradient descent. Using the equations from the previ-
ous two ways, we may arrive at

2
my = Bimy—1 + (1 — B1) [5—[/} v = Pov—r + (1 — f2) [6_[/}

5wt 6wt

After each iteration, we instinctively adjust to the gradient descent such that it
remains constant and impartial throughout the process, therefore the name Adam.
Now, instead of our normal weight parameters m_t and v_t , we take the bias-
corrected weight parameters. Putting them into our general equation, we get

—~ «
Wi41 = Wy — My (\/A—>
UVt + €

In all of our methods, this optimizer is used because of its high efficiency and minimal
memory use requirements.

3.6 Sample Dataset

3.6.1 Dataset Analysis and Statistics

One of the most important aspects of learning-based research is the creation of the
dataset. Each dataset in this case is unique and particularly relevant to the topic at
hand. This collection includes images of Bangladeshi individuals, as well as images of
people from across the globe. In our dataset, we’ve mostly included images of people
from the Asian area.At this time, the most common protective measure people take
to avoid contracting COVID-19 is to don a face mask.Images of people with masks
of various materials, shapes, and designs, as well as those without masks, have been
gathered. Those were also cited in the article. We now have a dataset of 1,45,537
photographs, but we intend to add more in the future so that our data set includes
every facet of mask use, whether it is intentional or not. We have data on men,
women, and children who are wearing masks correctly, masks that are misplaced,
and masks that are not being worn at all. To ensure that our results are as accurate

14



as possible, we have gathered images of people of all ages in our collection.Moreover,
we also convert RGB images to Grayscale.
Here we have collected 1,45,537 images for our dataset in which 73288 images are

Figure 3.4: With,Without,Misplaced Mask

Figure 3.5: With,Without,Misplaced Mask

of with mask, 66734 images are of misplaced masks and 5515 images are of without
mask. Then we had divided the dataset of color images into two parts for test and
train purpose. For train purpose we have taken 124472 images of which 67440 were
with mask, 53204 were misplaced mask and 3828 without mask. Then we took 21065
images for test purpose. In which 5848 are with mask, 13530 are misplaced mask
and 1687 are without mask. Then we covered 145512 images of 1, 45,537 dataset
into Grayscale. In which 73264 were with mask, 66734 were misplaced mask, 5514
were without mask. For train purpose we took 124472 images. Of which 67440
were with mask, 53204 were misplaced mask and 3828 were without mask. For test
purpose we took 21040 images. Where 5824 were with mask, 13530 were misplaced
mask and 1686 were without mask.

15



Dataset analysis

& With Mask = Misplaced mask = Without Mask = Total

Figure 3.6: Statistical analysis of the colored image data sets

Dataset analysis of color image for train purpose

v

= With Mask = Misplaced mask = Without Mask = Total

Figure 3.7: Statistical analysis of the colored train image data sets

16



Dataset analysis of color image for test purpose

1687

8 With Mask = Misplaced mask = Without Mask = Total

Figure 3.8: Statistical analysis of the colored test image data sets

Dataset analysis of grayscale image

D

= With Mask = Misplaced mask = Without Mask = Total

Figure 3.9: Statistical analysis of the Gray Scale image data sets

17



Dataset analysis of grayscale image for train purpose

3828

& With Mask = Misplaced mask = Without Mask  # Total

Figure 3.10: Statistical analysis of the Gray Scale Train image data sets

Dataset analysis of grayscale image for test purpose

1686

= With Mask = Misplaced mask = Without Mask = Total

Figure 3.11: Statistical analysis of the Gray Scale Test image data sets

18



Chapter 4

Methodology

In order to recognize face masks, we have trained different CNN architectures, such
as Densenet169 and VGG19, among others. For the purpose of making the program
more functional, we separated our datasets into three classes. In our dataset of
145,000 photos, 50 percent of the images have masks, 45.85 percent of the images
have masks that are misplaced, and the remaining images have no masks. We
have converted the same dataset into gray scale images too in order to obtain the
efficiency. All of the photographs were formed in order to adjust the transfer learning
model, which had an input size of 100x100 pixels on it. Besides, we have augmented
our dataset in order to increase the performance and results of our CNN model.
After implementing the models, we saved the model and loaded it from another
program. With respect to that saved model, we have tested video of face masks.

4.1 Convolutional Neural Network

The full form of CNN is Convolutional Neural Network. It is designed for processing
pixel data. CNN is being used for image processing and recognition. It is a type
of artificial neural network. CNN is a powerful image processing Al that uses deep
learning. CNN is being used to do descriptive and generative tasks. For image and
video recognition CNN often uses machine vision. In CNN a system is being used
which reduces the requirement of processing. There are many layers in a CNN.
Which are an input layer, an output layer and a hidden layer. The hidden layer
is consist of convolutional layers normalization layer, a fully connected layer and a
pooling layer. This system is efficient as it removes the limitations which increase the
efficiency of image processing and it’s simple to train limited image processing.[8] Ac-
cording to Keiron O’Shea and Ryan Nash, CNNs are made up of neurons that learn
to be the best they can be.[4] Each neuron keeps getting feedback and performing a
task. There are three dimensions to the CNN: the input’s spatial dimension (height
and width), as well as its depth. The neurons in the CNN are organized in these
three dimensions. A CNN is made up of three layers: a convolutional layer, a pooling
layer, and a fully connected layer. The convolutional layer determines the output of
neurons linked to particular sections of the input volume by calculating the scalar
product of their weights and the region associated to the input volume. The input, a
vectorized picture, is processed through a kernel or filter, a two-dimensional array of
weights. With the input data and kernel, a dot product is done. After applying the
kernel to the whole picture in a methodical manner, a two-dimensional array called

19



Fully
Connected

T O‘k\_‘\.‘

Convolution

Pooling __.---—""
Input E.-

\ )\
Y

Feature Extraction Classification

Figure 4.1: Convulational Neural Network Architecture

the feature map is formed. Activation functions such as Relu are used to "excite”
the kernel when a certain characteristic occurs at a particular spatial location in the
input. The activation map is sent via the convolutional layer and then through the
pooling layer. Pooling is used to reduce the dimensionality and complexity of a de-
sign. Fully linked layers contain neurons that are directly connected to the neurons
in the two adjacent layers without even being connected to any other layers.

4.2 Transfer Learning

Transfer learning occurs when previously developed models are applied to a new
challenge or situation. Transfer learning is not a subset of machine learning algo-
rithms; rather, it is a strategy or approach for training models.[26] The knowledge
gained during earlier training is retrieved to assist with the performance of a new
activity. The new job will be tied to the previously learned task in some way, such
as categorizing objects inside a certain file type. Typically, the trained model re-
quires a high degree of generalisation in order effectively adapt to new unseen data.
Transfer learning eliminates the need to start from beginning every time a new task
arises. Transfer learning saves both time and resources since train the new machine
learning algorithm may be time-consuming and resource-intensive. Large datasets
must also be meticulously labeled, which takes a long time. Organizations face a
lot of unlabeled data, especially when training a ml algorithm on a large amount of
data. It is possible to train an algorithm on a labeled dataset, then apply it to a
job that requires unlabeled data. Generalization is an essential component of trans-
fer learning. This implies that only information that can be applied to a different
model under various circumstances is passed forward. Transfer learning models will
be more generalized rather than bound to a specific training dataset. It is possible
to use models generated in this manner in a variety of contexts and datasets.

For the purpose of classifying photos, we're use transfer learning in this work. Using
labelled data, a machine learning model may be taught to recognize and classify the
object in a picture. Using transfer learning, the model may be used to recognize
another specific subject in a batch of photos. The model’s basic components will
be left untouched, saving time and money. Models that identify an object’s edge
might include these components of its model. Retraining a new model is unneces-

20



Input"l y o, e
Z MO Output
Pretrained | f s * XL T M
Model | —- } Ol 'lg .
L B y: L = W 5 = v
liez Common inner layers ]
- @ @
Custom —) . " f‘
Model | _., ; f.

|+ Gustom final layers— |

Figure 4.2: Transfer Learning

sary thanks to the transfer of this information. Inductive learning is a term that
refers to models that use deep learning.[26] Algorithms based on inductive learning
are designed such that they can learn from a large number of training samples. In
classification, for example, the model learns a mapping between the input charac-
teristics and the labels for the various classes. It is necessary for such a learner
to make assumptions about the distribution of the training data in order for it to
perform effectively on unseen data. Inductive bias is a term used to describe these
kinds of presuppositions. The hypothesis space it confines to and the search pro-
cedure within the hypothesis space may all be used to describe the inductive bias
or assumptions. In other words, these biases have an effect on how and what the
model learns for the specific task and domain in question. The layered design of
deep learning models and systems allows them to learn a variety of characteristics
at different levels. For supervised learning, these layers are joined to one final layer
(typically a fully connected layer) to produce the final output. Using a pre-trained
network (like VGG) as a fixed feature extractor without its final layer is possible
with this tiered design. In the last several years, deep learning have made signif-
icant progress. Due to this, we have been able to take on challenging situations
and produce remarkable outcomes. Deep learning systems, on the other hand, take
substantially more time and data to train than typical ML systems. Some of the
most advanced deep learning networks have been built and tested in a wide range
of industries.

It is possible to fine-tune the architecture of deep neural networks by manipulating
a wide range of hyperparameters. As previously noted, the earliest layers of the neu-
ral network have been shown to capture general information, whilst the subsequent
ones focus more on the job at hand. Using a face-recognition issue as an example,
the following graphic illustrates how the network’s lower layers learn highly general
characteristics and its upper levels learn features that are task-specific in nature.It
is possible to freeze (fix weights) specific layers while retraining or to fine-tune the
remainder of them based on this new information. In this situation, we begin our
retraining process with an understanding of the network’s general architecture and

21



‘_' Sraliow classilier (8. SYM)
softmax J—
g)< 2 - = features
R ———— .
el fc1
| sonv3 ] ( conv3 |
| comi2 | TRANSFER | conv2 |
[ convi J | conv |
' T
: Data and lsbels (9.0 imegeNet) ] - [ Toeget tata and lacet ]

Figure 4.3: Transfer Learning with Pre-trained Deep Learning Models as Feature
Extractors

Deep neural
networks learn
hierarchical feature
representations

hidden layer | hidden layer 2 hidden layer 3
input layer

Figure 4.4: Fine Tuning Off-the-shelf Pre-trained Models

the states that exist inside it. As a result, we are able to workout less and get greater
results.[9)]

4.3 Machine Learning

In 1952, Arthur Samuel, an IBM computer scientist and a founder in artificial intelli-
gence and computer gaming, created the term "machine learning.”. Machine learning
is indeed the analysis of computer algorithms that can learn and develop on their
own via experience and data.[29] It is considered to be an element of artificial intel-
ligence. The construction of computer applications that can access data and utilize
it to learn for themselves is the goal of machine learning research and development.
Our modern life is surrounded by the blessing of machine learning. From medical
diagnosis to industrial factories, there are numerous instances of machine learning in
our daily life. In the field of machine learning, the detection of faces is an extremely
essential component. It is being utilized in a variety of fields, including digital secu-

22



rity, smart advertising, the medical field, and many more.[18] The objective of the
study "Face Mask Detection Using AI” is to propose a method that can recognize
a picture of a human and determine the likelihood that the individual is wearing a
mask or not. In our case, the deep learning approach was utilized to detect a mask
on a person’s face. In a pandemic crisis like COVID-19, detection of face masks
has become highly crucial all over the globe. Numerous health systems around the
world are facing unusual problems as a result of the outbreak of a new coronavirus
(COVID-19). The identification of face masks in the workplace is an unparalleled
advantage of machine learning when it comes to maintaining a healthy working en-
vironment. The method has become more accurate as a result of the machine being
trained with hundreds of thousands of photographs. The classification of photos into
three groups: images with mask, images without mask, and images with misplaced
mask has made the process more practical for the current situation. The extent of
security may be increased even further if human beings’ access to certain areas is
restricted based on the form in which they are wearing a mask.

4.4 Save and Load Function

The progress of the model may be stored both during and after training. This
implies that a model may pick up where it left off and avoid having to go through
a lengthy training process. Saving also allows you to share your model with others,
allowing them to duplicate your work. In order to publish research models and
approaches, the majority of machine learning practitioners release both the code
used to generate the model and the training weights, or parameters, that were used
to develop the model. Sharing this data allows others to better understand how the
model works and to experiment with it using fresh data. In this research, we are
using entire model technique for load and save function. [17]

¢
g~y | ﬁ

Architecture,
[Weights,
Optimizer state,
json yaml Training config
model.to_json() model.to_yamil()
model_from_json() model_from_yami()
During Before/After During Before/After
Training Truifing Training Training
Checkpoint model.save_weights() Checkpoint Maodel save()
tall]ﬂit model.load weights(} call model.load()

m h5 formet — hS format

Figure 4.5: Classification of save and load function

23



4.5 Densenet-169

DenseNet is one of the new addition in the neural networks used for the recognition
of visual objects. DenseNet169 is a model of the DenseNet group. DenseNet group is
being designed to perform image classification. DenseNet169 is larger than the rest
others of the DenseNet group. Mostly in DenseNet, all the images are being trained
on The ImageNet image database but here we have trained the model and saved
it and tested it by loading our saved model instead of ImageNet. Here the output
of the previous layer gets concatenated with the future layer DenseNet. DenseNet
was designed for declining the accuracy in a high-level neural network which is
caused by the vanishing gradient. As there is a long path that exists between the
input and output layer and the information gets vanished even before reaching its
destination. DenseNet belongs to the category of the classic networks.[21] According
to recent stats, convolutional layers can be more efficient and accurate. If they have
a shorter connection between layers close to the input and close to outputs as well.
And can be substantially deeper also. Here DenseNet has been used to connect
each layer to every layer which is in a feed-forward fashion. Usually, traditional
convolutional networks have L layers. And L connection exists between L layers.
Which means one connection between each layer and its subsequent layers. Here we

Layers Output Size DenseNet 169
Convolution 112x112 7X7 conv, stride 2
Pooling 56X56 3% 3 max pool, stride 2
Dense Block 1x1conv
5
(1) i X3 conv]
Transition 5656 1x1 conv
Layer (1) 28%28 2X2 average pool, stride 2
Dense Block 1x1 conv
28x2
(2) ARLS 3xX3 conv]
Transition 28x28 1X1 conv
Layer (2) 14x 14 22 average pool, stride 2
Dense Block 1x1 conv
X
(3) Sals 3x3c0anX32
Transition 14x14 1x1 conv
Layer (3) 77 2X2 average pool, stride 2
Dense Block 1x1conv],_ .-
17 X
(4) 3x3 r.'onv] A
Classification I 1 Tx7 glnl:)al average pool
i 1000D fully-connected,
Layer 1000 -
softmax

Figure 4.6: DenseNet Architecture

have L (L+1)/2 direct connections in the network. And here for every layer as inputs,
all the presiding layers have been used. For the input of all subsequent layers, its
feature maps are being used. We get many advantages in DenseNet. They reduce
the vanishing gradient problem. Feature propagation gets strengthened, feature
reuse gets encouraged and it reduces the number of parameters. Our proposed
architecture can be evaluated on highly competitive image recognition benchmark

24



ImageNet and in addition, we have used the save and load function here. Grouping
of the layers are possible as explained above if there is a total similarity in feature
map dimension at the time of concatenation or addition. DenseNet is being divided
into DenseBlocks with a different number of filters. But within the blocks, the
dimensions are the same. Batch normalization is applied by using downsampling by
transition layer. Which is considered an important step in CNN. According to the
increasing of the dimension of the channel the number between the DenseBlocks of
the filters changes. The growth rate is being denoted by K. [7] It plays a vital role
to generalize the I-th layer. The amount of information that needs to be added in
every layer is being controlled by this:

kl:ko—l-k*(l—l)

Figure 4.7: DenseNet Architecture

[13]

Input
Prediction
Dense Block 1 Dense Block 2 Dense Block 3 il

Figure 4.8: A DenseNet Architecture with 3 dense blocks

Bugoo g

¥
o=
[ Boiwd ]
JEBUl

oo ]

[ oo ]

25



4.6 VGG-19

VGG19 is a 19-layer variation of the VGG model. It consists of sixteen convolution
layers, three fully linked layers, five MaxPool layers, and one SoftMax layer. There
are further VGG versions, such as VGG11, VGGI16, and so on. VGG19 has a
compute power of 19.6 billion floating point operations per second (FLOPs).In a
CNN, there are three main layers: 1) the convolutional layer; 2) the pooling layer;
and 3) the fully-connected layer (FC). When the FC layers are ready for the final
classification, they are trained with a lot of convolutional and pooling layers in
between. CNN has had a lot of success with image recognition tasks, and many
people use it. Deep CNN models that have been trained can be used instead of
a feature extractor. By using the network that was already trained as the feature
extractor, the deep CNN can do well with small data in another field. This is
because the feature extractor is already trained.[1] Gatys et al.[2] used a VGG-
19 network that had been trained to recognize objects to make textures. When
Huang et al.[3] started DenseBox, they used a pre-trained VGG19 network from
ImageNet. DenseBox is a fully CNN framework for object detection. Li et al. [6]
used the VGG-19 that was trained on ImageNet to find hierarchical cnn features for
visual object tracking. When applying the VGG-19 on the ImageNet dataset as a
feature extractor, a novel TranVGG19 is suggested for facemask identification in
this research. In figure 4.5 shows the structure of VGG-19.Filter dimensions are 3x3
and depth 64, as indicated by "Conv3-64” denotation. Pool/2 indicates that it is a
maximum pool with a 2*2 filter.

[ Image j—)[(.'un‘.}-ﬁ'—l] (_'011‘.3-]23] Conv3- "'\-:'] —)-[(_um.": 3]"] —b[(.um. 3-51 ] —)( FC-40%6G ]
[(.'U::‘L.l-(‘r—'l- ] [(.'011\3-113] [Lum 3- "‘:’] [(.um‘: 3]"] [(.'011\3-511] ( FC-4096 ]
[ Pool/2 ] [ Pool/2 } [Lun\.a "'\fj [f_um.": 3]"] [(_'011'\.3-5]1] [ FC-1000 ]
| | 1
[Luma "‘:’J [(.um‘: JJ’J [Cunﬁ-i]:}
[_ Pool/2 J [f_um.": '_'l]"J [_ Pool/2 J

Figure 4.9: The Structure of VGG-19 Network

During the face mask detection training, the VGG-19 is frozen and transferred via
transfer learning. In order to extract features, all of the convolutional and maxpool
layers and first FC layer are used. After the previous feature based layers, a new FC
layer with a hidden neuron count of 128 is introduced. Finally, the new FC layer
and the new softmax classifier are trained using face mask detection data. [10]

Figure 4.10: VGG19 network model

26



{ veG-19 [

Met !
[ Impm ) Model |
Training o = | Transfer I
data set i Leagning VGG-19
s ; I Met
I'I'IH_I:I:'. |..'II'L- [ Model
processing it
L e

Improved - | ImageMNes |
VGG-19 Net || '-. W
Model |
' [H]
Replace—

Test 1 Flatten
e 7B T
e 2 FC layers
WGG-19 Net Softmax |
_ Model HEEI Replace—] classifier for 2
Test ‘ labels
data set
Detection g End _H\'l
result e ¥

Figure 4.11: Training frame of mask detection model

4.7 Confusion Matrix

The Confusion Matrix is a benchmark for machine learning classification that mea-
sures how effective any programme is. For example, if you have an imbalanced
amount of observations in each class, or if you have more than two classes in your
dataset, just looking at classification accuracy alone might be confusing. A con-
fusion matrix may thus provide you with a more accurate picture of what your
classification model is getting right and also what sorts of mistakes it is generating.
There are few elements of the confusion matrix and they are as follows:

True positive: The values that were both genuinely positive and expected to be
positive.

True negative: The values which were negative and were also expected to be nega-
tive.

False positive: The values that were actually negative but were mistakenly assumed
to be positive. Also called a Type I Error.

False negative: The values that were actually positive but were mistakenly assumed
to be negative. Also identified as a Type II Error.

There are 3 classes in our datasets which are: with mask, without mask and mis-
placed mask. At the beginning, we used color images to create the confusion ma-
trix for VGG19 and Densenet169, which we then tested. Then we converted the
whole dataset into grayscale images and ran another round of tests. As a result, we
achieved four confusion matrices as output.

Positive | Negative
True TP TN
False FP FN

Table 4.1: TP, TN, FP and FN parameter definitions

27



Chapter 5

Implementation and Result
Analysis

5.1 Densenet169

5.1.1 Implementing DenseNet169 on Images

The first model that we choose to implement on our dataset was DenseNet169.
Our expectation was this model would perform better for our dataset. We have
implemented this both on colored images and grayscale. When we implemented this
model for training and testing on color images we got accuracy of 91.47%.

model accuracy

100 -

— Tain —

val
0.98 4 /

=
[Ta)
o

aCCuracy

(194 1

0.92 4

0.90 1

1] 2 4 & B
epoch

Figure 5.1: Accuracy of DenseNet169 on color images

Then we implemented on grayscale images we got accuracy of 88.83%.

28



model accuracy

100 1

— frain

|
pag 4 /

0.96 1

0.94 1

aocuracy

0.92 4

0.90 1

0 2 4 6 B
epoch

Figure 5.2: Accuracy of DenseNet169 on grayscale images

5.1.2 Implementing DenseNet169 on video

We covered videos into images frame by frame and implemented this model on that.
Where we got accuracy of 75.36% on images of the video.

DenseNet169
75.36%

5.1.3 Confusion matrix for Densenet169(Color Image)

This is the confusion matrix that we obtained after implementing Densenet169 using
the color image dataset following the result.

5.1.4 Confusion matrix for Densenet169(Grayscale Image)

This is the confusion matrix that we obtained after implementing Densenet169 using
the Grayscale image dataset following the result.

5.1.5 Iteration of checking loss and accuracy(Densenet169)

Here we can see after implementing the model, we are about to get some results.
The table shows result of 5 iteration each into 2 intervals. Which shows the loss and
accuracy.

29



12000

= 19 0
10000
8000
— - 340 4072 1435
- 6000
=4000
[ [ i -0
0 1 2
Figure 5.3: Confusion Matrix of DenseNet169 on Color image
precision recall fl-scors support
0 0.58 1.00 0.5935 13530
1 1.00 0.70 0.82 5847
2 0.54 1.00 0.70 1686
accuracy 0.51 21063
macro avg 0.84 0.50 0.84 21063
weighted avg 0.595 0.51 0.92 21063

Figure 5.4: DenseNet169 Color image F'1-score

30



12000

=] B 3
10000
BOO0
— - o1 3454 22459
= 6000
= 4000
i i i -0
H 1 2

Figure 5.5: Confusion Matrix of DenseNet169 on Grayscale image

precision recall fl-=score s=upport

0 0.959 1.00 1.00 13530

1 1.00 0.60 0.75 SBz24

2 0.43 1.00 0.&0 lede

accuracy 0.835 21040
macro avg 0.81 0.87 0.78 21040
weighted avg 0.55 0.85 0.3%0 21040

Figure 5.6: DenseNet169 Grayscale image F1-score

31



Training loss Categorical Validation loss Validation

accuracy accuracy
1 0.0783 0.9704 0.4046 0.8990
2 0.0088 0.9972 0.2439 0.9419
3 0.0052 0.9984 0.4736 0.9148
4 0.0036 0.9990 0.3601 0.9296
5 0.0028 0.9990 0.5611 0.9230
6 0.0023 0.9992 0.9526 0.9075
7 0.0019 0.9995 0.3150 0.9424
8 0.0019 0.9994 0.6688 0.9217
9 0.0015 0.9996 0.5195 0.9333
10 0.0017 0.9996 0.7371 0.9147

Table 5.1: Iteration table of DenseNet169 on color images training & testing

Training loss Categorical Validation loss Validation

accuracy accuracy
1 0.1059 0.9611 0.3315 0.9021
2 0.0148 0.9952 0.5632 0.8885
3 0.0075 0.9975 0.5225 0.8985
4 0.0049 0.9985 0.6633 0.9006
5 0.0047 0.9985 0.5613 0.9017
6 0.0032 0.9990 0.9252 0.8934
7 0.0025 0.9992 0.7991 0.8982
8 0.0023 0.9993 0.7676 0.8988
9 0.0027 0.9993 1.0633 0.8928
10 0.0017 0.9994 1.4306 0.8883

Table 5.2: Iteration table of DenseNet169 on gray scale images training & testing

32



5.2 VGG19

5.2.1 Implementing VGG19 on Images

The second model that we choose to implement on our dataset was VGG19. Our
expectation was this model would perform better for our dataset. We have im-
plemented this both on colored images and grayscale. When we implemented this
model for training and testing on color images we got accuracy of 88.52% Then we

model accuracy

100 1

—  rain
vl
0.98 1

0.96 1

0.94 4

atcuracy

0.92 1

0.90 1

(.88 1

0 2 4 & g
epoch

Figure 5.7: Accuracy of VGG19 on color images

implemented on grayscale images we got accuracy of 92.44%.

5.2.2 Implementing VGG19 on video

We got accuracy 92.30% of on grayscale converted images of the video.

VGG19
92.30%

5.2.3 Confusion matrix for VGG19(Color Image)

This is the confusion matrix that we obtained after implementing VGG19 to a color
image dataset following the result.

5.2.4 Confusion matrix for VGG19(Grayscale Image)

This is the confusion matrix that we obtained after implementing VGG19 using the
Grayscale image dataset following the result.

33



aCCuracy

model accuracy

100 1 — train
val
098 1
0.96 1
0.94 1
092 1
0.90 1 ,
/
088 1
0 2 4 6 B
epoch
Figure 5.8: Accuracy of VGG19 on grayscale images
12000
= 8 7
10000
8OO0
— - 14 3444 2389
- 6000
- 4000
[ [ [ -0
0 1 2

Figure 5.9: Confusion Matrix of VGG19 on Color image

34



precision recall fl-score support

0 1.00 1.00 1.00 13530

1 1.00 0.5% 0.74 5847

2 0.41 1.00 0.358 1c86

accuracy 0.8%5 21063
macro avg 0.80 0.86 0.77 21063
weighted avg 0.55 0.8% 0.85 21063

Figure 5.10: VGG19 Color image F1-score

12000
= 5 4
10000
8000
— 113 4246 1485
- 6000
= 4000
I I !
0 1 2

Figure 5.11: Confusion Matrix of VGG19 on Grayscale image

precision recall fl-score support

0 0.95 1.00 1.00 13530

1 1.00 0.73 0.584 SBz24

2 0.53 1.00 0.70 le8¢

accuracy 0.92 21040
macro avg 0.84 0.51 0.84 21040
weighted avg 0.%26 0.32 0.33 21040

Figure 5.12: VGG19 Grayscale image F1-score

35



5.2.5 Iteration of checking loss and accuracy(VGG19)

Here we can see after implementing the model, we are about to get some results.
The table shows result of 5 iteration each into 2 intervals. Which shows the loss and
accuracy.

Training loss Categorical Validation loss Validation

accuracy accuracy
1 0.0274 0.9905 0.3293 0.8956
2 0.0072 0.9978 0.6589 0.8826
3 0.0052 0.9984 0.5591 0.8940
4 0.0039 0.9988 0.5834 0.8873
5 0.0036 0.9990 1.0089 0.8795
6 0.0031 0.9991 0.5532 0.9093
7 0.0026 0.9992 1.0294 0.8928
8 0.0025 0.9993 0.6826 0.8948
9 0.0021 0.9994 1.0048 0.8859
10 0.0021 0.9995 1.1712 0.8852

Table 5.3: Iteration table of VGG19 on color images training & testing

Training loss Categorical Validation loss Validation

accuracy accuracy
1 0.0462 0.9826 0.4579 0.8840
2 0.0094 0.9970 0.7129 0.8744
3 0.0070 0.9979 0.6888 0.8693
4 0.0054 0.9983 0.5959 0.8860
5 0.0045 0.9985 0.7505 0.8717
6 0.0041 0.9987 0.6604 0.8834
7 0.0034 0.9989 0.8409 0.8888
8 0.0030 0.9991 0.2939 0.9365
9 0.0031 0.9991 0.7637 0.8817
10 0.0025 0.9992 0.3794 0.9244

Table 5.4: Iteration table of VGG19 on gray scale images training & testing

5.3 Comparison of result between DenseNet169
and VGG19

From here we can see that we have trained our data set and tested them using
DenseNet169 and VGG19. Where is got accuracy of 91.47% on color image dataset
and 88.83% from the grayscale image dataset by DenseNet169. Where we got 88.52%
accuracy of color images and 92.44% on gray scale by using VGG19. Here we can

36



see that in DenseNet169 the accuracy of color images in higher than the accuracy
of gray scale. On the other hand, the accuracy of grayscale images are higher than
the accuracy of color images in VGG19.

Accuracy comparison based on images

93,00

VGG19, 92.44%
97.00%
DensenstlEs, 91.47%
91.00%
.00
A9.00% D!ﬂ!ll‘l!_t.'lﬂ.u.B!(. 4
| VGG19, B8 .52%
AR
87.00%
86,000

Densenetibd ViGE1S

mColor image @ Gray Scale

Figure 5.13: Accuracy comparison between Densenet169 and VGG19

37



Chapter 6

Conclusion and Future Work

The transmission of airborne infections is particularly quick and easy in nations
with large population densities. Bangladesh has also reported a significant increase
in COVID-19 cases and virus-related fatalities over the previous week, raising con-
cerns about the possibility of the omicron variant circulating over the whole coun-
try. Consequently, wearing face masks has evolved into an inescapable circumstance
rather than an elective duty in modern times. The Densenet169 method, a deep
learning model, was used to identify the presence of masks on people’s faces. A
detailed comparison of the whole program with other detection algorithms such as
VGG19 has also been performed. As a result of training the model with both color
and grayscale images, this study has gained a whole wide range of new. As a result,
we can compare the time complexity of training, accuracy, precision, effectiveness
and other factors in detail. Because of the COVID-19 epidemic, everyone is well
aware of the need to wear face masks. Putting on a face mask correctly, even in
the midst of a deadly epidemic like the COVID19, is not a practice that everybody
has developed. Humankind is in desperate need of a computerized system that can
identify face masks and deny human beings entry to certain areas in response to
this. Specifically, in this research, we have concentrated on determining if a person
is correctly wearing a mask or not, which is a binary classification performed uti-
lizing various CNN architectural configurations. Working on picture segmentation,
which is able to calculate the precise location of a mask on a person’s face, would
be something we would want to pursue in the future. We also shall put this whole
program into CCTV cameras, which may be utilized in a range of fields, includ-
ing hospitals, educational institutions, factories, shopping malls, and other public
locations. A hybrid of current models may also be created and tested to see how
effective they are.

38



Bibliography

[1] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?” arXiv preprint arXiv:1411.1792, 2014.

[2] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convolutional
neural networks,” Advances in neural information processing systems, vol. 28,
pp- 262-270, 2015.

[3] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “Densebox: Unifying landmark local-
ization with end to end object detection,” arXiv preprint arXiv:1509.04874,
2015.

[4] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,”
arXiv preprint arXiv:1511.08458, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770-778.

6] Y.Li, Y. Zhang, Y. Xu, J. Wang, and Z. Miao, “Robust scale adaptive kernel
correlation filter tracker with hierarchical convolutional features,” IEEE Signal
Processing Letters, vol. 23, no. 8, pp. 1136-1140, 2016.

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 4700-4708.

[8] T. Contributor, What is convolutional neural network? - definition from whatis.com,
Apr. 2018. [Online|. Available: https://www.techtarget.com/searchenterpriseai/
definition/convolutional-neural-network.

9] D. ( Sarkar, A comprehensive hands-on gquide to transfer learning with real-
world applications in deep learning, Nov. 2018. [Online]. Available: https:
/ / towardsdatascience . com / a-comprehensive- hands-on-guide- to- transfer-
learning-with-real-world-applications-in-deep-learning-212bf3b2{27a.

[10] L. Wen, X. Li, X. Li, and L. Gao, “A new transfer learning based on vgg-
19 network for fault diagnosis,” in 2019 IEEFE 23rd international conference

on computer supported cooperative work in design (CSCWD), IEEE, 2019,
pp. 205-209.

[11] S. K. Addagarla, G. K. Chakravarthi, and P. Anitha, “Real time multi-scale fa-
cial mask detection and classification using deep transfer learning techniques,”
International Journal, vol. 9, no. 4, pp. 44024408, 2020.

[12] J. Brownlee, Softmaz activation function with python, Jun. 2020. [Online].
Available: https://machinelearningmastery.com/softmax-activation-function-
with-python/.

39


https://www.techtarget.com/searchenterpriseai/definition/convolutional-neural-network
https://www.techtarget.com/searchenterpriseai/definition/convolutional-neural-network
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://machinelearningmastery.com/softmax-activation-function-with-python/
https://machinelearningmastery.com/softmax-activation-function-with-python/

[13]

[14]

[15]

[16]

[23]

[24]

[25]

[26]

Densenet architecture explained with pytorch implementation from torchuvi-
sion, Aug. 2020. [Online|]. Available: https://amaarora.github.io/2020,/08/02/

densenets.html?fbclid=IwAR1POGNaiXS -3TzT4G90Hn6t15ZAeVX71zFOs4dmDgqgYkY Y1

S. Feng, C. Shen, N. Xia, W. Song, M. Fan, and B. J. Cowling, “Rational use
of face masks in the covid-19 pandemic,” The Lancet Respiratory Medicine,
vol. 8, no. 5, pp. 434-436, 2020.

M. Inamdar and N. Mehendale, “Real-time face mask identification using face-
masknet deep learning network,” Available at SSRN 3663305, 2020.

Intuition of adam optimizer, Oct. 2020. [Online]. Available: https://www.
geeksforgeeks.org/intuition-of-adam-optimizer /#:~:text=Adam%20optimizer%
20involves%20a%20combination,minima%20in%20a%20faster %20pace..

V. Janapati, Saving and loading of keras sequential and functional models, Oct.
2020. [Online]. Available: https://medium.com /swlh/saving-and-loading-of-
keras-sequential-and-functional-models-73ce704561f4.

A. M. Kaur, A. J. Nicols, A. A. Lakshminarayanan, A. T. Kalafati, A. K.
Rogers-Nelson, and A. M. Shealy, Top 10 real-life examples of machine learn-
ing, Jan. 2020. [Online|. Available: https://bigdata-madesimple.com /top-10-
real-life-examples-of-machine-learning/ .

Novel coronavirus — china, Jan. 2020. [Online]. Available: https://www.who.
int /csr/don/12-january-2020-novel-coronavirus-china/en/.

B. Qin and D. Li, “Identifying facemask-wearing condition using image super-
resolution with classification network to prevent covid-19,” Sensors, vol. 20,
no. 18, p. 5236, 2020.

G. Singhal, Gaurav singhal, May 2020. [Online]. Available: https://www.
pluralsight . com / guides / introduction - to- densenet - with - tensorflow ? fbelid =
IwAR2ZX2WIxmi3KYvi0wm709i0g8V1BVIr1 X13MMuMe7qREgp5qWxCOruiPkA.

J. Xiao, J. Wang, S. Cao, and B. Li, “Application of a novel and improved vgg-
19 network in the detection of workers wearing masks,” in Journal of Physics:
Conference Series, IOP Publishing, vol. 1518, 2020, p. 012 041.

J. Ieamsaard, S. N. Charoensook, and S. Yammen, “Deep learning-based face
mask detection using yolovb,” in 2021 9th International Electrical Engineering
Congress (iIEECON), IEEE, 2021, pp. 428-431.

A. Kumar, A. Kalia, A. Sharma, and M. Kaushal, “A hybrid tiny yolo v4-
spp module based improved face mask detection vision system,” Journal of
Ambient Intelligence and Humanized Computing, pp. 1-14, 2021.

M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “A hybrid deep
transfer learning model with machine learning methods for face mask detection
in the era of the covid-19 pandemic,” Measurement, vol. 167, p. 108 288, 2021.

P. Sharma, Transfer learning: Understanding transfer learning for deep learn-
ing, Oct. 2021. [Online]. Available: https://www.analyticsvidhya.com /blog/
2021/10/understanding-transfer-learning-for-deep-learning,/ .

40


https://amaarora.github.io/2020/08/02/densenets.html?fbclid=IwAR1POGNaiXS_-3TzT4G9oHn6t15ZAeVX71zFOs4mDgqgYkYYtUqz0KDaatM
https://amaarora.github.io/2020/08/02/densenets.html?fbclid=IwAR1POGNaiXS_-3TzT4G9oHn6t15ZAeVX71zFOs4mDgqgYkYYtUqz0KDaatM
https://www.geeksforgeeks.org/intuition-of-adam-optimizer/#:~:text=Adam%20optimizer%20involves%20a%20combination,minima%20in%20a%20faster%20pace.
https://www.geeksforgeeks.org/intuition-of-adam-optimizer/#:~:text=Adam%20optimizer%20involves%20a%20combination,minima%20in%20a%20faster%20pace.
https://www.geeksforgeeks.org/intuition-of-adam-optimizer/#:~:text=Adam%20optimizer%20involves%20a%20combination,minima%20in%20a%20faster%20pace.
https://medium.com/swlh/saving-and-loading-of-keras-sequential-and-functional-models-73ce704561f4
https://medium.com/swlh/saving-and-loading-of-keras-sequential-and-functional-models-73ce704561f4
https://bigdata-madesimple.com/top-10-real-life-examples-of-machine-learning/
https://bigdata-madesimple.com/top-10-real-life-examples-of-machine-learning/
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
https://www.pluralsight.com/guides/introduction-to-densenet-with-tensorflow?fbclid=IwAR2ZX2Wlxmi3KYvi0wm7O9iog8V1BVIr1X13MMuMe7qREgp5qWxCOruiPkA
https://www.pluralsight.com/guides/introduction-to-densenet-with-tensorflow?fbclid=IwAR2ZX2Wlxmi3KYvi0wm7O9iog8V1BVIr1X13MMuMe7qREgp5qWxCOruiPkA
https://www.pluralsight.com/guides/introduction-to-densenet-with-tensorflow?fbclid=IwAR2ZX2Wlxmi3KYvi0wm7O9iog8V1BVIr1X13MMuMe7qREgp5qWxCOruiPkA
https://www.analyticsvidhya.com/blog/2021/10/understanding-transfer-learning-for-deep-learning/
https://www.analyticsvidhya.com/blog/2021/10/understanding-transfer-learning-for-deep-learning/

[27]

[28]

[29]

[30]

S. Taneja, A. Nayyar, P. Nagrath, et al., “Face mask detection using deep
learning during covid-19,” in Proceedings of Second International Conference
on Computing, Communications, and Cyber-Security, Springer, 2021, pp. 39—
51.

Z. Wang, P. Wang, P. C. Louis, L. E. Wheless, and Y. Huo, “Wearmask: Fast
in-browser face mask detection with serverless edge computing for covid-19,”
arXiw preprint arXiw:2101.00784, 2021.

When was machine learning invented? Feb. 2021. [Online|. Available: https:
//pandio.com/blog/when-was-machine-learning-invented /.

Who coronavirus (covid-19) dashboard. [Online|. Available: https://covid19.
who.int/.

41


https://pandio.com/blog/when-was-machine-learning-invented/
https://pandio.com/blog/when-was-machine-learning-invented/
https://covid19.who.int/
https://covid19.who.int/

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Problem Statement 
	Motivation 
	Research Objectives
	Thesis Outline

	Related Work
	Dataset and Workflow Analysis
	Dataset and Workflow Analysis
	Data and Analysis
	Data Collection  Statistics

	Preprocessing
	Data Augmentation
	Grayscale Conversion
	Activation Function: Rectified Linear Units(ReLu)

	Classifier
	Softmax

	Optimizer
	Adam optimizer

	 Sample Dataset
	Dataset Analysis and Statistics


	Methodology
	Convolutional Neural Network
	Transfer Learning
	Machine Learning
	Save and Load Function
	Densenet-169
	VGG-19
	Confusion Matrix

	Implementation and Result Analysis
	Densenet169
	Implementing DenseNet169 on Images
	Implementing DenseNet169 on video
	Confusion matrix for Densenet169(Color Image)
	Confusion matrix for Densenet169(Grayscale Image)
	Iteration of checking loss and accuracy(Densenet169)

	VGG19
	Implementing VGG19 on Images
	Implementing VGG19 on video
	Confusion matrix for VGG19(Color Image)
	Confusion matrix for VGG19(Grayscale Image)
	Iteration of checking loss and accuracy(VGG19)

	Comparison of result between DenseNet169 and VGG19

	Conclusion and Future Work
	Bibliography

