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Chapter 1

Introduction

This paper guides us through the derivation of the Hawking radiation of a Schwarzschild
AdS black hole, thereby proving that even in AdS space, black holes evaporate and
leaves us with to deal with the dilemma of information paradox.

The first few chapters of the thesis is designed to go through the pre-requisites
needed before one dives into the actual derivation. In chapter one, I have briefly
but hopefully adeptly explained the adS space at a deeper level by introducing the
different kinds of possible solutions of the Klein Gordon equations in said space. Not
before first giving a very short and introductory few pages on the basics of dS and
adS space where I have talked about the metric and the overall geometry of the space.

In the next chapter, I move on to talk about Rindler space, which will prove to be
of paramount importance in the derivation of the Hawking radiation in the later
chapters. In order to achieve greater clarity, I have derived the Rindler metric from
different spaces thereby further fleshing our the nuances and details of this geometry.

Proceeding, I jump into some mathematics required for this thesis. The knowledge
of Path Integrals is of great significance in this derivation and for that, we need to
know Functionals and their basic calculations. This chapter is dedicated to those
two topics where I have tried, where possible, my best to compare and relate the
two for the purpose of ease of understanding.

Finally, we get the heart of the thesis where I derive the Hawking radiation. But
even here, I do not immediately derive the radiation for the SAdS black hole but
for a few other spaces before that to lead up to it and for better comparison when
necessary.

This paper has been written with the hope that some day some other undergraduate
student writing his or her thesis on a somewhat similar topic can stumble onto this
paper and find all the necessary information written in a clean, organised manner
that is easy to understand and follow. Hopefully any reader of this will be able to
appreciate that effort and forgive any mishaps.



Chapter 2

Solutions to K-G equation in adS
Space

2.1 De Sitter and Anti-de Sitter spacetime

De Sitter and Anti-de Sitter space, or as they are better known as, dS and adS
spacetimes are solutions to the Einestein field equations. Put forth by William de
Sitter, a Dutch mathematician, physicist and astronomer, it remains one of the most
widely studied frontiers of modern theoretical physics. The correspondence of adS
space with conformal field theory, otherwise known as the adS/cft correspondence,
is one of the front runner theories attempting to quantize gravity and shed some
light on the physics in the interior of a black hole. For the purpose of this thesis, we
shall retain our focus more on the Anti de-Sitter spacetime. In the following section,
we will introduce these spacetimes.

Introduction

We will approach our studiy of the de-Sitter and Anti de-Sitter spacetimes by giving
the analogy of a sphere. Let, Sd be a d-dimensional sphere with radius L, this
sphere, then, is defined as the set of all points (X1, X2, . . . Xd+1) in Ed+1, a (d+ 1)
dimensional Euclidean space. The line element in this space would look like [4]:

ds2 = (dX1)2 + (dX1)2 + · · ·+ (dXd+1)2 = L2 (2.1)

In the same manner, we have a d-dimensional de Sitter spacetime, namely, dSd. The
set of all points (X0, X1, . . . Xd) embedded in a (d + 1) dimensional Minkowskian
space, Md,1. This spacetime will have the following line element [4]:

ds2 = −(dX0)2 + (dX1)2 + · · ·+ (dXd)2 = L2 (2.2)

Equations 2.1 and 2.3 look very much alike. We have taken the Xd+1 term and
renamed it as X0 and by putting a minus sign before it, turned it into a timelike
co-ordinate. Therefore, what we have here is essentially that same sphere from 2.1
except it is now a Minkowskian version of itself that resides within a Minkowskian
spacetime. This spacetime, then, is known as the de Sitter spacetime. We can also
write equation 2.3 as: (dX1)2 + · · ·+ (dXd)2 = L2 + (dX0)2 Equation 2.1 showcases
the importance of maintaining the difference in sign between the spatial and the
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timelike co-ordinates. Equation 2.1 is the definition of a (d− 1) dimensional sphere,
Sd−1.

The time co-ordinate, X0, in 2.1 runs from−∞ to +∞, here, the radius,
√
L2 + (X0)2

of the (d−1) dimensional sphere has maximum values at the infinities while contract-
ing to a minimum of L in the middle, as shown in 2.1. Similarly, the d-dimensional
anti de Sitter spacetime, AdSd, is defined as the set of all points (X0, X1, . . . Xd)
embedded in a (d+ 1) dimensional Minkowskian like spacetime, except one that has
two timelike co-ordinates, known as Md−1,2. This spacetime, will have the following
line element [4]:

ds2 = −(dX0)2 + (dX1)2 + · · ·+ (dXd−1)2 − (dXd)2 (2.3)

Note that we have added another minus sign before the last term of the above
equation as, as was earlier mentioned, it has two timelike co-ordinates. This then
satisfies the following equation:

− (X0)2 + (X1)2 + · · ·+ (Xd−1)2 − (Xd)2 = −L2 (2.4)

We can now write the line elements of both the spacetiemes just discussed using
summation notation as follows:

(X0)2 −
d−1∑
i=1

(X1)2 + (Xd)2 = L2 (anti de Sitter spacetime) (2.5)

−(X0)2 +
d−1∑
i=1

(X1)2 + (Xd)2 = L2 (de Sitter spacetime) (2.6)

Figure 2.1: d-dimensional de Sitter spacetime dsd [4]
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Figure 2.2: d-dimensional anti de Sitter spacetime AdSd [4]

Poincare patch in adS Spacetime

Let us now consider a 3 dimensional adS spacetime, adS3, in three dimensions,
given that there are two time like slices, our metric, instead of the usual and
familiar Minkowski metric, η = (−1,+1,+1,+1), will now be written as η =
(−1,+1,+1,+1), using this, we can rewrite equation 2.40 for 3-dimensional adS
spacetime as:

(T 2 −X2) + (W 2 − Y 2) = 1 (2.7)

Where we have rescaled the radius L to be unitary. This means the line element
takes the form:

ds2 = −dT 2 + dX2 − dW 2 + dY 2 (2.8)

From here on, we make the transformation that:

T 2 −X2 =
t2 − x2

w2

We can then write:

W 2 − Y 2 = 1 +
t2 − x2

w2
(2.9)

We can deduce from these the following equations:

T =
t

w
(2.10)

X =
x

w
(2.11)

This allows to relabel Y and W as the following:

Y =
1

2
(
x2 − t2

w
+ w − 1

w
) (2.12)

=
1

2w
(x2 − t2 + w2 − 1) (2.13)

W =
1

2
(
x2 − t2

w
+ w +

1

w
) (2.14)

=
1

2w
(x2 − t2 + w2 + 1) (2.15)

(2.16)
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We can see now that we no longer have the initial four dimensions, differentiating,
2.10 and 2.11, we get:

dT =
dt

w
=⇒ (dT )2 =

dt2

w2

dX =
dx

w
=⇒ (dX)2 =

dx2

w2

Furthermore, we differentiate 2.13 and 2.15 to get:

dY =
1

w
(x2 − t2 + w2 − 1)dw (2.17)

dY 2 =
1

w2
(x2 − t2 + w2 − 1)dw2 (2.18)

dW =
1

w
(x2 − t2 + w2 + 1)dw (2.19)

dW 2 =
1

w2
(x2 − t2 + w2 + 1)2dw2 (2.20)

Making all the necessary substitutions into 2.8, we get a very innocent metric in the
form of:

ds2 = −dt
2

w2
+
dx2

w2
+

1

w2
[(x2 − t2 + w2 + 1)2)− (x2 − t2 + w2 − 1)2)] (2.21)

=
1

w2
(−dt2 + dx2 + dw2) (2.22)

The above equation is the Poincare half plane in the Minkowskian space on a higher
dimension. We can repeat the above steps while adding more and more dimensions
and would get similar results, for example, adS5 would be described by the following
line element:

ds2 =
L2

w2
(−dt2 + dx2 + dy2 + dz2 + dw2) (2.23)

Where we have generalized the unitary value of L to any value. If we now make the
transformation w = L2

r
, we get the following equation:

ds2 =
r2

L2
(−dt2 + dx2 + dy2 + dz2) +

L2

r2
dr2 (2.24)

We can see that the first term of equation 2.24 can be generalized to arbitrary
dimensions. Applying our knowledge from general relativity, we can rewrite the
equation as the following:

ds2 =
L2

r2
dr2 +

r2

L2
(ηµνdx

µdxν) (2.25)

This is the representation of the adS space in the Poincare patch [1]. We can now
visualize the adS space in a different way than before as is exhibited in 2.3.
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Figure 2.3: A slice of AdSd at some specific value of w [4]

2.2 The Klein-Gordon equation

One of the most widely well knows equations of motions of the world of high energy
physics is the Klein-Gordon(K-G) equation. This was one of the first and arguably
one of the most successful attempts at relativistic quantum mechanics. Proposed by
Oskar Klein and Walter Gordon in 1926, it was claimed that this equation success-
fully describes the motion of relativistic electrons. In this section, we will explore
some of the solutions obtained from the Klein-Gordon equation in the adS geomtery.
We start with a scalar field action:

S = −1

2

∫
dd+1X

√
g(gABδAφδBφ+m2φ2) (2.26)

As mentioned above, this is a scalar field and hence the partial derivatives can be
replaced with covariant derivatives, Dµ. After that, we can perform an integration
by parts and obtain the following equation:

S = −1

2

∫
dd+1X

√
gφ(−∆ +m2)φ+

1

2

∫
dd+1XδA(

√
ggABφδBφ) (2.27)

If φ satisfies the equation of motion of 2.3, we get the Klein-Gordon equation:

(−∆ +m2)φ = 0 (2.28)

Next, we move on to derive the laplacian in an adS Space. In order to do that, we
will have to derive the metric of the adS space in the Poincare patch. It is defined
as:

ds2 =
L2

r2
dr2 +

r2

L2
ηµνdx

µdxν (2.29)

In the above equation, if we rescale and replace r = Lu, we then get:

ds2 = L2(
du2

u2
+ u2ηµνdx

µdxν) (2.30)

A further change of variables of z = L2

r
= 1

u
, brings the metric to the form:

ds2 =
L2

z2
(dz2 + ηµνdx

µdxν) (2.31)
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If we put this definition of the metric in the laplacian which is defined as [5]:

∆ =
1
√
g
δA(
√
ggABδB) (2.32)

We get:

=
zd+1

Ld+1

[
δz
(Ld+1

zd+1

z2

L2
δz
)

+
Ld+1

zd+1

z2

L2
δx

2
]

(2.33)

And further simplification gives us:

∆ =
z2

L2

(
δz

2 − (d− 1z−1)δz + δx
2
)

(2.34)

With these tools at hand, we now explore the various solutions of 2.28 in the next
section.

2.3 Solutions

2.3.1 Separation of variables

The first approach we are going to look at is utilizing the separation of variables [5].
We write the fields φ as:

φ(z, x) = f(z)Φ(x) (2.35)

If we put this in place of φ in 2.1, we get:

− z2

L2

(
zd−1δz(z

−d+1f ′)Φ + fδ2Φ
)

+m2fΦ = 0 (2.36)

After dividing this equation by fΦ we can proceed to separate the variables to get:

− zd−1

f
δz(z

−d+1f ′) +
m2L2

z2
=
δ2Φ

Φ
= −k2 (2.37)

Where k2 is a constant. We can separate this into two equations:

(δ2
x − k2)Φk = 0 (2.38)

[−zd+1δz(z
−d+1δz) +m2L2 + k2z2]fk = 0 (2.39)

The solutions now depend on the parameter fk. One will get modes that will depend
on the parameter k, meaning that the full solution is the superposition of all of them:

φ(z, x) =

∫
ddkfk(z)Φk(x) (2.40)

We know that in Euclidean space, the solution to the Klein-Gordon equation in
d-dimensional spacetime are place waves:

Φ(x) =
eikx

(2π)d
(2.41)

Putting this in equation 2.40 we can get:

φ(z, x) =

∫
ddk

(2π)d
fk(z)eikx (2.42)

Which is our solution. We can see from this that φ(z, x) is the fourier transform of
fk. We see that fk(z) is the solution in momentum space if we simply invert the
transformation.
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2.3.2 Solution for the radial direction

We can take 2.39 and rewrite it as [5]:

z2f”k − (d− 1)zf ′k − (m2L2 + k2z2)fk = 0 (2.43)

We can see that it looks very much like the modified Bessel Equation, we now
perform some actions on this equation to make it identical to a modified Bessel
Equation. First, we do a change of variable such that:

fk = z
d
2 gk (2.44)

And a further transformation where we take gk as a function of kz instead of a
function of z to finally get:

(kz)2g”k + (kz)g′k −
(d2

4
+ (m2L2 + k2z2

)
gk = 0 (2.45)

This now looks exactly like a modified Bessel Equation, allowing us to use the
solutions that are applied to them:

gk(kz) = akKν(kz) + bkIν(kz) (2.46)

Where the ν parameter is defined as:

ν =

√
d2

4
+m2L2 (2.47)

Now, since fk = zd/2gk, we get the solution for fk to be:

fk(z) = ak(kz)
d/2Kν(kz) + bk(kz)d/2Iν(kz) (2.48)

Now, we know that the modifed Bessel Equation has exponential behavior, giving
asymptotic forms:

Iν(kz) =⇒ ekz√
kz

Kν(kz) =⇒ e−kz√
kz

We can now see that for z →∞, Iν diverges meaning bk = 0, giving us:

fk(z) = ak(kz)
d/2Kν(kz) (2.49)

Furthermore, we know that the complete limits ofKn in the modified Bessel Function
is:

Kn(x) =⇒ Γ(n)

2

(2

x

)2

+
Γ(−n)

2

(x
2

)2

Using this we can see that near the boundary the solution behaves like:

fk(z) =⇒ ak(kz)d/2
[Γ(ν)

2

( 2

kz

)ν
+

Γ(−ν)

2

(kz
2

)ν]
(2.50)

Which can be simplified to:

fk(z) =⇒ φ0(k)z∆− + φ1(k)z∆+ (2.51)
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Where the following definitions are used:

φ0(k) = ak2
ν−1Γ(ν)k∆−

φ1(k) = ak2
ν+1Γ(−ν)k∆+

∆± =
d

2
± ν

We can also note here that this derivation helps us realize the Breitenlohner-Freedman
bound from the positivity of the square-root:

(mL)2 > −d
2

4

2.3.3 Complete (free) solution

In order to derive the complete solution [5], we first need to take a look at 2.51.
In this equation, ∆+ > 0 is the normalizable solution as z → 0 and ∆− < 0 is the
non-normalizable solution as z →∞. Therefore, we can write:

φ0(k) = lim
z→0

z−∆−fk(z) (2.52)

Or in position space:
φ0(x) = lim

z→0
z−∆−φ(z, x) (2.53)

Moving, on, if we substitute 2.49 into 2.42 we get the full solution in the position
space, which looks like:

φ(z, x) =

∫
ddk

(2π)d
ak(kz)

d/2Kν(kz)e
ikx (2.54)

We can now use boundary conditions to deduce the value of of ak. Here we introduce
a cut off z = ε in order to avoid divergences. Using 2.52, we get:

φ0(k) = ε−∆−fk(ε) = ε−∆−ak](kε)
d/2Kν(kε) (2.55)

Which after rearranging gives us:

ak =
ε∆−−d/2

kd/2Kν(kε)
φ0(k) (2.56)

Then finally we get fk by:

fk(z) = ε∆−(
z

ε
)d/2

Kν(kz)

Kν(kε)

φ0(k) (2.57)

If we use the equation
fk(ε) = ε∆−φ0(k) (2.58)

and put this in 2.57, we then get:

fk(z) = (
z

ε
)d/2

Kν(kz)

Kν(kε)

fk(ε) (2.59)

Then the final solution in position space becomes:

φ(z, x) = ε∆−(
z

ε
)d/2dx′

ddk

(2π)d
Kν(kz)

Kν(kε)

φ0(x′)eik(x−x′) (2.60)



Chapter 3

Rindler Space

In this chapter we shall look at the basics of Rindler space and some of it’s proper-
ties. We will set this chapter up for the later ones where we will see the application
of Rindler geometry to derive the Hawking Temperature.
Wolfgang Rindler was an Austrian physicist who first coined the term ”Event Hori-
zon.”

3.1 Surface Gravity

Before moving onto Rindler Geometry, we need to introduce the term surface gravity.
Hypothetically, surface gravity can be thought of as the gravitational acceleration
on a text particle situated very close to the surface of an astronomical body. We
assume that the test particle does not have any mass. However, that definition
of surface gravity is incomplete as it can not be applied to black holes. The entire
hypothesis breaks down on account of the fact that black holes do not have a surface
to begin with. Due to the nature of black holes, the acceleration that a test particle
will experience near the event horizon is infinite. Hence, a renormalized value of the
surface gravity is necessary. The value for surface gravity varies from one black hole
to other depending on it’s properties. In the following subsection, we will derive the
surface gravity from the Schwarzschild metric.

Schwarzschild Solution

We start by assuming a particle with a finite and unit mass, situated at r. The
work done to accelerate this particle in the upwards direction by a force F through
a distance δr is:

δW = F (r)δr = ma(r)δr

∣∣∣∣
m=1

(3.1)

The equation for the 4-acceleration is defined by:

a(r) =
M

r2

√
1− 2M

r

(3.2)
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3.2 can also be considered the proper acceleration of the observer, Alice, necessary
to keep her stationary in the geometry. Substituting 3.2 to 3.15, we get

δW =
M

r2

√
1− 2M

r

(3.3)

Let us now assume that this work done is being converted to a high energy photon,
being transmitted to another observer, Bob, sitting at infinity, δω would be the
angular frequency of this photon. Imposing 100 percent efficiency, we get:

δω =
M

r2

√
1− 2M

r

δr (3.4)

Due to gravitational redshift, Bob would intercept this photon having a much lower
energy than that it was transmitted with. We now attempt to deduce this gravita-
tional redshift.

Perhaps the most popular solution of the Einestein equation to ever exist, schwarzschild
geometry was the first exact solution to the equations to have ever been pro-
posed, and applies to a single spherical non-rotating mass. It was done by Karl
Schwarzschild, a German physicist and astronomer, who accomplished this great
feat in 1915, while serving in the World War 1. Unfortunately, he did not survive
the war but his accomplishment has reverberated throughout history and not a day
goes by that a physics student does not resort to his solution in order to further
their grasp on black hole studies. We start with the metric,

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (3.5)

We then impose the following approximations:

dr = dΩ = 0

dτ 2 = −ds2

This gives us:

dτ =

√
1− 2M

r
dt (3.6)

From this equation, we see that the proper time of Bob and Alice are equal to the
time coordinate of the Schwarzschild metric, meaning:

dτ∞ = dt (3.7)

Therefore, we can write

dτr =

√
1− 2M

r
dτ∞ (3.8)

Where τr is the proper time of Alice at a spatial distance r.

We can now apply the general relation between frequency and time to get the proper
frequency of the photon at infinity:

δω =
1

δτ
(3.9)
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This gives us the relation between the proper frequency of the photon at a distance
d and that of a photon at infinity as:

δω∞ =

√
1− 2M

r
δωr (3.10)

We can now rewrite the proper frequency at infinity as:

δω∞ =
M

r2
δr (3.11)

Using dimensional analysis, we can see that the right hand side of 3.11 gives us units
of energy in terms of [force][distance].
Thus, dividing both sides of 3.11 by δr, we get and equation of force:

δF =
M

r2
(3.12)

Remembering that we set the mass of the observer as unitary, which let’s us consider
this force to be acceleration. We now write:

κ(r) =
M

r2
(3.13)

This acceleration that we just derived can be thought of as the surface gravity. In
Schwarzschild geometry, the event horizon is at r = 2M . Therefore,

κ(r = 2M) =
1

4M
(3.14)

3.2 Rindler Geometry

We shall now look at a few ways of deriving the Rindler Metric and some of it’s
properties. To put it in layman terms, Rindler metric is the representation of the
Minkowski space in hyperbolic co-ordinates. But that could be considered as an
over simplified definition.

3.2.1 From Minkowski Space

To begin, let us start with a two dimensional Minkowski space, we know that the
line element looks like [8]:

ds2 = −dt2 + dx2 (3.15)

We now introduce the following substitutions of the co-ordinates:

x = ρ coshα (3.16)

t = ρ sinhα (3.17)

Evidently, we have switched to hyperbolic polar co-ordinates. This enable the fol-
lowing two identities:

ρ2 = x2 − t2 (3.18)

tanhα =
t

x
(3.19)

Expressing the line element in terms of these co-ordinates, we get:

ds2 = dρ2 − ρ2dα2 (3.20)

3.20 is known as the Rindler Metric and the co-ordinates (p, α) are known as Rindler
co-ordinates.
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3.2.2 From Schwarzschild Geometry

Another method of deriving the Rindler metric starts with the Schwarzschild geom-
etry [10]. We know:

ds2 = −(1− 2M

R
)dt2 + (1− 2M

R
)−1dr2 + r2dω2 (3.21)

Implementing the following transformation:

r − 2M =
x2

8M
(3.22)

This allows us to incorporate the surface gravity term (κ = 1
4M

) in the equation:

r − 2M =
x2

8M
(3.23)

∴ r =
x2

8M
+ 2M (3.24)

∴ dr =
2xdx

8M
(3.25)

∴ dr = κxdx (3.26)

∴ (dr)2 = (κx)2dx2 (3.27)

Therefore, for r ≈ 2M we get:

ds2 ≈ −(κx)2dt2 + dx2 +
1

4κ2
dΩ2 (3.28)

Where 1
4κ2dΩ2 is the 2-dimensional Rindler spacetime and 1

4κ2dΩ2 is a 2-sphere of
radius 1

2κ
. It is very easy to show that this metric is the same as 3.15, just in unusual

co-ordinates. In order to that, we introduce the Kruskal-type co-ordinates:

U ′ = −xe−κt

V ′ = xeκt

And writing the Rindler metric in terms of these co-ordinates gives us:

ds2 = −dU ′dV ′ (3.29)

Now, if we make the following change:

U ′ = T −X
V ′ = T +X

Meaning:

dU ′ = dT − dX
dV ′ = dT + dX

Then we can use these to write the Rindler metric in a form that is identical to the
Minkowski line element:

ds2 = −dT 2 + dX2 (3.30)
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To proceed, we rewrite the Schwarzschild metric, and get:

ds2 = −f(r)dt2 +
1
f(r)dr2 + r2dΩ2 (3.31)

Where we assume the following:

rs = 2M

f = 1− rs
r

If we now expand the function f(r), considering the space near the horizon of the
black hole, we get:

f(r) = f(rs) + f ′(rs)(r − rs) + higher order terms (3.32)

Ignoring the higher order terms and noting that when rs, f(rs) = 0, we simplify the
above equation to:

f(r) = f ′(rs)(r − rs) (3.33)

If we now have an observer at a distance r, and we want to know his proper distance
from the horizon, we can get that integrating the second term in 3.5, to get:

dρ =
dr√
f

=
dr√

f ′(rs)(r − rs)

ρ =
2√
f ′(rs)

√
r − rs

We can then express f in terms of ρ:

f(r) = f ′(rs)(r − rs) (3.34)

= (
1

1
f ′(rs))

2ρ2 (3.35)

= κ2ρ2 (3.36)

Where we have made the definition, κ = (1
1
f ′(rs))

2. Putting this back in the equation
3.5 we have, near the horizon of the black hole:

ds2 = −κ2ρ2 + dρ2 + rs
2dΩ2

2 (3.37)

= −ρ2dη2 + rs
2dΩ2

2 (3.38)

Here we have defined η = κt = t
2rs

. If we now equate this equation with 3.30, and
ignore the 2 dimensional sphere, it becomes self evident that this space does not
cover all four quadrants of the Minkowski space. Since X2 − T 2 = ρ2, and ρ is a
positive quantity, the equation only corresponds to the area given by X ≥ 0, or
region I, as is shown in 3.1.
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Figure 3.1: Region of Rindler Geometry [8]

We can see from the figure that the line of constant ρ, i.e, for X2 − T 2 = constant
is a hyprebola.



Chapter 4

Functionals and Path Integrals

In this chapter we will introduce and elaborate where necessary, some of the prereq-
uisites for the upcoming chapters. We will briefly talk about functional derivatives
before moving onto path integrals, providing with examples where suitable.

4.1 Functionals and Functional Derivatives

4.1.1 Functionals

Functionals are defined by the rule that associates a real or complex number with
a function that can have more than one variables. To put it simply, a functional
is a function of a function. Where a function takes numbers as input and provides
numbers as output, a functional takes functions as input and provides numbers as
output. Some examples of functionals would be, a definite integral over a continuous
function [9]:

F [f ] = w(x)

∫ x2

x1

f(x)dx (4.1)

Where w(x) is a fixed weight function and x is called the parameter. If we replace
this fixed weight function with a generalized function, or a distribution, we get:

F [f ] =

∫ x2

x1

δ(x− x0)f(x)dx (4.2)

Where we have the w with the δ-function. It is evident from 4.2 that functionals
can themselves be functions of the parameters. We can see this if we simply 4.2
further, to get:

F [f ] = f(x0) (4.3)

Examples of functionals are abundant in physics, one of which would be in the
Thomas-Fermi model. This theory provides us with the functional form of the
kinetic energy of a non-interacting electron gas, as a function of density. Another
example of functionals is the Wheeler–De Witt equation. It is a cornerstone of
theoretical physics, especially in quantum gravity.

4.1.2 Functional Derivatives

As the name suggests, functional derivatives is the product of taking a functional
and differentiating it with respect to it’s variables [9]. Let us take the following
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functional as an example:

F [f ] = w(x)

∫
w(x)f(x)dx (4.4)

We can take the weight function inside the integral as it is fixed. The most general
relation that can be used to take functional derivatives is:

δf(x)

δf(x0)
= δ(x− x0) (4.5)

δF

δf(x0)
=

∫
w(x)

δf(x)

δf(x0)
dx (4.6)

δF

δf(x0)
= (x)δ(x− x0)dx (4.7)

δF

δf(x0)
= w(x0) (4.8)

Where on the right we have used the Dirac delta function, as was introduced in the
previous section. We now do an example of computing functional derivatives. Let
us take the following functional:

T [F ] = exp[a

∫
t(p′, p”)F (p′)F (p”)dp′dp”] = expZ[F ] (4.9)

We know,
δT

δF (p)
= (

δZ

δF (p)
)T (4.10)

We now need to deduce ( δZ
δF (p)

), we start by using product rule of differentiation, to
get:

δZ

δF (p)
= a

∫
t(p′, p”)F (p′)(

δF (p”)

δF (p)
) + (

δF (p”)

δF (p)
)a

∫
t(p′, p”)F (p′) (4.11)

Now, using 4.5, and after conducting further simplification, we get:

δZ

δF (p)
= a

∫
(t(p′, p) + t(p, p′))F (p′)dp′ (4.12)

We now make the assumption that the function t(p′, p) is symmetric in it’s variables,
meaning that t(p′, p) = t(p, p′) and end up with the following equation:

δZ

δF (p)
= 2a(p′, p)F (p′)dp′ (4.13)

Putting this back in 4.10, we get:

δT

δF (p)
= 2a(p′, p)F (p′)dp′T (4.14)

We can now repeat this process on the functional T [F ] to get higher order functional
derivatives.
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4.1.3 Functional Integrals

Functional integration was developed by Percy Daniell in an article of 1919 and Nor-
bert Wiener in a series of studies culminating in his articles of 1921 on Brownian
motion. Together they developed a rigorous method for assigning a probability to
a particle’s random path, a process now known as the Wiener measure.

In functional integration, the domain of an integral is not a region of space anymore,
but a space of functions. It is a collection of results that are of much significance in
the studies of mathematics and physics. They are most useful in to solve problems
involving probability, and one of the most famous and useful functional integrals is
the path integral, which we will be talking about in the next section.

In functional integration, a functional G[A] is summed over a continuous range of
functions A. Using perturbative methods is usually the go to method to solve most
functional integrals as most of them can not be evaluated exactly. The handful
ones that can are done so using the Gaussian Integral. The formal definition of a
functional integral is [2]:∫

D[A]G[A] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

G[A]ΠndAn (4.15)

4.2 Path Integral

”The electron does anything it likes. It goes in any direction at any speed, forward
and backward in time, however it likes, and then you add up the amplitudes and it
gives you the wave-function.”

The stated quote was delivered by none other than Richard Feynman during a con-
versation with Freeman Dyson. He was speaking, of course, about his path integral
method. This ingeneous and extremely intuitive method takes account of every sin-
gle possible trajectory that a particle can take when going from point A to point B
and sums over all of them to give us the propagator amplitude. In this section, we
derive the path integral method which will come in handy to us later on.

According to Feynman, all of the trajectories that the electron will take to get from
one point to another, will contribute exactly a complex factor of eiS}, where the S
is the action of the trajectory. Our job here is to add up all of those contributions
to get the amplitude. Let us start be defining the following terms:

A = (ta, qa) (a spacetime point)

B = (tb, qb) (another spacetime point)

And let
G = Û(tb, ta) (4.16)

be the time-evolution operator that takes the particle at time ta and evolves it to
time tb [3]. This time-evolution operator is:

Û(tb, ta) = e−iĤ(tb−ta) (4.17)
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It is important to note that we will employ natural units from this point on. We
can then say:

G = 〈qb| e−iĤ(tb−ta) |qa〉 (4.18)

Where |q〉 is an eigenstate of position. Now let us divide the total time taken for
this trajectory into N infinitesimal steps, as shown in figure 4.1. This process is
known as time-slicing. We are able to time-slice as Û(t) is a unitary operator. This
gives us [9]:

G = 〈qb| e−iĤ(tb−ta)N |qa〉 (4.19)

= 〈qb| e−iĤ∆t . . . e−iĤ∆t . . . e−iĤ∆t |qa〉 (4.20)

Where ∆t = t
N

. We now insert an identity in equation 4.20, using the completeness
theorem. The completeness theorem states that:∫

dqn |qn〉 〈qn| = 1 (4.21)

This is also sometimes known as fat unity [9]. The idea is to insert a fat unity and
sandwich them between each mini time-evolution operator. We insert N − 1 fat
unities to get:

G = 〈qb| e−iĤ∆t[

∫
dqN−1 |qN−1〉 〈qN−1|]e−iĤ∆t . . . (4.22)

. . . e−iĤ∆t[

∫
dqN−2 |qN−2〉 〈qN−2|]e−iĤ∆t . . . (4.23)

. . . e−iĤ∆t[

∫
dq1 |q1〉 〈q1|]e−iĤ∆t |qa〉 (4.24)

After rearranging this equation a little bit, we get:

G =

∫
dq1 . . . dqN−1 〈qb| e−iĤ∆t |qN−1〉 . . . 〈q1| e−iĤ∆t |qa〉 (4.25)

We now split the Hamiltonian operator into it’s two terms, namely:

Ĥ =
p̂2

2m
+ ˆV (q). (4.26)

Where the terms p̂ and V̂ are the momentum and potential operators respectively.
We know that the position states |qn〉 are eigenvalues of the potential operator,
meaning we can have the operator act through the state and we will be left with
numbers. However, we can not say the same for the momentum operators. In
order to bypass through this problem, we expand the position states in terms of
momentum eigenstates in the usual way:∫

dp

(2π)
1
2

|p〉 |qn〉 〈p| =
∫

dp

(2π)
|p〉 e−ipqn (4.27)
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Replacing |qn〉 this way and making using the eigenvalues of the momentum and
potential operators, we look at one individual mini time evolution operator and get:

Gn =

∫
dp

(2π)
1
2

〈qn+1| |p〉 e−i
p2

2m
∆te−ipqne−iV (qn)∆t (4.28)

=

∫
dp

(2π)
e−ipqn+1e−i

p2

2m
∆te−ipqne−iV (qn)∆t (4.29)

=

∫
dp

(2π)
e−i

p2

2m
∆t+ip(qn+1−qn)e−iV (qn)∆t (4.30)

We can see now that we have successfully gotten rid of all the operators that we
began this derivation with [9]. All we have left to do is the integration over p. We
use Gaussian integral method to solve this and end up with an exact solution, which
is:

Gn = (
−im
2π∆t

)
1
2 e

im
2

(qn+1−qn)

2
∆te−iV (qn)∆t(4.31)

To simplify, we write the factor ( −im
2π∆t

)
1
2 as ζ−1, after putting this back into equation

4.25, we get the propagator amplitude, in the form of:

G =N−1
n=1

dqn
ζ
e

im
2

(qn+1−qn)2

∆t2 ∆te−iV (qn)∆t (4.32)

Finally, we take the limit N → ∞. This turns makes the jagged shape of the
trajectory to a more smooth one. Our summation now turns into an integration and
(qn+1−qn)2

∆t2
into q̇2. Implementing these changes, we can finally write the propagator

amplitude in the form that it is usually seen as [3]:

G =

∫
D[q(t)]ei

∫
dt[mq̇2

2
−V (q)] (4.33)

Where we have made the change in notation, making:∫
D[q(t)] =

N−1

lim
N→∞

n=1
dqn
ζ

(4.34)

This is an example of a functional integral, where we sum over all the possible paths
coded as a massive multiple integral over all the time-sliced co-ordinates qn. We can
take this one step further and see in equation 4.33, the term mq̇2

2
− V (q)] is simply

the Lagrangian describing the motion. And we know that the action of any path is
given as S =

∫
dtL[q(t)], we can write:

G =

∫
D[q(t)]ei

S
} (4.35)

Where we have restored the value of }. Equation 4.35 is one that we will come back
to in the next chapter.
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Figure 4.1: Time-slice of a particle’s trajectory [3]



Chapter 5

Hawking Radiation

Black holes evaporate.

This single statement has been the cause of many sleepless nights for physicists all
over the world for the past fifty years or so. Ever since Stephen Hawking showed in
his paper, ”Particle Creation by Black Holes”, he showed us that black holes radiate
particles as their mass decreases to eventually disappear. This of course with it
brought the dilemma of the information paradox, a problem that to this day has
not been solved. In this chapter, we will derive the Hawking Temperature in a few
ways starting at different places.

5.1 In Euclidean Spacetime

The following two derivations will give us the Hawking Temperature in the Euclidean
Space time.The first method we will try is going to be an analytical continuation of
the Schwarzschild metric to the Euclidean signature, we then associate periodicity
to the time parameter, in the same way as we go about describing a field theory
in finite temperature. We then use the fact that the event horizon is nothing more
than a co-ordinate singularity in the Lorentzian signature to eventually derive the
temperature of a black hole in Euclidean signature. This is quite a simple derivation
of the Hawking temperature compared to his original one, however, it serves it’s
purpose quite well.

Analytic

Let us start by performing a Wick rotation, which takes us to the Euclidean space
[6], in equation 3.31, this gives us:

ds2 = f(r)dτ 2 +
1

f(r)
dr2 + r2dΩ2 (5.1)

Where, we have made the following change:

t = −iτ (5.2)

If we now assing periodicity to our time parameter such that:

τ ≈ τ + }β (5.3)
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Where β = 1
kbT

, with kb being the Boltzmann constant and T is temperature. In
this signature, if we follow the same steps we did going from equation 3.31 to 3.37,
we get the following expression for the line element in the Euclidean signature, ds2

E:

ds2
E = κ2ρ2dτ 2 + dρ2 + rs

2dΩ2
2 (5.4)

Which is essentially the same equation as 3.37, except for in Euclidean signature.
We now introduce a transformation:

θ = κτ (5.5)

This gives us:
ds2

E = ρ2dθ2 + dρ2 + rs
2dΩ2

2 (5.6)

Where immediately we can see that the first two terms of the above metric is the 2
dimensional Euclidean flat space written in flat co-ordinates. Now, we know that in
standard Euclidean geometry, the θ parameter is periodic in θ = θ + 2π, however,
we can see from 5.5 that there is no bound we can set on τ [6]. Luckily, we notice
that from the metric in 5.6, that there is a conical singularity at ρ = 0 unless the
following is true:

θ = θ + 2π (5.7)

And since we know θ and τ are related according to equation 5.5, we can say the
following:

τ = τ +
2π

κ
(5.8)

If we now equate 5.3 with 5.8, we can say:

}β =
2π

κ
(5.9)

κ

}
= 2π (5.10)

1

T
=

2πkB
κ}

(5.11)

T =
κ}

2πkB
(5.12)

T =
κ

2π
(5.13)

Where in the last line we have resorted to using natural units. We have now suc-
cessfully derived the expression for Hawking radiation for a black hole. We see from
equation 5.13, using our definition of surface gravity from chapter 3, equation 3.14,
that the temperature of a black hole is inversely proportional to it’s mass. There-
fore, as a black hole loses mass due to particle creation near it’s horizon, it keeps
radiating according to 5.13 until it eventually evaporates. It is important to note
here that even though we derived this temperature using the near horizon metric,
this is the finite temperature that will be experienced by an observer at infinity as
the time parameter we used is the one for said observer.
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5.1.1 Path Integral

We start this derivation with the same steps as the previous one. We write the
Schwarzschild metric in Euclidean spacetime, after performing the Wick rotation:

ds2 = (1− 2M

R
)dτ 2 + (1− 2M

R
)−1dr2 + r2dω2 (5.14)

Using the definition of κ from equation 3.14, we get near horizon,

ds2
E = (κx)2dτ 2 + dx2 + rs

2dΩ2
2 (5.15)

And again, we see that the first two terms of this equation is just the 2 dimensional
flat Euclidean spacetime, sometimes also known as Euclidean Rindler spacetime. If
we make the periodic identification τ = τ + 2π

κ
, we can remove the singularity that

arises when r = 2M in equation 5.16 (or at x = 0 in equation 5.17), since it is
just a co-ordinate singularity. Another way of putting that is that we need to solve
the Euclidean functional integral over fields, Φ(~x, τ), that are periodic in τ over the
period 2π

κ
. We can now write:

Z =

∫
[Dφ]e−SE [Φ] (5.16)

Which we can recognise immediately as a functional integral, more specifically, the
Euclidean functional integral, where the term −SE is simply the Euclidean action
in Hamiltonian form, given by:

SE =

∫
(−ipq̇ +H) (5.17)

We now take the Gaussian integral of the above equation over fields Φ which are
periodic over the period }β in Euclidean signature [7]. This gives us:

Z = treβH (5.18)

Where we have use the fact that the exponential of the Hamiltonian can be written
as a diagonal matrix, which, due to the basic properties of the exponential have the
trace equal to it’s determinant. Equation 5.18 is the partition function of a quantum
mechanical system with Hamiltonian H. We now take notice of the two periodic and
can immediate come to the relation:

}β =
2π

κ
(5.19)

This equation is identical to equation 5.9, which means we can now come to the
conclusion:

T =
κ

2π
(5.20)

And that, again, is the Hawking Temperature of a Black Hole for an observer at
infinity.

5.1.2 Schwarzschild Anti de Sitter Black Hole

In this section we will take our calculations of deriving the Hawking temperature
into the anti de-Sitter space. We first work out the meric of the four dimensional
Schwarzschild anti de Sitter black hole, namely the SadS4, then move onto define
surface gravity in this space and work out the event horizon, finally we make Rindler
approximation to derive the Hawking Temperature of SadS4.
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The SadS4 metric

We start by writing equation 3.5 in exponential form:

ds2 = e2νdt2 − e2λdr2 − r2dΩ2
2 (5.21)

The above is a general form of a static spherically symmetric metric. We can write
the above equation with no loss of generality as the exponential function will never
yield negative results for real inputs. Analogous to what we had in equation 3.5, in
equation 5.21 we have the following:

ν = ν(r)

λ = λ(r)

We will choose the co-ordinates such that (x0, x1, x2, x3) = (t, r, θ, ψ). It is evident
from 5.21 that the metric, gµν is of the following form [11]:

gµν =


e2ν 0 0 0
0 −e2ν 0 0
0 0 −r2 0
0 0 0 −r2sin2θ


Meaning that diag(g00, g11, g22, g33) = (e2ν ,−e2ν ,−r2,−r2sin2θ) And using the rela-
tion between co-variant and contravariant tensors, we can write:

g−1µν = gµν =


e−2ν 0 0 0

0 −e−2ν 0 0
0 0 −r−2 0
0 0 0 −r−2sin−2θ


i.e, diag(g00, g11, g22, g33) = (e−2ν ,−e−2ν ,−r−2,−r−2sin−2θ). To proceed, we recall
from general relativity that the affine connections, or Christoffel symbols, can be
written in terms of the metric tensor as the following:

Γµνρ =
1

2
gµλ(δνgρλ + δρgνλ − δλgνρ) (5.22)

=
1

2
gµλ(

δgρλ
δxν

+
δgνλ
δxρ
− δgνρ
δxλ

) (5.23)

If we now work out the chirstoffel symbols for the above metric, we end up with
nine non-zero terms that are independent algebraically:

Γ0
01 = ν ′

Γ2
12 = Γ3

13 =
1

r
Γ1

11 = λ′

Γ2
33 = − sin θ cos θ

Γ1
22 = −re−2λ

Γ3
23 = cot gθ

Γ1
33 = −re−2λ sin2 θ

Γ1
00 = ν ′e2(ν−λ)
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Where ν ′ = dν
dr

and λ′ = dλ
dr

. Next we work out the non vanishing Ricci Tensors from
the above mentioned Christoffel symbols. We know the formula for Ricci tensor
looks like:

Rµν = Rρ
σρν = Γρσν,ρ − Γρσρ,ν + ΓλσνΓ

ρ
λσ − ΓλσρΓ

ρ
λν (5.24)

Using the symmetry components of Ricci tensor, we obtain the following non-zero
components:

R00 = (ν ′′ − ν ′λ′ + ν ′2 +
2ν ′

r
)e2(ν−λ) (5.25)

R11 = −ν ′′ + 2λ′

r
−+ν ′2 + λ′ν ′ (5.26)

R22 = (rλ′ − rν ′ − 1)e−2λ + 1 (5.27)

R33 = sin2 θR22 (5.28)

The vacuum Einstein equations equipped with the cosmological constant looks like

Rµν −
1

2
gµνR− Λgµν = 0 (5.29)

Rµν = Λgµν (5.30)

Where in the second equation we have used contraction of indices. To proceed, we
recall from the metric that g00 = e2ν . Using this and 5.25 we can write 5.30 as:

(ν ′′ − λ′ν ′ + ν ′2 +
2ν ′

r
)e2(ν−λ) = −Λe2ν (5.31)

ν ′′ − λ′ν ′ + ν ′2 +
2ν ′

r
) = −Λe2λ (5.32)

Similarly if now use 5.26 in place of 5.25, we come up with the following equation:

−ν ′′ + 2λ′

r
−+ν ′2 + λ′ν ′ = Λe2ν (5.33)

We can now add 5.32 and 5.33 to get the following:

ν ′ + λ′ = 0 (5.34)

Which tells us that λ(r) = −ν(r) + constant. However, in the asymptotically flat
Schwarzschild geometry it is a requirement that λ,ν → 0 as r → 0. Which is only
possible if the constant in the above equation is zero [11]. Therefore from this we
can write

λ(r) = −ν(r) (5.35)

We now put 5.27 in 5.30 to get:

(rλ′ − rν ′ − 1)e−2λ + 1 = Λgµν (5.36)

(rλ′ − rν ′ − 1)e−2λ + 1 = Λr2 (5.37)

If we then use the fact that λ(r) = −ν(r) in the above equation we end up with the
following equation:

(1 + 2rν ′)e2ν − 1 = Λr2 (5.38)
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We can see that the right hand side of 5.38 can be written as d
dr

(re2ν), using this we
can now get the following equation:

d

dr
(re2ν) = 1− Λr2 (5.39)

(re2ν) = r − Λr3

3
+ constant (5.40)

e2ν = 1 +
constant

r
− Λr2

3
(5.41)

g00 = 1 +
constant

r
− Λr2

3
(5.42)

Where the singularity lies in r = 0. We know that for small r, the Newtonian
approximation tell us that the constant is 2M , where M is the gravitational mass,
putting this in the above equation, we get the following:

g00 = 1 +
2M

r
− Λr2

3
(5.43)

We now recall that the cosmological constant is defined by

Λ =
1

2
R (5.44)

Where R is the scalar curvature of AdS4, given by R = − 6
a2 . Putting R back in the

eqution we get:

Λ = − 3

a2
R (5.45)

We now put this definition of the cosmological constant in our calculation of the
metric and get the following:

g00 = 1− 2M

r
+
r2

a2
(5.46)

And this gives us the full metric of the Schwarzschild AdS4 as:

ds2
SAdS4

= (1− 2M

r
+
r2

a2
)dt2 − dr2

1− 2M
r

+ r2

a2

− r2dΩ2
2 (5.47)

Hawking Radiation of SAds Black Hole

We start with the time-radial part of the SAdS4 metric near the horizon and define
a parameter ρ such that |ρ| << rh, [ρ] = L1 and get:

r = rh +
αρ2

rh
(5.48)

Where we determine what α is later, and keep terms leading up to O(ρ2). If we now
take the metric 5.47 and can rewrite it as the following using the time-radial [11]:

ds2
SAdS4

|t/r =
2α

rhκ
((κρ)2dt2 − dρ2) (5.49)
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Where κ is the surface gravity of this black hole. We can then make the identification
that aR = κ. We now choose α such that α = rhκ

2
to get:

ds2
SAdS4

|t/r = ds2
R (5.50)

Where ds2
R is the Rindler Metric we saw in 3.20, with Rindler acceleration aR = κ.

Now the time-radial part of the co-ordinate becomes:

r = rh +
κ

2
ρ2 (5.51)

By comparing equations we can see that the Hawking Temperature at the horizon
of a SAdS4 black hole is:

TR =
aR
2π

(5.52)

However, we know that for a Schwarzschild Black Hole, the surface gravity is:

κ =
M

r2
h

+
rh
a2

(5.53)

Putting this back we get[11]:

THawk|SAdS4 =
κ

2π
=

1

2π
(
M

r2
h

+
rh
a2

) (5.54)

Which, finally, is the Hawking Temperature for a Schwarzschild Anti de Sitter black
hole.



Chapter 6

Conclusion

This paper is more of a review and analysis of work that has already been done
on the premise of black holes and Hawking Radiation. I have tried to build a self
sufficient work which ultimately derives the Hawking radiation for a Schwarzschild
black hole in four dimensional AdS space. Taking help from various textbooks,
articles and in desperate situations even youtube videos, I have tried my best to
make this a paper worth putting some time to read.
However, undoubtedly, there are areas where the explanation, the analysis or even
the math might not sit right or fit in well. I ask for the reader’s forgiveness in
advance for that. Being an undergraduate student, tackling a topic like information
paradox was not an easy feat for me. The field of black holes is one of extreme
debate and virulent interest in the world of physics right now, there is much more
work left to be done and more mysteries to uncover than lack thereof. In the future,
hopefully we finally unmask the entity known as black holes in all it’s glory.
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