A Squeeze and Excitation ResNeXt-Based Deep Learning
Model for Bangla Handwritten Basic to Compound
Character Recognition

by

Mohammad Meraj Khan
16366009

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
M.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
August 2021

(©) 2021. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. T have acknowledged all main sources of help.

Student’s Full Name & Signature:

Mohammad Meraj Khan
Student ID: 16366009

Approval

The thesis titled “A Squeeze and Excitation ResNeXt-Based Deep Learning Model
for Bangla Handwritten Basic to Compound Character Recognition” submitted by
Mohammad Meraj Khan (16366009) of Summer, 2021 has been accepted as
satisfactory in partial fulfillment of the requirement for the degree of M.Sc. in
Computer Science & Engineering on 315" of December, 2021.

Examining Committee:

Supervisor: %/v%/——
(Member)

s/ 2

Mohammad Shorif Uddin, PhD
Professor
Department of Computer Science and Engineering
Jahangirnagar University

Co-Supervisor:

(Member) Zavid Parvez
Mohammad Zavid Parvez, PhD
Assistant Professor
Department of Computer Science and Engineering
BRAC University
Examiner:
(External)

Mohammad Nurul Huda, PhD
Professor
Department of Computer Science and Engineering
United International University

i

s M Melilon Flomar-

Md. Khalilur Rahman, PhD
Associate Professor
Department of Computer Science and Engineering

BRAC University

Examiner:
(Internal)

Muhammad Igbal Hossain, PhD
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:

(Member) 7%@—%

Amitabha Chakrabarty, PhD
Associate Professor
Department of Computer Science and Engineering
Brac University

Head of Department: .
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor
Department of Computer Science and Engineering

BRAC University

il

Lenovo
Stamp

Ethics Statement

Hereby, I Mohammad Meraj Khan consciously assure that for the manuscript ”A
Squeeze and Excitation ResNeXt-Based Deep Learning Model for Bangla Handwrit-
ten Compound Character Recognition” the following is fulfilled:

1) This material is original work, which has not been previously published elsewhere.
2) The manuscript is not being considered for publication anywhere at this time.

3) The writers’ research and analysis are reflected in the publication wholly and
truthfully.

4) The paper appropriately acknowledges the efforts of co-authors and co-researchers.
5) The findings are discussed in the context of previous and ongoing research.
The norms of the Ethical Statement can have serious implications if they are broken.

I agree to the aforementioned declarations and certify that this submission adheres
to Solid State Ionics’ rules as described in the Authors’ Guide and the Ethical
Statement.

v

List of Publication

e M.M. Khan, M. S. Uddin, M. Z. Parvez, L. Nahar, “A squeeze and ex-
citation ResNeXt-based deep learning model for Bangla handwritten com-
pound character recognition,” Journal of King Saud University — Computer
and Information Sciences, Published on 16 February, 2021, Available online :

https://doi.org/10.1016//].jksuci.2021.01.021

e M.M. Khan, M. S. Uddin, M. Z. Parvez, L. Nahar, J. Uddin, “A Deep
Convolution Neural Network-Based SE-ResNeXt Model for Bangla Handwrit-
ten Basic to Compound Character Recognition,” Journal of Hunan university
natural sciences, 2021 (Accepted for Publication)

Abstract

With the recent advancement in artificial intelligence, the demand for handwrit-
ten character recognition increases day by day due to its widespread applications
in diverse real-life situations. As Bangla is the world’s 7th most spoken language,
hence the Bangla handwritten character recognition is demanding. In Bangla, there
are basic characters, numerals, and compound characters. Character identicalness,
curviness, size and writing pattern variations, lots of angles, and diversity makes
the Bangla handwritten character recognition task very challenging. There are few
papers published recently which works both Bangla numeral, basic and compound
handwritten characters, but the accuracy level in all three areas is not so satisfac-
tory. The main objective of this paper is to propose a novel model which performs
equally outstanding in all three different character types and to increase the effi-
ciency to build a real-world Bangla Handwritten character recognition system. In
this work, we describe a novel method of recognition for Bangla basic to compound
character using a very special deep convolutional neural network model known as
Squeeze-and-Excitation ResNext. The architectural novelty of our model is to in-
troduce the Squeeze and Excitation (SE) Block, a very simple mathematical block
with simple computation but very effective in finding complex features. We obtained
99.80% accuracy from a bench-mark dataset of Bangla handwritten basic, numer-
als, and compound characters containing 160,000 samples. Additionally, our model
demonstrates outperforming results compared to other state-of-the-art models

Keywords: Bangla handwritten-character recognition, Deep Convolutional Neural
Network, Squeeze and Excitation ResNext, Optical character recognition, Global
average pooling.

vi

Dedication

To my wife.

vil

Table of Contents

Declaration

Approval

Ethics Statement

List of Publication

Abstract

Dedication

Table of Contents

List of Figures

List of Tables

Nomenclature

1

2

Introduction

1.1 Bangla Language Scripts L.
1.2 Compound Character Formation
1.3 Applications
1.4 Challenges and Goals
1.5 Outline

Literature Review

2.1 Related Works
2.1.1 MLP or SVM based Models
2.1.2 CNN based Models
2.1.3 ResNet Models
2.1.4 Divide-Merge and BiLSTM Models
215 Summary ... e

2.2 Convolutional Neural Network
2.2.1 Convolutional Layer
2.2.2 Pooling layers
2.2.3 ReLU Nonlinearity
2.2.4 Fully connected layers

2.3 Optimization

ii

iv

vi

vii

viii

xi

xii

2.4 Loss Function 12

3 Owur Proposed Method 13
3.1 Method Overview 13
3.2 Squeeze and Excitation Blocks 13
3.3 Squeeze: Global Information Embedding 14
3.4 Excitation: Adaptive Re-calibration 15
3.5 Dropout 16
3.6 Model Architecture 16

4 Experimental Setup and Result Analysis 18
4.1 Dataset Insight and Comparative Study 18
4.2 Performance Measurement Techniques 18
4.3 Data Preprocessing o 19
4.4 Model Performance Observation 20
4.5 Comparative study with Similar State-of-Art Models 25

5 Conclusion 29
5.1 Our Findings 29
5.2 Implication and explanation of findings 29
5.3 Strengths and limitations oL 0oL 29
54 Conclusion 30
5.5 Future Study 30

Appendix A: The Implementation For Bangla Handwritten Compound
Character Recognition Module 31

Appendix B: Performance Monitoring 36

Bibliography 42

X

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3

4.1

4.2

Al
A2
A3
A4
Bl

B2

B3

A block diagram of a CNN to recognize digits 7
Convolution operation 8
Max pooling in CNN 8
Max pooling equation L 9
Different activation functions 9
Fully connected layers in CNN 10
Proposed model’s block diagram 13
SE-ResNeXt Building Block. 14
Transformation of neural network where dropout [11] in place 16

A comparative study on model performance in training and testing

phase. 20
Normalized confusion matrix. 20
Project outlineo 32
Image processing code snippets 33
Model Build and training code snippets 34
Characters and their corresponding label 34
The Lost and the accuracy function in training and testing phase for

numerals L 36
The Lost and the accuracy function in training and testing phase

basic character type Lo 36
The Lost and the accuracy function in training and testing phase for

the compound character type L. 37

List of Tables

1.1

1.2

1.3

1.4

1.5
1.6

3.1
4.1

4.2
4.3
4.4
4.5

Bangla numerals and basic characters and corresponding IPA symbols
(1st-row numerals — 3nd-row vowels, 5th-12th rows consonants)
Handwritten Bangla numerals and basic characters are shown in Ta-
ble 1.1 (1st-row numerals, 2nd-row vowels, 3rd-6th rows consonants) .
A printed version of the considered Bangla compound characters and
corresponding IPA symbol
Bangla compound characters’ handwritten version that is shown in
Table 3(24 classes)
Some examples to show the development of compound characters. . .
Some similar-looking Bangla handwritten characters

The detailed construction and settings of the SE-ResNeXt blocks

Dataset comparative study - MNIST Vs MENDELEY BanglaLekha-

Isolated 2
Class-wise performance matrix.
Comparative study — similar recent state-of-the-art methods.
Some misclassification cases
Some misclassification cases for other related methods.

x1

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CNN Convolutional Neural Network

DCNN Deep Convolutional Neural Network
GAP Global Average Pooling

ILSV RC' ImageNet Large Scale Visual Recognition Challenge
IPA International Phonetic Alphabet

LSTM Long Short Time Memory

M LP Multi-Layer Perceptron

MQ@QDF Modified quadratic discriminant function
OCR Optical Character Recognition

ReLU Rectified Logical Unit

ResNet Residual Network

ResNeXt Residual Network Next

SE Squeeze and Excitation

SV M Support Vector Machine

x1i

Chapter 1

Introduction

1.1 Bangla Language Scripts

Bangla is one of the most spoken languages, with approximately 228 million native
speakers and about 37 million second-language speakers. It is the fifth most-spoken
native language and the seventh most spoken language by a total number of speak-
ers in the world. Bangla is the official language and mother tung of Bangladesh and
the West Bengal State of India. It has a very rich history of more than a thousand
years. There are 50 basic characters, 11 numerals, and around 300 compound char-
acters in the Bangla language [38]. The basic character set contains 11 vowels and
39 consonants. Table 1.1 represents the printed version of basic characters and their
corresponding International Phonetic Alphabet (IPA) Symbols, Table 1.2 represents
the corresponding hand handwritten version. Two or more characters together form
a compound character. The printed version of some frequently used compound char-
acters along with their IPA Symbols, and their corresponding handwritten version
is shown in Table 1.3 and Table 1.4, respectively.

Character o |5 2w (8 (¢ |vW|4 |V &
IPA Symbol |0 1 3 4 5 6 8 9
Character |® (@M |2 |5 [© |@ |4 (& |8 |8
IPA Symbol |2 |a I Ii u |uu|rmie |el 0 | ou
Character & ¥ |91 |9 (& |b |2 |& ¥ |&|B
IPA Symbol |k |KM (g |gf |n (H |th|d3 |d3f|n |t
Character |7 |© [|9 (@ |2 |®w |9 (7 |5 |F
IPA Symbol [th |d |d* |n |t t d|dh|n p | ph
Character g |w (¥ |9 |9 |« (T |[HA zT |95
IPA Symbol |b |DRF fm |d3 |T | I I h |d
Character 19 q g o8 | 2d | o

IPA Symbol |d" e |t |n |R |Z

Table 1.1: Bangla numerals and basic characters and corresponding IPA symbols
(Ist-row numerals — 3nd-row vowels, 5th-12th rows consonants)

g |l |F |E
MK e |6 |0
g1 |£ & |T
MR (6 ¥
o | Bl s |®r

bl | | (M d o
Ml |9 (5|8 v
N (M el |G | (M
/oM (2|9 & |G
= tal |G & @ |
¢ |3 |E e

Table 1.2: Handwritten Bangla numerals and basic characters are shown in Table
1.1
(1st-row numerals, 2nd-row vowels, 3rd-6th rows consonants)

Character == O T Z |®= =3

IPA Symbol | KT \bd |ng |Jk [fph |[h [t{[| kt6
Character El I B B q 33 g kil

IPA Symbol | [né |6 |Jp |ptd | mb6 |nd |db" | khmd

Character ES R T |9 5

IPA Symbol | nhé | | Ip6é |[pé | nd [nd® | mm | nth

Table 1.3: A printed version of the considered Bangla compound characters and
corresponding IPA symbol

WA | |G| || T
K|Blowr (TR D& =
Py oo |97 | & | & | R 5y

Table 1.4: Bangla compound characters’ handwritten version that is shown in
Table 3(24 classes)

1.2 Compound Character Formation

In most cases, the compound character does not retain the actual shape of the basic
characters from which it is made of. Few examples of different compound character

formations are depicted in Table 1.5. In this table, we observe that the position of
the basic character which took part to form the compound character also changes
the shape. In some cases, the compound character has no similarities with the basic
characters. The fourth row in Table 1.5 shows such a compound character “&” If we
closely look into the second and third-row where there are two different compound
characters, “®” and “¥” formatted from two basic characters, here the shape of the
basic character is partially retained. One important thing to notice here is that even
though the same basic character “&” is common for both compound characters but
its shape is different in the resulted compound character. The last row shows a
compound character “&”, its formation is much complex than the rest characters
in Table 1.5, where none of the three basic character shapes is retained. In this
table, only in the first row, the compound character retains the basic character’s
shape. Character identicalness, variations, and writing patterns sometimes make
different characters similar looking. Table 1.6 shows a few similar-looking different
characters.

Combinations Compound Character
T+E =| ==
T+9 ==
T+T =| =
B+ 57 = |5
H+®w+4 =| F

Table 1.5: Some examples to show the development of compound characters.

1T |or |Ad
25y | oy | 3

Table 1.6: Some similar-looking Bangla handwritten characters

1.3 Applications

Handwritten character recognition finds widespread applications in diverse fields,
such as automation of survey form data entry, vehicle number plate recognition,
various documentation digitization, bank cheque processing, OCR applications, etc.

1.4 Challenges and Goals

There are many reasons behind the difficulty of Bangla handwritten characters,
such as similarities between characters, writing pattern variations, changed shape
in a compound character, too much curviness, variations in sizes and shapes. The
length of aces, degree of angles the sizes of turns also make it difficult. The pres-
ence of ‘Matra’ (a horizontal line at the top) even makes it harder. Even a single
dot makes a character looks like a different character. Recognition of all (combined
numerals, basic and compound) characters is much difficult than only numeric char-
acters, or only basic characters, or only compound characters due to an increase in
the number of classes.

There are very few works on combined Bangla handwritten characters compared to
only basic or only numerals or only compound [3], [9], [14], [17], [18], [20], [21], [29],
[32], [35], [38] handwritten characters recognition.

The most notable techniques used in these works are supported vector machine
(SVM) [38], multilayer perceptron (MLP) [20], convolutional neural network (CNN)
(8], [9], [14], [18], [21], [29], [32], [35]. The accuracy level and the precision achieved
by these models are not up to the mark to build a standard Bangla OCR. In a
recent study in the sector of object recognition, a state-of-the-art model shows su-
perior performance, impressed by the result we have decided to explore and for
further improvement, we have decided to work on the variety of squeeze and excita-
tion ResNeXt deep convolutional neural network models. This is also a continuation
of one of our previous works [11], where we have worked to recognize Bangla hand-
written compound characters only. These models are pretty accurate to determine
the inter-channel feature dependencies, which in turn makes it efficient to learn very
complex features. The main contribution of this work is to develop an effective deep
learning technique to recognize a full set of Bangla characters (basic characters,
numerals, and compound characters).

1.5 Outline

We have organized the paper in the following manner, Section 2 for similar works.
Section 3 for proposed models’ architecture. Section 4 for experiment and result
analysis. Section 5 for Conclusion.

Chapter 2

Literature Review

2.1 Related Works

As English is the international language, so it is well studied and techniques are
already been developed for the English language. But in this paper, our main focus
is on the Bangla language. In our research, we have identified there are a lot of
works conducted on various languages other than Bangla. Among these, the most
mention-able works performed on Hindi, Tamil, Gujrati, Devanagari, Urdu, Arabic,
Chinese, Pasto, Japanese, Romans [10], [10], [19], [23], [25], [27], [30], [31], [33],
[34], [36], [37], [39], [10]. Some mention-able works are conducted also in Bangla,
the most notable ones are discussed in [3], [9], [14], [17], [18], [20], [21], [29], [32],
[35], [38]. In most of the early works, researchers depend on the process of hand-
engineered feature extraction. But these processes are erroneous, difficult to extract
complex features, takes a lot of time and effort, also the outcome is not satisfactory
to recognize the characters efficiently.

2.1.1 MLP or SVM based Models

Bhowmik et al. [20] investigated a basic MLP (multi-layer perceptron) for the
recognition of Bangla handwritten characters. Recently, Bhattacharya et al. [21]
proposed a two-stage approach using a modified quadratic discriminant function
(MQDF) classifier and then an MLP recognizer. Pal et al. [17] also worked on
the recognition of Bangla compound characters using the MQDF-based recognition
technique. Das et al. [29] proposed a better approach for the recognition of Bangla
basic as well as compound character recognition using an MLP for feature extraction
and an SVM (support vector machine) for recognition. Similarly, Basu et al. [9]
also worked on MLP-based recognition.

MLP Based models are inefficient and redundant. In MLP each neuron from a
layer is connected with every other neuron of the next layer, which results in too
many weights and leads to overfitting. In an SVM Based model, if the dataset is
complex and huge, handling correlation becomes difficult and cannot use spatial
information in the recognition and detection tasks.SVM does not perform very well
when the data set has more noise, mainly when then target classes are overlapping
with other.No only that, if the number of features is more than the training data
samples, the SVM will under-perform.

2.1.2 CNN based Models

The models proposed by Ashiquzzaman et al. [11] and Fardous et al. [28] performs
slightly better than PLP or SVM models, both of the models are based on convo-
lutional neural network, there is no requirement of hand engineering to learn new
features, rather CNN can learn features automatically itself. So, the introduction
of CNN decreases the model’s complexity, lessens the chance of human error, and
eventually more generalized model by enabling the model’s capability to learn com-
plex features. But only by stacking the convolution layer one after another, like
in their proposed vanilla convolutional neural network models, does not help a lot,
which we can see from the performance of these two models.

2.1.3 ResNet Models

Alif et al. [9] and Chatterjee et al. [26] both works with the Resnet model which
is a special type of deep convolutional neural network model. This model wins the
ILSVRC contest in 2015, proposed by Microsoft. The construction of the model is
very complex, requires a lot of parameters, and training time is way more than other
models. If we compare these two models then we can see that going deep as with
the model proposed by Chatterjee et al. [20] does not achieve more accuracy. It
only increases the parameters and increases the training time and makes the model
much heavier. This model is hard to deploy to smart devices.

2.1.4 Divide-Merge and BiLSTM Models

Saha and Saha et al. [22] proposed a divide and Merge mapping and Optimal
pathfinder, which is a kind of deep CNN-based model. Their model achieves better
accuracy than previous other methods, but the recognition of complex compound
character its performance is not satisfactory at all. CNN and BiLSTM model pro-
posed by Hasan et. al., requires too many parameters, and computational very
complex. Vanishing gradient is a common problem in BiLSTM models, to address
the overfitting problem is also a big issue.

2.1.5 Summary

From our literature survey we have seen that the majority of early research works
were based on SVM, MLP, Hand engineered feature extraction policy or simple
cnn architecture, some later works focused on different cnn architectures, but the
performance was not on the high. Most of the works are mainly focused on rec-
ognizing only single types of character. In our work, we have used A very special
deep convolutional neural network-based hybrid ResNeXt Model with Squeeze and
excitation module. It is a challenge because this convolutional neural network model
is normally used for image recognition, not for classification.

2.2 Convolutional Neural Network

Fukushima is his research work [2] first proposed the concept and design of the Con-
volutional Neural Network (CNN). But before that the neural network architecture

was proposed by Hubel [1], Fukushima was inspired by Hubel’s work and proposed
a hierarchical convolutional neural network model. In later years the model been
generalized and used for recognize the digits by Lecun [3] , and to recognize objects
from image on various datasets like, CIFAR10, MNIST, ImageNet etc by Ciresan
[5]. The following Fig. 2.1 shows a very basic block diagram to recognize digits.

Fully-
Convolutional connected
layer 1 Convolutional layer
layer 2]
12 4@
) 31-1-- e g .‘a;,:.
-z :;-:-:;:E = - “?"
o = e N
12 -3
5 i -
Max pooling
9 ° ; layer 2 —
Max pooling Output
layer 1 layers

Input layer

Figure 2.1: A block diagram of a CNN to recognize digits

2.2.1 Convolutional Layer

In a Convolutional Neural Network, the major mathematical operation performed is
convolution, which could be seen as the heart of the CNN Model. In earlier research
works, the feature extracting was performed mostly by hand engineering, which is
a tedious and erroneous task, requires a lot of expertise and domain knowledge.
With the introduction of convolution operation, the feature extraction operation
has been an automatic process. The operation can be seen as a filter or kernel
is stride through the input image, produces matrix multiplication and the sum of
those multiplication generates the output image. In the following equation 1, the
mathematical notation of the convolutional layer is shown:

J-1 ;-1
y= fXwli+b) (1) (1)
J~0; ~0

Here is input image is denoted by X, Wij denotes the filter, ‘i’ is the filter height
and ‘j’ is the filter width, So XW is the convolution operation result followed by an
addition offset b, then an activation function f is applied to get the output y.

2.2.2 Pooling layers

The main objective of the pooling layer is to pull most of the information without
losing any important feature, the output is the sub-sample of the input image. It
helps the network not to explode, downside the volume of the model. Generally,
the ideal position to use a pooling layer is after a convolutional layer. There are

7

O[] L [Efef 7.
olof1[afefofot.. " JrTaT3 4] 1]
0[0]0fL 110 1{0]1 1]2{4]3]3
olo|o|T1+]0]|07=_ 0|1 ="1112(3]4(1
olof{1{1{ofo[0]._|1][0]1 11{3]3[1]1
o[1{1fo]ofo]0 3(3[1]1]0
1{1|ofofo]ofo

I K I+K

Figure 2.2: Convolution operation

three different pooling layer types, max, min, and average pooling, it depends on
the model architecture and the purpose of pooling operation which one it requires.
In the following Fig. 2.3 a pooling operation is demonstrated, where a max-pooling
later is applied on a 4X4 image, here the pooling window size is 2X2, the output
sub-sample 2X2 image is shown on the right-hand side.

Single depth slice
11112]| 4

9|6 |7 |8
3 | 2 [N 3|4
o 4

max pool with 2x2 filters
and stride 2 6| 8

P
Ll

y

Figure 2.3: Max pooling in CNN

2.2.3 ReLU Nonlinearity

The activation function plays a very important role in the Neural network. It pro-
vides the model with a nonlinearity and thresholding the output value of a con-
volutional or fully connected layer. So, it prevents the model to explode, makes
the model more stable. In most real work problems, the boundary line or the co-
relations between the data of different categories are nonlinear, the neural network
without a nonlinear functionality is just a linear regression model which cannot rec-
ognize the different categories well, the performance will become very poor. There
is various kind of activation function, but in our research works, we mainly used
RELU, Sigmoid, and SoftMax. The position of the activation function depends on

8

the architecture of the neural network model and the objective of each layer. In our
proposed model we used RALU just after a convolutional layer and after a fully con-
nected layer, we used sigmoid after a fully connected layer which is after a RELU.
In the final layer of our model, we used Softmax to find the probability of each
category.

0if x<0

RELU(x)=
xif x>=0

Figure 2.4: Max pooling equation

5 e e e e e e e e e e e e e e e e e e e
sigmoid
thanh
4 Ll R E
= RelU
=g oftplus

Figure 2.5: Different activation functions

The range of RELU is between zero to positive infinity, any value less than zero will
be replaced by zero, from the equation we can see it will take the value which is
maximum from zero to input ‘X’. For sigmoid, the range is 0 to 1, any value less
than 0 will threshold by 0, and any value greater than 1 will be replaced by 1.

2.2.4 Fully connected layers

Every layer in a neural network can be seen as a filter to recognize a specific feature,
The initial layers are responsible for high-level features whereas the later or deeper
layer is for detecting the complex or low-level features. The purpose of using the
fully connected layer is to capture the high-level reasoning. In a fully connected

layer, every neuron from a layer is connected with every other neuron to another
layer. There are too many parameters required for a fully connected layer, and the
redundancy rate is very high. Overfitting is a common problem in a fully connected
layer, so the dropout technique is used to shoot out a few neurons to achieve model
generalization.

a o

convolution + max pooling VeC
nonlinearity

[TPeooceddddd &40

[ouaoaaoaoa

convolution + pooling layers fully connected layers Hx binary classification
Figure 2.6: Fully connected layers in CNN

In a neural network architecture, one common area where a fully connected layer
can be placed is right before the classification layer. In our proposed model we used
a fully connected layer in two different places, Firstly, In the SE Block right after the
global average pooling layer, we used two fully connected layers, each following an
activation function RELU and Sigmoid, and Secondly in the final layer right before
the classification layer.

2.3 Optimization

Tuning up the hyperparameter, minimizing the error, and increasing the accuracy
is performed by the technique Optimization. By selecting and tuning the Learning
rate, the number of batch sizes, and finding the proper combination helps the neural
network model perform well.

Some common optimization techniques are Momentum, Adagrad, RMSProm, Gra-
dient Descent, and ADAM optimizer. In our proposed model we used a Gradient
descent optimizer, In gradient descent there are three different techniques were used,
Stochastic Gradient Descent (SGD) when gradient descent is calculated on a single
data, Batch Gradient Descent when applied to total data, and Mini-Batch Gradient
descent when applied on a batch data set.

SGD is very easily scalable, computationally efficient, and more stable, There are
a few cautions that need to follow when using SGD, the learning rate can not be
set to a high value, there is a risk of skipping the proper solution. And if the are
multiple local minima, SGD does not work well. But it is a great technique when it
requires a faster model optimization.

10

Equation 2.1 shows the mathematical form of optimization :

xie
W= arg min Joss((X)), f(x)) (2.1)
'[.1_! X

The equation is to optimize the loss between actual f(x) and predicted fw(x) output.
In each iteration of the input data X, the weight w changes a bit to minimize the
loss. Which direction and by what amount of changes in parameter makes the loss
decrease more is defined by gradient descent. Equation 2.2 shows the optimization
for a minibatch:

N

weer = we— 17 Q(we) = we—- . & Q{wr) (2.2)
=1

where Qi(w) = loss(f(x 1), fw(x 1)) is the loss of the model for training sample
x 1€ X. The update rule for a minibatch Nx for simplicity, where the accumulated
weight for a subset of input data with gradient direction is scaled by the learning
rate ‘n’. which is then added or subtracted with the current weight to get the next
weight. The combined update rule for the entire data sets is defined as below equa-
tion 2.3:

Weet1 = We— 1 Q@ we) (2.3)

Weight in the next step would be the difference between current weight wt and the
production of direction parameter, current weight Wt, and n learning rate. It is
very costly and inefficient to update the full gradient, we used an approximation of
gradient instead of an actual gradient for a minibatch input.

The update rule using Nesterov momentum can be defined as:
"B+l = pve— 5 Q{ wet pve) (2.4)

"th]l = wr+ v, (2.5)

Here momentum is denoted by vt, in subsequent iteration if the direction doesn’t
change, Nestorov momentum (NM) accumulates the direction. u denoted coefficient
for Nesterov [0], which is ranged from 0 to 1.In each iteration of training, the mini-
batch training inputs data are shuffled, the update rule is applied once in each epoch
of each iteration.

11

2.4 Loss Function

Loss function plays an important role in the neural network model while in the train-
ing phase. It draws a clear line that depicts the difference between the model output
and the targeted output. One of the main objectives of the training phase is to min-
imize the loss and increase the accuracy. To choose a perfect loss function, there
are a few criteria that need to fulfill, firstly the function should be continuous, sec-
ondly, it should be easily differentiable so that in backward pass the derivatives flow
smoothly and finally it should be less computational complexity. There are quite a
few loss functions, but mean squire error, cross-entropy loss are in more practical
usages than the rest because of the requirement of less computational power, easily
differentiability, and continuousness.

For a well-trained model, if we draw a loss function graph, it can be seen that both
the training and testing lines are very close to each other and close to almost zero.
It expresses two things: first, the model is generalized well, training loss is not too
low than the validation loss (no over-fitting), training loss is not too high (no under-
fitting), second, if both of the lines close to zero indicates a well-trained stable model.

Cross entropy loss function can be mathematically formulated as below the equation
2.6:

Xn yologpnt (1—yu)log(l—yn) (2.6)

Here the total number of training data is denoted by ‘N’, from yn = f(x n) , where
x n denotes the input and yn is the targeted result and from y"n = fw(x ™ n) where
vy n denoted actual output.

12

Chapter 3

Our Proposed Method

3.1 Method Overview

The s architecture of our proposed method is explained in detail in this section. Fig.
3.1 shows the simplified block diagram of our method.

Convolutio SE- SE-
Input 3Ix3L n Block FIx31Ed [pasNeXt Sox3reed EesMNeXt
Eernel - 3=3 Block-1 ’ Block-2
(64 Filters) (64 filters) (128 filters)
16w16 £125 SE- gxgx2s6 | Global | 1x1x2%8 c F“uf"ted 24
, omnec —
EesMNeXt - AVEG Layer Output
Block-3 Pooling

Figure 3.1: Proposed model’s block diagram

The proposed model takes a 32x32 size image as input and the final fully connected
layer outputs the probabilities of 84 possible classes of 50 basic characters, 10 numer-
als, and 24 compound characters. The first layer is a convolutional block followed by
the first SE-ResNeXt Block, - the second and the third SE-ResNeXt Block, then a
global average polling layer followed by the final fully connected layer. The detailed
construction of the SE-ResNeXt block is described in detail in the latter of this
section. FEach of the SE-ResNeXt blocks is a combination of 3 stacked SE-ResNeXt
layers.

3.2 Squeeze and Excitation Blocks

The squeeze and excitation (SE) block [20] is a computational unit that can be

. .) T HAW =
constructed for any given transformation Fp :X—U.X€ER where Fr denotes

a convolutional operator performed on the input X that produces the output U,
H and W are the input image’s height and width, respectively and C represents
the channel. Let V= [V1:¥2...¥] denotes the learned set of filter kernels, where

13

refers to the parameters of the c-th filter.We can then write the outputs of Fo as
U= [“l=“2="'=“ﬂ], where

:r

u, = L?‘G*X=ZIJ:*XE (3)

5=1

Here vc is the filter kernel, X is the input image, and x denotes the convolution op-

) — [sl 4.2 c' — [1 .2 c’ . .
eration, e v, v2, .. vf] and X =[x %% . x], the term bias is not included

in the equation for the sake of simplicity. The output is produced by summing up all
the operations in all channels.Where Y isa spatial kernel, which operates with the
input X for that channel. The channel dependencies are embedded in vc through
spatial correlation. The transformation operation which retrieves the informative
feature of inter-channel dependencies empowers the network. In Fig. 2 the block
diagram of the SE building block is shown, which will be added with the ResNext

which is shown in Fig. 3.2.

,’—;:/“’/‘I‘_._

1x1,64 | _ Total 1x1, 64 -
3x3, 64 aths 3x3, 64 Modified ResNeXt Block
1x1, 64 1x1, 64

Global pooling

> Sgueeze and Excitation Block

Figure 3.2: SE-ResNeXt Building Block.

3.3 Squeeze: Global Information Embedding

The deep neural network faces an exploitation problem of inter-channel dependencies
in the later layers, mainly with the layers where the receptive field size is compara-
tively smaller. It is not able to share the information or the computational output
which is produced by applying a filter to a local receptive field with other connec-
tive channels. We calculate a summary for a channel, which can also be viewed as a
statistical representation of a channel to address the barrier of information sharing
among channels. Global average pooling is the technique that makes this possible,

14

this operation describes a channel by retrieving the features which carry most of
the information. A channel’s descriptor ZER® with spatial dimensions H x W can
be calculated by the following Equation, through the statistic of a channel z of c-th
element can be calculated as:

[y

2= Fg(u) = —— Z PR @)

The convolutional operation between the local receptive field of the input image X
and the 2D filter produces the transformation output e (image intensity). Here (i,
j) denotes the image’s coordinate, ‘i’ could be any value from 0 to H-1, and ‘j’ could
be any value from 0 to W-1.

The whole image information can be retrieved from the transformation output U,
which can be seen as the collection of the major information container of the image.
This type of technique is widely used in feature engineering [22].

3.4 Excitation: Adaptive Re-calibration

The main objective of the operation in the excitation layer is to fully capture the
inter-channel dependencies. To achieve this goal, we can use the channel statistics
which are achieved from the previous layer’s squeeze operation. To get the desired
result, two essential criteria must be fulfilled by a very simple gated layer. these
are: (i) the channel-to-channel nonlinearity may be capturable, and (ii) as multiple
channels are emphasized as opposed to one hot activation, it must be able to find
the channel wise non-mutually-exclusive relationship. In equation (5) this gated
function is formulated as:

5 = Fu(z, W) = o(g(zw)) = o(w,(w,2)) (5)

c C

Where § refers to the ReLU [12], [13] function, W1 € R 7 and W2 € R¥C jged
in the excitation operation of the above equation. To improve the model’s gen-
eralization capability and to decrease the complexity, a dimensionality-reduction
layer is used. Two fully connected layers parameterized with a gating function
around the nonlinearity layer are used. Here a reduction ratio r =16 is applied
with the parameter W1, for nonlinearity, a ReLU activation function is used and for
dimensionality-increasing, the parameter W2 is used. Finally, a rescaling operation
is performed to get the final output.

X = Facnia(“ciscj = S U, (ﬁ]

Where X = [¥1%2, '"-fﬂ_wand Focate(Ue:Se) indicates the channel-wise influence of
the feature map % € B°"" and the scalar s..

15

3.5 Dropout

Dropout is a regularization technique; the term denotes dropout randomly selects
neurons from both hidden and visible layers in a neural network. This is one of
the early techniques to overcome the overfitting problem. In each iteration, as some
neurons were dropped out in forwarding pass, then in the backpropagation these
neurons do not exist. For the input layer, 0.1 is the recommended dropout rate and
for internal layers, this value could be anything between 0.5 to 0.8. Despite some
advantages of using dropout, it is needed to be cautious using dropout in some
scenarios like: a). regularization is unnecessary when the model is small relative
to the volume of the training dataset; B) when we have a limited training time; c)
should not use it to the layer before the final classification layer (i.e., last layer),
as the model cannot ”correct” errors induced by dropout before the classification
happens. We have successfully used the dropout technique to address the overfitting
problem and to make our model more general. Fig. 3.3 shows a sample network
where dropout is applied.

Figure 3.3: Transformation of neural network where dropout [I1] in place

3.6 Model Architecture

Stacking layers of SE-ResNext Blocks constructs the model. A slight modification
has been performed on the original ResNext model. Here, a simple version of the
squeeze and excitation computational layer is added with the existing architecture
of ResNext. Three consecutive convolutional layers followed by a ReLLU nonlinearity
for the first two Conv layers, global average pooling layer, two fully connected layers
followed by nonlinearity makes the SE block. In Table 3.1 the model’s detailed
architecture is shown. The cardinality column shows the splits of the ResNext blocks
and the block column shows the number of SE blocks to construct a SE layer. The
model takes the input image of 32x32 and outputs a 1x84 single dimensional array
of probabilities.

16

Layer Kernel Size Filter | Activation | Cardinality | Block Output
Conv 33 64 RELU - - 32x32=64
Conv 1 64 RELU 8 32x321=64
Conv 33 64 RELU
Conv 1% 64 - 3

Global ave. pooling - - - -
FC - - RELU
FC - - Sigmosd
Conv ®1 64 RELU 8 16=16=118
Conv 33 64 RELU 3
Conv 1=1 64 -

Global avg. pooling - - - -
FC - - RELU
FC - - Sigmoxd
Conv 1=1 64 RELU 8 88136
Conv 33 64 RELU
Conv 1x1 64 - 3

Global avg. pooling - - - -
FC - - RELU
FC - - Sigmoid

Global avg. pooling - - - - - 256
FC - - - - - 84

Table 3.1: The detailed construction and settings of the SE-ResNeXt blocks

17

Chapter 4

Experimental Setup and Result
Analysis

4.1 Dataset Insight and Comparative Study

To train and validate our model, the standard dataset Mendeley Banglal.ekha-
Isolated 2 dataset [15] has been used. The dataset is well-curated, taken samples
from people of different ages, groups, and sex, containing handwritten Bangla nu-
merals, basic and compound characters.

Attributes MNIST Mendeley BanglaLekha-Isolated 2

Position Centared Mon-Centerad

Formation Uniform Mon-Uniform

Claszaz 10 {onby 10 digit=) 24 (30 basic characters, 24 compound charactars, 10 digits)

Table 4.1: Dataset comparative study - MNIST Vs MENDELEY
BanglaLekha-Isolated 2

The dataset contains 10 Bangla numerals, 50 basic characters, 24 different frequently
used compound characters. For a single character, around 2000 different handwritten
samples were collected and performed pre-processing tasks. The total number of
samples is 166106 for 84 different classes in place of 168000, 2000 each, because
there are some erroneous samples, which are discarded. For the training and testing,
we have taken 165000 samples from this dataset, 132000 for training and 33000
for testing. Mendeley Banglalekha-Isolated 2 is comparatively complex than the
MNIST dataset [36] from scaling, location, and the number of classes’ points of view.
The differences between these two datasets are shown in Table 4.1.

4.2 Performance Measurement Techniques

The standard equation of Accuracy, Precession, Recall and F1-score are shown be-
low. We can get the accuracy by dividing correctly predicted samples with total
samples, get the precision by dividing true positively predicted samples by total
predicted positive samples, get the recall by dividing correctly positive predicted

18

samples by all positive samples. F1l-score considers both precision and recall, which
is the weighted average of these two values. The performance results are shown in
Table 4.2, which are really good performances.

B TP+ TN _ (7]
Accuracy (%) = P T TN FP T FN = 100
. _ TP . (8)
Precision (%) = TP L FP = 100
TP _ (9)
Recall (%j = m = 100
Precizion » Recall (10)

Fl —scare (%) =2 = 100

*
Precision + Recal

Here, TP denotes the correctly predicted correct value. TN denotes correctly pre-
dicted wrong value, FP denotes predicted wrong value as of right. FN denotes
predicted right value as wrong.

These measurements can be calculated by Eq. (11) to Eq. (14) [1].

TP = ¢y (11)
a & (12)
T;nnri = z z C_iiff
k=Lk=i j=1,j=I

(13)
(14)

Here ‘1" denotes the current category and n denotes character categories (n = 84).

4.3 Data Preprocessing

For training and validation of our model, a computer with 9th generation proces-
sor Intel 9700K core-i7, 3.6 GHz with 16 GB RAM is used. An NVIDIA GPU
RTX-2080Ti with 11GB memory of GDDR6 was used to get the CUDA accelerated

parallel computing.

We need to preprocess the images of the dataset before feeding them to our model.
All the image sizes are between 155x155 to 185x185. These images needed to be
converted to grayscale with a size of 32x32 pixels. We choose 64 as the training
batch size. For the testing phase, we choose 10 as an iteration to get the average
result.

19

4.4 Model Performance Observation

We used Nesterov Momentum as the optimization function. We performed batch
normalization [21] after a convolutional operation and before feeding the result to
the next computational layer and it helps greatly to quick convergence and faster
training process. The demonstrated result in both the training and testing phase
indicates that the model overcomes the overfitting [7], [I2] problem and performs
well.

Loteies harrlies Rov Areinis o Sl NIy AoCUraTy bl IERID G A REATiG

| Tl 1L Ty
Tl Tasi f
| __ A
AW v 1,‘1‘.'

s
X} 0w |
= b 1

. | i

a3 =50 |

Figure 4.1: A comparative study on model performance in training and testing

phase.
Predictive Class

T R ITWT TR Y T T LAY OGNS W™

H’ 9 9 0o 9 9 ¢ 00 909 0 Q0 O Do 00 Q0 0 D DD
F o 0 0 00O OCOO0ODOOCOO® 000000 OO0 D
[ooos o § o 0 0 0 0 0 0 0 O 0 0 0 0 @0 0 O0O0D& O
L o 0 0o g o 0o 0 0O Q0 ¢ ¢ ¢ 00 O Q0 @ O D 0O
B o000 o0 00010 0 0 © 0O O 0 © 0 0 O 0 0 @ O O
B o000 0 0.0 0 00 00O O0COO0O00 GO0 O
o000 o0 0 00 00 GO OO O0OC G0 00O O O O
& 0.9 o o o & O a0 9 9 9 ¢ & e -0 0 40 g e 5 g 9
F ooo0ooooo0oofloocoococoocado oo o 0 0a0
¥ o 0o o o 0 o o o ofK G- .00 9 0 0 9 0.0 0 0 O
[o 0 0 0 0 0 O oCDl O - 0 0 0 ¢ O 0 O 0 40 00000
%@' 0.0 9 @ @ o 0o 0 0 0 0 o @ o ¢ 0 0o 40 O O O 0 O
TP o000 00000000 0 000 0CO0 D00 OO O
€ W 00050 O O O O 0 0 O O O O O 0 0 O 000050 © O O
e g 9 9 Q9 9 Q@ @ o 0 0 0 Q0 QO O o o0 90 Q @ o 0 0
= 0 0 o 0.0 @ O O 0 0 0 0 Q Q0 0 0 0 0 Q0 Q0 O 0
F oo0oo0coco0o0oo0o0020000GCO0 O 0o 000 QGO0 O
F o oocooco0oo00O0O0OO0OGOCGO OO0 0 0O 00 0 0 O
= ¢ & 0 0 ¢ ¢ 0o 0 O 0 O o Q © 00 0O 0 o ao o
F o 0 0 0 O OQO1 ODOQODY DO O ©C O O O O O O OO O O O
0 0 0 0 0 0 0O 00 00O 0G0 0o o0 o0 oo o o
-3 o U 0 0 g & 2w 9w 09 9 99 9 0 0Da g 99 i O O
ﬁ'ﬂ-"."l{ll:ll:lll:lIIIEIIIIEI-J‘_'AEIDI:IIIIEIEI{-DDD o 0
Ff oo c o 0 0o 00 00O OO QOO0 00O O

Figure 4.2: Normalized confusion matrix.

To overcome the issue of over-fitting, we used a generalization technique called
dropout, which makes the model simpler and more generalized. If we look at Fig.
4.1(a), it is clear that both the training and testing lines are very close to each other

20

and closes to almost zero. It expresses two things: first, the model is generalized
well, training loss is not too low than the validation loss (no over-fitting), training
loss is not too high (no under-fitting); second, as both of the lines close to zero
indicates a well-trained stable model. From Fig. 4.1(b), we can see that after some
iteration both the training and testing accuracy becomes stable, indicates the model
is doing well for unseen data. And both of the lines almost close to 1, indicates the
model is properly trained. We used another technique called early stopping, which
refers to a specific point of training iteration where the training accuracy reaches
its peak. After that point, the model would not learn much but loosen its ability
to generalize and over-fits the training data. So, for early stopping, the training
process should be stopped before passing that point.

Compared to the traditional deep learning model, which requires many hyper-
parameters, our proposed model requires to set the cardinality the only one hyper-
parameter. We have used RELU and skip connections to address the issue of van-
ishing gradient. RELU helps efficiently gradient flow where skip connection makes
the gradient flow without any loss. Before the final fully connected layer we have
used a more native CNN environment layer with the global average pooling, which
is very efficient in finding the similarities between the output classes and the input
feature maps.

From our experiment, we have seen that the true positive rate is 100 percent for
the majority of the classes, except for two classes “&” and ”%”. Where for both
classes the true positive rate is 99percent and the false positive rate is 1percent, it
is because there are few samples where these two characters look almost similar. If
we look closely for these examples, we can see that for character “&” if the upper
portion’s arc is open, then it becomes identical to the character “%7”.

Some basic characters whose formation and pattern are almost similar to some com-
pound characters and numerals. In those cases, it is harder to distinguish them
in obtaining a good result. For example, sample image data of classes “§7, “®”
and “&7” looks like images of numeric classes “ ¥”, “&” and compound class 7 ="
consecutively. In some compound characters, the model faces this problem also,
easily noticeable characters of similar patterns are 7%” 7 &7 7=H7 77 0=
7#” The character “®=” which formation is “¥+%" and the character “™”, which
formation is “¥4 9”7 but the turns, angels and the writing pattern makes these
two characters almost similar to the human eye, our model also find it difficult
to distinguish. The same conclusion can be drawn for the character “#&” as it is
similar to the character “#” and character “™” as it is similar to the character “&”.

We have seen these similarities in some basic characters. If we closely look into the
character pairs (“37, «¥7) («“®??®") (“&8” “T")and (" F7,7F”), we can find the
similarity problem. For the first pair “¥” and “¥”, even though the computer typed
character looks different, but the handwritten format of these two looks similar,
samples from some individuals shows that if they don’t put the ‘matra’ (the top
horizontal line) then “¥7” looks like “¥”. For characters “&” and “&” if someone
puts a ‘matra’ on top of “&7” then it looks the same as “=”, which is a compound
character. The same can be said for the character “®” and “®”. If we look at

21

character “¥” and “”, where the dot at the bottom of character “¥” is too tiny
to identify makes it similar to the character “”.

Class | Accuracy | Precision | Recall | Fl-score
o 1.00 1.00 1 1.00
> 0.999 1.00 0.990099 | 1.00
2 1.00 1.00 1 1.00
o 1.00 1.00 1 1.00
8 1.00 1.00 1 1.00
& 0.998 0.99 0.99 0.99
o 0.998 0.99 0.99 0.99
q 1.00 1.00 1 1.00
b 1.00 1.00 1 1.00
® 0.999 0.99 1 0.99
= 1.00 1.00 1.00 1.00
= 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00
© 1.00 0.99 0.87 0.93
B 1.00 0.98 0.99 0.98
el 0.99 0.88 0.71 0.79
4 1.00 1.00 1.00 1.00
g 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00
= 1.00 1.00 1.00 1.00
T 1.00 0.95 1.00 0.98
il 1.00 1.00 1.00 1.00
g 1.00 0.95 1.00 0.98
& 1.00 1.00 1 1.00
5 0.99 0.89 0.71 0.79
2 1.00 1.00 1.00 1.00
= 1.00 1.00 1.00 1.00

Continued on next page

22

Table 4.2 — continued from previous page

Class | Accuracy | Precision | Recall | Fl-score
o 1.00 0.82 0.77 0.79
B 1.00 1.00 1.00 1.00
i 1.00 1.00 1.00 1.00
el 1.00 1.00 1.00 1.00
T 1.00 1.00 1.00 1.00
G 1.00 1.00 1.00 1.00
1 1.00 0.98 0.98 0.98
T 1.00 1.00 1.00 1.00
" 0.99 0.91 0.70 0.79
i 1.00 1.00 1.00 1.00
el 1.00 0.91 0.90 0.90
Rl 0.99 0.95 0.98 0.97
il 1.00 1.00 1.00 1.00
- 1.00 1.00 1.00 1.00
q 1.00 1.00 1.00 1.00
= 1.00 1.00 1.00 1.00
Bl 0.99 0.91 0.70 0.79
q 0.98 0.95 0.93 0.94
El 0.99 0.98 0.77 0.86
bl 1.00 1.00 1.00 1.00
al 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00
l 1.00 1.00 1.00 1.00
= 1.00 1.00 1.00 1.00

E 1.00 1.00 1.00 1.00
T 1.00 1.00 1.00 1.00
El 0.98 0.92 0.98 0.95
5 1.00 1.00 1.00 1.00
of 1.00 1.00 1.00 1.00
a3 1.00 1.00 1.00 1.00
a 1.00 1.00 1.00 1.00
= 0.99 0.84 0.95 0.89

Continued on next page

23

Table 4.2 — continued from previous page

Class | Accuracy | Precision | Recall | Fl-score
= 1.00 1.00 1.00 1.00
= 1.00 0.99 0.91 0.95
= 1.00 1.00 1.00 1.00
= 1.00 0.99 0.99 0.99
w 1.00 1.00 1.00 1.00
El 1.00 0.99 1.00 1.00
= 1.00 0.99 1.00 1.00
=1 0.99 0.96 0.85 0.90
o 1.00 1.00 1.00 1.00
T 0.997 1.00 0.99 0.99
@ 1.00 1.00 1.00 1.00
& 1.00 1.00 1.00 1.00
k1 1.00 1.00 0.99 0.99
£ 1.00 0.98 1 0.99
] 1.00 1.00 1.00 1.00
= 0.99 0.88 0.98 0.92
= 1.00 1.00 1.00 1.00
El 1.00 1.00 0.99 0.99
= 0.998 0.99 0.98 0.99
7 1.00 1.00 0.98 0.99
kd 1.00 1.00 1.00 1.00
kd 1.00 0.91 0.98 0.94
= 0.99 0.93 0.84 0.88
Average | 99.82% 98.08% 96.90% | 97.40%

Table 4.2: Class-wise performance matrix.

24

From our experimental results, we have drawn an 84 x84 normalized confusion ma-
trix. From this confusion matrix and by using the formula from Equations Eq. (7)
to (10), we have calculated our proposed model’s accuracy, precesion, and other
measurements. During the testing phase of our proposed model, we have noticed
and recorded the accuracy level for most of the classes reached almost 100, except
for some characters, a few of which we have mentioned earlier. To recognize a char-
acter the average time taken by our model is 12ms, which denotes that the model
can be applied to any real-world scenario.

4.5 Comparative study with Similar State-of-Art

Models
Proposed by Used Methodology | Accuracy Machine Configuration
Kibria et al. Support Vector
[38] Machine (SVM) 88.73%)
Pramanik Shape decomp.
et al. [20] + MLP 88.T4% i
Ashiquzzaman Intel Core-13, 8GB RAM,
et al. [11] Deep CNN 93.68% Nvidia GTX-1050Ti
' 4GB DDR-5 GPU
. 4 CPUs with 61GB of
Fard DCNN with ReLLU
6;“&101[18 | - Drovlv)lou . ¢ 95.50% RAM and Nvidia Tesla
' K80 GPU with 12 GB RAM
Intel Core-i3 (3.30 GHz)
Alif et al. [9] ResNet-18 95.99% CPU with 12 GB RAM
and Nvidia 1050Ti 4GB GPU
. DCNN + Divide CPU with an NVIDIA
Chatterjee .
et al. [20] and Merge Mapping + | 97.12% 940 GEFORCE 2 GB
' Optimal Path Finder GPU
S and ResNet-50 96.12% | -
Saha.[22]
Intel Core-i7 CPU
Alom et al. [18] | ResNet + DenseNet 98.31% 3.33 GHz, 56.00 GB
RAM
Intel Core- i7 CPU 3.20GHz,
Hasan et al. [29] | DCNN + BiLSTM 98.50% 16GB RAM, and NVIDIA
GeForce GTX-1070.
Intel Core- 17, 3.6
Our Method SE-ResNeXt 99.82% GHz CPU, 16GB RAM and

NVIDIA RTX-2080Ti GPU

Table 4.3: Comparative study — similar recent state-of-the-art methods.

Table 4.3 shows a list of different methods used for Bangla character recognition.
It is seen that the performance dramatically improved with CNN or deep CNN-
based models. The computational power has indeed increased as days passed, but
it mainly accelerates the training process and allows models to train on more data.

25

From the table, we can see that the performance of the SVM-based [358] model is
poor. SVM relies on spectral information only, it cannot use rich spatial informa-
tion. Moreover, if the data size is large and formation is complex then SVM failed
to recognize the underlying correlation. Performance of the MLP (multi-layer per-
ceptron) [20] and shape decomposition-based model is also poor. In MLP every
neuron of a layer is connected with every other neuron of another layer, ending up
with too many weights, becomes unmanageable, overfitting is a common problem,
so the models become less generalized. The shape decomposition model requires
hand engineering for feature extraction, which is an erroneous and time-inefficient
technique, requires a lot of expertise.

The deep CNN model [11], [28] performs comparatively better than SVM or MLP
based model. But the accuracy is not up to the mark for real-life usages. The model
proposed by Ashiquzzaman et al. [11] is not properly generalized and fine-tuned.
Compare to this, the model proposed by Fardous et al.[28] performs better but is
not industry standard.

The performance of both ResNet [9] and DenseNet [15] based models is much better
than the models discussed above. Both of these networks require too much memory,
even DenseNet requires a bit more than ResNet as it requires to perform concate-
nation operation on tensors from different layers, but its accuracy is much better. If
we look into two ResNet models by Alif et al. [9] and Chatterjee et al. [21] by going
deep from 18 to 50 layers does not ensure the significant improvement in accuracy
rather makes the model complex and increase the training time.

DCNN + LSTM model [29] performs well. As deep CNN goes deeper by adding
layer after layer, means more weights and biases needed to be trained, it requires
a lot of training data to get a good result, the training process is extremely expen-
sive. For LSTM overfitting is a very common problem as the dropout technique is
a bit difficult to apply in LSTM. LSTM based model has a lot of parameters that
require a lot of memories to train. Most importantly LSTM is good for time series
or sequential data, but the image is not sequential data.

In our proposed SE-ResnNeXt model, rather than going deep by adding convolu-
tional blocks one after another, we added SE blocks, which makes the model wider
with fewer parameters, and is very efficient in learning complex features by fusing
channel-wise feature dependencies. It requires only one hyperparameter called split
or cardinality, which denotes how many parallel paths we require to operate on the
input image or the output of the previous block. As it requires only one hyperparam-
eter to be tuned up, so the model is easily manageable. Another noticeable change
is to use skip connections, which allows the gradient to flow naturally without any
loss, allows maximum information flow, helps the earlier neuron to train faster. It
also addresses the vanishing gradient problem along with the ReLU nonlinearity.

Despite the outperforming result, we have noticed some misclassification in the
training phase. We have analyzed and recorded these misclassification samples,
most of these samples were very tough to recognize even for the human eye due
to the similarities, writing patterns, or erroneous data. The less amount of data,

26

lack of pattern variations, and formations could have led to this misclassification.
Modification or further improvements of models, train on more versatile data could
bring further good results. In Fig. 13, few misclassification samples are listed.

Te=zt Data True Claz= Predicted Claz=
pl i v
{4 k=) &
=% =] =
Y = =

Table 4.4: Some misclassification cases

From Table 4.4, the test character from the first row is predicted as “ ¥” which is a
numeral character, but its true class is “#”, which is a basic character. If we look at

some samples from our dataset, “Jh"’, “k7 and “F7 of class “%” then it becomes
clear that these samples are almost identical with the writing samples N T

and “% 7 of class” ¥”. The same can be seen for the rest of the test character data
of the table.

We have compared the misclassification rate and the level of our model with related
other mentionable models. Some of these misclassified results by other methods are
shown in Table 4.5.

If we look at the misclassification result from Table 4.5, The model proposed by
Rabby et al. [21] shows poor performance, from the sample image data we can see
that images are clear to identify their true class easily. For the first two rows of
sample data, the model fails to recognize a very simple but essential feature the
‘matra’ (the top horizontal line), If we closely look into these two sample characters
then we can see the first one has half matra and the second one has no ‘matra’,
but the model’s predicted class for these two-sample data shows full matra. The
same scenario happened for the model proposed by Alif et al. [9]. The models from
Pramanik et al. [20] and Ashiquzzaman et al. [I1] perform better and these two
models failed to recognize complex images due to formation and cursive-ness. The
performance of the model from Hasan et al. [29] is even better than all the above,
here the sample images are not only complex in terms of formation and curviness but
also erroneous. But the last one and the middle sample images are easily identifiable,
which the method failed to identify.

27

Method Test Data | True Class | Predicted Class
A q T
Rabby et al. [21] ¢ 5 5
7T ¥ 3
._5 &)
Alif et al. 9] N5 - =
< - N
¥ o E
Pramanik et al. [20] Iy 5 =%
3 z E
3H % =
Ashiquzzaman et al. [11] | 9 o oy
73-‘ A 4
Bz 2 =
Hasan et al. [29] = G <
ay = ®

Table 4.5: Some misclassification cases for other related methods.

28

Chapter 5

Conclusion

5.1 Our Findings

We have developed a single model with an average accuracy of 99.82% to recog-
nize Bangla basic to frequently used compound characters that can perform equally
well in all different types of characters. In this model, rather than going deep in
layers and complex architectures, we simply stacked a simple mathematical block,
SE-Block, which is very efficient in terms of complex feature identification and com-
putational cost. Quick convergence, fewer chances of overfitting, simplicity. Bangla
Handwritten character dataset scarcity is a big barrier to study further on this
domain.

5.2 Implication and explanation of findings

By identifying the complex features from inter-channel feature dependencies help
our model perform better. The mathematical operation behind the SE block is very
simple, enabling the model to consume less computational power, and ensures higher
accuracy. Besides the models do not go deep, so it does not require training a lot of
parameters, fewer chances of overfitting, and require minimal training time.

5.3 Strengths and limitations

Quick convergence, high accuracy in all three different types of characters, and the
requirement of fewer training data sets are major strengths of our proposed model.
Architectural simplicity and less computational cost also make our model suitable
for industry standards. There are more symbols and special characters in Bangla
Language scripts, those are not investigated by our model. Our model is trained
only a single dataset. Therefore, more extensive experimentation is required. We
also have considered adding IPA (International Phonetic Alphabet) symbol for each
character, which will help researchers from foreign languages to study and work on
this domain.

29

5.4 Conclusion

In our paper, we proposed a deep convolutional neural network-based model, named
SE-ResNeXt for the recognition of the full set of handwritten Bangla basic, numer-
als, and compound characters. SE layer is very simple to design and with almost no
computational cost. It empowers the model to quick convergence while training and
learning channel-wise feature inter-dependencies that are effective in learning com-
plex features. A standard benchmark dataset is utilized to validate the performance
of the proposed model. The experimental result demonstrates an average accuracy
of 99.82%, a precision of 97.75%, a recall of 97.63%, and an Fl-score of 97.62% us-
ing the Mendeley BanglaLekha-Isolated 2 dataset. In addition, the proposed model
shows comparatively better results than the existing model with higher accuracy.

5.5 Future Study

In the future, we will try to extend our model to separate and recognize each char-
acter and symbol from a handwritten document. For a complete Bangla language,
there are more than 300 compound characters. However, we worked on only 24
frequently used Bangla compound characters, 50 basic characters, 10 digits. For
this reason, a huge amount of work has been left that requires to create a database
of around 400 characters. So if we can work around that dataset, considering all
prefixes and suffixes then it will be more effective. We could use the help of a deep
machine learning technique, especially a generative adversarial network to generate
a vast Bangla handwritten character dataset.

30

Appendix A: The Implementation
for Bangla Handwritten
Compound Character Recognition

Module

A squeeze and excitation ResNeXt-based deep learning model for Bangla handwrit-
ten compound character recognition module.

Documentation for the Implementation

In-detailed documentation for the repository and how each module is designed are
discussed here.

Implementation Language, Framework and Training Envi-
ronment

We choose Python to implement our proposed model, it has been a proven pro-
gramming language for especially in the machine learning and data science domain.
Python is very easy to learn and implement, it does not require too much expertise
to the research-oriented task. We have used the TensorFlow framework to build
our SE-ResNext Deep neural network model, here in place of TensorFlow there are
a few other frameworks like Keras, Torch, Theano that could also be used. But
TensorFlow provided more control over the building mechanism of the model and
the training process. There are a few other packages we have used to preprocess
tasks on datasets, like TfLearn, Skimages, NumPy, SciPy, Pickle, etc. For Charting
and plotting, we have used the library Matplotlib, PIL, seaborn, IPython.Display
library. To train our model we used a machine with a GPU setup, RTX 2080Ti.
Convolution operation (matrix Multiplications with stride) is the core operation for
any Convolutional Neural Network, which requires parallel processing to speed up
the training process. In the training process of our model, we have achieved parallel
processing by using the GPU, which is powered with 4352 CUDA cores.

Repository Details

The hierarchy of the files and folders and the location of the images and models are
described in this section. There are three main python scripting files: imageprocess-
ing.py, buildmodelTrain.py, processloaddata.py. And the folders are Trainlmages,

31

TestImages, Result, model, logs. We used 80-20 rules to split the entire images from
our dataset, 80% of the images go in the folder Trainlmages, and the rest 20% of
images go in the Testimages folder. For simplicity, we have just uploaded a few
sample images in both Trainlmages and Testimages folders. If someone wants to
train the model on the actual dataset, it is requested to download the MENDELEY
BanglaLekha-Isolated 2 Dataset for the authorized site.

The following figure shows the repository hierarchy:

Illi External Libraries
o Scratches and Consoles E: return test_acc, test_loss, summary, y real, y_pred

class BuildModel():
def _ init_ (self, x, training):
self.training = training
self.model = self.Build_SEnet(x)

def first_layer(self, x, scope):
with tf.name_scope(scope) :
x = € layer(x, filter=64, kernel=[3, 3], stride=1, layer name=scope+'_convl'}

x = B_Norm{x, training=self.training, scope=scope+'_batchl’)

I:Structure

x = R_Activation(x)

return x

def transform layer(self, x, stride, scope):

with +f name zcnneaflzrana) -

* 2 Favorites

2 & TODO B Terminal @ Python Console €} Event Log

IS T

Figure Al: Project outline

We store the iteration-wise result in the folder Result, the trained models are stored
in the folder models after a few periods of iterations. Various accuracy of model
training observation parameters is stored in the logs folder. We choose batch size
64, the total iteration is 782 and the total epochs are 100. For the testing phase,
the iteration was set to 10. The batch size can be higher or lower depending on the
configuration of the computer, A GPU with high memory can set a bigger batch size
which will take less training time, but a GPU with less memory can set a smaller
batch size, will take longer training time.

All the image preprocessing tasks are done in the imageprocessing.py file. All the
images from our dataset are not with same height and width. Also, the number of
images for the different classes is not the same, so we need some preprocessing tasks
before feeding the training and testing data to our model. We had to perform im-
age augmentation to make the same number of images for each class, otherwise, the
model will suffer selection biases. The main operations performed here is resizing the
image to 64x64, that is the input size to our model. 15-degree rotation, gray scaling

32

B Fle Edit View Navigate Code Refactor Run Tools VCS Window Help Implementation [C:\SelfiThesisiimplementation] - .\buildmadel Train.py —] ®
Implementation @ Proposed Model ~ B # 0 G 5 Q
b Project = @ = @ — | & buildmodel Trainpy + image_processing.py + image_processing_invert_color.py = process_loaddata.py isi
£ Implementation 5=l Thesis = y_real.extend{actual_y) ;
;I Augment y_pred.extend{output_y) 2
logs
model 7 test_loss += loss_ =
o
Result test_acc += acc_ 2
Testimages %
Trainlmages a8 test_loss /= test_iteration #
= buildmodel_Train.py 181 test_acc /= test_iteration # c ac,
= image_processing.py
= image_processing_invert_color.py | 197 summary = tf.Summary(value=[tf.Summary.Value(tag="test loss', simple_wvalue=test loss),
= process_loaddata.py tf.Summary.value(tag="test_accuracy', simple_value=test_acc)])

Windows Defender mnﬁguratinniupﬂd;ted (2 minutes ago) 23546 LF UTF-8 4spaces Python 36 w2 &

(so the image turns into a single channel instead of 3 RGB channel, which requires
less mathematical operation), inverting colors (black background with white text
color, wherein the original dataset it was black text color with white background),
it is computationally less intensive. Finally, we perform the linearization of the im-
age data, here we convert 64 by 64 images to 4096 by 1 vector. Then the image is
ready to feed our model.

The following figure shows some code snippets from the imageprocessing.py file:

= image_processing.py = image_processing_invert_color.py = process_loaddata.py I8
#%or noming the new images in @ 2

def augment by rotations(folder, p g
classes = [os.path.join(folder, d) for d in sorted(os.listdir(folder))] # get list of all sub-Ff o
e P e =

if os.path.isdir(path_to_folder): %

g

images = [os.path.join(path_to_folder, i) for i in sorted(os.listdir(path_to_folder)) if

a

filename = len(images) + 1
for image in images:

im = Image.open(image)
make 2 copies of each image, with random rotations added in
random_rotate(im, 1, filename, path to folder)

filename = filename + 1
print(“Finished augmenting " + path_to folder)
augment by rotations(image folder, 2808)

def convert bmp png(folder):
classes = [os.path.join(folder, d) for d in sorted(os.listdir(folder))] # get List of all sub-f

for path_to_folder in classes:
if os.path.isdir(path_to_folder):

images = [os.path.join{path_to_folder, i) for i in sorted(os.listdir(path_to_folder)) if

for image in images:
im = Image.open(image)
class_name = path_to_folder[path_to_folder.rindex("\\")+1:]
new_file name = image[®:-4] +" "+ class_name + ".png"
im.save(new_file_name)

im.close() # close PIL befc

os.remove (image)

#im. save(os.path. join(path, new file name))

convert_bmp_png(image_folder)

import cv2
def resize_image(folder):

augment_by._rotations(}

Figure A2: Image processing code snippets

The main functionality to build the model resides in the “buildmodelTrain.py”
script. Class SE-ResNext is the class to build the network architecture, here we
have methods called “firstlayer” responsible to take the input image, then perform-
ing the convolutional operation, followed by batch normalization and RELU acti-
vation function for nonlinearity. Some other functions in this class are “transform-
layer”, “transitionlayer”, “split-layer”, “selayer”, and “residuallayer”. The major
operations performed in these functions are convolutional operation, global aver-
age pooling, average pooling, batch normalization, RELU, Sigmoid, Concatenation,
fully connected operation, we have respective methods for all these operations in
this script.

The following figure shows some code snippets from the “buildmodelTrain.py” file:
While we feed the training of testing data, it requires shuffling the respective data

and label. For labeling the image we used one hot encoding technique. Where it is
a vector of size 84x1, as the total number of classes is 84 for our model. The table

33

buildmodel_Train.py image_processing.py image_processing_invert_color.py process_loaddata.py

class BuildModel():

def _ init_ (self,

%, training):

self.training = training
self.model = self.Build_SEnet(x)

def first_layer(self, x, scope):...

def transform_layer(self, x, stride, scope):..

def transition_layer(self, x, out_dim, scope):...

def split_layer(self, input_x, stride, layer_name):...

def squeeze_excitation_layer(self, input_x, out_dim, ratic, layer_name):

with tf.name_scope(layer_name) :

squeeze = GAP(input_x)

excitation
excitation
excitation
excitation

excitation

= F_connected(squeeze, units=out_dim / ratio, layer_name=layer_name+' fully o
= R_Activation(excitation)
= F_connected(excitation, units=out_dim, layer_name=layer_name+' fully conncc
= S_Activation(excitationﬂ

= tf.reshape(excitation, [-1,1,1,out_dim])

scale = input_x * excitation

return scale

def residual_layer(self, input_x, out_dim, layer_num, res_block=blocks):

BuildModel squeeze_excitation_layer() with tf.name_scope(layer_name)

Figure A3:

below shows the character

Model Build and training code snippets

and their corresponding label or class.

Character |0 [|2 |Ww |8 |¢ |[®w |9 |¥ |&
Label o [1 2 |3 |4 5 7 |8 |9
Character | & [=T [(5% (€ |6 |w |4 |&£ |& | &
Label W1 121214 |15 |16 {17 |18 (19|20
Character |[F |7 | |7 |8 |5 |g (@ |3 |&|T
Label 2122 |23 |24 |25 |26 |27 28|29 | 30| 31
Character (3 |% |G |7 |w |9 [®% |9 |9 |9 |=
Label 3233 | 34| 35|36 |37 (38 (39|40 (4742
Character |9 |% (9 |9 (9 [[* |9 |H |2 |T
Label 43 |44 |45 |46 | 47 (48 | 49|50 | 51| 52| 53
Character | & |¥ |& |o%|of 5

Label 54 |55 |56 |57 (538 |59

Character | % | | | % | % |% |B"|@& |9 (% | ™
Label g0 (61 |62 |63 |64 |65 |66 |67 |68 (69|70
Character | & |9 (@ |€ | =N |=% |¥ |g | |= |5
Label F1[72 |73 |\ 74|75 |7e |77 |78 |79 |80 81
Character | =7 | &

Label 82183

Figure A4:

Characters and their corresponding label

34

The training and evaluation functionality also resides inside the “buildmodel Train.py”
script. We used a Tensorflow saver to save the trained model after certain iterations.

So that if some interruptions occur during the training phase, we don’t need to train

the model from the beginning, we can simply load the last model saved with all the

trained parameters. Evaluate function is responsible to evaluate (accuracy and loss

in each iteration and epochs) the training and testing phase and monitoring the

activity.

35

Appendix B: Performance
Monitoring and Visualization

In our work, we have used epoch-wise loss and accuracy comparison for training and
testing phases. It gives us a clear idea of how our model is performing in each epoch
in both training and testing. It shows whether the model is overfitting, underfitting,
and the status on model convergence, model generalization on unseen data, etc.
We performed both combined for 84 classes and separate (numeral-10, basic-50, and
compound characters - 24) comparisons for loss and accuracy of training and testing
phase. In each case, the model shows an outstanding output.

Figure B1: The Lost and the accuracy function in training and testing phase for
numerals

For numerals the model shows a quick convergence, the loss is very minimal almost
tends to zero and accuracy is almost to one (on a scale of zero to one for both loss
and accuracy). The tiny gap between the lines in both training and testing is an
indicator that the model is well generalized, not overfitting not underfitting.

P

Figure B2: The Lost and the accuracy function in training and testing phase basic
character type

For Basic characters, the convergence is also very good but it takes a few more epochs
than numerals to reach the same convergence level. This is expected as there are 50
different classes compared to numerals and the formation is more complex as well.
Again, the gap between the lines is also minimal for both accuracy and loss graphs

36

in training the testing phase.

Figure B3: The Lost and the accuracy function in training and testing phase for
the compound character type

For compound characters, the convergence comes a bit later than the basic charac-
ters. The gap between the line is a bit far away than the other two types, it’s due
to the variations, similarity, and complex formations of compound character, which
makes the model train in the later iterations.

The combined comparisons for all character types (total 84 class: numeral-10, basic-
50, and compound characters - 24) are discussed in the main body in chapter 4
Experimental Setup and Result Analysis in section 4.4 Model performance Obser-
vation. Where it shows the model is performing equally well in combined types.

37

Bibliography

1]

D. H. Hubel and T. N. Wiesel, “Effects of monocular deprivation in kittens,”
Naunyn-Schmiedeberg’s Archives of Pharmacology, Springer, vol. 248, pp. 492—
497, 1964. DOI: https://doi.org/10.1007 /BF00348878. [Online]. Available:
https://link.springer.com/article/10.1007/BF00348878.

K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
Cybernetics, Springer, vol. 36, no. 4, pp. 193-202, 1980. DOI: https://doi.org/
10.1007/BF00344251. [Online|. Available: https://link.springer.com /article/
10.1007/BF00344251.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEFE, vol. 86, 1998,
pp. 2278-2324. DOI: https://doi.org/10.1109/5.726791. [Online]. Available:
https://ieeexplore.iece.org/document /726791.

Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten digit database,”
ATT Labs, vol. 2, 2010. [Online]. Available: http://yann.lecun.com /exdb /

mnist /.
D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural net-
works for image classification,” in 2012 IEEE Conference on Computer Vision

and Pattern Recognition, 2012, pp. 3642-3649. DOI: https://doi.org/10.1109/
CVPR.2012.6248110. [Online]. Available: https://arxiv.org/abs/1202.2745.

[. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proceedings of the 30th In-
ternational Conference on Machine Learning, PMLR, vol. 28, 2013, pp. 1139-
1147. por: https://dl.acm.org/doi/10.5555 /3042817 .3043064. [Online].
Available: https://proceedings.mlr.press/v28/sutskever13.html.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” in 4th International Con-

ference on Learning Representations, ICLR, 2016. [Online|. Available: https:
//arxiv.org/abs/1511.07289.

M. Shopon, N. Mohammed, and M. A. Abedin, “Bangla handwritten digit
recognition using autoencoder and deep convolutional neural network,” in In-
ternational Workshop on Computational Intelligence (IWCI 2016), (IEEE Ex-

plore), 2016, pp. 64-68. DOL: https://doi.org/10.1109/IWCI.2016.7860340.
[Online]. Available: https://ieeexplore.ieee.org/document /7860340.

38

9] M. A.R. Alif, S. Ahmed, and M. A. Hasan, “Isolated bangla handwritten char-
acter recognition with convolutional neural network,” in International Confer-
ence of Computer and Information Technology (ICCIT), 2017, pp. 1-7. DOIL:
https://doi.org /10.1109 /ICCITECHN.2017.8281823. [Online]. Available:
https://ieeexplore.ieee.org/document /8281823.

[10] A. Ashiquzzaman and A. K. Tushar, “Handwritten arabic numeral recognition
using deep learning neural networks in imaging,” in IEEE International Con-
ference on Imaging, Vision Pattern Recognition (icIVPR) (icIVPR), 2017,
pp. 1-4. por: https://doi.org/10.1109 /ICIVPR.2017.7890866. [Online].
Available: https://ieceexplore.iece.org/document/7890866.

[11] A. Ashiquzzaman, A. K. Tushar, S. Dutta, and F. Mohsin, “An efficient
method for improving classification accuracy of handwritten bangla compound
characters using denn with dropout and elu,” in International Conference on
Research in Computational Intelligence and Communications Networks (ICR-
CICN), 2017, pp. 1-4. DOL: https://doi.org/10.1109/ICRCICN.2017.8234497.
[Online]. Available: https://iecexplore.icee.org/abstract /document/8234497.

[12] F. Chollet, “Xception: Deep learning with depth wise separable convolutions,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017. potr: https://doi.org/10.1109/CVPR.2017.195. [Online]. Available:
https://arxiv.org/abs/1610.02357.

[13] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation net-
works,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017. por: http://doi.org/10.1109/CVPR.2018.00745. [Online|. Available:
https://arxiv.org/abs/1709.01507.

[14] P. Keserwani, T. Ali, and P. P. Roy, “A two phase trained convolutional
neural network for handwritten bangla compound character recognition,” in
Ninth International Conference on Advances in Pattern Recognition (ICAPR),
2017, pp. 1-7. DOIL: https://doi.org/10.1109/ICAPR.2017.8592983. [Online].
Available: https://ieeexplore.iece.org/document/8592983.

[15] N. Mohammed, S. Momen, A. Abedin, et al., “Banglalekha-isolated,” Jour-
nal of Data in Brief, vol. 12, pp. 103-107, 2017. por1: http://doi.org/10.
17632 /hf6sf8zrke.2. [Online]. Available: https://data.mendeley.com/datasets/
hf6sf8zrke/2.

[16] M. A. Mudhsh and R. Almodfer, “Arabic handwritten alphanumeric character
recognition using very deep neural network,” Information, MDPI, vol. 8, no. 3,
p. 105, 2017. por: http://doi.org/10.3390/info8030105. [Online]. Available:
https://www.mdpi.com/2078-2489/8/3/105.

[17] P. R. Sarkar, D. Mishra, and G. R. Manyam, “Improving isolated bangla
compound character recognition through feature-map alignment,” in Ninth
International Conference on Advances in Pattern Recognition (ICAPR), 2017,
pp. 1-4. por: https://doi.org/10.1109 /ICAPR.2017.8593008. [Online].
Available: https://ieeexplore.ieee.org/document/8593008.

39

[18]

[19]

[22]

[23]

[24]

M. Z. Alom, P. Sidike, M. Hasan, T. M. Taha, and V. K. Asari, “Handwritten
bangla character recognition using the state-of-the-art deep convolutional neu-
ral networks,” Computational Intelligence and Neuroscience, vol. 2018, no. 4,
pp. 1-13, 2018. pDOIL: https://doi.org/10.1155/2018/6747098. [Online]. Avail-
able: https://www.hindawi.com/journals/cin/2018/6747098.

M. Jangid and S. Srivastava, “Handwritten devanagari character recognition
using layer-wise training of deep convolutional neural networks and adaptive
gradient methods,” Journal of Imaging, MDPI, vol. 4, no. 2, pp. 1-4, 2018.
DOL: http://doi.org/10.3390 /jimaging4020041. [Online]. Available: https:
//www.mdpi.com/2313-433X/4/2/41.

R. Pramanik and S. Bag, “Shape decomposition-based handwritten compound
character recognition for bangla ocr,” Journal of Visual Communication and
Image Representation, vol. 50, no. 4, pp. 123-134, 2018. DOI: https://doi.org/
10.1016/j.jveir.2017.11.016. [Online]. Available: https://www.sciencedirect.
com /science/article/abs/pii/S1047320317302250.

A.S. A. Rabby, S. Haque, M. S. Islam, S. Abujar, and S. A. Hossain, “Bornonet:
Bangla handwritten characters recognition using convolutional neural net-
work,” in International Conference on Advances in Computing and Commu-
nication (ICACC-2018), 2018, pp. 1-4. boI: https://doi.org/10.1016/j.procs.
2018.10.426. [Online|. Available: https://www.sciencedirect.com /science /
article/pii/S1877050918321240.

S. Saha and N. Saha, “A lightning fast approach to classify bangla handwrit-
ten characters and numerals using newly structured deep neural network,”
in International Conference on Computational Intelligence and Data Science
(ICCIDS 2018), vol. 132, 2018, pp. 1760-1770. DOI: https://doi.org/10.1016/
j.procs.2018.05.151. [Online]. Available: https://www.sciencedirect.com /
science/article/pii/S1877050918308858.

M. M. Saufi, M. A. Zamanhuri, N. Mohammad, and Z. Ibrahim, “Deep learning
for roman handwritten character recognition,” Indonesian Journal of Electri-
cal Engineering and Computer Science, vol. 12(2), no. 4, pp. 455-460, 2018.
DOIL: http://doi.org/10.11591 /ijeecs.v12.i2.pp455-460. [Online]. Available:
http://ijeecs.iaescore.com/index.php/IJEECS /article/view/14425 /0.

V. Thakkar, S. Tewary, and C. Chakraborty, “Batch normalization in con-
volutional neural networks-a comparative study with cifar-10 data,” in In-
ternational Conference on Emerging Applications of Information Technology
(EAIT), 2018. DOIL: https://doi.org/10.1109/EAIT.2018.8470438. [Online].
Available: https://iceexplore.iece.org/document/8470438.

P. V. Bhagyasree, A. James, and C. Saravanan, “A proposed framework for
recognition of handwritten cursive english characters using dag-cnn,” in Inter-
national Conference on Innovations in Information and Communication Tech-
nology (ICIICT), 2019, pp. 1-4. DOI: https://doi.org/10.1109/ICIICT1.2019.
8741412. [Online]. Available: https://iceexplore.iece.org/document/8741412.

40

[26] S. Chatterjee, R. K. Dutta, D. Ganguly, K. Chatterjee, and S. Roy, “Bengali
handwritten character classification using transfer learning on deep convolu-
tional neural network,” in International Conference on Research in Computa-
tional Intelligence and Communications Networks (ICRCICN), 2019, pp. 1-4.
[Online]. Available: https://arxiv.org/abs/1902.11133.

[27] T. Clanuwat, A. Lamb, and A. Kitamoto, “Kuronet: Pre-modern japanese
kuzushiji character recognition with deep learning,” in International Confer-
ence on Document Analysis and Recognition (ICDAR2019), 2019, pp. 1-4.
DOI: https://doi.org/10.1109/ICDAR.2019.00103. [Online|. Available: https:
//arxiv.org/abs/1910.09433.

[28] A. Fardous and S. Afroge, “Handwritten isolated bangla compound character
recognition,” in International Conference on Electrical, Computer and Com-
munication Engineering (ECCE), 2019, pp. 1-4. DoI: https://doi.org/10.
1109/ECACE.2019.8679258. [Online]. Available: https://ieeexplore.ieee.org/
document /8679258.

[29] M. J. Hasan, M. F. Wahid, and M. S. Alom, “Bangla compound character
recognition by combining deep convolutional neural network with bidirectional
long short-term memory,” in International Conference on Electrical Infor-
mation and Communication Technology (EICT), 2019, pp. 1-7. DOI: https:
/ /doi.org/10.1109 / EICT48899.2019.9068817. [Online]. Available: https:
//ieeexplore.ieee.org/document /9068817.

[30] M. Husnain, M. M. S. Missen, S. Mumtaz, et al., “Recognition of urdu hand-
written characters using convolutional neural network,” Applied Sciences, MDPI,
vol. 9, no. 13, p. 2758, 2019. DOT: http://doi.org/10.3390/app9132758. [On-
line]. Available: https://www.mdpi.com/2076-3417/9/13/2758.

[31] S. Puria and S. P. Singh, “An efficient devanagari character classification in
printed and handwritten documents using svm,” Procedia Computer Science,
vol. 152, pp. 111-121, 2019. por: http://doi.org/10.1016/j.procs.2019.05.033.
[Online]. Available: https://www.sciencedirect . com /science / article / pii /
S18770509193068541.

[32] S. Reza, O. B. Amin, and M. Hashem, “Basic to compound: A novel transfer
learning approach for bengali handwritten character recognition,” in Inter-
national Conference on Bangla Speech and Language Processing (ICBSLP),
2019, pp. 1-7. DOI: https://doi.org/10.1109 /ICBSLP47725.2019.201522.
[Online]. Available: https://ieeexplore.ieee.org/abstract /document /9084040.

[33] M. AarifK.O and S. Poruran, “Ocr-nets: Variants of pre-trained cnn for urdu
handwritten character recognition via transfer learning,” Procedia Computer
Science, vol. 171, pp. 2294-2301, 2020. pOT: http://doi.org/10.1016/j.procs.
2020.04.248. [Online]. Available: https://www.sciencedirect.com /science /
article/pii/S1877050920312400.

[34] M. S. Amin, S. M. Yasir, and H. Ahn, “Recognition of pashto handwritten
characters based on deep learning,” Sensors, MDPI, vol. 20, no. 20, p. 5884,
2020. por: http://doi.org/10.3390 /s20205884. [Online]. Available: https:
//pubmed.ncbi.nlm.nih.gov/33080880/.

41

[35]

[36]

[39]

[40]

[41]

R. Basri, M. R. Haque, M. Akter, and M. S. Uddin, “Bangla handwritten
digit recognition using deep convolutional neural network,” in International
Conference Computing Advancements (ICCA 2020), ACM, 2020, pp. 1-7. DOT:
https://doi.org/10.1145/3377049.3377077. [Online]. Available: https://dl.
acm.org/doi/10.1145/3377049.3377077.

M. Eltay, A. Zidouri, and I. Ahmad, “Exploring deep learning approaches to
recognize handwritten arabic texts,” IEEE Access, vol. 8, no. 4, pp. 89 882—
89898, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2994248. [Online].
Available: https://ieeexplore.ieee.org/document /9091836.

J. Gan, W. Wang, and K. Lu, “Compressing the cnn architecture for in-
air handwritten chinese character recognition,” Pattern Recognition Letters,
vol. 129, no. 4, pp. 190-197, 2020. DOT: https://doi.org/10.1016/j.patrec.2019.
11.028. [Online]. Available: https://www.sciencedirect.com /science /article/
abs/pii/S0167865519303502.

M. R. Kibria, A. Ahmed, Z. Firdawsi, and M. A. Yousuf, “Bangla compound
character recognition using support vector machine (svm) on advanced feature
sets,” in IEEE Region 10 Symposium (TENSYMP), 2020, pp. 1-4. por: 10.
1109/ TENSYMP50017.2020.92306091.

Z. Li, Q. Wu, Y. Xiao, M. Jin, and H. Lu, “Deep matching network for hand-
written chinese character recognition,” Pattern Recognition, vol. 107, no. 4,
pp. 1-13, 2020. por: https://doi.org/10.1016/j.patcog.2020.107471. [On-
line]. Available: https://www.sciencedirect.com /science /article /abs / pii /
S0031320320302740.

J. Pareek, D. Singhania, and R. R. K. S. Purohit, “Gujarati handwritten
character recognition from text images,” Procedia Computer Science, vol. 171,
pp. 514-523, 2020. por: http://doi.org/10.1016 /j. procs.2020 .04 .055.
[Online]. Available: https://www.sciencedirect . com /science / article / pii /
S187705092031022X.

M. M. Khan, M. S. Uddin, M. Z. Parvez, and L. Nahar, “A squeeze and ex-
citation resnext-based deep learning model for bangla handwritten compound
character recognition,” Journal of King Saud University — Computer and In-
formation Sciences, vol. 2021, no. 4, pp. 1-13, 2021. por: https://doi.org/
10.1016/j.jksuci.2021.01.021. [Online]. Available: https://www.sciencedirect.
com /science/article/pii/S1319157821000392.

42

