
Predicting Regional Accents of Bengali Language
using Deep Learning

by

Md. Abu Ibrahim
17301157

Md. Nawaz-S-Salekeen Nayeem
17301082

Sadaf Al Arabi
17301216

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
September 2021

© 2021. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md. Abu Ibrahim
17301157

Md. Nawaz-S-Salekeen Nayeem
17301082

Sadaf Al Arabi
17301216

i

Approval
The thesis titled “Differentiating Regional Accents of Bengali Language using Deep
Learning Techniques” submitted by

1. Md. Abu Ibrahim(17301157)

2. Md. Nawaz-S-Salekeen Nayeem(17301082)

3. Sadaf Al Arabi(17301216)
Of Summer, 2021 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on September 26, 2021.

Examining Committee:

Supervisor:
(Member)

Mr. Moin Mostakim
Lecturer

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Warida Rashid
Lecturer

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract
Accent is a huge challenge in communication for all languages. Different people
who speak the same language might pronounce the same word differently. In a
conversation, if two people are from different regions and they have different accents,
we can use our intuition to make sense of what the other person is saying. Sometimes,
even our intuition cannot help determining the meaning of the words because of the
difference in accent. Therefore, it is extremely difficult for an ASR (Automatic
Speech Recognition) system to properly understand the words when the speaker
uses different accent instead of the standard or formal accent as most of the time
the ASR systems are trained on the formal or standard language. Now a days, most
of these issues caused by accents are somewhat worked upon in most used languages
like English, Mandarin and few other languages. However, the ASR systems used
for Bengali Language is still at its infancy and different accents are a major issue.
Finding audio features that differentiate the accents from one another and creating
models to predict the accent using Deep Learning techniques will help to create
a much better ASR System for Bengali Language. This paper will emphasize on
creating few models which can determine the regional accent of Bengali language
given an audio sample. Furthermore, after getting the accuracy of the individual
models we can choose the model which results in the most accuracy. Further work
can be done based on the models to create an ASR System for Bengali language
which will be able to handle few more accents than the standard one.

Keywords: Deep Learning; Bengali Accent; Accent Prediction; Prediction; Neural
Networks; MLP; CNN; RNN; ASR

iii

Acknowledgement
Firstly, a special thanks to S. M. Saiful Islam [12] for providing us the dataset of
their thesis which enabled us to move forward with our thesis.

Secondly, thanks to Valerio Velardo [17] for providing us with in-depth tutorial on
how to analyze and extract features from audio data and implement deep learning
techniques.

Finally, thanks to our supervisor Moin Mostakim sir and our co-supervisor Warida
Rashid ma’am for their kind support and advice in our work. They helped us
throughout the whole research period.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

1 Introduction 1
1.1 Thoughts behind the thesis . 1
1.2 Research Problem . 2
1.3 Research Objectives . 3

2 Related Work 4
2.1 Literature Review . 4
2.2 Related Works . 4

3 Algorithms & Dataset 6
3.1 Algorithms . 6

3.1.1 MLP . 6
3.1.2 CNN . 7
3.1.3 RNN-LSTM . 8

3.2 Dataset & Features . 8
3.2.1 Dataset . 8

3.2.1.1 Data Collection . 8
3.2.1.2 Data Cleaning And Denoising 9
3.2.1.3 Final Dataset . 12

3.2.2 Data Features . 13
3.2.2.1 Amplitude Envelope 13
3.2.2.2 Zero Crossing Rate 13
3.2.2.3 Root Mean Square Energy 14
3.2.2.4 Spectral Centroid 15
3.2.2.5 Spectral Bandwidth 15
3.2.2.6 MFCCs . 16

v

4 Proposed Methodology 19
4.1 Work Plan . 19
4.2 Feature Extraction . 21

4.2.1 Extraction process . 21
4.2.1.1 CSV Dataset . 21
4.2.1.2 JSON Dataset . 22

4.2.2 Feature Distribution Throughout the Dataset 23
4.3 Proposed Architecture . 24

4.3.1 MLP . 24
4.3.2 CNN . 25
4.3.3 RNN-LSTM . 27

5 Implementation, Result & Analysis 29
5.1 Preparing the Data and Models . 29

5.1.1 Train, Validation & Test Split 29
5.1.2 Training Parameters . 29

5.2 Experimental Results & Analysis . 30
5.2.1 Accuracy and Loss Graph . 30
5.2.2 Confusion Matrix . 32
5.2.3 Accuracy, Precision, Recall & F1 Score 34

5.2.3.1 Individual Accuracy 34
5.2.3.2 Precision . 35
5.2.3.3 Recall . 35
5.2.3.4 F1 Score . 35

6 Future Works & Conclusion 37
6.1 Future Work . 37
6.2 Conclusion . 38

References 40

vi

List of Figures

1.1 Phonetics variation of the same word across regions. 2

3.1 Before removing noise . 10
3.2 After manually removing noise . 10
3.3 After removing noise using the pre-trained model spleeter 11
3.4 Sample distribution . 12
3.5 Amplitude Envelope of a sample from Barisal Region 13
3.6 Zero Crossing Rate of a sample from Barisal Region 14
3.7 RMSE of a sample from Barisal Region 14
3.8 Spectral Centroid of a sample from Barisal Region 15
3.9 Spectral Centroid & Bandwidth of a sample from Chittagong Region 16
3.10 MFCC Steps . 17
3.11 Mel Spectrogram using the 13 Coefficients 18

4.1 Work Plan . 20
4.2 All features of audio samples stored in CSV format 21
4.3 Audio segmentation and MFCC features extraction process 22
4.4 Distribution of Amplitude Envelope, Root Mean Square and Zero

Crossing Rate across all regions . 23
4.5 Spectral Centroid and Spectral Bandwidth distribution across all re-

gions . 23
4.6 High level view of the MLP model 24
4.7 Summary of the MLP model . 24
4.8 High level view of the Hybrid CNN architecture 25
4.9 Summary of the Hybrid CNN architecture 26
4.10 Visual representation of the Hybrid CNN architecture 27
4.11 Summary of the Hybrid RNN-LSTM architecture 28

5.1 Splitting of the Dataset . 30
5.2 Accuracy and loss graph of MLP . 31
5.3 Accuracy and loss graph of Hybrid CNN 31
5.4 Accuracy and loss graph of LSTM . 31
5.5 Confusion matrix of MLP . 33
5.6 Confusion matrix of Hybrid CNN . 33
5.7 Confusion matrix of LSTM . 34
5.8 Performance of each region in MLP 36
5.9 Performance of each region in Hybrid CNN 36
5.10 Performance of each region in LSTM 36

vii

Chapter 1

Introduction

1.1 Thoughts behind the thesis
In the recent years, we have seen drastic improvements in various Speech Recogni-
tion technologies. Smart speech recognizing AIs like Siri, Alexa, Google Assistant,
Cortana etc. are just one tap away from us. These systems work flawlessly in most
of the cases. However, depending on the variation in population of a country, every
language has many different dialects based on various regions. Even sophisticated
and highly advanced systems like the aforementioned ones have to face trouble when
the speaker does not speak in the standard accent of that language [14] . To tackle
this issue, quite a lot of research is already done in English, Mandarin and few other
prominent languages. However, while we were researching for related papers in this
field, we barely found any work that was done in Bengali language. Worldwide al-
most 210 million [15] people speak in Bengali language. Among them, 100 million
are from Bangladesh. Bangladesh is divided into 8 divisions and these divisions
are divided into different number of districts which totals in 64 districts. People
from these divisions speak in different dialect and accent. Furthermore, even in the
same division people’s accent varies greatly from district to district. These different
accents and dialect affect the performance of any Speech Recognizing system signif-
icantly. In this paper, we will try to build a model by training it on various audio
samples from few divisions and districts of Bangladesh. By using the approaches
discussed in this paper, it will be possible to easily distinguish accent of the speaker.
If separate ASR systems are created for each accents then our models will be able
to redirect the speakers audio to the ASR model which was built for the accent
of that speaker. Using the prediction of our models it might also be possible to
build a single ASR system which will be able to detect the spoken words accurately
regardless of the accent.

1

1.2 Research Problem
Our research paper focuses on detecting different Bengali accents. So, the primary
research problem of our thesis if finding out exactly what makes each accent so
different from each other. The local people of the district Noakhali speak in a
noticeably different accent from standard Bengali accent which is known as Cholito
Bhasa. Moreover, even though Old Dhaka is within the Dhaka district but people
from this place speaks in a very different accent from people who lives in the main
city of Dhaka. Let’s look at a table with few examples of how the word ‘Khabo’
which translates to ‘Will Eat’ is different based on few different regions of Bangladesh
[13]. As we can see, pronunciation of words can vary greatly depending on the region

Figure 1.1: Phonetics variation of the same word across regions.

a speaker is from. Now, these difference in accent can cause various problems and
significantly reduce the accuracy of a Speech Recognizing system. Our paper tries to
tackle this issue for Bengali Language. To implement an ASR system for a language,
gender dependent models are created. However, this does not solve the issue that
is caused by different accent. In the year 2000, extensive experiments were done
on Microsoft Mandarin Speech Engine. It was found that tone-related-information
are the most important feature of a language in different accents. Later, in the
year 2004, on a paper [5] by Chao Huang, Tao Chen, Eric I-Chao Chang, which
was based on the information from the aforementioned experiments, they described
cross-accent models for ASR system had 40 to 50 percent more error that than
an accent-dependent model. There are few important factors in this rise of error
rate. There are a lot of features when creating a model for a speaker as there is
a lot of variability in the tone, pitch etc. This results in a very complex model as
the number of dimensions increases. Few tools such as PCA (Principal Component
Analysis) and ICA (Independent Component Analysis) can help to lower the number
of dimensions and reduce the complexity. Quite a long time has passed since these
papers were published. Moreover, in today’s age these problems are mostly solved
for the prominent languages like English and Mandarin. However, these problems
still exist in the Bengali Language.

2

1.3 Research Objectives
The main goal of this paper is to create a model which will be able to detect few
different accents of Bengali Language given an audio sample of a specific sentence.
This paper focuses on accents used in various regions of Bangladesh. As discussed
in the “Research Problem” section 1.1, different accents have major impact on the
performance of an ASR system. Since there is almost no research on the impact of
various Bengali Accent in an ASR system for Bengali language, we want to start it
by working on audio samples from few different regions of Bangladesh where people
have different accents and dialects. The objectives of our research are explained
below in bullet points:

• Determining what main features such as Pitch, Tone, Prosodic feature, For-
mants etc. of certain accents plays major role in the change of that accent
from the standard Bengali accent. We will take inspirations from the previ-
ous works that was done in other Languages and implement it in the Bengali
Language.

• Creating models based on various techniques which will be able to differentiate
between the accents from the taken samples. We will use MLP (Multilayer Per-
ceptron), CNN (Convoluted Neural Network), RNN (Recurrent Neural Net-
work) etc. to create these models.

• Improving the accuracy and reducing the error rate to optimize each model.

• Lastly, determining which model results in the highest accuracy and discussing
the room for improvements on future implementation of this paper.

3

Chapter 2

Related Work

2.1 Literature Review
Before diving into the specific literature let us have a brief discussion on the overall
process each of these literature works upon.

The primary goal of any accent detection model is to make ASR systems much
more general-purpose by solving challenges such as variability of volume, word-
speeds, speaker, pitch, etc. As Automatic Speech Recognition Systems takes any
continuous audio speech and output equivalent text, accent recognition serves as an
essential step to all ASR systems.

To do this the basic approach followed by most of the researchers goes something
like this. First they had to collect data from various region of their interest based
on differences of how they speak. Note that, in many cases these regions can be
considered as countries. After that, they pre-process the data and extracts feature
to feed into the ML model. MFCC is a feauture that has been used for almost all
the researches. After this phase, all the suitable Machine Learning models are used
like SVM, random forest, DNN, RNN to classify accents based on the region.

2.2 Related Works
K. Mannepalli and V. Rajesh in their work “Accent detection of Telugu speech

using Prosodic and Formant feature” [8], used predefined features like pitch, energy,
power spectral density, short-time energy, intensity; extracted using COLEA and
PRAAT to feed into a Nearest Neighbor Classifier (NNC), achieving 72% accuracy
in classifying three different regional accents of Telegu Language spoken in Southern
part of India.

In [7], rather than using NNC to classify, they proposed a system with Gaussian
Mixture Model (GMM) and Support Vector Machine (SVM). They created a GMM
supervector by mapping an utterance to a high-dimensional vector. As we know
SVM is widely used for classifying data belonging in a high dimensional vector
space, many researchers used this method. Similar to these two aforementioned
approaches can also be in the works of [1]–[4].

4

A bit different strategy based on Deep Learning is found in the works of F.
Weninger and Yang Sun in their work “Deep Learning-based Mandarin Accent Iden-
tification for Accent Robust ASR”.[10] They found great success classifying 15 dif-
ferent geographical regions by accents in China even though some of them were
not even mutually intelligible. Utilizing two different ASR models, standard and
accented, they suggested using the bLSTM (bidirectional Long Short-Term Mem-
ory) accent classifier to quickly switch between these two models depending on the
given scenario. They had gathered 466 speakers and collected 135k utterances (84.6
hours). The reason behind using bLSTM was to capture the longer-term acous-
tic context in each utterance thus supposedly improving the accent identification
process.

A much more probabilistic approach is taken in the work “Accent Detection and
Speech recognition for Shanghai-Accented Mandarin”.[6] They used MFCC with
GMM to classify accentedness (the level of deviation from the standard accent) level
into three tiers. Also, they defined two different speaker groups, more standard or
more accented. In the end, to select a suitable model given a speaker they calculated
MAP (Maximum a posterior) of different models and thus choosing the best one.
By using MAP with traditional approaches, in their experiment, results show a 1 to
1.4% absolute reduction of character error rate (CER).

One of the primary reasons why the ASR system has a higher error rate for
an accented speech is simply due to the fact that the speaker might just be mis-
pronouncing the given word just a bit. A much more sophisticated approach was
designed by some Microsoft Researcher in their paper “Accent Issues in Large Vocab-
ulary Continuous Speech Recognition”.[5] They developed a new adaptation method
called Pronunciation Dictionary Adaptation, which is fundamentally a dictionary,
capturing the pronunciation variations due to the mistake of the speaker(mispro-
nunciation) for an accent by feeding the system a small amount of adaptation data.
The character error rate (CER) of the system was 13.2% - 13.6% given that the
system has 3 to 5 utterances available for an individual speaker.

Lastly, A paper from Bangladeshi Researchers from Daffodil University, titled
“Bengali Speech Recognition from Speech” [12] did an amazing work. They collected
data from 9 regions and extracted features like Chroma Features, RollOff, MFCCs,
ZCR, RMSE, Spectral Centroid, Spectral Bandwidth. They fed the data into a
Random Forest based model to get 86% accuracy. They also used few other models
but Random Forest got them the most accuracy. This paper will be mostly inspired
by their paper.

5

Chapter 3

Algorithms & Dataset

3.1 Algorithms
3 types of Neural Networks were used to process the Dataset. They are Multi
Layered Perceptron, Convolutional Neural Network and Recurrent Neural Network.
Each of these are described below.

3.1.1 MLP
At the heart of any neural network algorithm there is a neuron like unit which can
be defined by

y = g

(
b+

∑
i

xiwi

)
(3.1)

For each input xi there is an weight wi associated with it, b is the bias and y is the
output. Here, g adds the non-linearity in the system, which is called an activation
function.

In a neural network there are lots of these units connected in an specific manner
to do something useful. As described earlier the functionality of each unit is very
straight-forward, yet the magic happens when the all comes together. The types
of neural network changes based on how these neuron like units are connected to
each other to form the whole network. In a Feed-Forward Neural Network
architecture, these units are connected in layers to form a directed acyclic graph.

The simplest kind of Feed-Forward Neural Network is called Multilayer Percep-
tron(MLP). All the neurons in each layer of the networks are identical and every
unit in one layer is connected to every unit in the next layer creating a fully con-
nected network. By convention the first layer is called input layer and the last layer
is called the output layer and all the layer (can be multiples) in between is called
hidden layer. Its to be noted that the number of units in the output layer correspond
to the number of classes in the classification problem. If N input units connects M
output units, this creates a M ×N weight matrix. The functionality between these
two units can be described by

y = f(x) = φ(Wx+ b) (3.2)

Here, φ is the activation function and W is the weight matrix.

6

Mathematical formulation of the computation of the MLP is very straightforward.

h
(1)
i = φ(1)

(∑
j

w
(1)
ij xj + b

(1)
i

)
(3.3)

h
(2)
i = φ(2)

(∑
j

w
(2)
ij h

(1)
j + b

(2)
i

)
(3.4)

yi = φ(3)

(∑
j

w
(3)
ij h

(2)
j + b

(3)
i

)
(3.5)

Here, units in the l’th hidden layer is denoted by h
(l)
i

The activation functions that are mostly used in MLP are:

• Rectified Linear Unit (ReLU)

y = max(0, z)

• Soft ReLU
y = log1 + ez

• Hard Threshold

y =

{
0 z ≥ 0

1 z ≤ 0

• Logistic
y =

1

1 + e−z

3.1.2 CNN
Since 1990’s CNN have successfully implemented in hand written digits recognition
and face recognition. It is constructed in a way so that it can take advantage of the
spatial structure of the input, hence it performs so well in the image and audio as
there inherent spatial structure within them. One of the main advantages of CNN
over MLP is that in CNN it takes way less parameter to train for the network. In the
heart of CNN there is convolution operation, hence the name is Convolution Neural
Network was given. Mathematically this convolution operation can be formulated
between two functions f and g as

(f ∗ g)(n) =
∞∑

m=−∞

f(m)g(n−m) =
∞∑

m=−∞

f(n−m)g(m) (3.6)

In literature, this g is referred as the kernel function. The non-linearity part of the
model is mostly implemented with the tanh function defined as

f(x) = tanh(x) (3.7)

7

or with the sigmoid function defined as

f(x) =
1

1 + e−z
(3.8)

CNN architectures tend to suffer from over-fitting the model. To solve the issue two
methods mainly being used.

• Data Augmentation: It enlarges the dataset with label preserving augmenta-
tion.

• Dropout: This method gives a probability of 0.5 for each hidden neuron’s
output to be zero. Therefore the neuron would not contribute to the forward-
pass, and do not participate in the back-propagation.

3.1.3 RNN-LSTM
Recurrent Neural Network can be thought of an extension of the Feed Forward
Neural Network by giving memory to the network. Here memory part is related
with the loop in the model. Mathematically by extending the update function used
in CNN, it becomes:

ht = Wxt + b+ Uht−1 (3.9)
Where, U is a square matrix. The equation can also be extended through time like,

ht = Wxt + b+ UWxt−1 + Ub+ U2ht−2 (3.10)

One of the important aspect of RNN to be noted here that, the model erased the
memory whenever it gets to a new sample input. Also training RNN is rather
difficult due to the vanishing gradient problem. Thats why its not recommended
to use ReLU as an activation function rather tanh as it can maintains values from
[-1,1].

As RNN can’t maintain memory for too long LSTM (Long Short Term Memory)
was proposed to tackle the issue. LSTM can learn long term pattern with 100 steps.
It also minimizes the vanishing gradient problem by introducing new gates, such as
input and forget gates, which allow for a better control over the gradient flow and
enable better preservation of “long-range dependencies”.

3.2 Dataset & Features

3.2.1 Dataset
3.2.1.1 Data Collection

Data collection part was assumed to be the most difficult part of this thesis as we
have to collect pure accented audio samples from different districts of our country.
However, we were able to find [12] this paper by some researchers from Daffodil
University on similar topic. We contacted them and they were kind enough to
provide us with their dataset. Although, further cleaning of the audio samples and
preprocessing was necessary. They used three different methods to collect the audio
samples. The methods are described below:

8

1. Manually: They physically approached various people from different districts
to record their voices. They used a specific script to record the audio samples
from them. However, this proved to be quite time consuming and tedious. So,
small number audio samples were collected using this process.

2. Google Form: A google form was also created to gather audio samples from
individuals. But the variety in audio quality and lack of willingness to record
and upload an audio sample to the form resulted in very small amount of audio
samples being collected via this process.

3. Youtube: Lastly, this method proved to be the most effective way for them
to collect data. Many regular channels and News channels existed on Youtube
where the host was from certain region of Bangladesh and that person only
spoke in the accent of that specific region. Most of the audio samples of the
dataset is collected using this method. They segmented each sample audio
into 5 seconds and converted them into ’wav’ formatted audio files. Sample
rate of each audio file was 16MHz. They used the website YT Cutter to create
the 5 seconds audio samples.

Total of 9263 audio samples of 5 seconds each were collected by using the 3 methods
described above.

3.2.1.2 Data Cleaning And Denoising

After getting the dataset, we started going through the individual audio files. During
this time, we found few flaws in the dataset. The three major problems are described
below:

• The audio samples in the formal accent were in various formats. None of
them were in ‘.wav’ format. In order to process those audio samples, we
had to convert all of them in the ‘.wav’ format to process the samples using
librosa. A script was written in order to process all the files into ’.wav’ files.
Nonetheless, the Formal samples were the most clear and crisp samples among
all the accents.

• The samples which were taken from YouTube, for example from various re-
gional news channels or from various regional Bengali Natoks (Films) had a
significant amount of background noise and extra music which were not part
of the speech. In order to extract only the features of the accents we needed
to create a noise or background noise free samples. We used an open source
software called ‘Audacity’ to clean the audio samples. However, the samples
of the Sylhet region were taken from a news channel which contained heavy
music when transitioning from reading one news headline to another. There
were few samples which did not even contain any speech at all. In these cases,
we tried to remove the portion of the audio which contained certain musical
noises. Unfortunately, we had to discard few samples because it was not possi-
ble to denoise the audio sample without causing significant loss in the speech.
The audio samples before and after removing the musical noise can be seen in
Figure 3.1 and Figure 3.2 respectively. These screenshots were taken from the
Audacity software.

9

The audio samples shown in figure 3.1 are from the Sylhet region. These were
collected from a Sylhet news channel. There were musical sounds between
each headline as the news anchor read them. we can see that these 3 audio
files have a similar amplitude in certain time domains. These parts had to
be removed using Audacity. The samples shown in figure 3.2 are the same
samples as the previous ones, only this time the musical part is muted. At the
beginning this method was mainly used to remove the musical sounds from
the audio samples. However, very soon this proved to be quite cumbersome as
it was an extremely labor intensive work to go through each and every audio
samples of the dataset.

Figure 3.1: Before removing noise

Figure 3.2: After manually removing noise

• In order to remove the music part from our dataset We had to opt for a better
and more efficient way which would enable us to write a python a script to
automate this “noise” removal process. After looking for a while we found a

10

Figure 3.3: After removing noise using the pre-trained model spleeter

pre-trained ML model named Spleeter [11] which was able to separate speech
and music from a given audio sample. Fortunately, this pre-trained model can
be accessed using a python module created by them. A script was written in
python Using this pre-trained model in order to separate the speech from the
music and keep only the speech audio files. Python’s OS module was used as
well in this script to organize the cleaned audio samples. Albeit, the speech
audio samples generated using this approach was not as clean as they could
be, if we manually cleaned them. But it was almost impossible to go through
all the 9263 samples one by one. The figure 3.3 shows the output speech
samples of the same data in the figure 3.1, but this it was cleaned using the
pre-trained model. The difference between the outputs of using these two
different approaches can be easily compared using the figure 3.2 and figure 3.3
which shows manual and using the pre-trained model respectively. We can see
that there is barely any difference between the two.

• Lastly, for proper MFCC features extraction we had to make sure that all the
samples of the dataset are of same length otherwise it would not be possible
to properly segment each sample and take same amount of MFCC features.
A python script had to be written using the pydub [16] module in order to
determine whether all the samples were of the same length. After running
the script we realized that most of the samples in the formal folder were not
exactly 5 seconds in length. The samples which were lower than 5 seconds were
thrown away and those which were longer than 5 seconds had to be trimmed
down to 5 seconds using another python script which used the pydub module
as well.

11

3.2.1.3 Final Dataset

After completing this data cleaning process, we had total of 9075 audio samples.
The sample distribution of our dataset is given in the figure 3.4.

Figure 3.4: Sample distribution

12

3.2.2 Data Features
3.2.2.1 Amplitude Envelope

This is a time domain feature. It refers to the max amplitude value of all samples
in a frame. This is an important property of sound, because it is what allows us to
effortlessly identify sounds, and uniquely distinguish them from other sounds. The
way we calculate amplitude envelope is by this equation:

AEt =
(t+1).K−1
max
k=t.K

s(k) (3.11)

Here, s(k) refers to the amplitude calculated at the kth sample, K is the frame size,
and t refers to the sample number of a given frame in the iteration.
Amplitude envelope gives us idea of loudness of the signal we are working with.
Though it is sensitive to outliers, it is extremely useful in onset detection. In figure
3.5 the amplitude envelope of the first sample of Barisal region is shown.

Figure 3.5: Amplitude Envelope of a sample from Barisal Region

3.2.2.2 Zero Crossing Rate

It is also an time domain feature of a signal. It tells us the number of times a signal
crosses the horizontal axis. The way we calculate Zero Crossing Rate is by this
equation:

ZCRt =
1

2

(t+1).K−1∑
k=t.K

|sgn(s(k))− sgn(s(k + 1))| (3.12)

Intuitively, it means that we calculate amplitude value of consecutive pairs of sam-
ples, and look for sign differences in those pairs of values. We define the sgn()
function as such:

• s(k) > 0 −→ +1

• s(k) < 0 −→ −1

• s(k) = 0 −→ 0

13

We take the sgn of amplitude at sample k and then we subtract that with the sgn
of the amplitude at sample k + 1. For same sgn values we get zero. And otherwise
we get value of 2 indicating a crossing has happened in that pair of samples.
Zero Crossing Rate is a fairly popular audio feature in Audio Signal Processing.
It is used for recognizing between percussive and pitched sound, monophonic pitch
estimation. In figure 3.6 we have shown ZCR of a sample in Barisal Region.

Figure 3.6: Zero Crossing Rate of a sample from Barisal Region

3.2.2.3 Root Mean Square Energy

The concept of Root Mean Square Energy is quite simple. As the name suggests, it
takes the root mean square value of the Amplitude or the energy of all samples in
a single time frame. That is why it is a time domain feature. The equation used to
calculate RMSE is given below:

RMSt =

√√√√ 1

K

(t+1).K−1∑
k=t.K

s(k)2 (3.13)

Figure 3.7: RMSE of a sample from Barisal Region

In the formula, s(k) is the energy of the kth sample. This formula is summing up
the energy of all the samples in frame t. Here, K is the frame size or the number of
samples in a given frame. A visual representaiton of RMSE is given in figure 3.7, it
is showing the ZCR value of the first sample from the Barisal Region .

14

3.2.2.4 Spectral Centroid

If we think intuitively, then we can think of spectral centroid as the ‘Brightness’
of the sound. This feature of audio easily maps to the ‘Timbre’ of a sound. It is
the center of gravity of the magnitude spectrum in a given audio sample. In other
words, it gives us the frequency bins where most of the energy in a given sample is
stored.

Just like other frequency domain features, we need to apply STFT to get the
spectrogram information, then we can move on to extract the spectral centroid. In
the formula of Spectral centroid, we can see that the weighted mean of. Here, Mt(n)
is the magnitude of the signal at time frame ‘t’ and frequency bin ‘n’. N is the total
number of bins. The equation we use to calculate Spectral Centroid is given below:

SCt =

∑N
n=1mt(n) · n∑N
n=1mt(n)

(3.14)

In this spectrogram below in figure 3.8 we can see the white line as the spectral

Figure 3.8: Spectral Centroid of a sample from Barisal Region

centroid of “br1.wav” file which is the first sample from the Barisal region. This
concept is similar to RMSE whereas during RMSE the calculated mean is Ampli-
tude and in this case the mean is Frequency. This feature can help us determine the
difference between the accents using the variety of frequency bins that can found in
each regional accent.

3.2.2.5 Spectral Bandwidth

This feature is derived from the previously mentioned Spectral Centroid. It gives
us the spectral range around the centroid. If we think of the spectral centroid as
the mean of the spectral magnitude distribution then spectral bandwidth can be
thought of as the ‘Variance’ of that mean. This feature can be also mapped to the
‘Timbre’. So, spectral bandwidth is also a weighted mean. But this time, it is the
weighted mean of the distances of frequency bands from the Spectral Centroid.

BWt =

∑N
n=1 |n− SCt| ·mt(n)∑N

n=1 mt(n)
(3.15)

15

From the formula we can clearly see the similarities with the Variance formula.
Here, mt(n) is the magnitude of the signal at time frame t and frequency bin n.
This time, in the formula we are using the difference between the Spectral Centroid
value and the current frequency bin value. N is the total number of bins. The
spectral bandwidth gives the idea that how the energy of the given sample is spread
throughout all the frequency bands. It basically means, if the energy is spread across
the frequency bins, then the value of Spectral Bandwidth will be higher. On the
other hand, if the energy is focused on specific frequency bins, then the value of
Spectral Bandwidth will be lower.

Figure 3.9: Spectral Centroid & Bandwidth of a sample from Chittagong Region

3.2.2.6 MFCCs

Mel-Frequency Cepstral Coefficients is somewhat related to the idea of mel-spectrogram.
Basically we are using a mel scale, which is a perceptually relevant scale for pitch.
Depending on the implementation it can give up to 39 features, for our work we are
using 13 features.

To understand MFCC we need to formalize the idea of Cepstrum mathemati-
cally. We compute cepstrum with this formula:

C(x(t)) = F−1[log(F (x(t))] (3.16)

where x(t) is the time domain signal, then we take the discrete Fourier transform
of the signal, giving us the Spectrum of the signal in the frequency domain. Taking
Log of the spectrum we get Log Amplitude Spectrum. And finally we take inverse
Fourier transform, to get Cepstrum.

Now we turn our attention to Mel-Scale. Its a mapping between our perceived
frequency or pitch of a pure tone to its actual frequency or pitch. The reason we use
Mel-Scale because we human are much better at discerning small changes in pitch
at low frequencies than they are at high frequencies. Incorporating this scale makes
our features match more closely what humans hear. Given a frequency we calculate
its mel-frequency with this formula:

M(f) = 1125ln(1 + f/100) (3.17)

16

And to go from mel-scale to frequency, we use this:

M−1(m) = 700(exp(m/1125)− 1) (3.18)

Now we take a quick look on the implementation of the MFCCs. We start with
an audio signal which is sampled with 22kHz.The overview of the whole process is
given in the figure 3.10 :

Figure 3.10: MFCC Steps

• The frame size we used was 2048 samples per frame. We let Librosa decide
the hop length so it can give us 13 features. Then for each frame 13 mfcc
coefficients were extracted. Let s(n) be our time domain signal. After framing
the whole signal we have si(k) where i ranges over 1 to 256 indicating each
samples and k denotes the frame number. Also, let Pi(k) denotes the power
spectrum of frame i.

• Now we apply Discrete Fourier Transform to each frame. For that we use this
equation:

Si(k) =
N∑

n=1

si(n)h(n)e
−j2πkn/N (3.19)

where h(n) denotes the hamming window. Now to get power-spectral we use,

Pi(k) =
1

N
|Si(k)|2 (3.20)

This is called the Periodogram estimate of the power spectrum.

• Now we take our attention to compute mel-spaced filterbanks. A set of trian-
gular filters, mostly 13, were applied to periodogram power spectral estimated
from the previous part.

• We take the log of 13 energies from the last step. This will create a log
filterbank.

17

• Then we take the Discrete Cosine Transform (DCT) of our log filterbank to
get 13 MFCC coefficients of each frame.
Figure 3.11 shows a spectogram of 13 MFCC extracted from the first audio
sample of the the Barisal region which was called “br1.wav”. By observing
closely, 13 horizontal segments can be seen in the spectogram which are gen-
erated from values of each MFCC.

Figure 3.11: Mel Spectrogram using the 13 Coefficients

18

Chapter 4

Proposed Methodology

4.1 Work Plan
In order to differentiate various accents from each other, the first step was to find
and collect the proper dataset for the thesis. The next step was to decide which
accent to collect and start the sample collection process. However, thanks to re-
searchers of [6] paper, this process was skipped as their dataset was used for this
work. The python module “librosa” was used to process the dataset. Moreover, be-
fore processing few scripts were written to clean the audio samples. After cleaning
and de-noising the samples, 9075 usable samples were stored. Each sample was a 5
seconds long audio file which was sampled at 22050hz sample rate. Various audio
features were extracted from the samples and using “librosa” and using the python
module “matplotlib” the features were visualized. An initial CSV file was created
to store the mean values of extracted features as the first dataset. For a second
dataset each 5 seconds audio was broken into 1 second audio each containing 22050
quantized samples. After segmenting the 5 seconds audio files into 1 second parts,
the total number of audio files were 45375. From each of these 45375 files 13 MFCC
features were extracted. Three neural network algorithms were applied which are
Multilayered Perceptron Neural Network, Convolutional Neural Network and Re-
current Neural Network on the second dataset. Tweaking the parameters of these
networks was necessary to get the best result. Only accuracy alone is not enough
to determine the best model. So, confusion matrices, accuracy, precision, recall and
f1 score were used to determine the best model from the thesis.

Figure 4.1 shows a diagram of the work plan containing the summary of the indi-
vidual steps.

19

Figure 4.1: Work Plan

20

4.2 Feature Extraction

4.2.1 Extraction process
4.2.1.1 CSV Dataset

Using the python module Librosa, all the samples were processed and the features
were extracted. The mean values of 18 extracted features from each 5 second sample
was taken and stored in the CSV file. The values of first 35 samples can be seen in
the figure 4.2. This was the first created Dataset.

Figure 4.2: All features of audio samples stored in CSV format

21

4.2.1.2 JSON Dataset

A second dataset was created in order to store only the MFCC features. There were
total 9075 processed samples. However, there was a high possibility of irrecoverable
level of overfitting when training a neural network using only this small amount of
samples. Furthermore, segmentation the samples was necessary in order to get even
more detailed features of these audio samples. Thus, each of the audio samples were
divided into 5 segments, which functioned as individual samples of 1 second each.
During feature extraction we used sample rate of 22050Hz. So, each of these audio
files contained 22050 samples. MFCC features were extracted by applying Fast
Fourier Transform 2048 times and using hop length of 512 samples from the 22050
samples of each audio segment of 1 second. So, ceiling value of (22050/512) which is
44 segments of 13 MFCC features were extracted from 1 second of audio. Meaning,
total of (44*13) = 572 MFFC were extracted from 1 second of audio sample. This
whole segmentation process and MFCC feature extraction process is shown in figure
4.3.

Figure 4.3: Audio segmentation and MFCC features extraction process

22

4.2.2 Feature Distribution Throughout the Dataset
In the figure 4.4 and figure 4.5 we can clearly see the differences between regions of
their values in specific features. This allows us to understand the difference between
fundamental audio features of different speakers across the various regions.

Figure 4.4: Distribution of Amplitude Envelope, Root Mean Square and Zero Cross-
ing Rate across all regions

Figure 4.5: Spectral Centroid and Spectral Bandwidth distribution across all regions

23

4.3 Proposed Architecture
Three different Neural Network architectures was used to process the MFCC features
from the JSON dataset. The python module Tensorflow GPU [9] was used to build
and train these neural networks. The architectures of these neural networks are
described below:

4.3.1 MLP

Figure 4.6: High level view of the MLP model

This was the first implementation of the neural network. It is a very simple fully
connected architecture containing, an input layer then 4 hidden dense layers and
the output layer consisted of 9 neurons representing 9 different regions. The input
shape of our dataset was (44x13), 44 different segment each containing 13 MFCC
features. However, the input layer of a MLP neural network has be 1 dimensional.
So, these 2 dimensional data was flattened into 1 dimensional data. Therefore, the
input layer had (44x13)= 572 data points. A high level view of the architecture is
shown in figure 4.6.

Figure 4.7: Summary of the MLP model

24

These values were passed onto the 1st hidden layer, which had 512 neurons. Then,
the second layer contained 256 neurons, the third layer contained 128 neurons and
lastly the fourth layer consisted of 64 neurons. For each of the neurons the activation
function ’ReLu’ was used. Finally, the output layer contained 9 neurons and ’Soft-
max’ was used as the activation function in order the maximize the output neurons
value so that the the highest value stood out.

However, after the training process, the realization came that there was a lot of
overfitting as the testing accuracy was not keeping up with the training accuracy.
That is why, L2 regularization was implemented where the value of lambda was
0.001. Moreover, 10% of the neurons were dropped after each of the dense layers.
In figure 4.7 the detailed architecture of this MLP architecture is shown.

4.3.2 CNN
Our CNN architecture consisted of two 2D convolution layer followed by Max-
pooling layer after each of the convolution layer. As, the CNN architecture is de-
signed to process 2D image data, the data of figure 3.11 from each of the samples
were fed into the network. In the figure 3.11 image 13 horizontal lines can be seen
which represents the 13 MFCC values. These can be thought of as the Y axis and for
the X axis it was 44 different segments each containing 512 bins from 1 second audio.
Therefore, the value passed into this architecture can be thought of as a 44x13 pixel
image. Since, the batch size was 64, so 64 of these 2D data was fed into the network.

Figure 4.8: High level view of the Hybrid CNN architecture

In the first convolution layer 32 kernels were used each consisting of (3,3) shape.
The stride value was (1,1). Then, the scanned values of these kernels were passed
onto the next Max-Pooling layer in order to downscale and take only the important
features from the first layer. The pooling window size were (3,3) and stride was
(2,2). Same padding was used as the last convolution layer which is (1,1). After
the max-pooling, Batch Normalization layer was used in order avoid vanishing or
exploding gradients while back propagating through the network. Now, the second

25

2D convolution layer consisted of 16 kernels each of same shape and stride of the
first convolution layer. The same max-pooling layer was used after the second con-
volution layer. An high level overview of the hybrid CNN architecture can be seen
in figure 4.8.

After the convolution layers, the shape of the data was (10,2,16). So, it was flattened
to (10*2*16)=320 1 Dimensional data. Finally, it was passed into a network of 4
dense layers containing 256, 128, 64 and 32 neurons. As activation function, ’ReLu’
was used in all these layers. In order to reduce overfitting after each dense layer
10% of the neurons were dropped and L2 regularization was used where the value
of Lambda was 0.001.

Figure 4.9: Summary of the Hybrid CNN architecture

The output layer consisted of 9 neurons where ’Softmax’ was used as activation
function. Here, the 9 different neurons contained the probability of being in 9 differ-

26

Figure 4.10: Visual representation of the Hybrid CNN architecture

ent regions. ’Softmax’ to increase the value of the highest probability and to reduce
the other probabilities.

Summary of the architecture is shown in figure 4.9. Moreover, an even more detailed
visual representation is also shown in figure 4.10.

4.3.3 RNN-LSTM
As explained in the algorithm portion Recurrent neural networks are perfect for
time-series type of data. In our case, it was expected that RNN would give us the
best accuracy because audio data are perfect example of time-series data. As we
know, speech is a continuous form of data. In order to recognize accent it is vital
to consider information from the sample bins. Memory cells of RNN architecture
give the network the ability to keep information from the previous cycle. LSTM
type of memory cell was used in this architecture which stands for Long Short Term
Memory. This special type of cell allows the network to not only store the Short
Term information but also the Long Term information. Therefore, the information
from even more recurrents earlier has impacts on how the weights are adjusted for
the current neuron.

As usual the input shape of the data was (44,13), 44 segments each containing 13
MFFC values. This input was passed into the first LSTM layer. It consisted of 512
recurrent neurons. Each of these memory cells had 44 recurrent neurons inside it.
Therefore, each of these 44 neurons were actually Dense layers on their own and by
back propagation they changed their own weights and biases. In this first LSTM
layer, the ’tanh’ function was as acitvation function for the LSTM neurons and
’sigmoid’ function was used as activation for the neurons of the recurrent layer. In
order to reduce overfitting, L2 regularization was used in both the LSTM outer layer
and also the recurrent layer. In both of these cases, the value of Lambda was 0.01.
This LSTM layer passed a sequence to the next layer. Thus, this layer outputted a

27

Figure 4.11: Summary of the Hybrid RNN-LSTM architecture

seuqence after taking in a sequence.

Another LSTM layer was added after the previous one. It consisted of 256 recurrent
neurons. Rest of of the structure was same as before. However, this LSTM layer
passed a Vector to the next layer. So, it took a sequence from the previous LSTM
layer and passed a Vector in the following layer.

Finally, the exact same dense layers which was in CNN architecture was also created
after the previous LSTM layer. To summarize, 4 dense layers each respectively con-
taining 256, 128, 64 and 32 neurons. To reduce overfitting, L2 relarization as applied
in all these layers where the value of Lambda was 0.001. However, no neurons were
dropped.

Just like the previous two architectures, the output layer contained 9 neurons each
representing different regions. In the figure 4.11 summary of the LSTM architecture
is shown.

28

Chapter 5

Implementation, Result &
Analysis

5.1 Preparing the Data and Models
The networks were trained on the JSON dataset which contained only the MFCC
features of the audio samples. This decision was taken because generally all the
features described in 3.2.2 is more or less compressed into a Mel Spectrogram of an
audio file and the MFCC features are extracted from this Mel Spectogram. There-
fore, the MFCC itself can represents almost all the major features of an audio file.

5.1.1 Train, Validation & Test Split
Before fitting the models using the JSON dataset, it was split into three different
parts. These are train, test and validation data. The JSON dataset contained MFCC
features from total of (9075*5)=45375 audio samples since the 5 seconds audio files
were segmented into 5 parts. At first the dataset was divided into training and
testing data. From the whole dataset, 30% of the data, meaning ceiling value of
(45375*30%)= 13613 samples were used for testing the models. On the other hand,
70% data from the dataset, meaning (45375-13613)= 31762 samples were used for
training the models. For the training process, among the 31763 samples 20% was
used for validation. So, ceiling value of (31763*20%)= 6353 samples were used for
validation and (31762-6353)= 25409 samples were used for the actual training of the
neural network models. Figure 5.1 shows this distribution of the dataset.

5.1.2 Training Parameters
In order to train the models, Adam optimizer was used with a learning rate of 0.0001
in all the models. Adam was used because, in general it is very effective in most of
the neural networks. Moreover, in most of the cases Adam is able to reach the local
maxima quite fast within fewer number of epoch. Furthermore, as the loss function
“Sparse Categorical Crossentropy” was used because the output layer contained 9
neurons representing 9 different regions. For, this type of multi class classification
“Sparse Categorical Crossentropy” loss function gives the optimum result. Lastly,
all of these models were fed the data in batch size of 64.

29

Figure 5.1: Splitting of the Dataset

5.2 Experimental Results & Analysis
Three different models has been created in order to process the JSON dataset which
contained the MFCC features. The architectures of these model are already de-
scribed. Architecture of the MLP network is described in 4.3.1, Hybrid CNN archi-
tecture is described in 4.3.2 and lastly LSTM architecture described in 4.3.3. After
splitting (5.1.1) the dataset training and validation data were passed in the models.
All of these models had the same training parameters mentioned in 5.1.2. The MLP
network was trained for 50 epochs and the rest of the two models, Hybrid CNN and
LSTM was trained for 75 epochs.

5.2.1 Accuracy and Loss Graph
At the end of training MLP had training accuracy of 77.9% and validation accuracy
of 65.1%. It was a very simple architecture so this type of accuracy was expected.
However, there still exists overfitting which can be seen in the 5.2. Using L2 regu-
larization and dropout of certain amount of neurons overfitting was solved a bit but
it was not possible to get rid of it fully.
In figure 5.6, the graph containing training and validation accuracy and loss of the
Hybrid CNN model is shown. The training ended with training accuracy of 81.5%
and validation accuracy of 69.4%. This is a slight improvement from the previous
model and the graph is more stable.
Lastly, the graph for the LSTM model is shown in the figure 5.4. It can be seen
clearly that the accuracy of this model is quite better compared to the the previous
two model. It was to be expected because, RNN architecture is good for time-series
data. Albeit, the progress was a bit unstable throughout the training period. At
the end, the validation accuracy was 76.2%.

30

Figure 5.2: Accuracy and loss graph of MLP

Figure 5.3: Accuracy and loss graph of Hybrid CNN

Figure 5.4: Accuracy and loss graph of LSTM

31

5.2.2 Confusion Matrix
Confusion matrix is a great way to thoroughly compare different models. It enables
one to judge the accuracy of individual classes of the output layer. In the confusion
matrices shown here, the rows means true labels and the columns are predicted la-
bels. There, in a perfect confusion matrix only the diagonal cells will be the darkest
and the rest would be white. Confusion matrix also allows one to see which classes
are mislabeled the most and which are the least. This can help to pinpoint some
problems in the dataset.

The confusion matrices of the MLP, Hybrid CNN and LSTM models are shown in
5.5, 5.6 and 5.7 respectively. It seems that, the diagonal values are darkened the
most. However, we can find very similar pattern between three of the matrices.
All three of the models are mostly predicting Barisal as Noakhali and vice versa.
Moreover, same pattern can be seen between Barisal and Mymensingh. From the
percentage values, the improvement from MLP to CNN and then CNN to LSTM
can be seen quite easily. Although the accurate predictions numbers were increased
from model to model but the pattern among the three different confusion matrices
are quite the same. From these matrices, it can be concluded that in order to im-
prove the accuracy even more the samples from Mymensingh, Barisal and Noakhlai
needs to be checked manually. Furthermore, not even a single mispredicted cell con-
tained 0% accurancy. Meaning, for every single actual region the models predicted
all the other regions at least once. This means, in many cases the models are just
randomly predicting a region. Most likely, the reason behind this is how the dataset
was generated and it was not well built. Most importantly, the dataset does not
contain isolated speeches. Using isolated speech the models would have a higher
possibility of reaching their full potential.

32

Figure 5.5: Confusion matrix of MLP

Figure 5.6: Confusion matrix of Hybrid CNN

33

Figure 5.7: Confusion matrix of LSTM

5.2.3 Accuracy, Precision, Recall & F1 Score
There is no single easy parameter based on which AI models can be judged and be
compared with other AI models. Some models might be better at predicting spe-
cific classes so naturally it gives high accuracy for those cases whereas other models
might just give a overall high value of accuracy. Especially when the accuracies
and the confusion matrices are quite similar. However, information extracted from
the confusion matrix can be used to get such values which can help to compare the
models of this paper quite thoroughly. These are individual_accuracy, precision,
recall and F1 score.

For the definitions below, TP, TN, FP and FN means True Positive, True Negative,
False Positive and False Negative respectively.

5.2.3.1 Individual Accuracy

Individual accuracy is calculated by converting the matrix into a (2,2) matrix where
only except for the current cell everything else is reduced and formula is applied. The
numerator means all the correct results and the denominator mean the total amount
of testing data. Like the True Positive and True Negative are the actually corrected
predicted values. That is how, accuracy of individual classes are calculated.

Individual_Accuracy = (TP + TN)/Total_Testing_Data

= Total_Correct_Predictions/Total_Testing_Data

34

5.2.3.2 Precision

Precision of a certain output class basically means, among all the predicted positive
results how many were actually correctly predicted. That is why in the numerator
True Positive and the Denominator contains Total_Predicted_Value. It helps to
point out the precise accuracy of that specific output class excluding rest of the
classes.

Precision = TP/(TP + FP)

= TP/Total_Predicted_Positive

5.2.3.3 Recall

Recall value of a certain output class calculates the rate of prediction among the
actually correct values. In the equation it can be seen that the numerator is True
Positive value and the numerator is the Total Actual Positive for the current output
class only.

Recall = TP/(TP + FN)

= TP/Total_Actual_Positive

5.2.3.4 F1 Score

F1 Score is calculated by using the Precision and Recall values of a specific output
class. In the equation the value of β means how many times Recall is more important
than precision. For the F1 Score shown here the value of β was 1, which means
precision and recall both were equally prioritized while calculating the F1 Score.
F1 Score can be thought of as an overall judgement of a model’s performance for a
specific output class.

F1_Score = (1 + β2) ∗ Precision ∗Recall

β2 ∗ Precision+Recall

Finally, with these definitions it is possible to get a good enough idea to compare
the three different models. The individual accuracy, precision value, recall value
and f1 score of the different regions are shown in figures 5.8, 5.9, 5.10. The figure
5.8 shows the performance measurement of the MLP architecture. Moreover, figure
5.9 and figure 5.10 shows the performance measurements of the Hybrid CNN and
LSTM respectively. First of all, individual accuracy is quite good in the each of the
models which should be quite obvious. But precision, recall and f1 score is lower
compared to the accuracy value. By analysing these values it can clearly be stated
that the LSTM architecture is the best model among the three.

In our opinion, the sporadic results in the confusion matrix and the low F1 score
are caused by irregularities in the dataset. These models have a great possibility of
performing much better if a properly created and cleaned dataset was given which
would contain isolated speeches from different regions.

35

Figure 5.8: Performance of each region in MLP

Figure 5.9: Performance of each region in Hybrid CNN

Figure 5.10: Performance of each region in LSTM

36

Chapter 6

Future Works & Conclusion

6.1 Future Work
There are still quite a lot of future works that can be done using the models de-
scribed in this paper.

First of all, the networks were only trained on the JSON dataset which contained
only the MFCC features of the audio files. Although, theoretically MFCCs can rep-
resent all the major features of a audio sample but other features except for MFCCs
which are described in 3.2.2 can also be used to train these networks alongside the
MFCC features. The CSV dataset was generated which contained extra 5 features
including the MFCC features. This CSV dataset can be applied in the neural net-
work architectures described in this paper. By doing so, it is possible to get a greater
accuracy, better performance and more insight on some of the irregularities in the
dataset.

Secondly, only deeplearning techniques was used in this paper to generate the mod-
els. There are various Machine Learning algorithms as well which is generally used
for classifying speech audio data. In the future, those algorithms can be imple-
mented on the dataset to get a completely different result from the ones explained
in this paper.

Lastly, as it can be seen in the result and analysis section 5.2 that slowly the ac-
curacy and the overall performance improved when more and more complex neural
network architectures were used. However, there is far more room for improvements.
A similar pattern can be seen in all the confusion matrices no matter what archi-
tecture was used. This common pattern was described in 5.2.2 that none of the
mispredicted cells contained 0 in it. It was further stated that this was a result
of how the dataset was generated and it does not isolated speeches. Therefore, by
creating a brand new dataset containing isolated speeches from different regions
and using that dataset to train this model will definitely result in far more robust
models which would generate a more cleaner and better confusion matrices, highly
improved accuracy and F1 score.

37

6.2 Conclusion
Automatic speech recognition systems are getting embedded in our lives more and
more nowadays. As it helps with fluent workflow reducing the manual labor required
to interact with machines, it should have very minimal to no errors. A great barrier
to achieve this is various accents of a language. Since, even modern ASR models
struggle to predict when something other than the formal accent is used. This is a
huge challenge for ASR systems as processing accented speech increases error rate.
The best solution for this is to create different models for different accents. After
classifying the accent, the audio data could be sent to the model which is best suited
for the classified accent.

As for the Bengali language, few decent ASR systems have been built. However,
almost next to none work has been done to solve the accent issue. The first step
towards solving this would be classifying different Bengali accents. The main goal
of this paper was to contribute a little in order to solve this problem. Three dif-
ferent deep learning techniques was used create models which resulted in moderate
accuracy. Albeit, there is much more room for improvements but the goal was to
pave a better way for the future works of Bengali ASR Systems. Training using a
fresh dataset consisting of isolated bengali speech from different regions has a great
chance of increasing the robustness of these models significantly. Therefore, if this
paper can provide some valuable knowledge or insight to anyone seeking to solve
the accent issue in Bengali ASR, it will certainly be a worthwhile journey.

38

Bibliography

[1] J. Hansen and L. Arslan, “Foreign accent classification using source genera-
tor based prosodic features,” in 1995 International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, 1995, 836–839 vol.1. doi: 10 . 1109 /
ICASSP.1995.479824.

[2] C. Teixeira, I. Trancoso, and A. Serralheiro, “Accent identification,” in Pro-
ceeding of Fourth International Conference on Spoken Language Processing.
ICSLP ’96, vol. 3, 1996, 1784–1787 vol.3. doi: 10.1109/ICSLP.1996.607975.

[3] L. W. Kat and P. Fung, “Fast accent identification and accented speech recog-
nition,” in 1999 IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), vol. 1, 1999,
221–224 vol.1. doi: 10.1109/ICASSP.1999.758102.

[4] T. Chen, C. Huang, E. Chang, and J. Wang, “Automatic accent identifica-
tion using gaussian mixture models,” in IEEE Workshop on Automatic Speech
Recognition and Understanding, 2001. ASRU ’01., 2001, pp. 343–346. doi:
10.1109/ASRU.2001.1034657.

[5] C. Huang, T. Chen, and E. Chang, “Accent issues in large vocabulary con-
tinuous speech recognition: Special double issue on chinese spoken language
technology,” International Journal of Speech Technology, vol. 7, Jan. 2004.

[6] Y. Zheng, R. Sproat, L. Gu, I. Shafran, H. Zhou, Y. Su, D. Jurafsky, R.
Starr, and S.-Y. Yoon, “Accent detection and speech recognition for shanghai-
accented mandarin.,” Jan. 2005, pp. 217–220.

[7] S. Zhang and Y. Qin, “Semi-supervised accent detection and modeling,” in
2013 IEEE International Conference on Acoustics, Speech and Signal Process-
ing, 2013, pp. 7175–7179. doi: 10.1109/ICASSP.2013.6639055.

[8] K. Mannepalli, P. N. Sastry, and V. Rajesh, “Accent detection of telugu speech
using prosodic and formant features,” in 2015 International Conference on
Signal Processing and Communication Engineering Systems, 2015, pp. 318–
322. doi: 10.1109/SPACES.2015.7058274.

[9] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,

39

https://doi.org/10.1109/ICASSP.1995.479824
https://doi.org/10.1109/ICASSP.1995.479824
https://doi.org/10.1109/ICSLP.1996.607975
https://doi.org/10.1109/ICASSP.1999.758102
https://doi.org/10.1109/ASRU.2001.1034657
https://doi.org/10.1109/ICASSP.2013.6639055
https://doi.org/10.1109/SPACES.2015.7058274

and Xiaoqiang Zheng, TensorFlow: Large-scale machine learning on heteroge-
neous systems, Software available from tensorflow.org, 2015. [Online]. Avail-
able: https://www.tensorflow.org/.

[10] F. Weninger, Y. Sun, J. Park, D. Willett, and P. Zhan, “Deep Learning Based
Mandarin Accent Identification for Accent Robust ASR,” in Proc. Interspeech
2019, 2019, pp. 510–514. doi: 10 . 21437 / Interspeech . 2019 - 2737. [Online].
Available: http://dx.doi.org/10.21437/Interspeech.2019-2737.

[11] R. Hennequin, A. Khlif, F. Voituret, and M. Moussallam, “Spleeter: A fast
and efficient music source separation tool with pre-trained models,” Journal
of Open Source Software, vol. 5, no. 50, p. 2154, 2020, Deezer Research. doi:
10.21105/joss.02154. [Online]. Available: https://doi.org/10.21105/joss.02154.

[12] S. M. Badhon, M. H. Nobel, F. Rupon, and S. Abujar, “Bengali accent classi-
fication from speech using different machine learning and deep learning tech-
niques,” in. Jan. 2021, pp. 503–513, isbn: 978-981-15-7393-4. doi: 10.1007/
978-981-15-7394-1_46.

[13] Bengali dialects, May 2021. [Online]. Available: https ://en.wikipedia .org/
wiki/Bengali_dialects.

[14] J. Fingas, Voice assistants still have problems understanding strong accents,
May 2021. [Online]. Available: https://www.engadget.com/2018-07-19-voice-
assistant-problems-understanding-accents.html.

[15] Bengali language. [Online]. Available: https://www.britannica.com/topic/
Bengali-language.

[16] Jiaaro, Jiaaro/pydub: Manipulate audio with a simple and easy high level
interface. [Online]. Available: https://github.com/jiaaro/pydub.

[17] Musikalkemist, Musikalkemist/deeplearningforaudiowithpython: Code and slides
for the ”deep learning (for audio) with python” course on thesoundofai youtube
channel. [Online]. Available: https://github.com/musikalkemist/DeepLearningForAudioWithPython.

40

https://www.tensorflow.org/
https://doi.org/10.21437/Interspeech.2019-2737
http://dx.doi.org/10.21437/Interspeech.2019-2737
https://doi.org/10.21105/joss.02154
https://doi.org/10.21105/joss.02154
https://doi.org/10.1007/978-981-15-7394-1_46
https://doi.org/10.1007/978-981-15-7394-1_46
https://en.wikipedia.org/wiki/Bengali_dialects
https://en.wikipedia.org/wiki/Bengali_dialects
https://www.engadget.com/2018-07-19-voice-assistant-problems-understanding-accents.html
https://www.engadget.com/2018-07-19-voice-assistant-problems-understanding-accents.html
https://www.britannica.com/topic/Bengali-language
https://www.britannica.com/topic/Bengali-language
https://github.com/jiaaro/pydub
https://github.com/musikalkemist/DeepLearningForAudioWithPython

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	Introduction
	Thoughts behind the thesis
	Research Problem
	Research Objectives

	Related Work
	Literature Review
	Related Works

	Algorithms & Dataset
	Algorithms
	MLP
	CNN
	RNN-LSTM

	Dataset & Features
	Dataset
	Data Collection
	Data Cleaning And Denoising
	Final Dataset

	Data Features
	Amplitude Envelope
	Zero Crossing Rate
	Root Mean Square Energy
	Spectral Centroid
	Spectral Bandwidth
	MFCCs

	Proposed Methodology
	Work Plan
	Feature Extraction
	Extraction process
	CSV Dataset
	JSON Dataset

	Feature Distribution Throughout the Dataset

	Proposed Architecture
	MLP
	CNN
	RNN-LSTM

	Implementation, Result & Analysis
	Preparing the Data and Models
	Train, Validation & Test Split
	Training Parameters

	Experimental Results & Analysis
	Accuracy and Loss Graph
	Confusion Matrix
	Accuracy, Precision, Recall & F1 Score
	Individual Accuracy
	Precision
	Recall
	F1 Score

	Future Works & Conclusion
	Future Work
	Conclusion

	References

