
Performance Analysis of Intrusion Detection Systems Using
the PyCaret Machine Learning Library on the UNSW-NB15

Dataset

by

Abdullah
16101305

Faisal Bin Iqbal
17101339

Srijon Biswas
21141053

Rubabatul Urba
17101426

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

June 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. I/We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Abdullah
16101305

Faisal Bin Iqbal
17101339

Srijon Biswas
21141053

Rubabatul Urba
17101426

i

Approval

The thesis/project titled “Performance Analysis of Intrusion Detection Systems Us-
ing the PyCaret Machine Learning Library on the UNSW-NB15 Dataset” submitted
by

1. Abdullah (16101305)

2. Faisal Bin Iqbal (17101339)

3. Rubabatul Urba (17101426)

4. Srijon Biswas (21141053)

Of Spring, 2021 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on June 6, 2021.

Examining Committee:

Supervisor:
(Member)

Dr. Amitabha Chakrabarty
Associate Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi
Chairperson

Department of Computer Science and Engineering
Brac University

ii

Abstract

As one of the fastest growing technologies on earth, the Internet of Things (IoT)
is being embraced almost everywhere. From smart home technology to industrial
automation, IoT is revolutionizing almost everything around us. It has enabled
humans and organizations to do more with less, both in terms of time, as well as fi-
nances. This feat of the Internet of Things, however, has also led to an alarming rise
in attacks on IoT networks. Among these attacks, botnet intrusions are perhaps the
most worrying ones. And with the advancement of time and technology, attackers
are getting more creative. Hence, it is important to use better and more efficient
machine learning technologies to identify these attacks and detect these intrusions
before they can paralyze the system. This research aims to identify a more efficient
machine learning approach for detecting botnets in IoT networks by utilizing the Py-
Caret machine learning library and analyzing its overall performance. The research
will encompass different classifiers and analyze the different performance metrics for
each of them. It will also shed light on the feasibility of using the PyCaret library
and how well suited it is for such usage.

Keywords: IoT (Internet of Things), Machine Learning, Anomaly detection, In-
trusion detection, PyCaret, UNSW-NB15.

iii

Acknowledgement

Firstly, we would like to express our heartfelt gratitude to the Almighty for giving
us strength, and enabling us to successfully complete our thesis during the troubling
times of a global pandemic.
Secondly, to our advisor, Dr. Amitabha Chakrabarty sir (Associate Professor, De-
partment of Computer Science and Engineering, Brac University) for his timely and
insightful support. He was always there to support, encourage, and motivate us. He
played a vital role in the completion of our research, and for that, we will eternally
be grateful to him.
Thirdly, to Dr. Md. Golam Robiul Alam sir (Associate Professor, Department of
Computer Science and Engineering, Brac University) for providing us with all the
necessary guidelines and instructions regarding thesis, and helping us with all re-
lated queries.
Fourthly, to Ayesha Abed Library for providing us with adequate thesis help and
plagiarism report.
Then to the PyCaret developer’s community on GitHub for assisting us with all
relevant queries.
And finally to our parents and loved ones without whom this would not have been
possible. Their constant support, both mentally as well as financially, has helped us
achieve a great deal in life, and we will forever be grateful to them.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature viii

1 Introduction 1
1.1 What is IoT? . 1

1.1.1 How does Iot work? . 2
1.1.2 Applications of IoT . 2
1.1.3 Challenges in IoT . 3
1.1.4 Security threats in Iot . 3

1.2 What is a Botnet? . 3
1.2.1 How does a Botnet attack? . 3
1.2.2 Effects of Botnet attack . 4

1.3 Intrusion Detection Systems (IDS) 4
1.4 Introduction to the PyCaret Machine Learning Library 4

2 Aims and Objectives 6

3 Literature Review 7
3.1 The Internet of Things . 7
3.2 Botnets . 8
3.3 Machine Learning and Intrusion Detection 8
3.4 PyCaret Machine Learning Library 8

4 Dataset Description 9
4.1 Dataset Description . 9
4.2 Exploratory Data Analysis . 10
4.3 Data Pre-Processing . 12

v

5 Research Methodology 13
5.1 Supervised Learning . 13
5.2 Classification Models . 13

5.2.1 Logistic Regression . 13
5.2.2 K-Nearest Neighbor . 15
5.2.3 Decision Tree . 16
5.2.4 Random Forest . 18
5.2.5 Gradient Boosting Classifier 19
5.2.6 Naive Bayes . 21
5.2.7 Adaptive Boost classifier . 22
5.2.8 Blending . 24

6 Result Analysis 27

7 Conclusion and Future Direction 34
7.1 Conclusion . 34
7.2 Future Work . 34

Bibliography 39

vi

List of Figures

1.1 Working Principle of an IoT System [37] 1
1.2 A Simplified Diagram Showing the Various Applications of the Internet of

Things [17] . 2
1.3 A Typical Botnet Attack Structure [11] 4
1.4 Workflow diagram of PyCaret . 5

4.1 A Brief Overview on how the ”UNSW-NB 15 dataset” was generated using

the ”IXIA PerfectStorm tool” [10] . 9
4.2 Label Distribution in Training and Testing Datasets 10
4.3 Attack Category Distribution in Training and Testing Datasets 11

5.1 Confusion Matrix for Logistic Regression 14
5.2 Classification report for Logistic Regression 14
5.3 Confusion Matrix for KNN . 15
5.4 Classification report for KNN . 16
5.5 Confusion Matrix for Decision Tree . 17
5.6 Classification report for Decision Tree 17
5.7 Confusion Matrix for Random Forest 18
5.8 Classification report for Random Forest 19
5.9 Confusion Matrix for GBC . 20
5.10 Classification report for GBC . 20
5.11 Confusion Matrix for Naive Bayes . 21
5.12 Classification report for Naive Bayes . 22
5.13 Confusion Matrix for AdaBoost . 23
5.14 Classification report for AdaBoost . 23
5.15 Confusion Matrix for Blend 1 . 24
5.16 Classification report for Blend 1 . 25
5.17 Confusion Matrix for Blend 2 . 25
5.18 Classification report for Blend 2 . 26

6.1 Class Prediction Error for DT. 28
6.2 Class Prediction Error for RF. 28
6.3 Class Prediction Error for ADA. 29
6.4 Class Prediction Error for LR. 29
6.5 Class Prediction Error for KNN. 30
6.6 Class Prediction Error for GBC. 30
6.7 Class Prediction Error for NB. 31
6.8 Class Prediction Error for Blend 1. 31
6.9 Class Prediction Error for Blend 2. 32

vii

List of Tables

4.1 Different Classes of Attacks and Their Distribution in Training and
Testing Subsets . 11

4.2 Correlation between different features 12

6.1 Performance Score for Each Trained Model 27
6.2 Train-Test Results (Accuracy) for Each Classifier 32

viii

Chapter 1

Introduction

1.1 What is IoT?

The Internet of Things – abbreviated as IoT – is a technology that supports the
concept of establishing an inter-connection of devices within a set network. As
the name suggests, IoT teases the idea of forming an ‘internet’ like network where
instead of people communicating with one-another, there is a plethora of intercon-
nected devices. These connections can be wired as well as wireless. However, given
the complexity of these networks, more priority is being given to wireless networks
over wired ones when it comes to establishing IoT systems [18].

Figure 1.1: Working Principle of an IoT System [37]

The aim of IoT is to introduce a virtual footprint of all available electronic devices,
and the people who are connected to these devices [12]. In a more generalized
context, the internet of things aims to encompass everything that can be connected
to a network, and utilize them in a faster and more efficient way.

1

1.1.1 How does Iot work?

A typical IoT-based system consists of a central processing unit, one or more sensors,
and actuators. Alongside all these, there are different communication protocols [18]
involved in the passing of instructions and data between the various nodes, which
consists of sensors and actuators, and the processing unit. And instead of using a
local processing unit, the IoT system can utilize cloud-based processing systems as
well.
The sensors are used to perceive real world information and deliver that data to the
processing unit. The processing unit, in turn, analyzes this data and authenticates
necessary actions. These actions are then carried out by the actuators. In some
systems, the actions are carried out by the processing unit itself.

1.1.2 Applications of IoT

When the concept of the Internet of Things was initially proposed by the MIT
Auto-ID center in 1999 [3], no one, in their wildest imaginations, thought that by
2019, it would turn into an industry worth 250 billion US dollars [40]. And by 2027,
it is expected that the IoT industry will be worth almost 1500 billion US dollars [40].

Figure 1.2: A Simplified Diagram Showing the Various Applications of the Internet of
Things [17]

IoT technology is now being utilized almost everywhere. The healthcare sector is
seen working their way around different wearable IoT (WIoT) devices to monitor
their patients’ health remotely [5]. Mass production and utilization of such wear-
able devices will mean that doctors or healthcare professionals no longer need to be
present on-spot in order to monitor the patient’s health condition.
A similar technology is utilized in the agricultural sector, where an IoT infrastructure
is established to monitor the farmlands and livestock, and gather vital information
about them constantly [2]. Apart from all this, the Internet of Things is being
utilized in various other sectors as well, including different businesses, factories,

2

transportation systems, power and energy sector, and so on. With time, we will
be introduced to more diverse uses of IoT and will have seen advances made in its
existing sectors.

1.1.3 Challenges in IoT

Like any other technology, the Internet of Things is also prone to different challenges
and problems. As far as technical challenges go, IoT faces six major obstacles - issues
related to security and integrity, connectivity related problems, longevity and com-
patibility, proper standards, and intelligent analysis and actions [13]. Apart from
technical challenges, the Internet of Things is also subjected to challenges posed by
its usage in different business and social purposes [13]
Among all these challenges, issues related to network and device security and pri-
vacy are always prioritized over everything else.

1.1.4 Security threats in Iot

Potential Botnet attack configuration, DDoS attacks, data manipulation over an un-
encrypted way of data transmission from system to cloud, malware infections are
all the threats IoT still needs to tend to. Primarily security threats are the biggest
concerns of the growing IoT network.

1.2 What is a Botnet?

A botnet can be best described as the concept of a computer network manipulated
for a targeted task. A device’s security is breached leading the hacker to manipulate
other connected devices through the infected device to further infect more devices
leading to a massive interconnection controlled by the hacker without alarming the
owner of the devices. In short, botnets carry out activities automatically and make
them appear legitimate [1].

1.2.1 How does a Botnet attack?

The development of a botnet can be explained in as a two phase [1] procedure. The
first of these two phases is the creation phase, where an attacker or individual cre-
ates a botnet or extends an existing one by writing lines of code. The second stage
involves the propagation of these botnets, mostly through backdoors and exploiting
possible network vulnerabilities.

3

Figure 1.3: A Typical Botnet Attack Structure [11]

1.2.2 Effects of Botnet attack

A botnet attack can cripple entire IT infrastructures. They can take control of end
devices as well as entire networks. Botnets can launch DDoS attacks, steal personal
information, generate spam emails, and so on. The destructive feats of botnets have
made it into a cyber-weapon that can be used in cyber-warfare [41].

1.3 Intrusion Detection Systems (IDS)

An intrusion detection system (IDS) is a monitoring system over a suspicious inter-
vention of traffic. It can be a software or a device that detects abnormal intrusions
or anomalies using different methods (host/network based). In both host (work-
ing device) and network (current operating network) devices, an IDS uses detection
methods like Signature based, like using fingerprints of known threats and matching
them with incoming ones, anomaly based, like using a pattern or defining a standard
for “normal” behavior for the particular device, or even a hybrid one. An IDS is an
extra line of defense tackling the threats that have slipped passed the initial line of
defense.

1.4 Introduction to the PyCaret Machine Learn-

ing Library

Built around the Python programming language, PyCaret is an open-source ma-
chine learning library [30]. It is a low-code library, meaning that a user will require
significantly less lines of code to run a machine learning program. It eliminates
the need to produce hundreds of lines of code through its low-code alternatives.

4

PyCaret utilizes several machine learning libraries and frameworks including scikit-
learn, XGBoost, and CatBoost. Here, the PyCaret library is technically working as
a wrapper library consisting of these popular machine learning libraries.
One of the main aims of the PyCaret library is to establish the idea of ‘democratizing
machine learning”, which means that it enables business analysts, data scientists,
and everyone else, who may not have a computer science or tech background, to
fully utilize these technologies for their personal as well as professional needs. Using
PyCaret allows these users to create ML models more easily and with less effort. A
single line of code is all it takes for the library to provide its users with different
analyses of the data through the variety of models and modules under its scope.
Another thing that makes PyCaret suitable for a large user base is its ability to
handle different parameters. Unlike the traditional way of fitting any ML model,
PyCaret does everything for its users. It passes a list of parameters during the fitting
by utilizing its internal methods. That way, users need only to evaluate the model,
which is also made easy by this library, and compare the results with traditional
methods.

Figure 1.4: Workflow diagram of PyCaret

Figure 1.4 demonstrates the step-by-step workflow of PyCaret. Here, The setup()
function does all of the data preparation. This all done in single function instead
of spreading the work into a number of different, hard to remember function calls.
The compare models() function runs a benchmark against all of the applicable al-
gorithms and returns performance data. Functions such as evaluate model() and
interpret model() return easy to use interfaces for developing a deeper understand-
ing of your model. Finally, The deploy model() function allows the user a process
for deploying models in AWS, Google Cloud or Azure[38].
The main reason our research is centered on this library is to see its effectiveness.
It is to see how well it performs and compares to existing researches conducted on
the same set of data but with a more traditional approach. We are eager to under-
stand the capabilities as well as the limitations of this library and whether or not is
self-sufficient for real-life deployment on various IoT based cloud platforms.

5

Chapter 2

Aims and Objectives

Our research aims to carry out a performance analysis on the capabilities of the
PyCaret machine learning library – an open source and low-code ML library based
on the Python programming language. It aims to do so by running binary classifica-
tions using eight different classification models, and additional blending (ensemble)
techniques, on the ”UNSW-NB15 dataset”. The machine learning program is to
function as an Intrusion Detection System (IDS) that detects possible intrusions or
botnet attacks within an IoT-based network.
The objectives of this research are discussed below in brief –
• To explore the aforementioned dataset.
• To explore the PyCaret library.
• To understand the functional capabilities of the PyCaret machine learning library.
• To utilize the PyCaret library and detect intrusions in the dataset using multiple
classification models.
• To retrieve the detection/classification results and analysis the overall performance
of the PyCaret library on the dataset.
• To understand whether or not the PyCaret library is efficient in providing security
to IoT networks against potential threats while allowing users to prepare the model
for deployment with ease.
• To observe how efficient a low-code machine learning actually is in delivering an
effective solution to real life security threats that an IoT system might encounter.

6

Chapter 3

Literature Review

3.1 The Internet of Things

The Internet of Things has revolutionized the way we connect with inanimate ob-
jects. IoT has eliminated the need for a physical interface between humans and
electronic devices or other inanimate objects, and replaced it with sensors and live
data feed. Physical storage devices are also being replaced with cloud-based sys-
tems and storage facilities. By 2023, 85-90% of IoT data will be stored in the cloud
[29]. On top of that, it is being predicted that by 2025, there will be over 75 billion
connected devices all over the world [29].
Thanks to its scalability, and availability of sensors, IoT technology is being de-
ployed almost everywhere one can look. At present, it has widespread use, and
covers various diverse fields of our everyday lives.
The Internet of Things has had a huge impact on healthcare. Thanks to IoT based
implementations, there has been a lot of developments in the field of smart health-
care, and more opportunities are being explored [14]. Over the years, research efforts
have been put into the development of IoT based wearable devices for patients us-
ing sensors to monitor parameters in order to analyse the health condition [36].
Remote health monitoring system that uses deep learning in order to diagnose heart
diseases has been proposed [34]. In addition, effective and feasible approaches to
manage hospital data using IoT in order to make it useful for proper health analysis
has been studied [21].
Another field that has seen significant increase in the use of IoT is the industry of
smart homes. Smart homes can grant the user control to devices and appliances in
their homes in order to provide convenience and boost security using the internet.
IoT-based low-cost smart home systems and prototypes that can provide users se-
curity and convenience while also ensuring reduced energy consumption has already
been proposed [24].
Given its vast areas of implementations, it is important to secure IoT networks and
devices. Hence, security is of great concern when it comes to IoT technology.
Security challenges in IoT can be divided into two groups- technological challenges,
and security challenges [7]. Technological challenges are mostly related to the IoT
devices and their natures. Security challenges, on the other hand, are mostly related
to the network and different working principles of entire system, as well as interven-
tion from foreign entities outside the network’s user base [7].

7

3.2 Botnets

Botnets have the capability to cripple large networks and systems. They also pose
a great threat to IoT-based systems. Over the past decade, cyber-attacks on large
infrastructures by IoT botnets have made it clear that no IoT or network-based
system is fully safe and secure from these intrusions [15]. Botnets have the ability
to launch Distributed Denial-of-Service (DDoS) attacks which can overwhelm IoT
infrastructures. It can also be used to create a backdoor to the network in order
to provide access to sensitive data and devices in the network. The only way to
tackle these attacks is by monitoring these networks 24x7, identifying the attacks,
and keeping them away from interfering with the network’s operations.

3.3 Machine Learning and Intrusion Detection

Over the years, researchers have looked into the possibilities of detecting and iso-
lating botnets using machine learning technologies [19]. There have been numerous
efforts to retrofit existing machine learning models for identifying botnets. Efforts
have also been taken to develop models from scratch where data packets and requests
are assigned threshold values to check whether an access request to the network is
legitimate or an attack [19].
Researchers have been more inclined towards supervised machine learning models
in detecting intrusions [6]. The aim is to train the models into identifying cer-
tain traits and signs, and classify them as threats or botnets. These papers reflect
on both binary classification, where the model is able to detect the nature of the
packet and declare whether it is a normal packet request or an anomaly, as well as
multi-classification, where the models are not only able to declare the nature of the
request, but also able to classify the type of attack, if that is the case.
Despite the numerous researches conducted in the past, it is important to carry on
with the on-going efforts of developing newer and faster machine learning techniques
that are not only more effective, but can also be developed and deployed with ease.

3.4 PyCaret Machine Learning Library

The PyCaret library is a low-code autoML framework that can be used for classifi-
cation as well as prediction purposes. It is an open-source machine learning library
made publicly available in April of 2020. PyCaret requires significantly less lines
of code to run machine learning models that can then be easily deployed to cloud
services. It comes with its own modules much of which use existing wrappers and
frameworks like Scikit-learn, and is able to provide users with an interactive dash-
board for a clearer understanding of the analysis and results [39].
Given that it is comparatively new, it remains to be seen how the PyCaret library
will perform in terms of botnet detection.

8

Chapter 4

Dataset Description

4.1 Dataset Description

The dataset to be used for this research is the ”UNSW-NB 15 dataset” by the Uni-
versity of New South Wales [10]. It consists of real-life modern normal scenarios as
well as contemporary synthesized attack activities of network traffic [10].

Figure 4.1: A Brief Overview on how the ”UNSW-NB 15 dataset” was generated using
the ”IXIA PerfectStorm tool” [10]

The dataset contains raw packets that were originally created by the ”IXIA Perfect-
Storm tool” at the ”Cyber Range Lab of the Australian Center for Cyber Security
(ACCS)” [10]. It has over two million data records and 49 features which also in-
clude the 2 class labels.

9

The features included in the dataset are grouped into 6 different categories [8] namely
”flow features”, ”basic features”, ”content features”, ”time features”, ”additional
generated features”, and ”labelled features”.

The class labels in the dataset are attack category, and label. The attack category
is again of 9 types [8]. There is an additional type referred to as ‘Normal’ which
represents a safe or normal scenario within the network. Label is categorized into
2 types – 0, representing a normal scenario within the network, and 1, representing
an intrusion or attack [8].

For our research, out of the 2 million records, we will be using a total of 257,673
records divided into training and testing sets in a distribution of 2:1. Out of the
257,673 records, 175,341 fall in the training set, and the other 82,332 records fall in
the testing set. It is to be noted that the CSV versions of these training and testing
sets, as well as the original two million records, feature lists, and other source files
have been made readily available for public use at this link [9].

And while there are other exiting datasets that can be used for intrusion detections
systems and related analyses, the UNSW-NB 15 is a more modern and up-to-date
dataset that overcomes the limitations of the older datasets [10].

4.2 Exploratory Data Analysis

Out of the total number of records in the training set, 119,341 are categorized as
label 1, while the rest of the 56,000 are categorized as label 0. For the test set, there
are 45,332 records labeled 1, while the rest of the 37,000 are labeled as 0.

Figure 4.2: Label Distribution in Training and Testing Datasets

For the attack cat feature, the testing set contains 32% records labeled normal, 23%

10

labeled generic, and the rest cover the remaining 45%. The training set, on the other
hand, has 45% labeled as normal, 23% generic, and the rest covers the remaining
32%.

Figure 4.3: Attack Category Distribution in Training and Testing Datasets

Table 4.1 breaks down the different types of attack categories mentioned in the at-
tack cat feature, and their overall distribution in the training and testing subsets.

Class Training Set Testing Set
Normal 56,000 37,000
Analysis 2,000 677
Backdoor 1,746 586
DoS 12,264 4,089
Exploits 33,393 11,132
Fuzzers 18,184 6,062
Generic 40,000 18,871
Reconnaissance 10,491 3,496
Shellcode 1,133 378
Worms 130 44
Total 175,341 82,332

Table 4.1: Different Classes of Attacks and Their Distribution in Training and Test-
ing Subsets

Upon evaluating the correlations, the following cases, described in table 4.2, were
observed for a threshold of 0.9.

11

Features Correlation Value
dpkts, dloss 0.98
sbytes, sloss 1.0
dbytes, dloss 1.0
sinpkt, is sm ips ports 0.94
tcprtt, synack 0.95
tcprtt, ackdat 0.94
ct srv src, ct dst src ltm 0.97
ct srv src, ct srv dst 0.98
ct dst ltm, ct src dport ltm 0.96
ct src dport ltm, ct dst sport ltm 0.91
ct src dport ltm, ct src ltm 0.9
ct dst src ltm, ct srv dst 0.97

Table 4.2: Correlation between different features

4.3 Data Pre-Processing

As a library that is constantly ready for deployment purposes, the PyCaret library
forms a pipeline consisting of all necessary blocks of functions or modules that can
simplify the model training process. This includes the data pre-processing phase as
well. Data pre-processing as well as data preparation related functions are a major
component of the library. As a result of this, the PyCaret library is able to handle
these functions automatically. All the user needs to do is set things up by calling
the ‘setup’ function.
For dealing with values that are missing in the dataset, PyCaret, by default, utilizes
the mean value of the feature in the case of numeric features. A median value can
also be selected by the user manually if needed. For categorical features, a default
‘not available’ feature is set for missing cases. The other option is the mode value.
For normalization, PyCaret, by default, uses ‘zscore’. And for transformation, it
uses ‘yeo-johnson’ method by default.

12

Chapter 5

Research Methodology

5.1 Supervised Learning

In order to train the models, the research takes a supervised learning approach. The
models are trained on the training subset of the dataset. The prediction capabilities
of the model are then analysed on the testing subset, which contains records previ-
ously unseen by the models.
To analyze the performance, the research takes into account the model’s training
and testing accuracy, time, confusion matrix, precision, F1 score, and recall. This is
then followed by a comparative analysis with relevant research that have followed a
similar approach, or have presented results that deal with these metrics and datasets.

5.2 Classification Models

5.2.1 Logistic Regression

This model here is a mathematical one that is used for describing the chances of an
event occurring, and hence the result is binary, 1 indicating true or happening or 0
meaning the event does not occur. However the model uses a sigmoid function to
operate and give out the decisions. The sigmoid function can be calculated by the
following formula:

Y =
εb0+b1×X

1 + εb0+b1×X
(5.1)

Here, b 1, b 0 are variables, called weights trained from the dataset, b 0 represents
the bias, or intercept, and b 1 is the coefficient. The product of this formula will
produce a percentage, or probability, that will be mapped over discrete classes [23].

To calculate logistic regression, we use the following formula:

log
p

1 − p
(5.2)

Where p is the probability of an event occurring.

13

The confusion matrix and classification report obtained through our research for the
above model are provided below.

Figure 5.1: Confusion Matrix for Logistic Regression

Figure 5.2: Classification report for Logistic Regression

14

5.2.2 K-Nearest Neighbor

KNN is another supervised machine learning algorithm used for classification or re-
gression models or for search. This algorithm uses the concept of proximity to pass
out decisions. Similar things exist in near proximity is what KNN promotes. It
depends on labelled data taken as input to learn a function and then produces an
appropriate output when a new unlabeled data is given. With different values of K,
we choose the K that reduces the number of errors we encounter while maintaining
the algorithm’s ability to accurately make predictions when it is given data it has
not seen before. It is again a non-parametric machine learning algorithm [25].

The confusion matrix and classification report obtained through our research for the
above model are provided below.

Figure 5.3: Confusion Matrix for KNN

15

Figure 5.4: Classification report for KNN

5.2.3 Decision Tree

Another popular machine learning algorithm for classification and regression is this
decision tree model which operates by creating trees based on decisions. To create
a decision tree, we choose the Decision Tree template and enter information in the
knowledge article fields. The goal is to create a model that predicts the value of
a target variable by learning simple decision rules inferred from the data features.
Considering the entire data as root it then on particular condition, starts splitting
by means of branches or internal nodes and makes a decision until it produces the
outcome as a leaf. The entropy in this model would be the impurity present in the
data and is calculated by the following equation:

Entropy(S) =
c∑

i=1

−p(i)logp(i) (5.3)

Here, c is the number of classes of an attribute. ‘p(i)’ is the fraction of examples of
the class ‘i’. The entropy is almost zero when the sample attains homogeneity but
is one when it is equally divided. To lower this entropy another parameter has to
increase known as ‘information gain’. The following formula is used to calculate gain:

Gain(S,A) = Entropy(S) − Entropy(A) (5.4)

16

Here S is the parent or root while A is an attribute that we want to split [31].

The confusion matrix and classification report obtained through our research for the
above model are provided below.

Figure 5.5: Confusion Matrix for Decision Tree

Figure 5.6: Classification report for Decision Tree

17

5.2.4 Random Forest

Another powerful supervised machine learning algorithm for classification, regres-
sion operates through building an ensemble of decision trees. Random forest builds
multiple decision trees and merges them together to get a more accurate and stable
prediction. It can be said that a random forest is a collection of multiple decision
trees [28].
When using the Random Forest Algorithm to solve regression problems, the follow-
ing formula is considered:

Rf =
1

N

N∑
i=1

(fi− yi)2 (5.5)

Here, n is the number of data points, fi= value returned by the model and yi =
actual value for data point i. While performing Random Forests based on classifi-
cation data:

Gini = 1 −
C∑
i=1

(Pi)2 (5.6)

Most of the time Gini index is used to calculate the classification model, where Pi
represents the relative frequency of the class we are observing in the dataset and c
represents the number of classes [27].

The confusion matrix and classification report obtained through our research for the
above model are provided below.

Figure 5.7: Confusion Matrix for Random Forest

18

Figure 5.8: Classification report for Random Forest

5.2.5 Gradient Boosting Classifier

Another machine learning algorithm which accumulates multiple low predicting
learning models resulting in a strong prediction. It is used for both classification
and regression models and can work on complex datasets. The key idea is to set the
target outcomes for the next model in order to minimize the error. It relies on the
intuition that the best possible next model, when combined with previous models,
minimizes the overall prediction error. The target outcomes of each case is based
on the gradient of errors with respect to the prediction.
The gradient boosting algorithm (gbc) depends upon another function known as the
loss function. The loss function can be represented as:

ψ(y, f(x)) (5.7)

GBC works through minimizing the loss function over a given dataset. Our estimate
function:

f̂(x) = arg min
f(x)

ψ(y, f(x)) (5.8)

This function asks for a minimized loss function for increased functionality [4].

The confusion matrix and classification report obtained through our research for the
above model are provided below.

19

Figure 5.9: Confusion Matrix for GBC

Figure 5.10: Classification report for GBC

20

5.2.6 Naive Bayes

A classification algorithm using Bayes theorem to predict the independence of an
event. Bayes theorem:

P (
c

E
) =

P (E
c
) × P (c)

P (E)
(5.9)

On a class or total event of E, the probability of c independently is what can be
calculated by the above formula. The complexity of the algorithm grows with the
increase of features. Such massive rise in features in a dataset is addressed by this
classifying algorithm where a naive assumption is made, where all features are con-
sidered naively, as independents. The naive bayes classifier:

P (
y

X
) =

P (y)
N∏
i=1

P (
Xi

y
)

P (X)
[16] (5.10)

The confusion matrix and classification report obtained through our research for the
above model are provided below.

Figure 5.11: Confusion Matrix for Naive Bayes

21

Figure 5.12: Classification report for Naive Bayes

5.2.7 Adaptive Boost classifier

Adaptive boosting or ada is another classifying algorithm similar to GBC in terms
of operation. It is a boosting technique that is used as an Ensemble Method in
machine learning. For an ‘n’ number of iterations on a given dataset, this algorithm
produces weak predictions (i.e trees), the record which is incorrectly classified during
the first model is given more priority. This record is then sent as an input for the
next model. ’Weighted errors’ are put in the regions where the previous classifiers
performed poorly.
To assign some sample weight, the formula used is:

W =
1

N
(5.11)

Here N is the number of records or training samples.
ADA classifiers only make a node with two leaves called stumps. Stumps are weak
learners and they are calculated by the given formula:

α =
1

2
ln

1 − ε

ε
(5.12)

Here, is the total error, which is the sum of all errors accumulated. ADA can be
used for regression calculation also [22].

The confusion matrix and classification report obtained through our research for the
above model are provided below.

22

Figure 5.13: Confusion Matrix for AdaBoost

Figure 5.14: Classification report for AdaBoost

23

5.2.8 Blending

This research also uses the blending technique of ensemble learning to generate
higher accuracies by taking the performance of multiple classifiers into accounts.
For our research, we proceeded with two attempts at blending - one with the top
three high performing classifiers, and the other with all the classifiers that met a
certain threshold value for accuracy.
For our research we prepared two models with the ensemble blending technique.
The first one, Blend 1, incorporates the data obtained from models DT, RF, KNN,
and GBC. The second one, Blend 2, incorporates data from RF, DT, GBC, ADA,
KNN, LR, and NB.
The confusion matrix and classification report obtained through our research for the
model Blend 1 are provided below.

Figure 5.15: Confusion Matrix for Blend 1

24

Figure 5.16: Classification report for Blend 1

The confusion matrix and classification report obtained through our research for the
model Blend 2 are provided below.

Figure 5.17: Confusion Matrix for Blend 2

25

Figure 5.18: Classification report for Blend 2

26

Chapter 6

Result Analysis

The classifiers discussed in the previous section were used to train the models with
a multi-collinearity threshold of 0.95. It is to be noted here that multi-collinearity is
not an issue in case of classifiers like Decision Tree or Random Forest. That means
that even without dropping similar columns from the dataset, these classifiers are
able to perform at their fullest, as they automatically take care of such similar
columns. However, setting the threshold led to an improvement in performance for
the remaining models.
The environment used to run the program was ”Google Colaboratory’s Pro Version”
that provides users with 25 GB of Virtual Memory, and the Nvidia Tesla T4 and
P100 GPUs. Despite being a paid version and having high-end configurations, the
Pro version still has its limitations as confirmed by Google itself.
The performance for each model was analyzed using the following metrics – accu-
racy, AUC, recall, precision, F1 score, kappa, MCC, and time taken to train.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (Sec)
Random
Forest Classifier
(RF)

0.9575 0.9932 0.9758 0.9622 0.969 0.9014 0.9017 5.3

Decision
Tree
Classifier(DT)

0.9471 0.9411 0.9597 0.9624 0.9611 0.8785 0.8785 0.589

K Neighbors
Classifier(KNN)

0.9524 0.989 0.9701 0.9604 0.9652 0.89 0.8901 5.833

Gradient
Boosting
Classifier(GBC)

0.9584 0.9937 0.9769 0.9625 0.9696 0.9034 0.9037 17.311

Ada Boost
Classifier(ADA)

0.9397 0.9879 0.9714 0.9419 0.9564 0.8589 0.86 3.779

Logistic
Regression(LR)

0.9392 0.9861 0.9784 0.9353 0.9563 0.8565 0.8588 4.943

Naive
Bayes (NB)

0.8322 0.9343 0.8363 0.9098 0.8715 0.631 0.6356 0.063

Table 6.1: Performance Score for Each Trained Model

Figures 6.1 through 6.9 show the class prediction error for each classifier.

27

Figure 6.1: Class Prediction Error for DT.

Figure 6.2: Class Prediction Error for RF.

28

Figure 6.3: Class Prediction Error for ADA.

Figure 6.4: Class Prediction Error for LR.

29

Figure 6.5: Class Prediction Error for KNN.

Figure 6.6: Class Prediction Error for GBC.

30

Figure 6.7: Class Prediction Error for NB.

Figure 6.8: Class Prediction Error for Blend 1.

31

Figure 6.9: Class Prediction Error for Blend 2.

After testing the models on the unseen data subset, we get the results as summa-
rized in table 6.2.

Model Train Test
Random Forest Classifier (RF) 0.9575 0.8722
Decision Tree Classifier (DT) 0.9471 0.8637
Gradient Boosting Classifier (GBC) 0.9584 0.8729
Ada Boost Classifier (ADA) 0.9397 0.8486
K Neighbors Classifier (KNN) 0.9524 0.8646
Logistic Regression (LR) 0.9392 0.8358
Naive Bayes (NB) 0.8322 0.7386

Table 6.2: Train-Test Results (Accuracy) for Each Classifier

As seen from the train-test results, RF gives a test accuracy of 87.22%, DT gives
86.37%, GBC gives 87.29%, ADA gives 84.86%, KNN gives 86.46%, LR gives 83.58%,
and NB gives 73.86%.
KNN, RF, and NB provides a better accuracy score when compared to [35] that
uses a wrapper-based decision tree for feature selection.
DT, KNN, and LR shows a comparatively better accuracy score when compared
to [32] and its feature selection method that opted for only 19 of the available 42
features.
LR, NB, RF, KNN, and DT gives a comparatively better accuracy when compared
against [33]. However, [33] does have a better precision value for NB and a greater
recall score for LR.

32

RF, KNN, and NB also produced a greater accuracy score when compared against
[20].
LR, and GBC achieved a much higher accuracy score when compared against [26].
It is to be noted here that while there are a few variations in the approach followed
by this research and those hinted at above, this research required little effort and
was able to achieve greater results in most cases. The PyCaret library enabled this
research to be carried out within a short period and with less hassles when it came
to feature selection and model training.
PyCaret’s Tuning function adds to our research as well. It is through this function
that the accuracy of classifiers – KNN, GBC, and NB – were improved upon. Es-
pecially in the case of Naive Bayes, which saw a jump from 45.9% accuracy, to an
83.22% accuracy.
The library’s ensemble learning method was also applied. More specifically, we ap-
plied the blending technique, first incorporating the models obtained from DT, RF,
KNN, and GBC, and then incorporating RF, DT, GBC, ADA, KNN, LR, and NB.
The former gave a train accuracy of 95.47% and a test accuracy of 84.88%. The
latter, on the other hand, gave a train accuracy of 95.51% and a test accuracy of
86.02%.

33

Chapter 7

Conclusion and Future Direction

7.1 Conclusion

To conclude, we will be revisiting some of the key objectives of this research and as-
sess how far we have been able to progress with those objectives through our paper.
Firstly, one of the primary objectives of our paper was to explore the PyCaret low-
code machine learning library. Through this research, we were able to do so as
we utilized some of the most important features and modules that the library has
to offer. Out of the 18 available classifiers, we were able to utilize 8 to their full
potential. We were also able to look into different functions that the library offers,
including model training, evaluation, and ensembling. At the same time, we were
able to assess how easy and flexible it is to use the library, and how feasible it is for
quick deployment purposes.
Secondly, we were able to explore the UNSW-NB 15 dataset and understand its key
features. We were able to analyze the dataset to find out information relevant to
our line of work. Through the help of the classifiers, we were also able to check for
important features that played a vital role in the final results of each algorithm used
to train the models.
Finally, we were able to assess the performance of the PyCaret library for detecting
intrusions in the UNSW-NB 15 dataset. Information from all 8 classifiers used for
the research was successfully retrieved and presented in the preceding section.

7.2 Future Work

The PyCaret library, although shows great promise in terms of performance and
ease of use, is in no way perfect. There are certain modules in this library that are
yet to work properly. However, the developers behind it are continuously releasing
updates and fixes that deal with such issues. For our future work, we would like to
use those modules, which by then will hopefully be fixed, and do a more thorough
analysis of how intrusion detection can be conducted in a more simplified and re-
sourceful manner.
We also plan on carrying out a multi-classification on the UNSW-NB 15 dataset and
conduct a performance analysis for that as well.
Alongside that, we would also like to work with more datasets of a similar or differ-
ent nature. While doing so, we would like to work with the regression and anomaly

34

detection modules of the PyCaret library.

35

Bibliography

[1] M. T. Banday, J. Qadri, and N. Shah, “Study of botnets and their threats to
internet security,” Jan. 2009.

[2] J.-c. Zhao, J.-f. Zhang, Y. Feng, and J.-x. Guo, “The study and application
of the iot technology in agriculture,” in 2010 3rd International Conference on
Computer Science and Information Technology, vol. 2, 2010, pp. 462–465. doi:
10.1109/ICCSIT.2010.5565120.

[3] T. Liu and D. Lu, “The application and development of iot,” in 2012 Inter-
national Symposium on Information Technologies in Medicine and Education,
vol. 2, 2012, pp. 991–994. doi: 10.1109/ITiME.2012.6291468.

[4] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Frontiers
in neurorobotics, vol. 7, p. 21, Dec. 2013. doi: 10.3389/fnbot.2013.00021.

[5] S. Hiremath, G. Yang, and K. Mankodiya, “Wearable internet of things: Con-
cept, architectural components and promises for person-centered healthcare,”
in 2014 4th International Conference on Wireless Mobile Communication and
Healthcare - Transforming Healthcare Through Innovations in Mobile and Wire-
less Technologies (MOBIHEALTH), 2014, pp. 304–307. doi: 10.1109/MOBIHEALTH.
2014.7015971.

[6] M. Stevanovic and J. M. Pedersen, “An efficient flow-based botnet detection
using supervised machine learning,” in 2014 International Conference on Com-
puting, Networking and Communications (ICNC), 2014, pp. 797–801. doi:
10.1109/ICCNC.2014.6785439.

[7] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of things (iot)
security: Current status, challenges and prospective measures,” in 2015 10th
International Conference for Internet Technology and Secured Transactions
(ICITST), 2015, pp. 336–341. doi: 10.1109/ICITST.2015.7412116.

[8] N. Moustafa and J. Slay, “The significant features of the unsw-nb15 and the
kdd99 data sets for network intrusion detection systems,” in 2015 4th Inter-
national Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security (BADGERS), 2015, pp. 25–31. doi: 10.1109/BADGERS.
2015.014.

[9] ——, UNSW-NB15 Dataset, UNSW, 2015. [Online]. Available: https://cloudstor.
aarnet.edu.au/.

[10] ——, “Unsw-nb15: A comprehensive data set for network intrusion detection
systems (unsw-nb15 network data set),” in 2015 Military Communications
and Information Systems Conference (MilCIS), 2015, pp. 1–6. doi: 10.1109/
MilCIS.2015.7348942.

36

https://doi.org/10.1109/ICCSIT.2010.5565120
https://doi.org/10.1109/ITiME.2012.6291468
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.1109/MOBIHEALTH.2014.7015971
https://doi.org/10.1109/MOBIHEALTH.2014.7015971
https://doi.org/10.1109/ICCNC.2014.6785439
https://doi.org/10.1109/ICITST.2015.7412116
https://doi.org/10.1109/BADGERS.2015.014
https://doi.org/10.1109/BADGERS.2015.014
https://cloudstor.aarnet.edu.au/
https://cloudstor.aarnet.edu.au/
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942

[11] E. Ogu, N. Vrakas, C. Ogu, and A.-I. B.M., “On the internal workings of
botnets: A review,” International Journal of Computer Applications, vol. 138,
pp. 975–8887, Apr. 2016. doi: 10.5120/ijca2016908797.

[12] G. K. Scope, “Review on iot technologies,” 2016.

[13] Ahmed, “Three major challenges facing iot,” IEEE Internet of Things, Mar.
2017. [Online]. Available: https://iot.ieee.org/newsletter/march-2017/three-
major-challenges-facing-iot.html.

[14] S. B. Baker, W. Xiang, and I. Atkinson, “Internet of things for smart health-
care: Technologies, challenges, and opportunities,” IEEE Access, vol. 5, pp. 26 521–
26 544, 2017. doi: 10.1109/ACCESS.2017.2775180.

[15] E. Bertino and N. Islam, “Botnets and internet of things security,” Computer,
vol. 50, no. 2, pp. 76–79, 2017. doi: 10.1109/MC.2017.62.

[16] P. Kaviani and S. Dhotre, “Short survey on naive bayes algorithm,” Interna-
tional Journal of Advance Research in Computer Science and Management,
vol. 04, Nov. 2017.

[17] P. Parhana, M. Lakshmaiah, S. Allahudheen, S. Dastagiri, and V. Saritha,
“Review on internet of things: Recent applications and its challenges,” Nov.
2017.

[18] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, “Internet of things (iot)
communication protocols: Review,” in 2017 8th International Conference on
Information Technology (ICIT), 2017, pp. 685–690. doi: 10.1109/ICITECH.
2017.8079928.

[19] S. Haq and Y. Singh, “Botnet detection using machine learning,” in 2018
Fifth International Conference on Parallel, Distributed and Grid Computing
(PDGC), 2018, pp. 240–245. doi: 10.1109/PDGC.2018.8745912.

[20] M. Suleiman and B. Issac, “Performance comparison of intrusion detection
machine learning classifiers on benchmark and new datasets,” English, 28th
International Conference on Computer Theory and Applications, ICCTA 2018
; Conference date: 30-10-2018 Through 01-11-2018, Oct. 2018. [Online]. Avail-
able: https://iccta.aast.edu/.

[21] C. Xie, P. Yang, and Y. Yang, “Open knowledge accessing method in iot-based
hospital information system for medical record enrichment,” IEEE Access,
vol. 6, pp. 15 202–15 211, 2018. doi: 10.1109/ACCESS.2018.2810837.

[22] Boosting and AdaBoost clearly explained, Medium, Feb. 2019. [Online]. Avail-
able: https : / / towardsdatascience . com / boosting - and - adaboost - clearly -
explained-856e21152d3e.

[23] DeepAI, Logistic regression, May 2019. [Online]. Available: https://deepai.
org/machine-learning-glossary-and-terms/logistic-regression.

[24] W. A. Jabbar, T. K. Kian, R. M. Ramli, S. N. Zubir, N. S. M. Zamrizaman,
M. Balfaqih, V. Shepelev, and S. Alharbi, “Design and fabrication of smart
home with internet of things enabled automation system,” IEEE Access, vol. 7,
pp. 144 059–144 074, 2019. doi: 10.1109/ACCESS.2019.2942846.

37

https://doi.org/10.5120/ijca2016908797
https://iot.ieee.org/newsletter/march-2017/three-major-challenges-facing-iot.html
https://iot.ieee.org/newsletter/march-2017/three-major-challenges-facing-iot.html
https://doi.org/10.1109/ACCESS.2017.2775180
https://doi.org/10.1109/MC.2017.62
https://doi.org/10.1109/ICITECH.2017.8079928
https://doi.org/10.1109/ICITECH.2017.8079928
https://doi.org/10.1109/PDGC.2018.8745912
https://iccta.aast.edu/
https://doi.org/10.1109/ACCESS.2018.2810837
https://towardsdatascience.com/boosting-and-adaboost-clearly-explained-856e21152d3e
https://towardsdatascience.com/boosting-and-adaboost-clearly-explained-856e21152d3e
https://deepai.org/machine-learning-glossary-and-terms/logistic-regression
https://deepai.org/machine-learning-glossary-and-terms/logistic-regression
https://doi.org/10.1109/ACCESS.2019.2942846

[25] K-Nearest Neighbor in Machine Learning, Knowledgehut, Sep. 2019. [Online].
Available: https://https://www.knowledgehut.com/blog/data-science/knn-
for-machine-learning.

[26] S. Meftah, T. Rachidi, and N. Assem, Network based intrusion detection using
the unsw-nb15 dataset, Sep. 2019. [Online]. Available: https://journal.uob.
edu.bh/handle/123456789/3580.

[27] Random Forest Algorithm for Machine Learning, Medium, Apr. 2019. [Online].
Available: https://medium.com/capital-one-tech/random-forest-algorithm-
for-machine-learning-c4b2c8cc9feb.

[28] Understanding Random Forest, Medium, Jun. 2019. [Online]. Available: https:
//towardsdatascience.com/understanding-random-forest-58381e0602d2.

[29] T. Alam, A reliable communication framework and its use in internet of things
(iot), Aug. 2020. doi: 10 .36227/techrxiv .12657158.v1. [Online]. Available:
https : / / www . techrxiv . org / articles / preprint / A Reliable Communication
Framework and Its Use in Internet of Things IoT /12657158/1.

[30] M. Ali, Pycaret: An open source, low-code machine learning library in python,
PyCaret version 2.3.1, Apr. 2020. [Online]. Available: https://www.pycaret.
org.

[31] Introduction to Decision Tree Algorithm - Explained with Examples, GreatLearn-
ing Blog, Feb. 2020. [Online]. Available: https://www.mygreatlearning.com/
blog/decision-tree-algorithm/.

[32] S. M. Kasongo and Y. Sun, Performance analysis of intrusion detection sys-
tems using a feature selection method on the unsw-nb15 dataset, Nov. 2020.
[Online]. Available: https://journalofbigdata.springeropen.com/articles/10.
1186/s40537-020-00379-6.

[33] G. Kocher and G. Kumar, Performance analysis of machine learning classi-
fiers for intrusion detection using unsw-nb15 dataset, 2020. [Online]. Available:
https://aircconline.com/csit/papers/vol10/csit102004.pdf.

[34] S. S. Sarmah, “An efficient iot-based patient monitoring and heart disease
prediction system using deep learning modified neural network,” IEEE Access,
vol. 8, pp. 135 784–135 797, 2020. doi: 10.1109/ACCESS.2020.3007561.

[35] M. A. Umar, C. Zhanfang, and Y. Liu, Network intrusion detection using
wrapper-based decision tree for feature selection, Aug. 2020. [Online]. Available:
https://arxiv.org/abs/2008.07405.

[36] Z. Zhou, H. Yu, and H. Shi, “Human activity recognition based on improved
bayesian convolution network to analyze health care data using wearable iot
device,” IEEE Access, vol. 8, pp. 86 411–86 418, 2020. doi: 10.1109/ACCESS.
2020.2992584.

[37] L. Bhajantri and G. S S, “A comprehensive survey on resource management
in internet of things,” Journal of Telecommunications and Information Tech-
nology, vol. 4, pp. 27–43, Jan. 2021. doi: 10.26636/jtit.2020.145220.

[38] Ericbrownaustin, Machine learning with pycaret and the home price dataset,
Jan. 2021. [Online]. Available: https : / / ericonanalytics . com / pycaret - and -
machine-learning-home-price-dataset/?fbclid=IwAR1CPGTsEp5gdkYdNv9w4
fLYfCDOnR3XkBl1CNYaXAASaN1wvKHc9WpXAw.

38

https://https://www.knowledgehut.com/blog/data-science/knn-for-machine-learning
https://https://www.knowledgehut.com/blog/data-science/knn-for-machine-learning
https://journal.uob.edu.bh/handle/123456789/3580
https://journal.uob.edu.bh/handle/123456789/3580
https://medium.com/capital-one-tech/random-forest-algorithm-for-machine-learning-c4b2c8cc9feb
https://medium.com/capital-one-tech/random-forest-algorithm-for-machine-learning-c4b2c8cc9feb
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://doi.org/10.36227/techrxiv.12657158.v1
https://www.techrxiv.org/articles/preprint/A_Reliable_Communication_Framework_and_Its_Use_in_Internet_of_Things_IoT_/12657158/1
https://www.techrxiv.org/articles/preprint/A_Reliable_Communication_Framework_and_Its_Use_in_Internet_of_Things_IoT_/12657158/1
https://www.pycaret.org
https://www.pycaret.org
https://www.mygreatlearning.com/blog/decision-tree-algorithm/
https://www.mygreatlearning.com/blog/decision-tree-algorithm/
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00379-6
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00379-6
https://aircconline.com/csit/papers/vol10/csit102004.pdf
https://doi.org/10.1109/ACCESS.2020.3007561
https://arxiv.org/abs/2008.07405
https://doi.org/10.1109/ACCESS.2020.2992584
https://doi.org/10.1109/ACCESS.2020.2992584
https://doi.org/10.26636/jtit.2020.145220
https://ericonanalytics.com/pycaret-and-machine-learning-home-price-dataset/?fbclid=IwAR1CPGTsEp5gdkYdNv9w4_fLYfCDOnR3XkBl1CNYaXAASaN1wvKHc9WpXAw
https://ericonanalytics.com/pycaret-and-machine-learning-home-price-dataset/?fbclid=IwAR1CPGTsEp5gdkYdNv9w4_fLYfCDOnR3XkBl1CNYaXAASaN1wvKHc9WpXAw
https://ericonanalytics.com/pycaret-and-machine-learning-home-price-dataset/?fbclid=IwAR1CPGTsEp5gdkYdNv9w4_fLYfCDOnR3XkBl1CNYaXAASaN1wvKHc9WpXAw

[39] U. Gain and V. Hotti, “Low-code AutoML-augmented data pipeline – a review
and experiments,” Journal of Physics: Conference Series, vol. 1828, no. 1,
p. 012 015, Feb. 2021. doi: 10 . 1088/1742 - 6596/1828/1/012015. [Online].
Available: https://doi.org/10.1088/1742-6596/1828/1/012015.

[40] Global iot market to be worth usd 1,463.19 billion by 2027 at 24.9% cagr; de-
mand for real-time insights to spur growth, says fortune business insights™,
Fortune Business Insights, Apr. 2021. [Online]. Available: https : / / www .
globenewswire.com/en/news- release/2021/04/08/2206579/0/en/Global-
IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-
Demand- for- Real - time- Insights- to- Spur- Growth- says- Fortune- Business-
Insights.html.

[41] J. Butts and S. Shenoi, “Botnets as an instrument of warfare,” IFIP ACT 367,
2011. [Online]. doi:https://link.springer.com/content/pdf/10.1007%2F978-3-
642-24864-12.pdf .

39

https://doi.org/10.1088/1742-6596/1828/1/012015
https://doi.org/10.1088/1742-6596/1828/1/012015
https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0/en/Global-IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-Growth-says-Fortune-Business-Insights.html
https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0/en/Global-IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-Growth-says-Fortune-Business-Insights.html
https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0/en/Global-IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-Growth-says-Fortune-Business-Insights.html
https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0/en/Global-IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-Growth-says-Fortune-Business-Insights.html
https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0/en/Global-IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-Growth-says-Fortune-Business-Insights.html

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	What is IoT?
	How does Iot work?
	Applications of IoT
	Challenges in IoT
	Security threats in Iot

	What is a Botnet?
	How does a Botnet attack?
	Effects of Botnet attack

	Intrusion Detection Systems (IDS)
	Introduction to the PyCaret Machine Learning Library

	Aims and Objectives
	Literature Review
	The Internet of Things
	Botnets
	Machine Learning and Intrusion Detection
	PyCaret Machine Learning Library

	Dataset Description
	Dataset Description
	Exploratory Data Analysis
	Data Pre-Processing

	Research Methodology
	Supervised Learning
	Classification Models
	Logistic Regression
	K-Nearest Neighbor
	Decision Tree
	Random Forest
	Gradient Boosting Classifier
	Naive Bayes
	Adaptive Boost classifier
	Blending

	Result Analysis
	Conclusion and Future Direction
	Conclusion
	Future Work

	Bibliography

