
E�cient Spatio-temporal Feature Extraction for Human

Action Recognition

by

Dipon Kumar Ghosh
19366007

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

M.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
November 2021

© 2021. Brac University
All rights reserved.



Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. I have acknowledged all main sources of help.

Student’s Full Name & Signature:

Dipon Kumar Ghosh
19366007

i



Approval

The thesis titled “E�cient Spatio-temporal Feature Extraction for Human Action
Recognition” submitted by Dipon Kumar Ghosh (19366007) of Fall, 2021 has
been accepted as satisfactory in partial fulfillment of the requirement for the degree
of M.Sc. in Computer Science and Engineering on November 15, 2021.

Examining Committee:

Supervisor:
(Member and Program Coordinator)

Amitabha Chakrabarty, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

Examiner:
(External)

MD. Ekramul Hamid, PhD
Dean, Faculty of Engineering and Professor

Department of Computer Science and Engineering
University of Rajshahi

Examiner:
(Internal)

Matin S. Abdullah, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Lenovo
Stamp

Lenovo
Stamp



Examiner:
(Internal)

Muhammad Iqbal Hossain, PhD
Assistant Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Associate Professor and Chair

Department of Computer Science and Engineering
Brac University

iii



Ethics Statement

Hereby, I consciously assure that for the thesis paper ”E�cient Spatio-temporal
Feature Extraction for Human Action Recognition” the following is fulfilled:

1) This material is original work, which has not been previously published elsewhere.

2) The manuscript is not being considered for publication anywhere at this time.

3) The writers’ research and analysis are reflected in the publication wholly and
truthfully.

4) The paper appropriately acknowledges the e↵orts of co-authors and co-researchers.

5) The findings are discussed in the context of previous and ongoing research.

6) All sources used are correctly disclosed (correct citation). Text that has been
copied must be marked as such with quote marks and a suitable reference.

7) All of the authors were directly and actively involved in the extensive e↵ort that
led to the implementation of the paper, and they will be held accountable for its
content.

The norms of the Ethical Statement can have serious implications if they are broken.

I agree to the aforementioned declarations and certify that this submission adheres
to Solid State Ionics’ rules as described in the Authors’ Guide and the Ethical
Statement.

iv



Abstract

Human actuation recognition (HAR) has been performed using current deep learning

(DL) algorithms using a variety of input formats, including video footage, optical

flow, and even skeleton points, which may be acquired via depth sensors or pose

estimation technologies. Recent techniques, on the other hand, are computationally

costly and have a high memory footprint, making them unsuitable for use in real-

world environments. Furthermore, the design of existing techniques does not allow

for the full extraction of spatial and temporal characteristics of an action, and as

a result, information is lost throughout the recognition process. Here, we present a

novel framework for action recognition that extracts spatial and temporal charac-

teristics separately while reducing the amount of information lost by a substantial

amount. The multi-dimensional convolutional network (MDCN) and the redefined

spatio-temporal graph convolutional network (RSTCN) are two models developed

in accordance with this framework. In both cases, spatial and temporal information

are extracted irrespective of the precise spatio-temporal location. Our approach was

evaluated in two particular aspects of human action recognition, namely violence de-

tection and skeleton-based action recognition, in order to ensure that our models

were accurate and reliable. In spite of being cost e↵ective and having less parame-

ters, our proposed MDCN achieved 87.5% accuracy in the largest violence detection

benchmark dataset and RST-GCN obtained 92.2% accuracy on the skeleton dataset.

The performance of our models edge devices with limited resources, which are suit-

able for deploying at real-world environments is also also analyze and compare, such

as surveillance system and smart healthcare system. The proposed MDCN model

processes 80 frames per second on edge device such as, Nvidia Jetson Nano and

RST-GCN performs at a speed of 993 frames per second. Our proposed methods

o↵er a strong balance between accuracy, memory consumption, and processing time,

which make them suitable for deploying at real-world environments.

Keywords: human action recognition (HAR); surveillance systems; violence detec-

tion; skeleton-based human action recognition; convolutional neural network (CNN);

graph convolutional networks (GCN); feature fusion
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Chapter 1

Introduction

Computers have become an essential technology in our life because of being able to

solve complex problems. They can also perform repetitive and data-intensive com-

putational tasks with better accuracy and speed. In recent years, they have become

capable of performing complex tasks that require intelligence, such as high-level

visual understanding of scenes, recognizing motion and actions, natural language

processing, and operating self-driving cars. The thesis focuses on one of the resource-

intensive computational applications that have been possible in recent years. The

problem of interest of this research is human action recognition, which is defined as

recognizing and identifying standard human actions from videos or still images [1].

In the first chapter, we explain the significance of the problem, establish our research

aim, specify the scope of our study, and summarize our contributions.

1.1 Introduction

In the fields of machine learning, deep learning and computer vision, human action

recognition (HAR), is a major research topic. The aim of HAR is to figure out what

sort of activity is being performed in the video automatically. Due of the several

obstacles involved with HAR, this is a very tough task. Occlusion, changes in human

shape and motion, complex backdrops, fixed or moving cameras, variable lighting

conditions, and perspective variations are among the problems. The severity of

these obstacles, on the other hand, may fluctuate according to the type of activity

being considered. The activities are divided into four groups in general, including

gestures, actions, interactions, and group activities. This category is mostly based

on the activity’ intricacy and length [2]. The di↵erent kinds of actions are illustrated
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in Figure 1.1.

Figure 1.1: Categorization of di↵erent level of actions.

• Gesture: A gesture can be defined as natural displacement of di↵erent compo-

nents of human body which conveys message. Gestures include hand waving,

head shaking, and facial emotions, to name a few. A gesture usually lasts for

a brief duration and is the simplest of the types described.

• Action: A one-person action is a sort of activity conducted by a single in-

dividual. In actuality, it’s a mash-up of several motions (atomic actions).

Swimming, kicking, walking, and jogging are some instances of activities.

• Interaction: It is a sort of action in which two actors participate. One of the

actors must be a human, while the other might be either an object or a human.

As a result, it might be a contact of two types, including human-human and

human-object. Fighting with other person, shaking hands, and embracing are

instances of human-human interactions, whereas a person using a computer,

an ATM booth, or stealing a phone is an example of a human-object contact.

• Group Activity: This activity can be considered as the most di�cult for

recognition. It can certainly be a mix of actions, gestures, and interactions.

This type of activity can generally contain more than two people as well as

one or more items. The examples of group activity include demonstration by

a group of individuals, a game between two teams, and a group gathering.

Due to its essential applicability in real-life settings, HAR has attracted a

lot of attention from academics all around the world in recent years. HAR has a

wide range of applications, which are stated below:

• Intelligent Video Surveillance: Classical surveillance systems utilize a

large number of cameras and require manual video content processing. In-

telligent video surveillance systems, on the other hand, are designed to mon-

itor individuals or groups of people and recognize their actions automatically

2



[3]. This involves detecting suspicious or illegal activity and immediately re-

porting it to the police. In this manner, security personnel’s burden may be

decreased, and warnings for security incidents can be sent out, which can assist

avoid hazardous situations.

• Human-Computer Interaction (HCI): It is desired to have instinctive in-

teractions between a human and a computer by recognizing human gestures in

addition to the traditional computer interfacing, such as mice and keyboards.

Controlling the display of slides by utilizing hand movement is an example of

this kind of interface [4].

• Human-Robot Interaction (HRI): Vision-based activity identification is

also useful in this situation. It’s critical for HRI to provide a robot the capacity

to detect human actions. As a result, robots may be used in industrial settings

as well as in the home as a personal helper. Humanoid robots that can detect

human emotions from a series of pictures are one of the applications of HRI

that may be observed in the home setting [5]. Furthermore, the actor (robot),

which wears a camera, may be engaged in a continuous action. This includes

not just real-time activity detection, but also activity recognition prior to

completion.

• Entertainment: Entertainment activities such as dancing and sports are rec-

ognized using human activity recognition systems. The modeling of a player’s

activity in a game has gotten a lot of interest in current years from the field

of sports because of its significant applications, such as adjusting to game

changes as they happen [6].

• Intelligent Driving: While driving a car, human activity recognition meth-

ods are also used to help drivers by giving various signals about the driver’s

state of mind while they operate the vehicle. As stated, drivers’ inattentiveness

is exacerbated when they are engaged in secondary activities such as answer-

ing telephone calls, receiving and sending text messages, consuming food and

beverages while behind the wheel.

1.2 Research Background

Among the broad spectrum of computer vision applications, HAR is one of the most

important research topics due to its various applications. Since the last decade, the

amount of visual data has increased exponentially because of di↵erent social media
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Figure 1.2: Examples of standard human actions.

platforms. As an example, 720,000 hours of new content per day are uploaded

on YouTube1. Moreover, almost all public places, i.e., schools, banks, hospitals,

shopping malls, and even our homes, are under observation of surveillance. As the

number of video content increases, the need to analyze those increases to ensure

that the contents are safe, relevant, and appropriate for everyone. Surveillance

footages are also needed to be monitored and analyzed to improve security. However,

it is arduous and expensive to monitor and detect action in real-time from video

data manually. This clips may include all kind of human actions as illustrated in

Figure 1.2. Moreover, it may take some time to inform the authority responsible for

taking action in case of an emergency. In contrast, an automated action recognition

system can do so almost immediately. Additionally, a contactless patient monitoring

system based on computer vision (CV) methods is capable of excavating di↵erent

symptoms for standard medical measures. As another context-aware application, a

real time patient monitoring system can employ human action recognition (HAR).

By employing HAR in smart healthcare environments, action recognition will be

more easy from visual data as well as di↵erent sensors data.

1https://www.oberlo.com/blog/youtube-statistics
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Figure 1.3: Typical feature extraction proceduress for HAR.

To work in a real-time environment, a HAR-based surveillance and pa-

tient monitoring system should be fast, e�cient, and accurate for applying in edge

devices, including Internet of Things (IoT) devices. Human actions can also be rec-

ognized from optical flow and skeleton points, which can be obtained from depth

sensors or pose estimation technology. In recognition of images I(h, w), we extract

features from two spatial dimensions, including height and width, represented by

h and w, respectively. The di↵erence typical feature extraction method and our

proposed method is illustrated in Figure 1.4 at a very high level. The spatial dimen-

sions provide information about the scene. Whereas, in video data I(t, h, w), which

is collected from RGB (red, green, blue) cameras, another dimension carries tem-

poral information, which indicates how h and w change over t, where, t represents

time. It is necessary to extract both spatial and temporal features to perform action

recognition from video contents. Figure 1.3 represents standard feature extraction

procedures for HAR. Actions can also be detected from the input of depth sensors

such as Microsoft Kinect or pose estimation technology called skeleton data, which

is 3D points of di↵erent parts of a human body [7]. Skeleton data is collection of 3D

points of di↵erent parts of a human body captured by motion cameras or extracted

by pose estimation technology which has many benefits in analysis of human action.

First, skeleton data can represent human dynamics in concise approach and is com-

putationally more e�cient than traditional RGB videos since skeleton data contains

lower dimension. Second, it is resilient to illumination issues, flickering clips, motion

blur and complex background [8].

Recently, deep learning (DL)-based approaches, such as convolutional neu-

ral network (CNN) [9], long short-term memory (LSTM) network [10], and gated

recurrent unit (GRU) [11], are justified to learn robust and interpretable features

from images, identify spatial information, and provide state-of-the-art results on im-

age classification, segmentation, and other computer vision tasks [12]–[14]. Graph
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convolutional networks (GCN) [15] are proved to be useful in skeleton-based ac-

tion recognition [16], [17]. Following the success in image analysis, researchers have

applied DL-based methods in the video domain and achieved state-of-the-art re-

sults [18]–[20]. Success in HAR lies in how significant extracted spatial and temporal

features are. In most cases, modern methods rely on optical flow for temporal in-

formation along with RGB frames. However, in a real-time application, computing

optical flow becomes the bottleneck and makes the model unsuitable for applying in

such situations [20]. Moreover, the expensive computational complexity and a large

number of parameters make them ine�cient for any real-life deployment.

Spatial Feature 
Extractor

Temporal Feature 
Extractor

Spatial Feature 
Extractor

Temporal Feature 
Extractor

Merge Features

input input

(a) Standard feature extraction 
overview for HAR

(b) Proposed feature extraction 
overviewfor HAR

Figure 1.4: Typical vs. proposed feature extraction overview of HAR.

1.3 Scope of the Research

This research aims to provide an e�cient framework for human action recognition

that can be used in real-world scenarios such as surveillance systems and real-time

patient monitoring systems. We introduce a novel framework for HAR, which ex-

tracts relevant spatial and temporal information independently, merges them, and

detects action. We apply our framework in two specific categories of HAR, includ-

ing violence detection and skeleton-based action recognition. This framework can

have an ample amount of benefits if it is applied in a smart environment. We de-

velop multi-dimensional convolutional network (MDCN), which uses 1D, 2D, and

3D convolutional layers following the framework, and relies solely on RGB frames

for features extraction and used for violence detection, as shown in Figure. For

skeleton-based action recognition, redefined spatio-temporal graph convolutional

network (RST-GCN) is introduced, which uses spatial and temporal adaptive graph

convolution operation [17] to extract significant features from skeleton joint data.
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Additionally, RST-GCN is shown to be applicable in smart healthcare system for pa-

tient real-time monitoring. Both of the proposed models use a combination of spatial

and temporal convolutional layers to filter out spatial and temporal features where

they are extracted independently from the same spatio-temporal position and reduce

the loss of information. Extensive experiments are performed on violence detection

benchmark datasets, namely RWF-2000 [21], Hockey-fight [22], Movies-fight [23]

datasets and skeleton-based action recognition dataset, namely NTU-RGBD [24]

dataset. Our models achieve state-of-the-art results despite being lightweight and

having low latency in both categories. We also show performance measurement

of our models on edge devices, such as Nvidia Jetson Nano. Low computational

complexity and reduced parameter size, and fast processing speed make our models

applicable for dynamic detection and deployment in complex real-world scenarios.

1.4 Overview of Contributions

This thesis introduces a number of contributions to di↵erent aspects of human action

recognition. However, our work focuses on violent detection from video data and

standard action recognition from skeleton data.

• A comprehensive review and literature study of human action recognition,

violence detection, and skeleton-based action recognition.

• In this work, we explore the importance of coordination between spatial and

temporal features in HAR and proposed a framework for utilizing the features.

Previous methods focused on deep networks and sequential design of temporal

and spatial layers, thus neglecting the e�cient usage of RGB frames and joint-

level features for action recognition.

• We propose MDCN, a novel architecture for violence detection, which takes

only raw RGB frames as input. This model extracts temporal and spatial

features independently of each other whereas, current models do that in a

sequential fashion, which may not be suitable to exploit the features fully.

• Moreover, we propose RST-GCN, a novel architecture to independently ex-

tract spatial and temporal features by adaptive GCN. Our model exploits

the coordination between spatial and temporal features with only joint-level

features.

• Finally, we provide a strong baseline for HAR, especially violence detection,

skeleton-based action recognition with the proposed framework. Through ex-

7



tensive experimentation and analysis, we demonstrate that our models achieve

competitive accuracy with the state-of-the-art models.

1.5 Organization of Thesis

This thesis report is structured into five chapters. Chapter 2 provides the related

work and comprehensive study of the literatures related to human action recognition,

violence detection and skeleton-based action recognition. The methodology and

details of our models are described over two chapters. In chapter 3, we discuss

the architecture of MDCN in detail, which is used for violence detection. Chapter

4 represents the detailed architecture of skeleton-based action recognition model

RST-GCN. Details of our experimental setup are presented in chapter 5. Then, we

show the results and analysis of our experiments in chapter 6. Finally, we express

our conclusion about the study and future research scope in chapter 7.
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Chapter 2

Literature Review and

Background Study

In this chapter, study of relevant methods and literature for HAR, violence detection,

and skeleton-based action recognition are presented. We study methods that utilize

DL as well as traditional methods for each of the tasks.

2.1 Human Action Recognition

Human Action Recognition (HAR) is a powerful tool that is used in a wide spectrum

of real-world applications. With sensors and/or video data, it seeks to identify

the actions of a person or a group of people while also taking into consideration

the environments in which these activities occur. The development of sensor and

visual technologies has resulted in the widespread usage of HAR-based systems in

a broad variety of real-world applications. In particular, the proliferation of small-

size sensors has allowed smart gadgets to detect and respond to human actions in

a context-aware way [25]. Visual sensor-based, non-visual sensor-based, and multi-

modal methods are classified into three groups depending on the methodology used

in their development and the procedure used in data gathering. The most significant

distinction between visual and other kinds of sensors is the manner in which the

data is perceived. In contrast to visual sensors, which give data in the form of

two dimensional (2D) or three dimensional (3D) pictures or movies, other sensors

deliver data in the form of a one dimensional signal. Recently, wearable devices are

equipped with a large number of tiny non-ocular sensors, which allows the creation

of ubiquitous applications to be implemented on them. Many individuals keep their
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wearable gadgets, such as smartwatches and fitness wristbands, on them at all times

throughout the day. The fact that these devices have computational power and

communication capabilities, as well as the fact that they are inexpensive, makes

them ideal for HAR. Currently, many sensor-based human activity identification

methods are suggested for use in everyday health monitoring, rehabilitative training,

and disease prevention [26]. However, the vision-based method is one of the most

common HAR approaches in the computer vision and deep learning research field,

and it is also one of the most e↵ective. This technique has been used in a broad

variety of application areas, with the number of applications increasing dramatically

over the last decade in particular.

Human-computer interface (HCI), intelligent surveillance system, smart

healthcare, human-machine interaction, amusement and refreshment, and video

search by content are just a few of the main applications of vision-based HAR

that have been developed. In human-computer interaction (HCI), activity recogni-

tion systems monitor the task performed by the user and assist him or her through

the process by giving feedback. In video surveillance, an activity recognition sys-

tem may automatically identify suspicious behavior and report it to the authorities,

allowing them to take quick action if necessary. Similarly, in the entertainment in-

dustry, similar algorithms may distinguish between the actions of various players in

a game. During the past decade, the multi-modal HAR method has also gained in

popularity. A combination of visual and non-visual sensors are utilized to detect

and identify human activity in this method. This technique is particularly helpful

in circumstances when a single kind of sensor is insu�cient to satisfy the needs

of the user. For example, a visual sensor, such as a camera, may capture images

of the subject and the area in which the activity is taking place, but it may not

be su�cient to evaluate sensitive information such as temperature, heart rate, and

humidity in the surrounding environment [26]. A multi-modal strategy is used in

order to overcome these constraints. Non-ocular sensors, such as wearable sensors

in particular, have a number of drawbacks, which are discussed below. A large

number of wearable sensors need that they be worn and operated constantly, which

may be challenging to apply in real-world application situations owing to a vari-

ety of practical and technological considerations. The acceptance and willingness

to utilize wearable sensors are the most significant practical problems, whereas the

battery life, simplicity of use, size, and e�cacy of the sensor are the most significant

technological issues. Additionally, in certain application domains, such as intelligent

surveillance system, where constant monitoring of people is needed for suspicious

behaviors, a non-ocular sensor-based method may not be successful because of the

need for continuous monitoring of people. Consequently, the most e↵ective option is

10



to use a vision-based human activity identification method, which can be used to a

wide range of applications across a variety of disciplines. This is the justification for

the proposed study, which will be focused on the identification of human activities

based on eyesight. Gestures, actions, interactions, and group activities are all ex-

amples of vision-based activities that are classified into these four groups depending

on their complexity and length [27], as shown in Figure 1.1.

Based on a thorough review of the literature, it has been determined that

vision-based methods for human activity identification may be classified into two

main groups.

1. The conventional hand-crafted features-based methods, which use feature de-

tectors and descriptors manually designed by experts, have been around for a

long time and is still in use today.

2. The learning-based representation methods, which are newly developed ap-

proaches that have the capacity of learning significant features from raw data.

Thus, the requirement for hand-made feature descriptors and detectors, which

are needed for action representation, may be eliminated.

2.1.1 Hand-crafted Features-Based Methods

Figure 2.1: Kicking action using hand-crafted feature-based method.

The handmade representational method mostly follows the HAR bottom-

up technique. Figure 2.1 illustrates overall pipeline of handcrafted features based

HAR. Earlier methods of HAR relied on manually extracted features from motion se-

quences. In [28], two new methods for action representation were introduced, which

are motion history image (MHI) and motion energy image (MEI). 3D histogram

of gradients (3DHOG) was proposed to represent human action by extending his-

togram of gradients (HOG) features in the spatial and temporal dimensions [29].

The core idea behind the HOG descriptor is that local object and the shape of that

object in an image was represented by the distribution of intensity gradients. The

image was partitioned into tiny linked sections called cells, and a histogram of gra-

dient directions is created for each pixel inside each cell. The concatenation of these
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histograms creates the descriptors. HOG was commonly used feature descriptor for

extracting image features. It was commonly used for object detection in computer

vision applications. The HOG descriptor concentrated on the object’s structure or

the form. With edge features, whether a pixel indicates an edge was simply deter-

mined. HOG was also capable of providing edge direction. This was accomplished

by filtering out the gradient and orientation of the edges (or, alternatively, their

magnitude and direction). The orientations are determined for localized segments.

This implies that the whole picture is divided into smaller sections, and the gradi-

ents and orientation of each region are determined. Lastly, HOG created a distinct

Figure 2.2: Example for HOG features.

histogram for each of these sections. Histograms are constructed utilizing the pixel’s

gradients and orientations, hence the term ’Histogram of Oriented Gradients’.

The authors in [30] represented human actions the similarity of a clip in

the space-time dimensions, which is similar to spacio-temporal interest point (STIP)

models. In STIP-based methods, a change of movement in a significant region was

extracted to represent action from videos. In [31], 3D-Harris spatio-temporal fea-

tures were extracted by STIP-method. To detect spatio-temporal events, the authors

built on the concept of the interest point operators to detect local information in

space-time, where the pixel values had noteworthy local fluctuation in both space

and time. They estimated spatio-temporal range of the identified events by maxi-
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Figure 2.3: Examples of space-time interest point.

mizing a normalized spatio-temporal Laplacian operator over spatial and temporal

scales. To exhibit the identified events, spatio-temporal, local, and scale-invariant

N-jets were computed and every events concerning their jet descriptors were clas-

sified. The work in [32] combined 3D scale-invariant feature transform detection

method and 3D-Harris spatio-temporal features to filter significant region of a clip,

from which human actions was represented by visual word histograms.

2.1.2 DL-based Methods

Figure 2.4: Kicking action using learning-based methods.

On the other hand, learning-based representation methods, such as deep

learning (DL), more precisely, make use of computational and statistical models with

many processing and computing layers that are based on representational learning

at several levels of abstraction, and this is accomplished via the use of deep learn-

13



ing. These approaches allow the computer to take the data in its native format and

automatically change everything into appropriate representation for categorization,

which is what is referred to as machine learning. This is referred to as trainable fea-

ture extractors in the industry. For example, if a picture is composed of sequence of

pixels, the very first layer changes it into edges at a certain position and orientation,

and the second layer transforms it back into pixels. Using the specific arrangement

of edges of a picture as recognition criteria, the second layer displays it as a assemble

of motifs. In certain cases, the third layer may merge the motifs into components,

which would then be transformed into recognized things in the subsequent levels.

Using a general purpose learning technique, these layers learn from the raw data

without the requirement for the layers to be constructed manually by the subject

matter experts. Figure 2.4 illustrates a overall pipeline for a learning-based feature

extraction methods for HAR.

Learning-based methods includes di↵erent DL-based methods, which gained

much interest due to theirs improved accuracy and better performance than tradi-

tional methods. CNNs [9], 3DCNN, LSTM [10] were widely used architecture for

the purpose of video understanding [20], [33], [34]. In two-stream CNN [35], two

types of input were passed into convolutional layers and merged together at the end

for classification. One stream of the network process optical flow to extract tem-

poral information, which was calculated from images sequences. The other stream

extracted spatial information from an image. On the other hand, the authors in [34]

used 3D convolutional layer to extract spatial and temporal information from the

video clips. GCN [15] gained much popularity in skeleton-based action recognition.

Convolutional Neural Network

In DL, a Convolutional Neural Network (CNN) is an algorithm that takes in an

input picture, assigns significance (trainable weights and biases) to distinct items

in the image, and is capable of distinguishing one object from another. When

compared to other classification algorithms, the amount of pre-processing needed

by a CNN is much less. ConvNets are capable of learning these properties, while

primitive techniques need manual engineering. With su�cient training, ConvNets

can acquire these qualities. When it comes to architecture, a CNN is similar to

the connection network that exists between neurons in the human brain, and it was

inspired by how neurons are organized in the visual cortex. Every single neuron

in the human visual system responds to stimuli exclusively in a certain area of the

visual field, which is known as the Receptive Field. A group of similar fields may

be used to fill the whole visual region by overlapping them.
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Figure 2.5: Example of a convolutional neural network.

Through the use of appropriate filters, a CNN is capable of accurately

apprehending the spatial and temporal relationships found in a picture. Because

of the decrease in the count of parameters engaged and the reusability of weights,

the architecture performs much better when fitting the picture dataset. To put

it another way, the network can be taught to recognize the level of complexity

in a picture more e↵ectively. Figure 2.5 depicts a high-level overview of CNN’s

operations.

This operation’s goal is to extract from the input picture the high-level

characteristics such as edges that are present at the time of processing. CNN does

not have to be confined to a single Convolutional Layer in order to be e↵ective. As is

customary, the first ConvLayer is responsible for collecting the low-level character-

istics of the image such as edges, color, gradient direction, and so forth. With more

layers, the architecture adjusts to high-level characteristics as well, resulting in a

network that has a comprehensive knowledge of the pictures in the dataset, similar

to how we would comprehend them ourselves. There are two kinds of outcomes that

may be obtained from the procedure. Two di↵erent approaches are used: one in

which the dimensionality of the convolved feature is decreased relative to the input,

and the other in which the dimensionality is either raised or stays the same. The for-

mer is accomplished via the use of valid padding, whereas the latter is accomplished

through the use of same padding.

Long Short-term Memory Network

An LSTM has a control flow that is comparable to that of a recurrent neural network

(RNN). When data is processed, it passes on information as it moves ahead in

time. The operations performed inside the LSTM’s cells are what distinguishes

them. These procedures are used to enable the LSTM to either retain or discard
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information stored in its memory. In Figure 2.6, the architecture of the LSTM is

shown in detail.

The cell state and the many gates that make up an LSTM are the fun-

damental concepts. The cell state serves as a transport highway, allowing relative

information to be sent all the way down the sequencing chain. It may be thought

of as the “memory” of the network, if you will. The cell state, in principle, has the

ability to carry important information throughout the course of the sequence’s pro-

cessing. As a result, even knowledge from earlier time steps may find its way to later

time steps, decreasing the impact of short-term memory on the brain. Gates allow

information to be added to or deleted from the cell state as it travels through the

cell state on its trip. The gates are various neural networks that determine whether

information about the cell state is permitted to pass through. During training, the

gates may learn which information is important to retain and which information is

not. The gates are made up of sigmoid functions, as the name implies.

• Forget Gate: The first of them is referred to as the forget gate. This gate

determines whether or not information should be discarded or retained. The

sigmoid function is used to transfer information from the previous concealed

state as well as information from current input state through the loop. The

values are in the range of 0 and 1. The closer the number is to zero, the closer

it is to one, and the closer it is to zero, the closer it is to one.

Figure 2.6: Illustration of long short-term memory network.

• Input Gate: The input gate is used to make changes to the state of the cell.

First, the prior hidden state and the current input are given into a sigmoid

function, which then returns the previous hidden state. Which values will

be changed by converting them to fall between 0 and 1 is determined by this

parameter. 0 indicates that something is not significant, while 1 indicates that
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something is important. It is also given into the tanh function, which squishes

values between -1 and 1 to aid in the regulation of the network, which also

applies to the current input and hidden state. Then we multiply the tanh

output by the sigmoid output to get the final result. The sigmoid output will

determine which information from the tanh output is essential to retain and

which information is not.

• Output Gate: The last one is referred to as the output gate. The output

gate determines what the concealed state should be for the next time it is

activated. This state is used to store information about past inputs and to

make predictions using that knowledge. Prior to passing any input into the

sigmoid function, the prior concealed state and the current input are sent

through. Afterwards, we call the tanh function, passing it the newly changed

cell state. The result of the tanh function is multiplied with the output of the

sigmoid function to determine what information the concealed state should

include. The hidden state is represented by the output. The new cell state,

as well as the new hidden, are then passed over to the next time step in the

simulation.

Graph Convolutional Network

Figure 2.7: Visualization of Graph convolutional network.

GCNs execute actions that are identical to those performed by GCNs,

except that the model learns the features by examining adjacent nodes. There

is a significant di↵erence between CNNs and GNNs in that CNNs are specifically
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designed to perform operations on regular structured data also known as Euclidean

data, whereas GNNs are considered specialized version of CNNs in which the number

of nodes connections varies and the nodes are not in any particular order, and CNNs

are used to train GNNs (irregular structured or non-Euclidean data).

Spatial Graph Convolutional Networks and Spectral Graph Convolutional

Networks are the two main methods used in GCNs, and they may be divided into

two categories. Figure 2.7 depicts a high-level overview of spectral GCN (spectral

GCN). The initial concept of Spectral GCN was inspired by the transmission of

signals or waves in nature. In Spectral GCN, information propagates in the same

way as signal transmission does along the nodes. When it comes to implementing

this technique of information transmission, spectral GCNs make advantage of the

Eigen-decomposition of the graph Laplacian matrix. To put it another way, the

Eigen-decomposition assists us in understanding the graph structure and, as a re-

sult, in categorizing the nodes of the graphs. Comparable to the fundamental idea

of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA),

where Eigen-decomposition is used to decrease dimensionality and conduct cluster-

ing, this is similar to the fundamental concept of Principal Component Analysis

(PCA).

In this method, in addition to the node characteristics, an adjacency matrix

(A) is utilized in the forward propagation in order to improve performance. When

solving the forward propagation problem, the matrix A represents the edges, which

are connections between the nodes. In the forward pass equation, the A variable is

included to permit the model to learn representations of features from graph data

based on the connection of nodes. A message passing network, in which information

is transmitted through the adjacent nodes within the graph, may be thought of as

a first-order approximation to the Spectral Graph Convolution resulted from this

process.

2.2 Violence Detection

Violence is defined as suspicious occurrences or actions that occur in everyday

life. The computer vision-based recognition of such actions in surveillance films

has emerged as a hot subject in the area of hazard assessment and response. As

crime rates continue to rise at an alarming pace, several researchers have suggested

various strategies and methods for detecting violent or anomalous occurrences in

order to increase the detection accuracy. Di↵erent methods for detecting violence
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are discussed, including some that have been suggested in recent years. In this part,

we provide a review of the literature on violence detection, which includes both

conventional and DL-based techniques of detection.

2.2.1 Traditional Methods

Violence was detected earlier by traditional methods using hand-crafted feature ex-

traction algorithms and using classical machine learning algorithms such as k-nearest

neighbors (KNN), support vector machines (SVM), Adaboost as a classifier, for ex-

ample, Harris corner detector [36], improved dense trajectory (iDT) [37], motion

scale-invariant feature transform (MoSIFT) [38], space-time interest points (STIP)

[39].

Figure 2.8: Visualization of iDT features.

Improved Dense Trajectory (iDT)

Improved dense trajectory features iDT [37] remarkably improved the action recog-

nition. To provide more discriminatory local features for action identification, it was
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recommended that trajectory weights in less discriminative areas be given a mod-

erate amount of weight. The iDT features is visualised in Figure 2.8 This method,

along with the fisher encoding method, extracted significant spatio-temporal fea-

tures from violent videos [40].

Violent flow (ViF) descriptors

Hassner et al. in [41] used the optical flow magnitude series to detect violence in

videos. The features were called violent flow (ViF) descriptors. ViF descriptors

were generated by measuring the optical flow between successive pairs of frames.

While flow vectors stored important temporal information, their orders of magni-

tude were arbitrary: they relied on frame resolution, the mobility of objects in

various spatio-temporal locations, and so on. By comparing magnitudes, informa-

tive measurements of the importance of detected displacement magnitudes in each

frame in comparison to the preceding frame were derived. The ViF descriptors are

classified in two unique ways:

1. As universal descriptors, extracted for the whole of a frame sequence.

2. As proxies for each sequence in order to generate a Bag-of-Features represen-

tation.

Later, their method was improved by introducing the orientation in the violent flow

(ViF) descriptors [42].

Figure 2.9: Framework of the violence detection approach using MoSIFT [38]
.

MoSIFT Descriptors

The authors in [38] developed a more accurate representation of violent footage by

using the powerful and sparse coding approach MoSIFT descriptor. To begin, they

collected elements of MoSIFT from video recordings. Second, they used a feature
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selection approach based on Kernel Density Estimation (KDE) to extract the most

relevant features from the raw MoSIFT descriptor, which is 256-dimensional. Sparse

coding was then used to convert the compressed low-level descriptors to compact

mid-level features. To produce an e↵ective feature representation of the entire video,

the max pooling procedure was applied to the query video’s entire sparse code set.

Finally, an SVM classifier was learned utilizing these feature vectors at the video

level. The framework of this approach is illustrated in Figure 2.9.

(a) First step: videos are split into
shots [39].

(b) Second step: the visual feature
vectors are computed for each video
shot [39].

(c) Third step: a clustering algo-
rithm is applied to the feature space
in order to discover the latent pat-
terns [39].

(d) Fourth step: visual histograms
are assembled to represent the video
elements [39].

Figure 2.10: Using STIP descriptors for violence detection.
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STIP Descriptors

Souza et al. in [39] detected violence from videos in four steps. The primary step

includes segmentation of the set of videos into clips, which were used a input to

STIP. Next, the video shots were submitted for the feature extraction process by

utilizing the spatio-temporal descriptor. These characteristics were grouped based

on their degree of similarity. As a result, groups were established, each with its own

d-dimensional representation. As a consequence, a visual codebook was made up

of all possible feature vectors. Additionally, this codebook served as a reference for

computing the visual word histograms of fresh data. This created a new domain in

which each visual word relates to a dimension, with histograms of visual words serv-

ing as the space’s components. From this visual codebook the shots were classified

with the help of a classifier.

2.2.2 Deep Learning (DL)-based Methods

Di↵erent DL-based approaches were also used in violence detection [43]–[45]. Dif-

ferent types of input such as RGB frames, optical flow were used to extract features

for violence detection. These features were passed in modern DL- architectires,

including CNN, LSTM, ConvLSTM.

Using CNN for Violence Detection

Figure 2.11: Overall pipeline of FightNet for violence detection [43]

The authors in [43] proposed FightNet, which used features from multiple

streams, such as RGB frames, optical flow, and acceleration images, and fused them
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for violence detection. Besides the basic characteristics of action, they employed

the acceleration feature to make FightNet suitable for fight detection. First, input

clips were divided into randomly extracted equal-length segments and a sequence

of short snippets. Next, the snippets are passed into three di↵erent networks for

three di↵erent types of input, including RGB frames, optical flow, and acceleration

images. Figure 2.11 represents the overall procedure of FightNet.

In [21], the authors proposed Flow-Gate network, which used fusion of

RGB frames and optical flow for violence detection.

Using CNN and LSTM for Violence Detection

Dong et al. [44] proposed a three-stream ConvNets framework, as shown in Figure 1,

which integrates spatial, temporal and dynamic features to detect person-to-person

violence. To capture the dynamic and intense information that is critical for de-

tecting violence, a novel feature-based on the acceleration of actions is introduced.

The suggested multi-stream ConvNets were then created by combining spatial, tem-

poral, and dynamic streams. Three input streams were passed through thee CNNs

and later used as input to the LSTM networks. At the last stage, a score-level

combination method is utilized for ultimate detection.

Figure 2.12: Block diagram of the violence detection model using ConvLSTM [45].

Using Convolutional LSTM for Violence Detection

The authors in [46] proposed the convolutional LSTM (ConvLSTM) by integrating

convolutional structures to the fully connected LSTM (FC-LSTM) for both the

input-to-state and state-to-state transitions. Sudhakaran et al. [45] proposed a new

method, which used convolutional LSTM for violence detection. In order to extract
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frame level characteristics from a movie, a convolutional neural network was used.

The frame level characteristics were then combined using a convolutional gate-based

variation of long short term memory, which was a kind of long short term memory

that employs convolutional gates. The convolutional neural network, in conjunction

with the convolutional long short term memory, was capable of recording localized

spatio-temporal information, which allowed for the analysis of local motion that was

occurring in a video frame by frame. Figure 2.12 illustrates the overall architecture

of ConvLSTM from [45] for violence detection.

2.3 Skeleton-based Human Action Recognition

As an interconnected system of rigid segments linked together by joints, the human

body may be thought of as evolving in space over time, and human motion can

be seen as a continuous development of the spatial arrangement of these inflexible

segments. As a result, if we can consistently extract and monitor the human skeleton,

action recognition may be done by categorizing the temporal evolution of the human

skeleton, which is a technique known as temporal evolution analysis. However,

accurately recovering the human skeleton from monocular RGB films is a very tough

job to do. Using advanced motion capture technologies, it is possible to acquire 3D

positions of landmarks that have been put on the human body. The downside of such

systems is that they are very costly and need the consumer to wear a motion capture

outfit with markers, which may interfere with natural motions. Due to the recent

introduction of low-cost depth sensors, the extraction of the skeletal system has

become much less di�cult. It is possible to reconstruct 3D human skeletons from this

data because these sensors give 3D depth data of the environment that is resistant

to changes in light and provides more relevant information. The information may

be utilized to identify the activities of humans.

2.3.1 Traditional Methods

Vemulapalli et al. [47] developed a novel skeleton representation that explicitly

reflects the three-dimensional geometric connections between distinct body com-

ponents via the use of rotations and translations in three-dimensional space. Due

to the fact that 3D rigid body movements were members of the special Euclidean

group, the suggested skeletal representation was a curved manifold in the Lie group.

Human activities were depicted as curves in this Lie group using the suggested

representation.
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2.3.2 RNN-based Methods

Figure 2.13: Two-stream RNN model for skeleton based action recognition. [48].

RNNs such as LSTM [10] and GRU [11] had been proved to be useful

to model sequential data. They were used in skeleton-based action recognition by

modeling skeleton data in sequence of vectors [49]–[51]. Recently, Hong et al. in

[48] proposed a two-stream RNN architecture, which modeled temporal dynamics as

well as spatial configurations for skeleton data. They used both joint data and bone

data simultaneously to improve the accuracy. Figure 2.13 illustrated the two-stream

network. They investigated two distinct temporal stream structures: stacked RNN

and hierarchical RNN. A hierarchical RNN was constructed in accordance with the

kinematics of the human body. Additionally, they presented two e�cient approaches

for modeling the spatial structure via the transformation of the spatial graph into

a series of joints. Chunyu et al. in [52] combined a CNN with an attention RNN

which helped to promote the complex spatio-temporal modeling, as illustrated in

Figure 2.14. The network was called Memory Attention Network (MAN), which had

two modules, including Temporal Attention Recalibration Module (TARM) and a

Spatio-Temporal Convolution Module (STCM). TARM was used in a residual learn-

ing module that makes use of an unique attention learning network to recalibrate the

temporal attention of frames in a skeletal sequence. The STCM was used to model

the attention regulated skeleton joint sequences as pictures and uses CNNs to fur-

ther describe the spatio-temporal information contained in the skeleton data. These

two modules (TARM and STCM) combine to provide a single network architecture

capable of being educated end-to-end.
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Figure 2.14: Memory attention network for skeleton-based action recognition [52].

2.3.3 CNN-based Methods

CNNs generally take 2D or 3D structured data as their input. So, skeleton data

had been manually transformed into pseudo-images and passed into CNN-based

models [53]–[55]. However, due to the representational constraint, in CNN-based

model, only neighboring joints were considered for convolution operations, thus it

was unable to represent correlations with joints other than neighbors. The authors

in [54] proposed to convert a sequence of skeleton into a new representation, as

illustrated in 2.15, to enables global long-term temporal modeling of the skeletal

sequence by learning hierarchical characteristics from frame images using CNNs.

They introduced a novel method to extract all the information from the frames

in the developed clips. This allow the model to learn the spatio-temporal structure

and information of the skeleton data. Their network improves the accuracy by using

inherent correlations between the frames of the produced clips.

Li et al. [55] introduced a unique framework for action categorization and

detection that is based on CNNs. For label prediction, both raw skeleton coordinates

and skeleton motion are supplied directly into CNN. A unique skeleton transformer

module is intended to automatically reorganize and choose critical skeleton joints.

Their network consists of seven convolutional layers.
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Figure 2.15: Clip Generation of a skeleton sequence [54].

2.3.4 GCN-based Methods

GCN performed convolution operation on graphs and gained a lot of interests re-

cently [56], [57]. GCN-based methods gained popularity in skeleton-based action

recognition, since skeleton data can be easily represented as graphs and can be

passed into GCN. Sijie et al. in [16] proposed a novel model called the spatial tem-

poral GCN (ST-GCN), which formed a spatio-temporal graph where the joints were

considered as vertices and edges are constructed with natural connections in both

human body structures and time. Lei et al. in [17] presented the two stream adap-

tive GCN (2s-AGCN), which uses adaptive graph convolution operations on both

joint and bone data to recognize actions.

2.4 Vision-based Methods for Healthcare Services

There are noticeable amount of work that incorporate CV to develop smart and in-

telligent healthcare monitoring systems for patients and elderly people. The authors

in [58] used Minkowski and cosine distances between the joints of skeleton-data to

extract spatio-temporal features of human action. They applied their method for

developing elderly monitoring systems. Yin et al. in [59] proposed a architecture
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for medical condition detection based on skeleton-data. They proposed optimized

view adaptive LSTM network with additional subnetworks to detect such actions.

CNNs had been also used to develop vision-based patient monitoring system [60].

Additionly, Gao et al. in [61] developed medical condition detection method by

combining using 3D CNNs and LSTM.
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Chapter 3

Multi-dimensional Convolutional

Network

Our framework is applied to develop a novel architecture for violence detection. Vio-

lence detection can be considered as a type of HAR, where only violence is detected.

For this application, we develop multi-dimensional convolutional network (MDCN).

In this chapter, the architecture of MDCN is discussed in detail. Figure 3.1 shows

Raw Clip Preprocessed 
frames

3D conv Maxpool
3D

Prediction

1D 
conv

2D 
conv

3D 
conv

Fuse and 
Reduce

MDCN Blocks

Figure 3.1: End-to-end pipeline of MDCN.

the overall pipeline of our model. Raw RGB frames captured from cameras are

used as input to the model. First, the input is passed through a 3D convolutional

layer, which performs a 3D convolution operation followed by a maxpool layer and

reduces the size of spatial dimension to prepare for the multi-dimensional convo-

lutional (MDC) blocks. We develop two versions of MDC blocks in this research.

Figure 3.2 and Figure 3.3 illustrates both MDCN architectures. Each block in the

model extracts spatial and temporal features independently from each other, merges

them, and sends them to the next layer.
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Figure 3.2: Architecture of MDCN (v1).

3.1 Multi-dimensional Convolutional Block

The input to each of the blocks is of shape C ⇥ D ⇥ H ⇥ W , where C is the

number of channels, D represents the frame numbers, H and W denotes height

and width respectively. The values in H ⇥ W contains spatial information of a

particular frame while D frames contain temporal information for the corresponding

pixel. As Figure 3.2 and 3.3 illustrates, each block of our proposed model contains

three main convolutional layers for extracting spatial and temporal features. It

is capable of extracting local 1D subsequences and identifying local patterns from

input sequences.

• 1D convolutional layer: The first module is the 1D convolutional layer,
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Figure 3.3: Architecture of MDCN (v2).

which is generally used on sequence datasets. It is capable of extracting local

one-dimensional (1D) subsequences and identifying local patterns from input

sequences within the window of convolution. In our case, it extracts temporal

features from the input. The kernel size of this convolutional layer is kt⇥1⇥1.

It performs convolution operations on a particular pixel over kt frames and

extracts only temporal information of the corresponding pixel.

• 2D convolutional layer: The second module, the 2D convolutional layer,

extracts spatial features from the input by performing convolution operations

on a single frame and extracts only spatial information from the particular

frame. The kernel size of this convolutional layer is 1⇥ ks ⇥ ks. ks represents

kernel size for the spatial dimensions.

• 3D convolutional layer: 3D convolutional layer is the third module. 3D
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convolutions apply a three-dimensional filter to the dataset, which travels in

three directions (x, y, z) in order to calculate the low-level feature representa-

tions. Their output form is a volume space with three dimensions, such as a

cube or cuboid. They aid in the detection of events in videos, where it extracts

both spatial and temporal features from the data.

We set the kernel size of this convolutional layer is kt ⇥ ks ⇥ ks, which per-

forms convolution operations over kt frames and extracts temporal and spatial

features together.

Each of these three modules is followed by a batch normalization (BN)

layer. In our model, we assume kt = ks = 3. The key di↵erence the versions of

MDC blocks is how these convolutional layers are structured. In the first version

(MDC v1), as illustrated in Figure 3.2, there are two branches in a single block.

The first branch comprises only a 3D convolutional layer, which extracts both spa-

tial and temporal features. The second branch contains a 2D convolutional layer

followed by 1D convolutional layer. 2D convolutional layer filters spatial information

out, and 1D convolutional layer extracts temporal features. Each branch extracts

spatio-temporal features, which are concatenated channel wise to ensure significant

feature extraction. Whereas, in the second version (MDC v2), illustrated in Figure

3.3, each convolutional layer performs and extracts features independently from the

same spatio-temporal position of the input and fuse them. Here, spatial, temporal

and spatio-temporal features are extracted and concatenated channel wise for better

accuracy. Both versions can extract all the information from the input, which re-

duces information loss and improves accuracy. Then, the fused features are passed

through a maxpooling layer and a 1 ⇥ 1 ⇥ 1 convolution layer which reduces the

number of channels for the next layer. This reduction module keeps our model size

small. Moreover, a concatenated skip connection [62], followed by a rectified linear

unit (ReLU) layer, is added to stabilize the model, which also helps to improve accu-

racy. Skip connection concatenates features from the previous layer to the current

layer, which allows more information to be obtained from the previous layer and

reduces loss of information. Concatenated skip connection also helps gradient to

propagate better and fixes vanishing gradient problem. To match the number of

input channels to output channels, we have used a convolutional layer of kernel size

1⇥ 1⇥ 1 and stride of size 1⇥ 2⇥ 2 for the skip connection.
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Figure 3.4: Layers of MDCN.

3.2 Multi-dimensional Convolutional Layers

As Figure 3.4 illustrates, our proposed network consists of four multi-dimensional

convolutional blocks and a 3D convolutional layer at the beginning. The first 3D

convolutional layer is of kernel size 5⇥ 7⇥ 7 and stride of size 1⇥ 2⇥ 2. This layer

is followed by a maxpool layer with stride value of 1⇥2⇥ 2. The convolution layers

and maxpool layer are used to reduce the size of spatial dimension. The output from

these layers is passed into the four blocks, where temporal and spatial information

are extracted. The number of channels of output from the convolution blocks are

8, 16, 32, 64, 128. A global average pooling (GAP) layer is used to combine and

reduce the extracted features, and finally, a fully connected (FC) later with softmax

function is used to detect violence.

Table 3.1 and 3.2 show the di↵erent parameters of each block in detail,

such as kernel size, stride size, and number of the output channels for both the

versions. In the tables, the shape of convolutional kernel is denoted in from T ⇥ S2

, where T kernel temporal dimension and S indicates spatial dimension. Stride is

represented in the same manner (temporal stride⇥ spatial stride2), and the output

size is expressed in the format of channel⇥ temporal length⇥ spatial dimension2.
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Layers MDCN (v1) Output Size
input layer 3⇥ 32⇥ 2242

conv1 conv: 5⇥ 72, stride: 1⇥ 22 8⇥ 32⇥ 1122

pool1 maxpool: 1⇥ 23, stride: 1⇥ 22 8⇥ 32⇥ 562

block1
conv layers conv: 3⇥ 32

conv: 1⇥ 32

conv: 3⇥ 12 16⇥ 32⇥ 282

merge and reduce
max pool: 1⇥ 32, stride: 1⇥ 22

conv: 1⇥ 12

block2
conv layers conv: 3⇥ 32

conv: 1⇥ 32

conv: 3⇥ 12 32⇥ 32⇥ 282

merge and reduce
max pool: 1⇥ 32, stride: 1⇥ 22

conv: 1⇥ 12

block3
conv layers conv: 3⇥ 32

conv: 1⇥ 32

conv: 3⇥ 12 64⇥ 32⇥ 142

merge and reduce
max pool: 1⇥ 32, stride: 1⇥ 22

conv: 1⇥ 12

block4
conv layers conv: 3⇥ 32

conv: 1⇥ 32

conv: 3⇥ 12 128⇥ 32⇥ 72

merge and reduce
max pool: 1⇥ 32, stride: 1⇥ 22

conv: 1⇥ 12

global average pooling and fully-connected layer #classes (2)

Table 3.1: Parameters of di↵erent layers of MDCN (v1).
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Layers MDCN (v2) Output Size
input layer 3⇥ 32⇥ 2242

conv1 conv: 5⇥ 72, stride: 1⇥ 22 8⇥ 32⇥ 1122

pool1 max pool: 1⇥ 32, stride: 1⇥ 22 8⇥ 32⇥ 562

mdcn1

conv layers
conv: 3⇥ 12

16⇥ 32⇥ 282
conv: 1⇥ 32

conv: 3⇥ 32

fuse and reduce
max pool: 1⇥ 32, stride: 1⇥ 22

conv: 1⇥ 12

mdcn2

conv layers
conv: 3⇥ 12

32⇥ 32⇥ 282
conv: 1⇥ 32

conv: 3⇥ 32

fuse and reduce
max pool: 1⇥ 32, stride: 1⇥ 22

conv: 1⇥ 12

mdcn3

conv layers
conv: 3⇥ 12

64⇥ 32⇥ 142
conv: 1⇥ 32

conv: 3⇥ 32

fuse and reduce
max pool: 1⇥ 32, stride: 1⇥ 22

conv: 1⇥ 12

mdcn4

conv layers
conv: 3⇥ 12

128⇥ 32⇥ 72
conv: 1⇥ 32

conv: 3⇥ 32

fuse and reduce
max pool: 1⇥ 32, stride: 1⇥ 22

conv: 1⇥ 12

global average pooling and fully-connected layer #classes (2)

Table 3.2: Parameters of di↵erent layers of MDCN (v2).
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Chapter 4

Redefined Spatio-temporal Graph

Convolutional Network

Spatial GCN

Temporal GCN

Combine 
and 
Reduce

Action Prediction

Softmax

Spatio-Temporal Graph 
Convolutional Layers

Figure 4.1: End-to-end pipeline of RST-GCN.

Our framework on skeleton data is also evaluated. For this application,

redefined spatio-temporal convolutional network (RST-GCN) is developed. The

overall pipeline of RST-GCN is illustrated in Figure 4.1. First, skeleton points are

collected either from depth cameras or RGB videos with the help of pose estimate

modules. From those points, a spatial graph is constructed, passed through the

spatio-temporal graph convolutional blocks, and action is predicted at the end.

4.1 Skeleton Graph Construction

Skeleton data consists of 2D or 3D coordinates of human joints represented by a

sequence of vectors. Following the approaches in ST-GCN [16], we form a spatial

temporal graph to represent the structured information in skeleton sequences. We

define an undirected graph G = (V,E) with skeleton sequence consists of N joints

and T frames. In the graph, the vertices V = vti|t = 1, . . . , T, i = 1, . . . , N consists

of all the joints in a skeleton sequence. Figure 4.2 illustrates construction graphs
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Skeleton Joint
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Figure 4.2: Spatio-temporal graph of skeleton joints.

from skeleton data. There are two sets of edges in the graph. First one is called

spatial edges (green lines in Figure 4.2), which consists of all natural connections in

human body within a specific frame, ES = {vtivtj|i, j 2 H} , where H is the set of

naturally connected human joints. Other is, temporal edges (red lines in Figure 4.2),

formed by connecting analogous joints between two adjacent frames, ET = vitvi(t+1).

Edges in ET express dynamics for a specific joint i across T frames.

Figure 4.3: Mapping of di↵erent joints in the graph depending on their position.
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4.2 Graph Convolution

After defining the graph, it is required to pass inputs through the layers of GCN to

get the high-level features by performing graph convolution operation. According

to [16], the graph convolution operation on vertex vi can be defined as,

fout(vi) =
X

vj2Bi

1

Zij
fin(vj) · w(li(vj)), (4.1)

where, f represents feature maps, v is vertex of the graph and w denotes

weighting function which is analogous to original convolution operation. Bi repre-

sents the set of unit distance neighboring vertices (vj) of corresponding vertex vi

which take part in convolution operation with vi. li was put in ST-GCN [16] to

map variable number of neighboring vertices in Bi to form three clusters, including,

the vertex itself, Ci1 (the red circle in Figure 4.3), neighboring vertices closer to

the center of gravity, Ci2 (the green circle) and vertices far away from the gravity,

Ci3 (the blue circle). Zij exists to balance the contribution of each cluster which

represents the number of Cik in vj.

4.3 Implementation of GCN

It is required to convert (4.1) into the form of tensors in order to implement the

GCN. The shape of skeleton features for the model is C ⇥ T ⇥N , where C denotes

the number of channels, T represents number of frames and N denotes the number

of vertices. To implement the GCN (4.1) is transformed into the following.

fout =
KvX

k

Wk(finAk)�Mk, (4.2)

where, kv is the spatial kernel size and following the above strategy it is set to three.

The matrix Ak is defined as, Ak = ⇤
� 1

2
k Āk⇤

� 1
2

k . Āk is adjacency matrix for graph

of shape N ⇥N , which contains element, Āij
k , indicating whether vertex vj is in the

cluster Cik of vertex vi. ⇤k is the normalized diagonal matrix, and each element

of ⇤k is defined as, ⇤ii
k =

P
j(Ā

ij
k ) + ↵. The value of ↵ is set to 0.001 to prevent

empty rows. Wk represents the weighting function in (4.2) and is defined as weight

vector of shape Cin ⇥Cin ⇥ 1⇥ 1 of 1⇥ 1 convolution operation. Mk represents the

significance of each vertex and is defined as N ⇥N attention map. � indicates dot
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product operation.

However, the implementation of GCN from (4.2) is based on predefined

graph construction, which does not guarantee the optimal solution [17]. So, here

we modify (4.2) according to [17] as follows.

fout =
KvX

k

Wkfin(Ak +Bk +Ck), (4.3)

where, the adjacency matrix is divided into three parts:

1. Ak: It denotes the physical structure of human body and same as the normal-

ized N ⇥N matrix Ak in (4.2).

2. Bk: It is also an adjacency matrix of shape N ⇥ N and the values of Bk are

learnable throughout the training process. Though Bk can play the similar

role of Mk in (4.2), it is more flexible and e�cient than Mk.

3. Ck: Ck learns a di↵erent graph for each sample input, and it does so by calcu-

lating the similarity between two vertices with dot product in an embedding

space.

First, input fin is embedded from shape Cin⇥T ⇥N to shape Cem⇥T ⇥N with two

1⇥ 1 convolutional later as embedding function, ✓ and �. Then, the features maps

from embedded function are reshaped and multiplied together to formN ⇥N shape

matrix Ck, whose element C ij
k denotes how similar the vertex vi is to the vertex vj.

After that, the values are normalized and equipped with a softmax function. The

whole process can be represented by the following equation.

Ck = softmax(fTinW
T
✓kW�kfin), (4.4)

where, W✓ and W� are the parameters of functions ✓ and �, which are implemented

as 1⇥ 1 convolutional layers. If the input and output of this adaptive graph convo-

lution layer does not match, then a residual connection of 1⇥ 1 convolution is used

to solve the discrepancy.
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Figure 4.4: A spatio-temporal graph convolutional block of RST-GCN.

4.4 Spatio-temporal Graph Convolutional Block

Spatial features extracted by spatial graph convolutional layers, which are imple-

mented from (4.2), while temporal features are extracted by following the convo-

lution operations for temporal dimension from ST-GCN [16]. The temporal con-

volution layer consists of a regular convolution layer with kt ⇥ 1 kernel size, which

takes features of shape C ⇥ T ⇥ N as input. Figure 4.4 illustrates a single block

of RST-GCN, which includes a spatial graph convolutional layer and a temporal
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convolutional layer. BN and ReLU layers are added to the temporal convolution

layers as well as spatial convolution layers. Spatial and temporal features are ex-

tracted in parallel and independently from each other. The independent feature

extraction makes sure that spatial and temporal features are extracted from the

same feature state and reduce the loss of information. There is a 1⇥1 convolutional

layer to reduce the output channel, which comes from concatenating the features

extracted by spatial and temporal graph convolutional modules. Finally, to improve

the performance and network stability, a residual connection [13] is added to the

block.

BN

GAP128, 256, 264, 128, 23, 64, 1

64, 64, 1 128, 128, 1 256, 256, 1 FC and softmax

predictioninput

Figure 4.5: Layers of RST-GCN.

4.5 Spatio-temporal Graph Convolutional Layers

The RST-GCN network is formed by assembling these blocks, as shown in Figure

4.5. We use ten blocks in the network. Out of the ten blocks first four blocks have

output channel size of 64, block 5 to block 7 have 128 output channels and the rest

of the blocks have 256 channels in the output. To normalize the input, we have

added a BN layer at the beginning. In the end, a GAP layer is used to combine and

reduce the extracted features, and an FC layer with a softmax function is used to

make the final prediction.
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Chapter 5

Experimental Setup

In this chapter, The experiments performed to evaluate the models are discussed. All

the models are trained from scratch with corresponding datasets. All experimental

setup, including hardware configuration, libraries are discussed in detail.

5.1 Datasets

Several benchmark datasets are used for this purpose. Dataset containing video

clips are used for violence detection model and for skeleton-based action recognition

model we use dataset of skeleton points.

5.1.1 Violence Detection Dataset

Three benchmark violence detection datasets are used for training and validat-

ing both versions of MDCN, namely RWF-200 violence dataset [21], Hockey-fight

dataset [22] and Movies-fight dataset [23]. Figure 5.1 illustrates some sample clips

from di↵erent violence detection datasets. Figure 5.1(a) represents RWF-2000 vi-

olence detection dataset, whereas 5.1(b) and 5.1(c) represents Hockey-fight and

Movies-fight dataset respectively.

• RWF-200 violence dataset: At the moment, RWF-2000 violence dataset

is the largest dataset for violence detection. The RWF-2000 dataset contains

2,000 video clips collected by surveillance cameras in real life situations. After

collection of the clips, they obtain raw footage and segment each video into a

42



(a)
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Figure 5.1: Samples of violence detection dataset.

5-second clips with 30 FPS. At the final step, they delete noisy clips, which

contain implausible and unmonitored scenes and finally, each clip is annotated

as Violent or Non-Violent. The 2000 clips split into two parts: first one is train-

ing set (80%) and other one is test set (20%). Half of the videos include violent

actions, while others belong to nonviolent actions. In the dataset’s clips, the

number of characters is not fixed, dynamic characteristics vary greatly, and

the background is complicated.

• Movies Fight Dataset: The Movie Fight dataset comprises of 200 video

clips in which fights are taken from action movies and compiled into a single

collection. Several public action recognition datasets are used to extract the

videos that are not related to fights. In contrast to the Hockey dataset, which

is largely homogeneous in both content and structure, the movies dataset has

a greater diversity of scenes that are taken at various resolutions, allowing for

more accurate classification. This dataset has been rescaled to make it more

consistent in size.
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• Hockey Fight Dataset: The Hockey dataset consists of 1000 clips, which

are divided in two groups: Fights and Non-fights. Among 1000 clips, 500

clips include fight or violence and other does not. The resolution of the clips

are 720 ⇥ 576 pixels, and they are extracted from hockey games of the Na-

tional Hockey League (NHL). Later, each clip was restricted at 50 frames and

resolution is reduced to 320⇥ 240.

5.1.2 Skeleton-based Action Recognition Dataset

To measure the performance and e�ciency of RST-GCN, experimenta are performed

on a large-scale skeleton-based action recognition dataset, NTU-RGBD [24].

Figure 5.2: Samples of NTU-RGB+D dataset.
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• NTU-RGBD: NTU-RGBD comprises 56,000 action clips categorized in 60

action classes and is currently the most commonly used action recognition

dataset. Some samples from the dataset are illustrated in 5.2. The 60 action

classes are divided into three major groups: 40 daily actions (drinking, eat-

ing, reading, etc.), 9 health-related actions (sneezing, staggering, falling down,

etc.), and 11 mutual actions (punching, kicking, hugging, etc.). During the

data collection process, 40 unique individuals were invited to record actions.

The individuals range in age from 10 to 35 years. Each action is filmed by

three cameras, all of which are at the same height but at di↵erent horizontal

angles: -45°, 0°, 45°. To ensure that each action is recorded twice, each subject

is instructed to execute it twice, once towards the left camera and once to-

wards the right camera. In this way, they are able to capture two front views,

one left side view, one right side view, one left side 45� view, and one right

side 45� view. The three cameras are allocated the same camera numbers to

keep things consistent. Throughout the video, camera 1 constantly observes

the 45-degree views, but cameras 2 and 3 always observe the front and side

views. The 3D joint positions of each frame identified by kinect depth sensors

are given in this dataset. The skeleton scenes have 25 joints, while each video

only has a maximum of two subjects. As suggested in the original literature

[24], top-1 accuracy in two validation subsets are reported. The first one is

cross-subject (X-sub), where the training set and validation set are divided

based on actors. In this setting, there are 40,320 training samples and 16,560

validation samples. Another is cross-view (X-view), where two sets are divided

based on the camera. Training samples are from the second and third cameras,

containing 37,920 samples, while validation samples are from the first camera

containing 18,960 samples.

5.2 Training

All our models are trained from scratch with the corresponding aforementioned

dataset. Any kind of pretrained models were not used and our models are not

pretrained on other datasets too.
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Parameters Values
CPU Model Name Intel®Xeon®
CPU Frequency 2.30 GHz
No. CPU Cores 2
CPU Family Haswell
GPU Nvidia T4
GPU Memory 16GB
GPU Memory Clock 1.59GHz
Performance 8.1 TFLOPS
CUDA Cores 2560
Tensor Cores 320
Support Mixed Precision Yes
GPU Release Year 2018
Available RAM 12GB
Disk Space 108GB (can be extended)
Operating System Ubuntu 18.04

Table 5.1: Specifications of Google Colab Infrastructure.

5.2.1 Training and Evaluation Infrastructure

Google Colab

As our training platform, we use Google Colab1. Google Colab enables to write and

run Python in browser without requiring any setup, providing free access to GPUs,

and facilitating collaboration. It is an interactive python environment which allows

to run Python code in notebook environment, which are called colab notebook.

Colab notebooks enable the combination of executable code and rich text, as well

as graphics, HTML, and LaTeX, in a single document. When a colab notebook

is created, it is kept on the colab’s Google Drive account. Colab notebooks can

be easily shared among collaborators, which they can view and edit. The most

important features if Google Colab is the GPU access, which enable to train deep-

learning model with ease. The specification of colab hardware is given in Table 5.1.

Nvidia Jetson Nano

The performance of our violence detection models is also evaluated in an edge com-

puting device called Jetson Nano2. Jetson Nano is a compact, powerful computer for

1https://colab.research.google.com/
2https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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Parameters Values
CPU Model Name ARM Cortex-A57
CPU Frequency 1.43 GHz
No. CPU Cores 4
GPU Architecture NVIDIA Maxwell
Performance 0.5 TFLOPS
CUDA Cores 128
Available RAM 4GB
Disk Space 16GB
Operating System Linux for Tegra®

Table 5.2: Specifications of Nvidia Jetson Nano.

embedded applications and the Internet of Things (IoT) that combines the capabili-

ties of contemporary artificial intelligence (AI) in a single module. Jetson Nano has

the horsepower and capabilities necessary to execute contemporary AI workloads,

making it a simple and quick approach to incorporate sophisticated AI. It is ideal

for implementing models in Internet of Things (IoT) contexts. The specifications of

Jetson Nano are provided in Table 5.2.

5.2.2 Deep Learning Library

Both of or models are implemented by using PyTorch [63], which is a DL frame-

work. PyTorch is an open-source deep learning package used in computer vision

and natural language processing applications. It is largely created by Facebook’s

AI Research unit (FAIR), which may be reached at https://ai.facebook.com. It is

a completely free and open-source piece of software. While the Python interface is

more sophisticated and has received the majority of development attention, it also

has a C++ interface. PyTorch provides two high-level features:

• Tensor computation with high-performance graphics processing units (GPU)

• Deep neural networks built on a type-based automatic di↵erentiation system

5.2.3 Data Preprocessing

Data preprocessing is one of the most important steps of training a DL-based model.

The aim of pre-processing is an improvement of the image data that suppresses un-

wanted distortions or enhances some image features important for further processing.
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Figure 5.3: Preprocessing steps for violence detection dataset.

Clean and preprocessed can improve the model’s performance by a significant fac-

tor. For violence detection datasets, 32 frames from each clip are sampled, and each

frame is resized to 224 ⇥ 224. Thus, our input size for both versions of MDCN is

3 ⇥ 32 ⇥ 224 ⇥ 224. Through extensive experiments, we found this shape of input

works best for both our MDCN models. Following the procedure of [21], bright-

ness transformation and random rotation are used to augment our data in order

to prevent overfitting. Brightness modifications alter the brightness of pixels. The

transformation is determined by the attributes of the pixel. Brightness transforma-

tion can be done in two ways:

• Brightness correction, which considers original brightness and pixel position

in the image.

• Gray scale transformations, which change brightness without regard to posi-

tion in the image.

Random rotation refers to rotating frames of clips randomly. The preprocessing

steps are illustrated in Figure 5.3. These preprocessing methods helps to prevent

overfitting, which is a condition where testing accuracy is significantly lower than

training accuracy.

For NTU-RGBD dataset, the skeleton points are formed as graph structure

as described in Chapter 4, and passed to the model. No further processing has been

done for skeleton dataset.

5.2.4 Training Details

For violence detection, both versions of MDCN are trained with stochastic gradi-

ent descent (SGD) optimizer with nesterov momentum [64]. SGD is an iterative
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Training Parameters Values
Optimizer SGD
Nesterov momentum YES
Momentum value 0.9
Regularization L2

Weight decay 1�3
Initial learning rate 0.1
Reducing factor 10
Reducing epochs 25, 75, 125
Total epochs 150
Batch size 16

Table 5.3: Training summary of Violence detection models.

Training Parameters Values
Optimizer SGD
Nesterov momentum YES
Momentum value 0.9
Regularization L2

Weight decay 1�4
Initial learning rate 0.1
Reducing factor 10
Reducing epochs 30, 40
Total epochs 50
Batch size 16

Table 5.4: Training summary of skeleton-based action recognition.

approach for maximizing an objective function that has appropriate smoothness

qualities, such as being di↵erentiable or subdi↵erentiable. It may be thought of as

a stochastic approximation of gradient descent optimization, since it substitutes an

estimate for the real gradient. This minimizes the computational strain, particu-

larly for high-dimensional optimization problems, allowing for quicker iterations at

the cost of a reduced convergence rate. Nesterov momentum is an extension of mo-

mentum that involves calculating the decaying moving average of the gradients of

projected positions in the search space rather than the actual positions themselves.

The value of momentum is set to 0.9. Weight Decay, or L2 Regularization, is a

regularization technique applied to the weights of a neural network. Weight decay

may be explicitly inserted into the weight update algorithm, rather than being de-

fined implicitly via the goal function. Weight decay is often used to refer to the

implementation in which it is specified directly in the weight update rule. It also

prevents the models from overfitting. We set the value of weight decay to 1�3. The

next parameter of training a model is learning-rate, which is referred as the amount
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that the weights are updated during training. More precisely, the learning rate is

a programmable hyperparameter with a modest positive value that is employed in

the training of neural networks. While training the MDCN models, we set the ini-

tial learning rate is set to 0.1, which is reduced by a factor of 10 after 25, 75, and

125 epochs, and training is stopped at 100 epochs. The models are trained for 150

epochs. The best result was found while training the models with input batch size

of 16.

For skeleton-based action recognition, RST-GCN was also trained with

SGD optimizer with nesterov momentum. The value of momentum is set to 0.9

with weight decay of value 1�4. RST-GCN model was trained for 50 epochs with

initial learning rate of 0.1, which is reduced by a factor of 10 at epoch number 30

and 40. The input batch size for this model is also set to 16.
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Chapter 6

Evaluation

In this chapter, the evaluation of our models is discussed by discussing the results

of extensive ablation studies, and visualize the e↵ectiveness of our models, and

comparison with other state-of-the-art models. All the data supports our claim of

being our models, lightweight, and computationally e�cient, and competitive with

other state-of-the-art models.

6.1 Evaluation of Violence Detection Models

6.1.1 Ablation Study

Frame Length Accuracy (%)
16 84.50
32 86.00

Table 6.1: Comparison of accuracy of MDCN (v1) with di↵erent frame lengths.

Frame Length Accuracy (%)
16 85.30
32 87.50

Table 6.2: Comparisons of accuracy of MDCN (v2) with di↵erent frame lengths.

Di↵erent ablation studies were performed in order to identify the best hy-

perparameters, input types, and model architecture. First, as shown in Table 6.1,

experiments with di↵erent frame lengths were performed and it is found that frame
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Figure 6.1: Accuracy comparison between two MDCN versions with respect to
frame length.

length of 32 gives the best accuracy for MDCN version 1. When we use 16 frames as

input, a score of 84.5% is achieved. In case of version 2, the model achieves 87.5%

with 32 frames and 85.3% with 16 frames, as shown in Table 6.2. Figure 6.1 illus-

trates the comparison of accuracies between MDCN version 1 and version 2 with

respect to input length. The perfromance without skip connection is also reported

MDCN (v2) Accuracy (%)
without skip connection 86.75
with skip connection 87.50

Table 6.3: Evaluation of MDCN(v2) based on skip connection.

for MDCN verson 2. Table 6.3 displays the model accuracy with and without the

concatenation of skip connection. The model achieves 87.5% with skip connection,

and while the skip connection is turned o↵, it drops at 86.7%. The results show that

skip connection helps information flow more e�ciently and thus helps to improve

accuracy.
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Samples Ground Truth Predicted labelSamples Ground Truth Predicted Label

Violent Non-violent

Violent Violent

Non-violent Non-Violent

Non-violent Violent

Violent Violent

Samples Ground Truth Predicted Label

Violent Non-violent

Violent Violent

Non-violent Non-Violent

Non-violent Violent

Violent Non-violent

Samples Ground Truth Predicted Label

Violent Non-violent

Violent Violent

Non-violent Non-Violent

Non-violent Violent

Non-violent Non-violent

Samples Ground Truth Predicted Label

Violent Non-violent

Violent Violent

Non-violent Non-Violent

Non-violent Violent

Non-violent Violent

Table 6.4: Ground truth and predicted output from MDCN (v2) for four di↵erent
cases.

6.1.2 Qualitative Analysis

In Table 6.4, the outcome of our network from RWF-2000 dataset is illustrated,

where four di↵erent cases of prediction of MDCN as displayed. The first and third

rows display the correct predictions from our model. However, in the second row

of the table, the ground truth of the action is violent, while our model predicts

the action as non-violent. Hence, the action is occurring in one small corner of the

frame, and the rest of the frame was non-violent. Thus, the model predicts the

clip as non-violent with a higher probability than violent. On the other hand, as

shown in the final row of the table, the model detects violence while the ground

truth was non-violent. Though no violence in the clip is found, there are movements

and physical contacts considered as fighting or some other forms of violence by the

model. Visualization of features from an individual MDCN block is also illustrated

and compared with the features from a single 3D CNN layer, which is used as a

branch in our model. In the Figure 6.2, three consecutive frames of samples were

shown from RWF-2000 dataset denoted by Ft�1, Ft, andFt+1. From the visualization,

it is evident that the combination of 1D, 2D, and 3D CNN layers extracts salient

features from the input, and makes our model e�cient and accurate.

Additionally, in Figure 6.3, comparison between loss and accuracy of the

model in training and validation phase on RWF-2000 dataset is reported. As illus-

trated in Figure 6.3(a), accuracy was stable both in training and validation process

during the whole training. However, the loss shows a slight overfitting during epoch
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3D CNN featuresFt+1FtFt-1 DSTCN features

Figure 6.2: Visualization of extracted features from MDCN (v2).

25 to 35 as illustrated in Figure 6.3(b). Later, it is fixed as training progress and

model learns the features.

6.1.3 Accuracy and Performance Evaluation

To evaluate our model and support our claim, we compare our model with other

violence detection state-of-the-art models on the datasets stated earlier. In this

section, the accuracy measurements for both of our violence detection models is

provided. Table 6.5 shows the comparison of our model with other models on

Hockey-fight and Movie-fight datasets. Our model outperforms the hand-crafted

features-based models and DL-based models as well on both datasets. Both ver-

sions of our MDCN model obtains 100.0% and 99.0% accuracy on Hockey-fight and

Movies-fight datasets, respectively.

The comparison on RWF-2000 violence dataset is shown in the Table 6.6.

Hence, the number of parameters (M) and computational complexity along with

accuracy are reported. Computation complexity in expressed in GFLOPs (109

FLOPs), where one FLOP is defined as one floating-point multiple-addition op-

eration [70]. MDCN (v1) achieves 86.0% accuracy and MDCN (v2) achieves 87.50%

accuracy only using RGB clips whereas, FlowGate (RGB) achieves 84.50% with

twice the complexity of our model. Our MDCN (v2) also outperformed Flowgate
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(a) Comparison between training validation accuracy of MDCN (V2) on RWF-
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(b) Comparison between training and validation loss of MDCN (V2) on RWF-
2000 dataset.

Figure 6.3: Performance measurement of training and validation process of MDCN
(v2).

(fusion), which used optical flow along with RGB frames. Moreover, our model also

outperforms FlowGate with fusion of RGB frames and optical flow, though our mod-

els have a computational complexity of 4.47 GFLOPs, whereas FlowGate performs

16.98 GFLOPs. Both versions MDCN also outperforms other models listed in Table

6.6 in terms of accuracy, memory consumption, and cost.
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Figure 6.4: Comparison of violence detection models on RWF-2000 dataset.

If we compare between the two MDCN versions, then MDCN (v2) per-

forms better than MDCN (v1). The second version has 0.47M parameters and

computational complexity of 4.47 GFLOPs, whereas the first version has slightly

more parameters (0.49M) and has computational complexity of 4.55 GFLOPs.

Figure 6.4 (a) and 6.4 (b) depicts this same result in a graphical way.

The comparison in terms of accuracy and complexity is illustrated in Figure 6.4
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Table 6.5: Comparison of our model with other state-of-the-art methods on Hockey-
fight and Movies-fight dataset.

Methods
Accuracy(%)

Hockey Movies
ViF [41] 82.9 -
LHOG+LOF [65] 95.1 -
HOF+HIK [66] 88.6 59.0
HOF+HIK [66] 91.7 49.0
MoWLD+BoW [67] 91.9 -
MoSFIT+HIK [66] 90.9 89.5
FightNet [43] 97.0 100
3D ConvNet [68] 99.62 99.9
ConvLSTM [45] 97.1 100
C3D [34] 96.5 100
I3D (RGB) [20] 98.5 100
I3D (Flow) [20] 84.0 100
I3D (Fusion) [20] 97.5 100
FlowGate [21] 98.0 100
MDCN (v1) 99.0 100
MDCN (v2) 99.0 100

(a), while Figure 6.4 (b) displays the comparison in terms of accuracy and number

parameters. Our model achieves state-of-the-art accuracy with lower computational

cost and less parameter size.

Evaluation on IoT Devices

The processing speed is also shown, in terms of frames per second (FPS), in Table

6.7. We report FPS of our MDCN and other state-of-the-art models, both on a

central processing unit (CPU) and IoT device called Jetson Nano.

Our model can perform at 16.6 FPS on CPU and 80 FPS on Jetson Nano,

which makes our model more than 37% faster than FlowGate(fusion) on Jetson

Nano. The outcome is also illustrated in Figure 6.5. Furthermore, the exclusion of

optical flow eliminates the overhead of pre-processing of input which made our model

more e�cient. Our MDCN model, therefore, performs better and faster with low

computational cost, which makes it a viable choice for IoT-based violence detection

applications.
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Methods Params (M) Complexity (GFLOPS) Accuracy(%)
R(2+1)D [69] 33.20 42.42 81.25
C3D [34] 79.90 38.62 82.75
ConvLSTM [45] - - 77.00
I3D (RGB) [20] 12.30 111.30 85.75
I3D (flow) [20] 12.30 102.52 75.50
I3D (two-stream) [20] 24.40 213.85 81.50
FlowGate (RGB) [21] 0.25 8.76 84.50
FlowGate (flow) [21] 0.25 8.29 75.50
FlowGate (fusion) [21] 0.27 16.98 87.25
MDCN (v1) 0.49 4.55 86.00
MDCN (v2) 0.47 4.47 87.50

Table 6.6: Comparison of our model with other state-of-the-art methods on RWF-
2000 violence dataset.
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Figure 6.5: Comparison of processing speed in edge devices.
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Model
Processing Speed (FPS)
CPU Jetson Nano

R(2+1)D [69] 7.5 13.0
C3D [34] 11.2 18.8
I3D (two-stream) [20] 3.68 12.6
FlowGate (fusion) [21] 12.4 58.18
MDCN (v2) 16.6 80.0

Table 6.7: Comaparison of processing speed on CPU and Jetson Nano.

(b)

(a)

(c)

Figure 6.6: Visualization of feature extraction by RST-GCN. (a), (b), and (c)
represents the features extracted at di↵erent frames.

6.2 Evaluation Skeleton-based Action Recognition

Model

6.2.1 Visualization of Feature Selection

Our model performs feature extraction on temporal and spatial dimensions indepen-

dently and combines them. Figure 6.6 illustrates the joints selected by our model

for the action pickup. We show skeletons performing the action pickup at the initial

stage and after extracting features from block 4, block 7, and block 10. From each

corresponding dimension, a joint with the highest scores is selected and the number

of selected joints is counted. The top 5 selected joints are highlighted in the visu-

alization and denoted by red circles. The size of the circles represents the number

of times a joint is selected, which means that the largest joint is the most used part
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(b) Comparison between training and vali-
dation accuracy for X-view subset.
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(c) Comparison between training and vali-
dation loss for X-sub subset.
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(d) Comparison between training accuracy
and validation accuracy for X-sub subset.

Figure 6.7: Performance measurement of training and validation process.

of the body while performing the task. Three frames are illustrated in Figure 6.6

(a), 6.6 (b) and 6.6 (c) for pickup task. The extracted features highlight hand

and leg joints while the body was moving downwards, and later when the body had

already moved downwards, both hands are selected, indicating the pickup. Thus, it

is a validation of our model being capable of extracting features e�ciently from the

skeleton data.

Additionally, in Figure 6.7, comparison between loss and accuracy of the

model in training and validation phase for both X-sub and X-view subsets is re-

ported. In X-view subset as illustrated in Figure 6.7(a) and Figure 6.7(b), the

model was overfitting during initially, which is fixed as training progressed. In X-

view subset, training accuracy and validation accuracy was steady during the whole

process. Same trend is noticed with loss too, as shown in Figure 6.7(c).

6.2.2 Ablation Study

Our model is based on AGCN [17].our model, RST-GCN, is defined in such a way

that it achieves high accuracy with small parameter size and less computational
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Figure 6.8: Evaluation of RST-GCN on di↵erent input types.

Input Features X-Sub (%) X-View (%)
Bone Data 83.8 91.4
Joint Data 84.5 92.2

Table 6.8: Evaluation of RST-GCN on di↵erent input types.

complexity. So, a study is performed to determine which input features provide the

best result for our model. As shown in Table 6.8, we get 83.8% X-sub accuracy and

91.4% X-view accuracy using skeleton bone data. Both accuracies increase when

skeleton joint data is used. 84.5% X-sub accuracy and 92.2% X-view accuracy for

skeleton joints are achieved. Figure 6.8 illustrates the accuracies of RST-GCN on

di↵erent input data type, including joint data and bone data, on both X-sub and

X-view subsets.

6.2.3 Accuracy and Performance Evaluation

Finally, our model is put in comparison with the state-of-the-art skeleton-based

action recognition models on NTU-RGBD dataset. In Table 6.9, our model is

compared with those that are based on hand-crafted-features, RNN-based models,

and CNN-based models. RST-GCN outperforms all the models in these categories.

This happens because of the fact that skeleton data can be exploited better by
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Methods X-Sub (%) X-View (%)
Lie Group [47] 50.1 82.8
HBRNN [71] 59.1 64.0
Deep LSTM [24] 60.7 67.3
ST-LSTM [72] 69.2 77.7
STA-LSTM [73] 73.4 81.2
VA-LSTM [50] 79.2 87.7
ARRN-LSTM [74] 81.8 89.6
Ind-RNN [51] 81.8 88.0
Two-Stream 3DCNN [53] 66.8 72.6
TCN [75] 74.3 83.1
Clips+CNN+MTLN [54] 79.6 84.8
Synthesized CNN [76] 80.0 87.2
CNN+Motion+Trans [55] 83.2 89.3
RST-GCN (ours) 84.5 92.2

Table 6.9: Comparisons between RST-GCN and other state-of-the-art methods on
the NTU-RGBD dataset.

Methods Parameters (M) Complexity (GFLOPs) X-Sub (%) X-view (%)
ST-GCN [16] 3.1 16.3 81.5 88.3
2s-AGCN [17] 6.9 37.4 88.5 95.1
RST-GCN 3.6 20.9 84.5 92.2

Table 6.10: Comparisons of RST-GCN with state-of-the-art GCN-based methods
on the NTU-RGBD dataset.

representing data into a graph structure.

The comparison with the GCN-based models is shown in Table 6.10.

Hence, along with the accuracy, the parameter size (M) and computational com-

plexity in GFLOPs (109 FLOPs) are also compared. Following [70], we define 1

FLOP as 1 floating-point multiplication-addition operation. In comparison with

ST-GCN [16], our model achieves higher accuracy but is larger than ST-GCN [10]

in parameter size. Our model achieves 84.5% and 92.2% accuracies in X-sub and

X-view subsets, respectively, while ST-GCN obtains 81.5% and 88.3% for the same.

When our RST-GCN is compated with 2s-AGCN [17], our model achieves a compet-

itive score in top-1 accuracy, although it is lighter in respect to parameter size and

computationally less expensive. Our model has 3.6 M parameters, while 2s-AGCN

has 6.9 M parameters. Moreover, our model has a complexity of 20.9 GFLOPs, and

2s-AGCN bears the complexity of 37.4 GFLOPs, which is almost twice the complex-

ity of our model. The comparison between RST-GCN other GCN-based models in

terms of accuracy, parameters, and complexity is illustrated in Figure 6.9. There is

always a trade-o↵ between accuracy and computational complexity. Our model bal-
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(a)

(b)

Figure 6.9: Comparisons between RST-GCN and two other GCN-based models.

ances the trade-o↵ for skeleton-based action recognition, which makes this suitable

for deploying in IoT-based action recognition system from skeleton data.

6.2.4 Analysis of Accuracy for Patient Monitoring System

There are nine distinct kinds of activities associated with medical conditions in the

NTU-RBGD dataset [24], including sneeze/cough, staggering, falling, touch head

63



Methods
Inference Speed

CPU Jetson Nano Nvidia K80
ST-GCN [16] 273 1037 5733
2s-AGCN [17] 132 528 2948
RST-GCN 248 993 5539

Table 6.11: Comparisons of RST-GCN with state-of-the-art GCN-based methods in
terms of inference speed.
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Figure 6.10: Accuracy of RST-GCN for medical condition related actions.

(headache), touch chest (stomachache/heart pain), touch back (backache), touch neck

(neckache), nausea or vomiting, use a fan/feeling warm. Recognition of this activ-

ities with high accuracy is of great significance for a real time patient monitoring

system. We show the accuracy of our RST-GCN model for these categories in Fig-

ure 6.10. Our proposed model achieves high accuracy in the X-view subset as well as

X-sub subset, except for touch head (headache) action. The reason behind achieving

a low accuracy in this category in X-sub subset is that di↵erent patient can have

pain in di↵erent regions of head, and each touches their head di↵erently. However,

it is noticeable that our proposed RST-GCN achieves almost 98% accuracy in de-

tection of falling. In X-view subset, the model achieves more than 90% accuracy in

almost all of the focused categories.

Moreover, the e�ciency and applicability our proposed model is demon-

strated in terms of inference speed in Table 6.11. Inference speed of RST-GCN

is demonstrated with di↵erent hardwares, including general purpose CPU (Intel

Xeon), high performance GPU (Nvidia Tesla K80), and edge device with limited

computing resource (Nvidia Jetson Nano). Nvidia Jetson Nano is the most suitable

device to perform inference in an actual patient-monitoring and medical condition

system. Our model processes 993 frames per second on Nvidia Jetson Nano, which

is almost twice as fast as 2s-AGCN [17], and a slightly slower than ST-GCN [16].

However, RST-GCN achieves more than 92.2% accuracy in X-view subset, which is
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more than 4% increase than ST-GCN.

65



Chapter 7

Conclusion

The aim of the thesis is to solve a significant problem of human action recognition.

Modern technologies, such as deep learning, is used to solve the problem. Di↵erent

aspects and di↵erent methods to solve this problem are studied and analyzed. And

finally, a generalized framework is develop for human action recognition, that can

be used for various types of input. The framework is shown to be applicable in

violence detection and skeleton-based action recognition application. For violence

detection, MDCN is developed, which extracts spatial and temporal features sepa-

rately by 1D, 2D, and 3D convolutional networks. And, for skeleton-based action

recognition, RST-GCN is developed, which extracts spatial and temporal features

by graph convolutional network. Both our models achieve competitive accuracy

with other state-of-the-art models in spite of being light-weight and e�cient. On

NTU-RGBD, a large-scale skeleton-based dataset, our proposed RST-GCN achieves

competitive performance with more than 3% increase in accuracy while being more

than 40% e�cient than current state-of-the-art method. On the other hand, MDCN

outperforms state-of-the-art violence detection model with almost one-fourth of com-

putational cost and better accuracy. Since our models consume less memory, require

less computational power, and remove pre-processing overhead, it can be deployed

to real-world application, such as civil defense and healthcare monitoring systems.
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