
Implementation of Real-Time Rickshaw Hiring Application

by

Md. Monzurul Haque
17101285

Ahmed Saquib
17101308

Monika Baishnab
17301007

Md Navid Hossain
17101511

Nafis Bin Reza
17101411

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

June 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md. Monzurul Haque
17101285

Ahmed Saquib
17101308

Md. Navid Hossain
17101511

Monika Baishnab
17301007

Nafis Bin Reza
17101411

i

Approval

The thesis/project titled “Implementation of Real-Time Rickshaw Hiring” submit-
ted by

1. Md Monzurul Haque (17101285)

2. Ahmed Saquib (17101308)

3. Monika Baishnab (17301007)

4. Md Navid Hossain (17101511)

5. Nafis Bin Reza (17101411)

Of Spring, 2021 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on June 02, 2021.

Examining Committee:

Supervisor:
(Member)

Amitabha Chakrabarty, PhD
Associate Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Md. Golam Rabiul Alami, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Mahbubul Alam Majumdar, PhD
Professor and Dean, School of Data and Sciences

Department of Computer Science and Engineering
Brac University

ii

Ethics Statement

Hereby, We consciously assure that for the thesis paper ”Implementation of Real-
Time Rickshaw Hiring Application” the following is fulfilled:

1) This material is original work, which has not been previously published elsewhere.

2) The manuscript is not being considered for publication anywhere at this time.

3) The writers’ research and analysis are reflected in the publication wholly and
truthfully.

4) The paper appropriately acknowledges the efforts of co-authors and co-researchers.

5) The findings are discussed in the context of previous and ongoing research.

6) All sources used are correctly disclosed (correct citation). Text that has been
copied must be marked as such with quote marks and a suitable reference.

7) All of the authors were directly and actively involved in the extensive effort that
led to the implementation of the paper, and they will be held accountable for its
content.

The norms of the Ethical Statement can have serious implications if they are broken.

We agree to the aforementioned declarations and certify that this submission adheres
to Solid State Ionics’ rules as described in the Authors’ Guide and the Ethical
Statement.

iii

Abstract

Steps to eliminate the issue of rickshaw hiring are now a severe need. Furthermore,
the best solutions to the problem are developing an algorithm and implementing a
rickshaw app. Besides that, many people believe that educating rickshaw drivers
on using a smartphone app to get customers is unrealistic. So, we need to develop
a simple program for rickshaw drivers and let them reach more customers. Even
so, the algorithm must be user-friendly and beneficial to both rickshaw drivers and
users. Therefore, an algorithm for rickshaws has been implemented in this article
and applications for both riders and users, which solve our everyday rickshaw hiring
issue.

Keywords: Rickshaw; Hiring; Digital; Application; Algorithm

iv

Dedication

Dedicated to all the rickshaw pullers who struggle hard for their livelihoods day and
night and the passengers who use rickshaw as their transport.

Also dedicated to our parents, and honorable teachers.

v

Acknowledgement

We would like to start by thanking Allah for His blessing on us, without which
nothing would be possible. Then we would express our gratitude to our respected
supervisor, Amitabha Chakrabarty sir, for his invaluable assistance during the re-
search. Finally, we want to emphasize how much guidance, support, and expertise
we received from all of the faculties, as well as our parents, aided us in a variety of
ways.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables x

Nomenclature x

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 1
1.3 Research Objectives . 2
1.4 Challenges faced . 4

2 Literature review and background 5
2.1 Concept of Real-time Rickshaw hearing application 5
2.2 Income from rickshaw pulling . 5
2.3 Developing an algorithm for traffic jam 6
2.4 Fare calculation based on different locations 6
2.5 Security system of Ride-sharing application 7

3 Methodology 8
3.1 Methodology . 8
3.2 Technologies Used . 10

3.2.1 React Native . 10
3.2.2 Amazon Web Services(AWS) 10
3.2.3 Google MAP API . 11

3.3 Core of the Algorithm . 11

vii

3.3.1 Distance . 12
3.3.2 Surge Multiplier . 12
3.3.3 Time Based Fare . 14
3.3.4 Weather-based multiplier . 15

3.4 The Final Equation . 16

4 Application Preview 17
4.1 Front-End . 17

4.1.1 Sign in and Sign up Page: . 18
4.1.2 Home Page: . 18
4.1.3 Pickup and Destination Selection Page(Only on the user side): 19
4.1.4 Available requests and accepting the request: 19
4.1.5 Picking Up State: . 20
4.1.6 Riding State: . 20
4.1.7 Ride Complete State: . 21
4.1.8 Previous trips: . 22

4.2 Back-End . 23
4.2.1 DynamoDB . 24
4.2.2 Cognito . 24

5 Result and Analysis 25
5.1 Result . 25
5.2 Analysis . 27

6 Limitations and Future plans 29
6.1 Measuring road condition . 29
6.2 Roadblocks for rickshaw . 29
6.3 Future Works . 29

6.3.1 Algorithm . 30
6.3.2 Front-end . 30
6.3.3 Back-end . 30

7 Conclusion 31

Bibliography 32

viii

List of Figures

3.1 The flow chart of the Rickshaw Hiring Algorithm 9
3.2 Mileage graph . 12
3.3 S200 . 13
3.4 S500 . 13

4.1 Sign in and sign up Page. 18
4.2 Home and side bar of driver (left) and user (right) application. 18
4.3 Pickup and destination selection. 19
4.4 Available requests. 19
4.5 Picking Up State of user (left) and driver (right) application. 20
4.6 Riding State of user (left) and driver (right) application. 21
4.7 Ride Complete State of user (left) and driver (right) application. . . . 22
4.8 Previous trips of user (left) and driver (right) application. 23
4.9 DynamoDB tables. 23

5.1 Sample real life data. 26
5.2 Column chart of Expected output vs Test output 28
5.3 Line chart of Expected output vs Test output. 28

ix

List of Tables

5.1 Expected output vs Test output . 27

x

Chapter 1

Introduction

1.1 Introduction

Rickshaws are one of the most important mediums of transport in Bangladesh.
There are nearly more than 750,000 rickshaws, and they employ over one million
people. In the past, however, rickshaws have been almost overlooked by strategy
producers and researchers. For example, in the past few years, ride-sharing appli-
cations took care of cars and bikes. Uber, Pathao, Shohoz, etc., are some examples
of successful ride-sharing applications in Bangladesh. However, no one talked about
rickshaws. However, rickshaws are used by almost all people of all classes in our
country. Whenever we go for a short tour, we use rickshaws rather than cars or
bikes. Around 400,000 carts run every day as one of the fundamental vehicle modes
for the occupants of Dhaka only. Though rickshaws are available everywhere in
Bangladesh, it is challenging to find rickshaws in some residential areas such as
Baridhara, Basundhara, Gulshan, Dhanmondi, and DOHS. Again, when we are vis-
iting a new place, we may have little idea about our destination, which can cause a
higher chance for rickshaw pullers to charge excessive amounts from people. Some-
times we can see that rickshaw pullers demand extra fare during extremely high
temperatures or heavy rain, but people do not want to pay an extra fare for the
same distance. These are some problems with using rickshaws for daily rides. Our
objective is to develop an algorithm and an application based on rickshaws. It will
help us to avoid some unpleasant situations such as heavy rain. During heavy rain,
it is difficult to find a rickshaw. Even if we find some, they may charge an extra fare
for a ride. We are planning to solve the problem with extra fare with our algorithm.

1.2 Motivation

Since the launch of Uber in 2009, it has changed the transportation industry. This
ride-sharing concept was very new to the people. At first, users could hire only cars.
This is confined to cars, and we can hide motorbikes, CNG(Auto Rickshaw), etc.
Nevertheless, there is no service found for hiring a rickshaw. More reasons:

• Sometimes rickshaws cannot be found in specific locations, especially in res-
idential areas like Gulshan, Baridhara, Banani, Niketan, etc. So they intro-
duced a new rickshaw system, which decreases the number of rickshaws from
10,000 to a mere 1,230. These rickshaws are known as ”Community rickshaws,”

1

and they are registered and licensed. Rickshaw pullers pull these rickshaws
wearing orange uniforms and ID cards with their photo on them [3]. Because
of the scarce availability of rickshaws in those areas, people have difficulty
finding the rickshaws. In 2019, to alleviate traffic congestion, Dhaka’s two city
corporations voted to restrict rickshaws on three important highways. Progoti
Sarani, which runs from Kuril to Sayedabad via Rampura and Khilgaon, Mir-
pur road, which runs from Gabtoli to Azimpur via Asad Gate, and Elephant
road, which runs from Science Laboratory intersection to Shahbagh, all have
substantial rickshaw traffic. This application aims to explore this issue and
solve the problem by finding rickshaws quickly by using our app.

• The economic situation of rickshaw pullers is deficient. Many people join the
labor market every year, and one of them is rickshaw because it does not
need any kind of deposit, investment, lobbying, or educational requirements,
or expertise [7]. They make a modest amount of money and have to feed their
families every day with it. Sometimes they have to rent a garage, repair and
buy some parts for their rickshaw, which is very costly. Even the majority
of rickshaw drivers in Dhaka do not own a rickshaw. They need to hire a
rickshaw on rent every day [7]. Sometimes it is hard for them to collect the
rent they have to pay. They often do not find any passengers for not being in
the correct place at the correct time. Our app will help the rickshaw pullers
get more passengers. Rickshaw pullers can earn more money, and they can
find the passenger easily from a reasonable distance by using our app.

• Going to different locations varies with different fares. In our daily life, we
still debate with rickshaw-pullers about the fares. Sometimes rickshaw pullers
are given less money. Sometimes they charge insane fares, defying regular
fares as there is no fixed rate, so both parties propose different fares, which
sometimes turn into violence. Our app will solve this issue by calculating the
fare, which should be acceptable to both parties. Also, our app will consider
climate change while calculating fares.

• The safety of life is more important than anything. We live in a society
consisting of all kinds of people. We are not unfamiliar with crimes that are
conducted by rickshaw pullers. Crimes like harassment, kidnapping, etc., occur
frequently. On the other hand, the news of rickshaw pullers getting abused and
beaten up by passengers is also there. Using our app, we can bring safety and
justice to both sides. Through our app, we can track down the information
we need for identification. This will keep away crimes as the criminal will not
be able to escape. When using our app, passengers will see the details of the
rickshaw puller and if they have got any negative reviews.

1.3 Research Objectives

Our thesis aims to make rickshaw hiring easier, and we will try to do that by dig-
itizing our rickshaw service. To do so, we are focusing on creating a ride-sharing
app to make this possible. A good number of tested and optimized algorithms will
be implemented in our mobile application. We know we do not have any meter to
measure our fare for rickshaw service right now, for which sometimes the rickshaw

2

pullers do not get their expected fare or try to demand some extra from the cus-
tomers. One of our main priority of us will be to solve this problem by implementing
some algorithms to calculate the fare based on the environment, time, traffic jams,
road conditions, etc. Again, rickshaw rents for a day are not the same for all the
places; fares will vary from place to place based on that also. So that the rickshaw
puller and the passenger do not need to think about fare counting or anything. On
the other hand, a rickshaw puller cannot pull a rickshaw all over the day and all
over the city because of physical ability and root restrictions. So, our target will
be to solve this also and locate the permitted roots for the vehicles. Our other
target is to make it easy to find the rickshaw for a place so that if someone wants
to hire a rickshaw, she/he does not face difficulties. Top of that rating system will
help the customer, and rickshaw puller knows about the person they will ride with.
We are also focusing on personal safety. Individual safety is paramount. Rickshaw
pullers and passengers will both be able to get each other’s information if any crime
happens. In short, we are focusing on doing:

• Our primary focus is to create, optimize, and implement a modified, appro-
priate, and relevant algorithm for this whole rickshaw ride-sharing app.

• Optimized and rickshaw-oriented fare management and calculation procedures
will be applied to benefit both rickshaw pullers and passengers. We will do
it by collecting some data from a random field-level survey from various ar-
eas in Dhaka and try to find, optimize, and make a pattern of accurate fare
calculation with the help of the machine learning algorithms of Python.

• Real-time data generated from Google Map API and Weather forecast will be
implemented in this project to identify the best possible route and get a rea-
sonable fare for a particular journey. Furthermore, as we plan to implement
this project with Flutter programming language, this language has automatic
support for implementing this kind of 3rd-party service API installation pro-
cess, which needs permissions from the user’s mobile handset.

• We may need to modify the map, which is generated from Google API, to
customize it according to the modified pathway of using narrow roads if needed
because of the restrictions of rickshaws running on the main roads of Dhaka
city.

• Creating an easy-to-use and user-friendly UI design for our app based on
UI/UX design basics will be primarily implemented via Flutter’s default UI-
making libraries. The skeleton will be drawn with the help of Adobe XD or
Figma.

• We will use NoSQL as a query language to implement our desired database.
The database will be produced with Apache Web Server via XAMPP software
to initially demonstrate the additional capability to shift to another more
efficient DBMS.

• The testing phase will be done correctly by doing some Unit Testing with the
default flutter testing mechanism. All the whole thesis and project procedures
will be well documented, following the standard documentation standards.

3

• The testing phase will also include field testing. Field testing will include
hiring a rickshaw and testing if the app is fully functioning as it is supposed
to be. Also, verify that our algorithm is working as it is coded to be.

1.4 Challenges faced

• We have faced some challenges implementing algorithms. It is because the
fare is one of the significant issues of argument between rickshaw pullers and
passengers. In many cases, a standard argument turns into violence. So, we
have to make sure that we can calculate the fare, which is fair for both sides.

• We have faced difficulties choosing a suitable API for our service. At first,
we decided to work with Barikoi API. Barikoi is a location data provider in
Bangladesh that provides reliable location data in the local context. However,
we have faced some problems using their service. For example, when measuring
duration from one location to another, they could not provide specific data
for a specific vehicle. For example, if we needed duration between two places
through rickshaw, Barikoi could not provide such data. Also, Barikoi service
providers are new, so they have some bugs that create problems for us. Then
we decided to use Google’s API for our app. Google has enormous data to
offer and has been giving service to many companies, which encouraged us to
use their service for our app.

• Still, we have one problem that we are working on. In our country, all roads
are not the same. As a rickshaw is not an automatic vehicle, a rickshaw puller
must pull physically, so road conditions should also be considered. As in a
good road, it is easy for a rickshaw puller to pull his rickshaw. However,
nevertheless, on the wrong road, it is hard for him to pull. So the fare should
differ in different road conditions. However, today, it is not possible to get
that data of road condition, though we are considering the weather situation
as we can get that data efficiently.

4

Chapter 2

Literature review and background

2.1 Concept of Real-time Rickshaw hearing ap-

plication

Ridesharing is an improved service that employs safe and pleasant mobile technology
in real-time ride pooling with two groups of individuals as the driver and passen-
ger. [2].Real-time ride-matching services using ”smartphones” and automatic ride-
matching tools Improved easy carpooling methods that rely on ”meeting points” are
also being tested. In Canada and the United States, ridesharing accounts for roughly
8 to 11 percent of the total transportation modal share. In North America, there
are about 638 ride-matching services [1]. In developing markets like Bangladesh,
ride-sharing services have recently gained tremendous popularity. In the country,
there are right-sharing applications for cars and bikes only. However, there is still no
such application or any system for the country’s most common vehicle, the rickshaw.
People of the country face a lot of problems while hiring a rickshaw or paying the fare
of the rickshaw puller. Sometimes, the rickshaw driver may charge the customer an
additional fare, or the customer pays less than the regular fare. Customers and rick-
shaw drivers often get into fare disagreements, which is a very common phenomenon.
Developing a well-structured system to solve this problem has become a demand of
time. As a result, we have developed a real-time rickshaw hiring application and an
algorithm to calculate the fare for a rickshaw ride.

2.2 Income from rickshaw pulling

Rickshaw pullers in Dhaka city earn between BDT364.8 and BDT695.8 per day on
average. The Dhaka city rickshaw pullers’ net average daily income is BDT371.7
with BDT100/- at least and BDT800/- at maximum. The owners of Rickshaw
notified that the net income per rickshaw per day. After all, the related costs range
from BDT 30 to 80, with an average of around BDT 55. Furthermore, Rickshaw
pullers are frequently constrained. Almost half of them had been confined in Dhaka
an average of 5.8 times. The main causes have been” signal infringement” and”
driving on VIP roadways” Rickshaw drivers were held for an average of 51 minutes
before being released with or without bribe fines. Through the LEAs, they also have
tire punctures and occupy passenger seats. [6]. As a result, it is extremely difficult
for rickshaw pullers to earn a living on a daily 5basis. Again, they are sometimes

5

duped by passengers. Passengers’ misbehavior was reported by all rickshaw pullers.
These include physical assault, belittlement, scolding, unjust compensation, and a
fare dispute. 63.7 percent of rickshaw drivers have been assaulted, it is clear. [6].
That is why it is essential to have a system in place that ensures they are paid
properly after each ride. And our algorithm has been designed in such a way that
the rickshaw puller is properly compensated, taking into consideration factors such
as weather, traffic, availability, distance, and so on.

2.3 Developing an algorithm for traffic jam

Google Maps uses two types of data to generate its traffic views and faster-route
suggestions are based on historical data on the average time it takes to traverse a
particular portion of the road at given times on certain days and real-time data from
sensors and cellphones that record how quickly cars are going right now. Google
turned to crowd sourcing at the beginning of 2009 to increase the precision of its
transport forecasts. If you activate the GPS position of your Android phone on your
Google Maps App, your phone returns anonymous data to Google to tell them how
quickly your automobiles move. Google Maps continually aggregates the data from
all the road automobiles and transmits it back to traffic layers through the colorful
lines [8]. However, Google’s traffic prediction service is incompatible with rickshaws.
Because these vehicles must go on very remote roads where Google’s service cannot
function correctly, we had to develop our own algorithm to handle the problem.
Our system collects the rickshaw’s location status at frequent intervals, and our
algorithm compares the data to determine whether or not the rickshaw is stuck in
traffic. And this procedure is repeated till the trip is completed. Unlike Google,
our system is totally independent and can complete the process even if there is no
other rickshaw using the application. This is how we have developed a system that
is suitable for rickshaws.

2.4 Fare calculation based on different locations

A rickshaw is a low-cost three-wheel vehicle. It uses a battery-powered motor or
a person’s physical strength to carry other people and loads. However, it does not
have a specific fare system [5]. Dhaka had 37 rickshaws in 1941 and 181 rickshaws
in 1947. According to the 1951 census, Dhaka was a district town with 62,469
people before 1947. In 1998, however, the city’s population grew by about 8 million
people, 112,572 registered rickshaws. In that year, all other towns in Bangladesh
had 274,265 rickshaws, and all villages had 91,040. In 2019, the city had roughly
280,000 rickshaws, which is more than double the number of rickshaws registered in
2000, it is a widespread assumption. Figures-based estimates [9]. In recent years, the
number has grown. However, there is currently no procedure for calculating the fare
for each ride. Our problem was to orient our algorithm for any area in the country as
the fare may vary from place to place. We have taken a variable to accomplish that
and modified the value of the variable based on different locations. And to determine
the value of that variable, we examine current fares for that specific place, which
assists our algorithm to generate an adequate price for that particular area which is
in fact helpful for passengers and rickshaw pullers.

6

2.5 Security system of Ride-sharing application

One issue that rings a bell with the expansion of such services is the safety of
passengers, particularly in countries with low legislative constraints. No severe steps
could be taken because the driver, vehicle, and ride were not completely monitored
by the operator. Fuel has also been poured into the flames through poor feedback.
As long as they fill the gap of improved services worldwide, it is vital to take possible
safety precautions in order to ensure passengers’ and riders’ safety till reaching the
destination from the beginning of the journey [4]. In Rickshaw Mama, we have
developed the application in such a way that also helps the passengers and the
riders to stay safe. To do that Rickshaw Mama keeps track of every vehicle that is
shown in range. Like, when a user requests a ride the system creates a log for that
particular request and keeps track of every vehicle which is in the 200 or 500 meters
range at that particular moment. So that, if there is any occurrence reported then
the system can give information about the vehicles which were present there at that
particular time.

7

Chapter 3

Methodology

3.1 Methodology

The purpose of implementing a rickshaw hiring application is to serve people to find
a rickshaw more efficiently with standard pricing; to do that, we need to consider
real-time data from GPS of a particular time. Firstly, we need to determine the
distance between pickup and destination, multiplied by the mileage, to determine
the initial fare. We also need to monitor the supply and demand of a particular
time, same as the order time from GPS, to form a relationship between supply and
demand. From the distance and mileage, we calculate distance fare (FD). Then,
we calculate the surge multiplier (MS) from supply and demand, multiplied by Fd

when demand exceeds supply.

Our application will also consider the weather to give some benefits to rickshaw
pullers. We are checking if the weather is rainy or not. If it is raining, we believe
a multiplying factor to the total fare, MW=1.2. If it is not raining, then we are
checking if the temperature is between 18 and 32 or not. If it is between 18 and
32, we multiply MW=1 with our total fare, and if not, then we multiply MW =1.10
with the total fare. Traffic jams are a common phenomenon in Bangladesh and
many other countries. So we handled that factor also with a movement tracking
ideology based on the GPS tracking system. To implement that, we are checking if
the rickshaw passed 100 meters in one minute or not. If a rickshaw stays 100 meters
within one minute, some extra fare will be added to the total fare. Figure 3.1 is
showing the process in detail.

8

Figure 3.1: The flow chart of the Rickshaw Hiring Algorithm

9

3.2 Technologies Used

To make the concept accurate, we used some of the tools and technologies. Tech-
nology plays a vital role in implementation. There are various options to choose
between, and each option has its advantages and disadvantages. So proper justifi-
cation and relevance must be considered carefully to select the technologies while
implementing. We will discuss here the technologies we used in ”Rickshaw Mama
Real-Time Rickshaw Hiring Service”:

3.2.1 React Native

Facebook, Inc. developed React Native, an
open-source mobile application framework. It
allows developers to leverage React’s framework
alongside platform-specific capabilities to de-
velop apps for Android, Android TV, iOS, ma-
cOS, tvOS, Web, Windows, and UWP. It is an
exciting framework that allows web developers
to use their existing JavaScript skills to create
sophisticated mobile applications. In addition,
it enables speedier mobile development and more
efficient code sharing between iOS, Android, and
the Web without compromising the end-user ex-
perience or application quality.

Why use React native?

React Native provides faster, more comprehensive, and efficient development, and it
is easy to understand among those who have previous React JavaScript development
experience. Being a cross-platform development environment, we can build apps for
any device in the future, which ensures reliability. React Facebook backs up Native,
so it is not going away too soon. There are massive projects, documentation, and
references on react native as it has been a popular framework for quite some time,
which helped us build this kind of app.

3.2.2 Amazon Web Services(AWS)

Amazon Web Services is an Amazon brand that
operates metered pay-as-you-go cloud comput-
ing platforms and APIs to people, businesses,
and governments. The Amazon Web Services
portfolio includes over 100 services, including
computation, databases, infrastructure manage-
ment, application development, and security.
We used DynamoDB, a NoSQL database sys-
tem, to store and maintain all our databases.
We also took advantage of the Cognito service

10

from AWS, which manages user access points to
mobile apps.

Why Use AWS?

AWS provides high-security measures to safeguard all its data and encrypted pass-
words. It is also free to use for research-oriented works and cheap for business-ready
products considering its service. Moreover, AWS provides flexibility, scalability,
elasticity, and openness to its service offer. Moreover, with the help of AWS CLI, it
is easy to implement all back-end functionalities for an actual short period.

3.2.3 Google MAP API

Google Maps is Google’s web mapping platform
and consumer application. It provides satellite
images, aerial photography, street maps, 360° in-
teractive panoramic street views, real-time traf-
fic conditions, and route planning for travel by
foot, vehicle, air, and public transportation. The
radar image in Google Maps is a ”top-down”
or bird’s-eye perspective; some of the elevated
footage of cities is aerial photos taken from air-
planes flying at 800 to 1,500 feet (240 to 460
m), while the majority of other imagery is from
satellites. Much of the accessible satellite pho-
tos are less than three years old and are routinely
updated. Google Maps initially employed a variation of the Mercator projection,
making it impossible to represent places near the poles correctly. The desktop ver-
sion of Google Maps was upgraded in August 2018 to include a 3D globe. In the
options, it may still go back to the 2D map.

Why Use Google Maps?

Google Map is 70% more popular than any other MAP API, and 77% of smartphone
users use this service to navigate. Google MAP provides 25% more precise direction,
20% preferred features than any other MAP APIs. Google MAP is free to use for
a limited usage which perfectly suits our needs. Google MAP is reliable, vastly
documented, easy to use, and accurate.

3.3 Core of the Algorithm

Algorithms are called the heart of the code. We considered almost all possible
situations and built the algorithm to predict the rickshaw fare accurately. We used
reverse engineering and trial and error to reach our final algorithm. It is important
to note that this algorithm does not work only on rickshaws but on every other

11

vehicle as this is a fare prediction system. This algorithm has many parts which
need to be understood separately.

3.3.1 Distance

When we set a pickup and destination location on MAP, then a route and distance
are shown by the Google Map API. The distance is multiplied by a fixed mileage
which is a constant value that can vary from place to place. The mileage is considered
5 takas per kilometer in our app because we made this app for a particular place
named Dhaka City. We took 2, 3, 4, 5, 6, 7, 8, 9, and 10 taka mileage test cases.
5 taka reflected a 97% close fare approximation in comparison to the actual fare.
We considered all the other variables constant and vary only this mileage constant
among those test cases and input it to the final equation from which we came to
take 5 taka mileage according to Dhaka city. It may vary the value of mileage in
other areas.

FD = D∗MM (3.1)

Here, the only fare based on distance, FD, depends on the multiplication of distance
(D) and the fare per kilometer MM .

Figure 3.2: Mileage graph

3.3.2 Surge Multiplier

It is the multiplier depending on the demand (requests) and supply (availability).
These works are based on a certain radius of a request at the specific request time
that the passenger makes. If a ride request is made from a passenger, his GPS

12

location is tracked and marked as a circle’s center point. Then, within 200 meters
radius, all available rickshaws are selected, and their total value is considered as S200

or the supply of rickshaws within a 200-meter radius. The weight of the rickshaw’s
availability(supply) within 200 meters, S200 is ma as 0.75 marked as the rickshaw is
close to the passenger. Considering the rickshaw puller has to cover less distance to
reach the pickup point.

On the other hand, due to more distance to cover for a rickshaw puller, rickshaws
within 500 meters have a weight of 1.25, which is found similarly by considering
request location as a center point and finding rickshaws within 500 meters. Please
note that this rickshaw availability is 500 meters(Supply), S500 is considered from
201 meters to 500 meters as we considered 0-200 meters in the S200 part.
These 0.75 and 1.25 values are not taken arbitrarily. These values were diagnosed
by applying specific techniques. At first, a real dataset of 68 real-life scenarios was
taken. Then the multiplier value of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 were
placed in each of the S500 and S200 and inputted into the final total fare to observe
which one reflects a more real-life fare system. 0.75 for S200 produced 6.7% better
results than all other values, and similarly, 1.25 for S500 produced 7.4% better results
than others. These constant values can be changed and vary from place to place.

Figure 3.3: S200

Figure 3.4: S500

Finally, demand is drawn similarly like considering a request to be center and pulling
all the other active requests on a specific time within 500 meters radius, which is
named demand of rickshaws within 500 meters radius or D500. Finally, demand

13

and supply relation, demand is divided by the supply to form a relation and surge
multiplier. So the surge multiplier of our system or MS is shown below:

MS = D500/ [(S500 ∗ 1.25) + (S200 ∗ 0.75)] (3.2)

D500 indicates the requests in a 500-meter radius, and S500 is the available number
of rickshaws in a 201-500 meter radius, likely S200 passes the number of rickshaws in
a 200-meter radius. These values are pulled using Google Map API in each iteration.

3.3.3 Time Based Fare

This part calculates the fare based on the time of the ride dynamically. Traffic
jams are also considered in this part. At time 0 when the ride starts, the value
of timed fare, FT , is set to be 0. As the time flows and it becomes 1,2,3,4,.., The
fare changes. The current location is tracked by calling Map API reach time in 60
seconds or 1 minute. This time frame could be lowered, but it will cause an API
call. Due to limitations of API call in the trial version, we set it to be 60 seconds
but implementing it in an industry level application, and we should consider the
time delay to be 1 second or less.

The current location is marked as D, and after 60 seconds, the D becomes the previ-
ous location marked as a temp. So in each iteration, we store the previous location
and get the current location. Generally, rickshaws can cover 130-180 meters per
minute. So this terminology was used to find out if a traffic jam was present or not.
A variable was introduced named traveled distance which is found by calculating
the distance covered every 60 seconds. Moreover, 100 meters were considered to find
out if the rickshaw is currently in a traffic jam or not. Inside the implementation, if
the rickshaw does not move 100 meters within 1 minute, that is marked as a traffic
jam.

While (ride continues){
travelledDistance = D – temp;
if (time ≤ 120 minutes){

if (travelledDistance < 100 meter){
FT = FT - 0.5;

}
FT= FT + 1;

}
else if (140 minutes ≤ time ≤ 180 minutes){

FT = FT + 0.8;
}
else if (200 minutes ≤ time ≤ 240 minutes){

FT = FT + 0.6;
}
temp=D
Delay(60sec)

}

14

Here traveled distance is the variable that will track the difference between the
currently updated distance and the temporary distance. For each minute, 1 taka
will be added with the fare, and if the traveled distance is less than 100 meters, then
we consider that as a traffic jam and increase the fare by 0.5 takas for each minute
while being stuck in a traffic jam. Lastly, when the ride is over, and the rickshaw
puller presses the ”End Ride” button on the driver side app, the loop ends, and we
get the final value of FT . These iterations will occur in every step and dynamically
change the FT , which results in changing the total fare.

We considered a particular case while calculating the FT . Generally, a rickshaw ride
lasts less than 120 minutes. Nevertheless, if the ride lasts more than 120 minutes
and less, then the per minute fare increase must be reduced to help the user. This
type of inconvenience can only occur a few times. However, for the 120-140 minutes,
no extra fare will be charged. However, from 140minutes to 180 minutes, the fare
will again start to increase at the rate of 0.8 instead of 1. Then again, 20 minutes
no fare charge and again 0.6 increase rate. Therefore, we considered the ride to be
240 minutes as it is not practical for a rickshaw ride to be more than 240 minutes
or 6 hours.

When showing the approximate value, we take the pickup to the destination, reach-
ing a time approximation provided by Google Map API. It is not an actual one, just
an approximate fare while the ride starts, so we multiply the time with one, which
produces per minute one taka rate. This thing is only shown in the approximate
fare calculation period, but the strategy mentioned above is used during the actual
ride.

3.3.4 Weather-based multiplier

The fare will vary based on the weather condition. Considering the weather in
Dhaka, Bangladesh, it was found that rickshaw pullers tend to demand more fare
for a ride during two times. Those two weather conditions are during rain and too
much hot or cold weather. As rickshaw pulling is physically challenging, the extra
hard work should be paid off. For the first condition, during rain, we found out
that, considering seventy-seven real-life scenarios, rickshaw pullers tend to demand
1.2 times more fare on average. Secondly, when it comes to hot or cold weather,
the demand is 1.1 times higher than the actual fare. So keeping that nature of
demanding more than the actual fare, a simple multiplier was introduced to reflect
this phenomenon. Weather condition is generated by weather API to learn about
the current weather on a specific time. The weather multiplier, MW , works like this:

if (weather = rainy){
MW = 1.20;

}
else if (temperature < 18 temperature > 32){

MW = 1.10;
} else {

MW=1;
}

15

Here, If it was raining when the request was made, then the temperature multiplier,
MW , is set to be 1.2. Secondly, We considered 18 degrees celsius temperature as
the cold weather floor temperature. If the current temperature is lower than 18
degrees celsius, then the temperature multiplier, MW , is set to be 1.1. Similarly, we
considered 32 degrees celsius as the ceiling temperature threshold. If the current
temperature is higher than 32 degrees celsius, then the temperature multiplier, MW ,
is set to be 1.1. Finally, we keep the multiplier, MW = 1, if the weather condition
does not fall under any mentioned conditions.

3.4 The Final Equation

The raw data were processed using above mentioned equations before inserting them
for realistic simulation. From there, the algorithm calculates and gets all its nec-
essary variable values to calculate the final or total fare. We get the values of fare
for the distance FD, the multiplier for the demand and supply condition MS, fare
for the time FT , and multiplier for the weather MW variables, and these values are
passed to calculate the final fare. The equation of the final fare is:

[Base Fare + (FD ∗MS) + FT]∗MW (3.3)

Here, the Base fare can vary from place to place. For example, in Dhaka, Bangladesh,
the base fare is set to be 10 takas. When the request is made initially, an approximate
calculated fare is shown to both users and a rider app. This approximate fare is
calculated where all the variables are initiated using google API approximation
values. However, when the ride starts, all the real-time values are implanted into
this equation, and this equation runs and calculates real-time fare value in each
iteration for 60 seconds to show the current real-time fare. This fare is essential as
if the user or driver wants to end the ride, this value will be shown as the final fare.

16

Chapter 4

Application Preview

4.1 Front-End

Two Android apps include both the user side and driver side. So the name of the
apps are:

1. Rickshaw Mama App: Passenger app

2. Rickshaw Mama Driver App: Rickshaw puller app

Firstly, there is login/signup functionality for both user and driver apps. Then
the user can set pick up and destination and request for a ride. The request is
pinged at all nearby driver apps, and any of the drivers can accept the request.
Meanwhile, approximate fare and all other necessary information are shown to both
user and driver. When the ride starts, all the real-time fare monitoring, API calls,
and calculations are done on the driver app. Both apps show the route towards
destination, and it is being updated on each API call on the driver side. There are
four different states in the whole system. They are:

1. Lazy State: If the user app is opened but still not placing a request or the
driver app is offline, then the apps are in this state.

2. Request State: A request for a ride has been made from the user, but it is
currently pending as no driver accepted the request.

3. Picking Up State: A driver has already accepted the request and is coming
to pick up the passenger or user.

4. Riding State: The driver picked up the passenger, and the ride originally
began to reach the destination from the pickup location.

5. Completion State: The driver successfully ends the ride, and the final fare
is shown to both sides to collect the desired fare. After this, both apps load
the home page.

17

4.1.1 Sign in and Sign up Page:

Figure 4.1: Sign in and sign up Page.

The initial page for both
apps where the user or
driver has to fill up their
login/signup form and sub-
mit it. For logging in,
”Username” and ”Password”
are essential. Signing up
depends on the new email
address. The driver has
to provide two more data
named ”Vehicle Type” and
”License Number.” Vehi-
cle type is introduced to
future widening improve-
ments. However, ”Name,”
”Email,” ”Password,” ”Mo-
bile no.” are standard in-
formation to signup in both
driver and user side apps.

4.1.2 Home Page:

Figure 4.2: Home and side bar of driver (left) and user (right) application.

After logging in, both apps
load the home page, which includes a real-time integrated map pointing to their
current location. Please note that both of the apps need to access the GPS permis-
sions on android devices. Both of the apps have an app drawer on the left side of
the screen. In the user app, there is a request ride button on the bottom side of the
screen. There is a search icon at the top left corner in the driver app that pulls all
the pending requests from the server. If the driver app gets a request, it is directly

18

shown on the main screen, including all the necessary information about the ride,
payment, and passenger details. The driver app has a ”Go Offline” button on the
bottom side of the screen, which toggles the driver from online to offline.

4.1.3 Pickup and Destination Selection Page(Only on the
user side):

Figure 4.3: Pickup and destination selection.

This page is only available
on the user-side app. If the
user wants to place a riding
request, it loads a new page
after pressing the ”where
to?” button. This new page
has only an input box to
fill up, one is for pickup lo-
cation, and another one is
for the destination location.
The user can set his current
location as pickup directly.
The auto search option was
used to find places using
Google Autofill API. Also,
users can manually select
their current location.

4.1.4 Available requests and accepting the request:

Figure 4.4: Available requests.

After selecting pickup and
destination points by the
users will show the requests
to the online driver app se-
lecting the pickup and desti-
nation points. Furthermore,
the drivers can see the avail-
able recommendations from
the driver application and
pick one by choice. However,
if any driver does not want
to accept the request, he/she
can decline the request also.
Drivers can see their user ori-
gin, destination, the distance
of user and destination, and
the estimated fare. This will
show the status and accept or
decline user requests on the next page.

19

4.1.5 Picking Up State:

Figure 4.5: Picking Up State of user (left) and driver (right) application.

After selecting the location, it will show the estimated fare. It will also show the
weather, duration, and distance. Then users need to select the River in the River
icon and click Confirm Ride. After that, it will lead to a new page with Cancel
Request Button and Order status. Users can cancel the request anytime by clicking
the cancel button. Order status indicates whether the order is accepted or not. If
the order is not accepted, then it will show order status idle. If the order is accepted,
it will show order status, picking up additional information like driver name, driver
telephone number, and license plate.

4.1.6 Riding State:

After starting the ride, the driver will be presented with a UI on the driver page
that consists of ride status, name, telephone, distance, and duration. Here, the
name and telephone indicate the passenger’s name and his/her telephone number.
Moreover, the distance points to the numeric value distance, which is left to reach
the passenger’s destination. Duration also shows the time that it might take to reach
the destination. On the other hand, the passenger will see ride status, license plate,
driver name, and telephone number on the rider page. The license plate shows the
plate number to the passenger, which will help the passenger find out / verify the

20

Figure 4.6: Riding State of user (left) and driver (right) application.

rickshaw. Again, the passenger has the driver’s number and name, which will help
the passenger connect with the rider, and also, for future security, this information
will be helpful. The passenger will be able to see his/her location on the map and
quickly identify which road the driver follows to reach the destination.

4.1.7 Ride Complete State:

After reaching the destination, they will see a Fare Breakdown page on both driver
and user app. The fare breakdown shows the total fare based on multiple factors
like weather multiplier, base fare, fare per mileage, demand/supply, and time surge.
After calculating numerous factors then it gives the total output fare. When the
driver clicks the Receive button, it will notify the user that the payment is received
and reload to the starting page for the user app and driver app. The driver can
again take the order from the user, and the user can again request a ride.

21

Figure 4.7: Ride Complete State of user (left) and driver (right) application.

4.1.8 Previous trips:

There is a history page implemented with both the driver-side and user-side app.
The primary purpose of this page is to show all the previous trip information like
pickup location, destination location, timestamp of request creation and completion,
and fare breakdown. Moreover, in the user app, the user can also see the details like
name, username, email, and the contact number of the particular rickshaw puller.
Finally, in the driver app, the driver can check the details of the specific user of a
selected trip, User side shows this page in English and driver app shows this page
in Bengali.

22

Figure 4.8: Previous trips of user (left) and driver (right) application.

4.2 Back-End

For the back-end implementation, we used Amazon AWS, where we used DynamoDB
as our NoSQL database. Moreover, we also used the Cognito service, a secure
encryption method to secure and manage passwords for our app. Here is a brief
description of these implementations:

Figure 4.9: DynamoDB tables.

23

4.2.1 DynamoDB

In the database part, we needed to create some tables to organize, manage, and
optimize all the necessary data for our application. Brief description of our tables
are mentioned below:

1. Destination: In this table, unique id, user id, the address of the destination,
altitude of the map, and creation time are the columns—this table updates
when the user makes a request.

2. Fare: In the fare table, we have the breakdown of complete fare statements
mentioning for which fare, how much money was allocated in each section to
generate the total fare. Here we have columns like fare for distance, the fare
for surge multiplier, the fare for weather, the fare for time, fare id, etc.

3. Log: In the log table, we have all the log files. When a user requests, this
request is passed to nearby drivers. At each timestamp, to whom the request
was sent, if the request was accepted or not, this type of data is stored on the
log table.

4. Order: In this table, all the necessary information of a request is kept, like
which user made the request, which driver responded, pickup and destination
location, timestamp, date, etc., are kept.

5. User: In the user table, we store all the information of a user or driver, like
name, phone number, email address, etc., based on a unique user id.

6. Vehicle: in this table, we store the vehicle type and license plate number of a
particular vehicle, linked to the driver information.

4.2.2 Cognito

Cognito is a scalable and secured cloud-based encryption system. It is effortless to
use and maintain. Cognito creates a user pool that provides signup and sign-in ser-
vices. It also features social sign-in with Facebook, Google, etc., so it would be easy
to implement in the future. Cognitive comes with a built-in user directory manage-
ment and profile system. For security purposes, the system employs multi-factor
authentication; checks compromised credentials, takeover protection, email verifica-
tion, etc. Cognito also customizes procedures and user migration by triggering AWS
Lambda.

24

Chapter 5

Result and Analysis

5.1 Result

After running 77 real test-drive of the apps, we populated our database with test-
drive data. Meanwhile, we noted all the actual fares of every ride. After that, a
comparison between the demanded fare and the app-generated fare was calculated.
The output performed as expected by having 95% accuracy in reflecting the real-life
fare demanded by the rickshaw pullers.

We can see that the fares our app outputs very differently based on FD, MS, FT ,
and MW . If any one of these variables changes, then the output also varies such that
it can project almost similar to real value adjusting itself. For example, suppose the
distance is 10 kilometers. In that case, ten requests for rickshaws in a particular area,
two rickshaws within 500 meters range of each request, two rickshaws within 200
meters of the request making total supply (2 + 2) = 4, the riding time 10 minutes,
and in hot weather produces 148.50 taka fare which is almost similar to our real-life
scenario of being 150 takas of the genuine rickshaw fare for such a scenario.

The test-run fare data from a table named ”fare” in the DynamoDB database is
shown below. This table is populated while the requests are completed. This table
has all the breakdown of fare according to the sections. We can see from the table
that it has columns named ” typename,” which correspond to identify it as a fare.
In the ”base” column, the base fare of a ride is shown. The next ”createdAt” column
presents the creation time of this fare breakdown. Sequentially, ”f d”, ”f t”, ”m s”,
and ”m w” correspond to our algorithm’s core variables. Then a unique ”order id”
is given, and ”updated at” represents the update timestamp.

25

Figure 5.1: Sample real life data.

26

5.2 Analysis

The table shown below represents expected output of our algorithm and test output
of our app. It also shows the difference between expected and test outputs with
error percentage of each test. After taking 25 tests output in consideration we get
5.17% difference in our expected and test output.

Expected Output Test Output Absolute Error % Difference

15 16 1 6.25%
20 23 3 13.04347826 %
25 23 2 8.695652174 %
50 49 1 2.040816327%
35 37 2 5.405405405%

80 82 2 2.43902439%
60 62 2 3.225806452%
100 105 5 4.761904762%
60 63 3 4.761904762%
120 123 3 2.43902439%

30 40 10 25%
55 58 3 5.172413793%
70 68 2 2.941176471%
25 25 0 0%
22 25 3 12%

15 20 5 25%
30 33 3 9.090909091%
45 47 2 4.255319149%
40 38 2 5.263157895%
100 112 12 10.71428571%
35 35 0 0%

38 41 3 7.317073171%

30 30 0 0%

30 33 3 9.090909091%

25 30 5 16.66666667%

Total(1155) Total(1218) Total(77) 5.172413793%

Table 5.1: Expected output vs Test output

Two graphs are shown below to show the visual representation of the Expected
output and tests output. The first one is column graph and the second graph is the
Line Graph which are generated using table 5.1. Additionally, from the line graph
and column graph we can see that both the lines of expected value and algorithm
outputs are almost identical.

27

Figure 5.2: Column chart of Expected output vs Test output

Figure 5.3: Line chart of Expected output vs Test output.

28

Chapter 6

Limitations and Future plans

6.1 Measuring road condition

In our country, road conditions are not the same. Road conditions keep changing.
For rickshaw pullers, it is pretty tough to pull a rickshaw on the road with such
bad conditions as the rickshaw is not automatic, and the rickshaw puller has to pull
physically. For example, on such a condition road in rainy weather, many things
can happen. However, on the other hand, a rickshaw puller can pull his rickshaw
easily on a good road. Nevertheless, on the wrong road, it is hard for him to pull.
So, the fare should be different based on road conditions. However, it is not possible
to get that data of all road conditions at this moment, though we are considering
the weather situation as we can get that data quickly. So we are facing a limitation
there as the rickshaw pullers can demand extra fare based on road conditions that
our algorithm does not measure

6.2 Roadblocks for rickshaw

There are many roads available where a rickshaw can go at a particular time, but
at other times it is blocked for the rickshaw to take that road. There are also some
roads available where at day two-way transportation is possible, but at night it
becomes only a one-way road. The problem here is that our algorithm will choose
the path to go to the destination and does not know about the roadblocks. When
starting a ride, it will show an assumed fare for these uncertain roadblocks, but
changing the road for roadblocks might affect the fare so much more than accepted
because of traffic jams, extra distance, etc. At this moment, we do not have the
data of this roadblock schedule. So, there is a limitation there which we are figuring
out to solve.

6.3 Future Works

In the upcoming days, we are planning to make our app available in IOS. Now our
app is only available on the google play store. So, only android users can use our

29

app. After making our app available for IOS, iPhone users will be able to use our
app.

6.3.1 Algorithm

Update the algorithms with more facilities. Then, we will be able to overcome our
limitations of API calls when industrial implementation. We can then generate more
accurate results because of lower delay and unlimited searching. In addition, how-
ever, this algorithm can be tweaked and reverse engineered to predict any vehicle’s
approximate fare.

6.3.2 Front-end

We are remaking UI. We will try to make our app more user-friendly—more user-
friendly for both sides of the app users, including the driver and the passenger.
Improved UI will improve user experience and be easier to understand.

6.3.3 Back-end

A)Database:

As we have just developed our app, its user base is minimal. That is why we are using
a third-party database to store our data and all other information. Nevertheless, we
have planned to shift to our private database to get a significant user base for our
app. In addition, using a private database will help in data security, user privacy,
controlling data backup, and recovery at any time needed.

B)Transaction:

In our app, now riders will have to pay cash physically. However, we are thinking
of including a digital payment gateway system. In that way, there is no need to
have physical currency to hire a rickshaw. Passengers or users will be able to pay
their rickshaw fare with digital payment gateways like Bkash, Nagar, etc. Moreover,
on the other hand, drivers will get the fare automatically included in their wallets,
which will make the payment system easier and faster for both sides of the user.

30

Chapter 7

Conclusion

This thesis is aimed to introduce a new application for rickshaws. The literature
on this topic reinforces the importance of the digital system of rickshaw hiring. As
rickshaws are one of the regular transports, it will be more convenient for people
to use an application to hire a rickshaw. We wanted to make a good algorithm to
calculate the fare for the application to be appropriate for users. After implementing
our algorithm, the results matched our expectations. This application will bring
a new change to society. The findings above suggest that other transportation
methods’ impacts can be minimized by an effective rickshaw pulling digitalization
architecture. A robust rickshaw pulling framework is also efficient and on-demand
management; when requests are made, it can coordinate the rides. As a result,
rather than receiving traditional help, it is critical to offer. In extreme weather
conditions like a rainy day, passengers can discover rickshaws by using the app.
Therefore, it can benefit the rickshaw driver who can solve their economic situation
quickly. Similarly, the calculations for robotized coordinating capacity are tedious
and boring, but they can be applied to comparative scenarios. As a result, it should
prepare the model to use an intelligent transportation framework for the rickshaw
service, similar to other ride-sharing services, to allow for short ride coordination
and the shortest route. Based on these conclusions, practitioners should consider
this project to be implemented for practical uses. Right now, our application is in
the testing period and will be using in just a specific area. In the future, we will try
to develop and make it usable for the people living outside Dhaka. We hope that
our app will contribute significantly to our society.

31

Bibliography

[1] N. D. Chan and S. A. Shaheen, “Ridesharing in north america: Past, present,
and future,” Transport reviews, vol. 32, no. 1, pp. 93–112, 2012.

[2] M. Feeney, “Is ridesharing safe?” Cato Institute Policy Analysis, no. 767, 2015.

[3] A. Prins, Rickshaw restrictions: Privilege for some, disaster for the puller,
Nov. 2017. [Online]. Available: https://www.thedailystar.net/star-weekend/
rickshaw-restrictions-1488862.

[4] B. Chaudhry, S. El-Amine, E. Shakshuki, et al., “Passenger safety in ride-
sharing services,” Procedia computer science, vol. 130, pp. 1044–1050, 2018.

[5] S. Akter, T. T. Jui, T. Athaya, A. Zaman, and S. Rafi, “A proposed system for
fare measurement for rickshaws of bangladesh,” in 2019 5th International Con-
ference on Advances in Electrical Engineering (ICAEE), IEEE, 2019, pp. 414–
419.

[6] M. R. Karim and K. A. Salam, Organising the Informal Economy Workers:
A Study of Rickshaw Pullers in Dhaka City. Bangladesh Institute of Labour
Studies, 2019.

[7] M. A.-M. Molla, Ban on rickshaw: How logical is it? Jul. 2019. [Online]. Avail-
able: https://www.thedailystar.net/opinion/politics/news/ban-rickshaw-how-
logical-it-1767535.

[8] S. Bittihn and A. Schadschneider, “Braess’ paradox in the age of traffic infor-
mation,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2021,
no. 3, p. 033 401, 2021.

[9] Rickshaw. [Online]. Available: http://en.banglapedia.org/index.php?title=
Rickshaw.

32

https://www.thedailystar.net/star-weekend/rickshaw-restrictions-1488862
https://www.thedailystar.net/star-weekend/rickshaw-restrictions-1488862
https://www.thedailystar.net/opinion/politics/news/ban-rickshaw-how-logical-it-1767535
https://www.thedailystar.net/opinion/politics/news/ban-rickshaw-how-logical-it-1767535
http://en.banglapedia.org/index.php?title=Rickshaw
http://en.banglapedia.org/index.php?title=Rickshaw

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Introduction
	Motivation
	Research Objectives
	Challenges faced

	Literature review and background
	Concept of Real-time Rickshaw hearing application
	Income from rickshaw pulling
	Developing an algorithm for traffic jam
	Fare calculation based on different locations
	Security system of Ride-sharing application

	Methodology
	Methodology
	Technologies Used
	React Native
	Amazon Web Services(AWS)
	Google MAP API

	Core of the Algorithm
	Distance
	Surge Multiplier
	Time Based Fare
	Weather-based multiplier

	The Final Equation

	Application Preview
	Front-End
	Sign in and Sign up Page:
	Home Page:
	Pickup and Destination Selection Page(Only on the user side):
	Available requests and accepting the request:
	Picking Up State:
	Riding State:
	Ride Complete State:
	Previous trips:

	Back-End
	DynamoDB
	Cognito

	Result and Analysis
	Result
	Analysis

	Limitations and Future plans
	Measuring road condition
	Roadblocks for rickshaw
	Future Works
	Algorithm
	Front-end
	Back-end

	Conclusion
	Bibliography

