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Abstract

In recent years, quantum computing has outperformed classical computing in many
aspects, including the advancement of approaches in Reinforcement Learning prob-
lems. Particularly, it has the power to utilize the quantum phenomena of super-
position and entanglement, that can fastened the calculation of a vast amount of
data which is very challenging for classical computers. Unfortunately, the current
Quantum Computing platforms are very complex to initiate classical reinforcement
learning problems for uncontrollability and intricacy of quantum circuits. In our
work, we explore the application of Quantum Variational Circuit (QVC) in Deep Q-
Network (DQN) instead of classical Reinforcement Learning approaches to enhance
the performance of Reinforcement Learning. To achieve that, we use Quantum Vari-
ational Circuit (QVC) based reinforcement learning approaches to solve the classical
problems and we also solve the classical problems using classical DQN and Double
Deep Q-Network (DDQN) Reinforcement Learning to compare between classical
and quantum approaches. We solve Atari and Lunar Lander in OpenAI Gym envi-
ronments using QVC based DQN Reinforcement learning. We study encoding tech-
niques such as amplitude encoding, scaled encoding and directional encoding which
were previously used in this paper[1]. We exercise IBM’s open-source SDK (QISKit)
and IBM-Q for quantum circuit implementation which can produce improved appli-
cations like Quantum error Correction codes etc. We also use TensorFlow Quantum
to implement the hybrid classical-quantum computation and experimentally analyze
our work.

Keywords: Quantum Computing, Reinforcement Learning, Quantum Machine
Learning (QML), Quantum Variational Circuit (QVC), Deep Q-Network (DQN),
Double Deep Q-Network (DDQN), OpenAI Gym, IBM-Q, TensorFlow Quantum.
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Chapter 1

Introduction

1.1 Problem Statement

Deep Reinforcement Learning (DRL) has been advancing at an incredible rate for
some years. We observe many Supervised and Unsupervised approaches that have
been used over the years to solve problems like Atari, Lunar Lander but nowa-
days Deep Reinforcement Learning approaches are doing remarkably better to solve
similar sorts of problems. Further, DRL is boosting lots of games to improve the
games agents and minimize the time needed for training. Though there are some
limitations in performance using classical computers in RL as their calculation is
based on binary bits. Whereas Quantum Computers use ‘Qubits’ which will gen-
erate more possibilities and outcomes that create better performance than classi-
cal computers. The problem is that the quantum system becomes extremely cru-
cial and unreliable when dealing with qubits because of noises, quantum decoher-
ence faults, and fails before any program is completed. In this work, we aspire
to implement Quantum Variational Circuiti (QVC) based reinforcement learning.
In this work, we explore a hybrid approach by implementing QVC based rein-
forcement learning to solve Atari, Lunar Lander and QVC based cartpole using
TensorFlow Quantum. QVC is a combination of qubits and circuits on which we
execute rotations and other quantum operations before measuring our system or
model till it is optimized. Previously experiments were carried out to determine
if QVC-based DQN outperforms conventional DQN techniques, and researchers
discovered that QVC-based DQN takes O(N) space to solve a 4x4 Frozen Lake
problem from the OpenAI Gym environment, whereas classical DQN approaches
use O(N2) space [1]. As a result of our proposed implementation, we hope to
achieve a greater precise error correction with the assistance of Quantum vari-
ational circuits, which may be a significant advance in reinforcement learning.

1.2 Research Objectives

Quantum computing has been able to demonstrate excellent efficiency in numeri-
cal precision in recent years than any classical computers[2]. In addition, Quantum
computers have a wide variety of significant applications in the future[3]. Because of
their potential to conduct even more complicated calculations at much faster speeds,
including solving problems that are literally beyond the capabilities of today’s com-
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puters[4]. Working with quantum computing, however, is not only an easy task,
but also with appropriate algorithms, we need to regulate the qubit rotation and
the gates. This is why we want to explore Atari, Lunar Lander based on QVC in
this paper to demonstrate that we can achieve better results in machine learning
problems by using QVC in RL.
QVC is a combination of qubits and circuits on which we execute rotations, we
improve the value of θ, and other quantum operations before measuring our system
or model till it is optimized. The parameter shift differentiator is used in this
work. Though TensorFlow-Quantum implements the process, having an appropriate
mathematical overview is important. Mainly, we are focused on comparing the
performance of classical DQN and classical Double DQN with QVC DQN and QVC
Double DQN. Moreover, we want to explore different encoding, decoding schemes
which can be used in QVC based deep reinforcement learning.
We will apply these algorithms on OpenAI Gym Atari and Lunar Lander envi-
ronments and produce the result. After applying the procedures on the games we
will find the efficient strength of quantum computing in promoting reinforcement
learning.

2



Chapter 2

Reinforcement Learning

2.1 Reinforcement Learning

Reinforcement Learning(RL) is a subset of Machine Learning (ML), although it is
distinct from supervised and unsupervised learning. In RL, an agent learns about
its environment and tries to attain a certain objective. An agent is someone that
interacts with the environment and makes decisions based on the probability dis-
tribution of all potential states. Some environmental restrictions are referred to as
policies. If our agent is in state St, it will pick its actions, which means it will choose
its next state St+1 based on the reward it receives for being in state St. The Markov
Decision-making Process (MDP) is used by RL, which includes five components:
{S,A, P, r, V } [5] [2]

V n
(s) = E{rt+1 + γrt+1 + ... | st = s, π}

= E[rt+1 + γV n
(s)t+1 | st = s, π]

=
∑
a∈As

π(s, a)[ras + γ
∑
s′

pass′V
π
s′ ]

(2.1)

V ∗(s) = max
a∈As

[ras + γ
∑
s′

pass′V
∗
s′ ] (2.2)

The agent is continually intending to optimize the goal function and selecting states
depending on this objective function.
Action-Value Function, Q(s,a):
Here we can apply different kinds of processes of approximating the action-value
function Q. We have to use values as a state representative to the DQN architecture
as an input. Also, we have to measure the output layer as a separate output for
every varied action. Here is given DQN architecture:

2.2 Q-Learning

Q-learning does not necessitate the use of a reinforcement learning algorithm. [5].
Before we begin the process of learning, we set a random number to Q. Q-learning
selects its next state in order to update Q. [6]:

Q(st, at)← a(st, at) + a[rt + γmaxaQ(St+1, a)−Q(st, at)] (2.3)
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Figure 2.1: DQN Architectue

2.3 Deep Q-Learning

A 2-D list could be used to represent the action-value function Q(s, a). [5] [7]. The
concept of 2-D interpretation does not perform efficiently, when either state or action
is enormous. Within this circumstance, we employ features such as neural networks
and this is known as deep reinforcement learning (DRL). DRL has now been ex-
tensively employed throughout several sectors of problem solving. The action-value
function is Q(s,a;θ). θ is a parameter that we can optimize via an ongoing problem-
solving approach. The Q-learning approach seems to be the simplest. The goal
of this technique is to optimize the action-value function Q by reducing the loss
function: [8]

L(θ) = E[(rt + γmax
a′

Q(st+1, a
′; θ−)−Q(st, at; θ))

2] (2.4)

Here, Q(st, at is prediction; θ), θ expresses the policy network parameter, and rt is
target +γmaxa′ Q(st+1, a

′; θ−) where θ− is the target network parameter and st+1 is
the state encountered at state st after playing action at. In DRL, the loss function
hardly converges. Although it diverges when we use a nonlinear approximator. [8].

2.4 Double Q-Learning

In traditional Q-learning and DQN, the max operator selects and evaluates actions
using the same values. This makes overestimated values more likely to be selected,
resulting in overoptimistic estimates of value. We can decouple the selection from
the assessment to avoid this. Two value functions are learned in Double Q-learning
by randomly assigning experience to update weight sets, θ and θ

′
[9]. One set is

used for each update to identify the greedy policy and the other to determine its
value. In Q-learning, we can untangle the selection and evaluation and rewrite the
target for clear comparison as

Y Q
t = Rt+1 + γQ(St+1, argmaxaQ(St+1, a; θy); θt) (2.5)

The error in Double Q-learning:

Y DoubleQ
t ≡ Rt+1 + γQ(St+1, argmaxaQ(St+1, a; θy); θt′) (2.6)

4



Note that the action selection in argmax is still due to θt online weights. This implies
that, as in Q-learning, according to current values, we are estimating the cost of the
greedy policy, as defined by θt. However, we use the 2nd weights θt′ to assess the
value fairly. Users can symmetrically update this second set of weights by changing
the roles of θ and θ

′
[9].
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Chapter 3

Quantum Computing

3.1 Quantum Computing

Quantum mechanics is a set of principles or mathematical foundation for construct-
ing physical theories. In the 1970s, the idea of integrating quantum physics and
information theory arose. Quantum information and computing present a valuable
set of problems with varying degrees of complexity. People design strategies to better
manage single quantum systems, encourage the development of novel experimental
procedures, and give recommendations as to the most intriguing paths in which to
conduct experiments as a result of these productive challenges. We know about bits.
Bits are the fundamental units of information which are used by classical comput-
ers.[10] In classical computers, we use two possible states either 1 or 0. However,
a classical computer using classical algorithms struggles to tackle a crucial issue
or factor a huge number, among other things. Also, it takes an excessive amount
of time and memory. The building elements of quantum information are quantum
bits, often known as qubits.They are denoted by |0〉 and |1〉. The states of the bits
can be superimposed on a qubit. Superposition means bits can coincide. Quantum
Computing uses the concept of superposition and entanglement to perform a com-
putation. Now we will explain Superposition, Entanglement, measurement and its
application in brief.

|0〉 =

[
1
0

]
(3.1)

Similarly, we represent 1 as -

|1〉 =

[
0
1

]
(3.2)

As seen here, a qubit depicts a 2-D quantum system.[
c0
c1

]
(3.3)

A classical bit is either 1 or 0, while a qubit could be a pair of |0〉 or |1〉, which is
referred to as a superposition:[11]

|ψ〉 = c0 |0〉+ c1 |1〉 (3.4)

‖c0‖2 + ‖c1‖2 = 1; Where ‖c0‖2 is the likelihood of finding in state |0〉. Again,
‖c1‖2 the likelihood of finding in state |1〉. Quantum devices must cope with many
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qubits.Check out the following eight bits: 01101011.[
0
1

]
,

[
1
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
0

]
(3.5)

The following tensor product is said to represent coupled quantum systems:

|0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 (3.6)

And it belongs to the following vector space:

C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 (3.7)

Another way to express 8 qubits:

(3.8)

Eight qubits together is called a qubyte. Thus a state of eight qubits can be written
by 256 complex numbers.

|01〉 = |0〉 ⊗ |1〉 =


0
1
0
0

 (3.9)

1√
3


1
0
−1
1

 (3.10)

written as 1√
3
|00〉− 1√

3
|10〉+ 1√

3
|11〉 Unlike pure-state models, it does not draw its

strength from the generation of a large amount of entanglement. Entanglement is
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a state that cannot be described or stated in terms of a tensor product of qubits or
other states. Vidal, G. and Latorre, J. I. and Rico, E. and Kitaev, A.
One of the most fascinating aspects of quantum theory is state entanglement. If the
system is in the state

|11〉+ |00〉√
2

=
1√
2
|11〉+

1√
2
|00〉 (3.11)

then that means the two qubits are entangled. That indicates if we check any one
qubit and find it in state |1〉, we know the other qubit must be in |0〉. and vice
versa. (M. A. Nielsen, 2011) [11]
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3.2 Quantum Gates

A quantum gate is basically a qubit-acting operator. Unitary matrices will be used
to represent such operators.

NOT Gate

NOT =

[
0 1
1 0

]
(3.12)

NOT |0〉 = |1〉
NOT |1〉 = |0〉

Pauli gates

The following three matrices are called Pauli matrices:

BitF lip,X =

[
0 1
1 0

]
(3.13)

The pauli gate is analogous to our traditional NOT gate.

PhaseF lip, Z =

[
1 0
0 −1

]
(3.14)

Z |0〉 = |0〉
Z |1〉 = − |1〉

Bit− PhaseF lip, Y =

[
0 −i
i 0

]
(3.15)

Hadamard gate

1

2

[
1 1
1 −1

]
(3.16)

H |0〉 = |+〉
H |1〉 = |−〉

Controlled-NOT gate

Figure 3.1: Controlled-NOT gate

9



To function, a controlled-NOT gate requires two qubits. Let |ψ1〉 be a control bit;
if |ψ1〉 is |0〉, the associated qubit remains unchanged; if |ψ1〉 is |1〉, the associated
qubit changes to its inverse value. 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.17)

CX |0〉 ⊗ |0〉 = |0〉 ⊗ |0〉
CX |0〉 ⊗ |1〉 = |0〉 ⊗ |1〉
CX |1〉 ⊗ |0〉 = |1〉 ⊗ |1〉
CX |1〉 ⊗ |1〉 = |1〉 ⊗ |0〉

Rotational gate

Rotational gates are qubit-operated gates that rotate along the x, y, and z axes.
The matrices for a qubit rotating gates Rx, Ry, and Rz are as follows:

RX(θ) =

[
cos θ −i sin θ
−i sin θ cos θ

]
RY (θ) =

[
cos θ − sin θ
sin θ cos θ

]

RZ(θ) =

[
e−i

θ
2 0

0 ei
θ
2

]

10



Chapter 4

Quantum Variational Circuit

Quantum variation circuit is also known as parameterised quantum circuit(PQC).
Quantum variational circuit, like other quantum circuits, operates on qubits. Quan-
tum variational circuits could be built utilizing unitary and rotational gates, for
example. The special feature of quantum variational circuits is that they are pa-
rameter dependent. We might simply customize the circuit to address quantum
machine learning problems through altering the values of parameters. The appli-
cation of quantum machine learning for the use of quantum variational circuits is
growing enormously. To create quantum variational circuits, we must first take
qubits and set them to zero. Then, depending on the problem for which we are
designing our quantum variational circuits, we add various sorts of gates such as
rotation gates, controlled-NOT gates, and so on. It is important to highlight that
we are addressing conventional machine learning issues with quantum variational
circuits that employ quantum computing. Given that quantum computers are still
in the early stages of development, one would wonder how we might do compu-
tations utilizing quantum variational circuits. The explanation is that we employ
a platform that is neither pure classical nor pure quantum, but rather a classical-
quantum platform. As a result, the quantum variational circuits are created utilizing
the laws of quantum computations, which outperform conventional computations.
However, the quantum variational circuits are measured using classical components,
and the results are used to update the quantum variational circuits parameters. In
this case, measurement may be seen as a function in which qubits are mapped to
classical bits. The classical component that aids in the updating of the parameters
of quantum variational circuits following measurements is commonly referred to as
the optimizer.[12][3][13][4][14][15]

Figure 4.1: Function of QVC

11



Chapter 5

Function and Preparation of
QVC(or PQC)

Quantum Computing’s supremacy and brilliance in several disciplines, such as Quan-
tum Machine Learning, Optimization, and Cryptography, has led to the solution of
a variety of issues that classical computers were unable to solve. QVC is one of these
algorithms for tackling quantum machine-learning challenges. In Quantum Comput-
ing, they serve the same purpose that Neural Networks do in Classical Computing.
A quantum variational circuit(QVC) is usually divided into three parts, Prepa-
ration of initial state: In this phase, we set zero to all of the involved qubit
states.
Parameterized Quantum circuit: As illustrated in figure 7, it will be generated
by U(x, θ), which consists of input parameters(x) and variational parameters(θ).
We will use a conventional optimization technique that makes queries to the quan-
tum device to train variational circuits. Quantum Encodings are performed using
the data input to these circuits. In the Hilbert feature space, Quantum Encod-
ing expresses classical bits as qubits. In Hilbert space, there are several encoding
techniques ranging from conventional to quantum data. Here, we will discuss two
approaches.[16][17][18]
The most basic approach of converting data to quantum data is basis encoding.
This approach connects the computational base of n-qubit input with n-bit classical
input. In general, we utilize the following equation to encode data sets using the
basis approach.

|D〉 =
1√
M

M∑
m=1

Xm (5.1)

whereD equals {X1, X2, ..., XM} is classical data in binary, Xm equals {b1, b2, ..., bN}, bi ∈
{0, 1}, i ∈ {0, 1, 2, ..., N} where N represents features.
In Quantum Machine Learning, Amplitude encoding is a common and widely uti-
lized way of encoding. The coupling of classical data with quantum state amplitudes
is the foundation of amplitude encoding. We must transform classical number vec-
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tors to normalized classical vectors in order to encode quantum amplitudes.[19]b27

X =


x1
x2
.
.
.
x2n

 (5.2)

Here X is normalized, x ∈ C2n , and C stands for complex number. State amplitudes
is being represented in the following ways::

|ψx〉 =
2n−1∑
i=1

xi |i〉 (5.3)

where |ψ〉 ∈ Hilbert space(H) and Σi |xi|2 = 1
We will also employ some more data strategies that were described in the literature
review section in addition to these two data encoding approaches.
The state parameters(x) will be encoded into a feature map by the first few gates in
the circuit, while variational parameters(θ) will be used by the succeeding gates. The
circuit architecture is random, with the exception of the basic rule that the input
and variational parameters are utilized as arguments for the gates. Furthermore,
similar to the weights in a neural network, the variational parameters are set to
a random value. Selecting an appropriate circuit that produces the best outcomes
is a time-consuming process. We will use several well-documented feature maps
to improve accuracy. If we have N-dimensional input parameters, we may use the
displacement operator with N qubits to encode them.
Measurement: Measurement of the QVC at the end is also known as the expected
value. With some traditional post-processing, we will estimate the cost of the circuit
from these anticipated values. In Fig. 7. Here is an example of how to calculate the
circuit’s traditional post-processing cost.

Figure 5.1: An example of Code for classical post-processing calculation

The architecture of the Variational Circuit: There are several Ansatzes for
Variational Circuits that have been presented. The application determines the cir-
cuit’s strength and precision. A circuit that provides great precision for one set of
images may not provide the same level of precision for other sets. As a result, the
Variational Circuit’s architecture is critical in deciding the accuracy of the classifier
model. Variational Circuits are often divided into three designs.
Layered gate Architecture: A layer is formed by a series of gates in layer architec-
ture. This layer is repeated based on the demand, forming a hyperparameter. The

13



Figure 5.2: A typical structure of Layered and Alternating Ansatz

circuit is frequently divided into two units, A and B. These are further categorized
into subclasses based on the parameterization of blocks A and B.
Alternating operator Ansatz: As these Ansatz are represented by two blocks
A and B, they are comparable to the Layered Gate design.The main difference is
that Hamiltonian, which changes over time t, defines the unitaries of expressing
the blocks A and B. This approach is similar to Adiabatic Quantum Computing in
concept.
Tensor network Ansatz: This architecture is made up of a single permanent
structure rather than layers like Layered or Alternate operators. Figure 9 illustrates
an example of this circuit.

Figure 5.3: A typical architecture of Tensor network Ansatz
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Chapter 6

Quantum Data Encoding

When working with the classical data on a quantum device, we must verify that the
classical data is well converted into quantum data. We need data encoding, which
will convert traditional binary data to quantum data and vice versa.
There are a variety of data encoding techniques that may be used to accomplish
this. One option is to use qubits to transform all classical binary data into quantum
data, but this could take more time and occupy more space because to convert a
single-precision floating-point from a classical system to a quantum system, could
take more than thirty qubits.[1] So, we aim to use the following two encoding tech-
niques in our thesis study, although we have various theoretical techniques.[1]

Scaled Encoding: This method is intended for setups input data that falls within
some defined constraints. The procedure is straightforward; it scales every parameter
between 0 and 2π then rotates across Rx and Rz. Here, Rx and Rz represent
parameterized rotation gates which will be used along with some other quantum
gates to build the proposed quantum variational circuit or QVC (Literature review,
section G). The binary input values that will be transformed into quantum data are
denoted by parameter.
However, the approach described above has certain drawbacks. We may encounter
a circumstance in which the binary input data is not between 0 and 2pi. If the
constraints exceed the bounds i.e., −∞ to∞, this method may not work effectively.
In such a situation we could use another data encoding technique which is called
Directional Encoding, which involves quibit rotation respect to Rx and Rz either
by 180 degree or zero , as defined by the following constraint: if the input is greater
than 0 or positive then the rotation will be π otherwise there will be no rotation.
The above-mentioned techniques are efficient and would require two gates for each
qubit. Some data encoding techniques are theoretical and not suitable for the quan-
tum variational circuit (QVC) based deep reinforcement learning.[20][21] Because
some techniques are impossible to simulate on TensorFlow quantum, TensorFlow
Quantum is a library for quantum machine learning, and some require more and
more quantum gates to build.
We have studied various types of quantum data encoding techniques but have yet
to apply them in our work; however, we intend to do so in future works such as
optimization problems based on Quantum Variational Circuits (QVC).
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Chapter 7

Quantum Reinforcement Learning

7.1 Introduction

Like traditional reinforcement learning, three main sub-elements can also be iden-
tified by a quantum reinforcement learning system: an environment, a function
that gives reward and a policy or rule. However, quantum reinforcement learning
algorithms vary considerably from standard RL algorithms mostly in four ways.

7.2 Representation

We now have specifications and theorems for quantum reinforcement learning since
we describe a QRL process applying quantum concepts. Definition 1: Choosing a
measurable quantum system as well as its eigenvectors in a Hilbert space yields a
collection of full orthogonal bases. The quantum state of a generic enclosed quantum
system described as a state |ψ〉 in a Hilbert space. We write the inner product of
|ψ1〉 and |ψ2〉 into 〈ψ1|ψ2〉 and the condition for being normalization is 〈ψ|ψ〉 = 1.
In a basic quantum mechanical system, it is possible to describe the state of the
qubit as |ψ〉 = α |0〉 + β |1〉 and the condition of its normalization is equivalent to
|α2| + |β2| = 1.[2]
In quantum Information, according to the superposition principle, Because a quan-
tum reinforcement learning system may exist in orthogonal quantum states , it could
exist in a random superposition. We can write the superposition as follows:

|ψ〉 =
∑
n

βn |ψn〉 (7.1)

We can obtain Proposition 1 in a quantum reinforcement learning system for any
random state. An invariance state, s in QRL can be expressed as follows in respect
of an orthogonal collection of eigenvalue states s (or eigen actions a):[2]

|S〉 =
∑
n

αn |sn〉 (7.2)

|A〉 =
∑
n

βn |an〉 (7.3)
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Where αn and βn are amplitudes of probability, and
∑

n|α2
n| = 1 and

∑
n|β2

n| = 1.
are satisfied.
QRL’s states and actions vary somewhat from conventional RL: I. In traditional RL,
the sum of multiple states has no definite meaning, however, the sum of QRL states
remains a potential state of the same quantum system. If |S〉 assumes its own state
|Sn〉, it is exclusive. Nevertheless, the likelihood of being in the eigenstate of |Sn〉 is
|α2
n|. It is also applicable for the |A〉 (action).[2]

Quantum computation is based on the qubit. Multiple qubit systems express states
and actions . Let the number of states and actions be Ns and Na, then select
numbers m and n. The following inequalities are identified by Ns and Na,

Ns ≤ 2m ≤ 2Ns, Na ≤ 2n ≤ 2Na (7.4)

Here, m and n qubit to respectively represent the state, S = {|Si〉} and action, A =
{|Aj〉}.We get the following relation:

∣∣S(Ns)
〉

=
Ns∑
i=1

Ci |Si〉 →
∣∣S(m)

〉
=

m︷ ︸︸ ︷
11...1∑
S=00...0

Cs |S〉 (7.5)

The same relation also can be obtained for Action |A〉.The amplitude of probability
Cs and Ca are complex figures and fulfill b5

m︷ ︸︸ ︷
11...1∑
s=00...0

∣∣C2
s

∣∣ = 1 (7.6)

n︷ ︸︸ ︷
11...1∑
a=00...0

∣∣C2
a

∣∣ = 1 (7.7)

7.3 Action selection policy

The agent will learn a policy π : S×Ui∈SA(i) →[0,1], that will optimize the projected
value of each state’s award in QRL. The mapping is π : S → A, and we get

f(s) = |ans 〉 =

n︷ ︸︸ ︷
11...1∑
a=00...0

ca |a〉 (7.8)

In this case, the action selection system is founded on the collapse postulate:
If an action |A〉 =

∑
nβn|an〉 is measured, it is altered and randomly collapses into

one of its actions |an〉 with this probability
∣∣〈an|A〉2∣∣:

∣∣〈an|A〉2∣∣ =
∣∣(|an〉)∗ |A〉2∣∣ =

∣∣∣∣∣(|an〉)∗∑
n

βn |an〉2
∣∣∣∣∣ =

∣∣β2
n

∣∣ (7.9)
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We increase the likelihood of a ”good” action in the QRL algorithm based on the ap-
propriate incentives. When we measure the quantum state, it is a real number value.
Without measurement this results in between exploration and exploitation and a
natural ”action choice”. [2]

7.4 Paralleling state value updating

In proposition 1, We mentioned that in terms of an orthogonal complete set of eigen
state |S〉, every possible state of QRL can be extended as follow:

|Sn〉 : |S〉 =
∑
n

αn |Sn〉 (7.10)

A unitary operation of U on the qubits can indeed be enforced as per quantum
parallelism. Presume we now have a function that can analyze these 2m states
mostly with TD(0) value update rule at the very same time:

V (s)← V (s) + α(r + γV (s′)− V (s)) (7.11)

It is like updating the traditional RL’s parallel value over all states.

7.5 Probability amplitude updating

Action method is determined in QRL by measuring action |ans 〉 related to certain
state |S〉, which collapses to |a〉 with the probability of |Ca|2 occurring. There is
therefore no doubt that updating the probability amplitude is the key to measuring
the experience of ”trial-and-error” and learning to be more skilled. The update of
the amplitude of probability is based on the Grover iteration [22]. Initially, the
evenly balanced superposition must be prepared.

∣∣a(a)o 〉 =
1√
2n

(

︷ ︸︸ ︷
11...1∑
a=00...0

|a〉) (7.12)

This method may be readily accomplished by applying n separate qubits with start-
ing states of 0 each.[22].Which may be stated in the following way:

H⊕n

∣∣∣∣∣
n︷ ︸︸ ︷

11...1

〉
=

1√
2n

(

︷ ︸︸ ︷
00...0∑
a=00...0

|a〉) (7.13)

We take Ua and Ua0(n) to construct the Grover iteration.

Ua = I − 2 |a〉 〈a| (7.14)

Ua0(n) = H⊕n(2 |0〉 〈0| − 1)H⊕n = 2
∣∣∣a(n)0

〉〈
a
(n)
0

∣∣∣− I (7.15)

In the Grover algorithm[11], where I is the unitary matrix and Ua is oracle O. |a〉
〈a| = |a〉 ( |a〉)∗ is defined as the external product |a〉 〈a|. [2]
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Figure 7.1: Grover algorithm in QRL
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Chapter 8

Experiments & Results

8.1 Experiments

We are updating the conventional DQN on the Atari, as well as the LunarLander-v2,
in preparation for the Quantum Variational Circuit (QVC) based Deep Reinforce-
ment Learning (DRL) implementation in this study. To evaluate and validate the
performance of DQN, we use traditional methods on Atari and Lunar Lander-v2.
The goal is to compare the performance of conventional algorithms versus QVC-
based solutions. So, we discuss about Q-Learning and its components. It is the
most fundamental approach for deep reinforcement learning, and it has some terms
associated with it. They are as follows:
Agent: It is an entity that will exist in an environment to execute activities that
will change the state of the environment in order to receive rewards.
Environment: The Environment is the universe in which the agent exists, and it
has a distinct state that can alter the agent’s behavior.
Step: It occurs several times when the agent makes an activity that changes the
condition of the environment.
Episode: A series of events that ends in the environment entering a terminal state.
Epoch: A training iteration of the agent with the specified number of episodes.
Terminal State: When the agent has won or lost, or when the environment has
taken more than the maximum number of steps.

Classical DQN based LunarLander VS QVC based LunarLander:
The Lunar Lander game’s landing platform placement is at x equals 0 and y equals
0. At zero speed, moving from the top of the screen to the landing pad awards
the agent some points. If the lander departs from the landing space, it forfeits the
prize. In this work, we state points which means the integer value. While the lander
cracks, then users will receive an extra -100 or +100 points. Moreover, every leg’s
bottom contact is worth ten points. Each frame costs -0.3 points to fire the main
engine. The total score was 197. There is a possibility that it could land outside
the platform. Because fuel is limitless, an agent may learn to fly and land on the
first try. Now we implement the DQN to train agents to solve it with the help of
the OpenAI gym. Here there have been four alternatives for users to choose from:
1. Get nothing
2. Fire the left-oriented motor
3. Fire the main motor
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4. Fire the right-oriented motor

Figure 8.1: OpenAI Gym Environment

To install the OpenAI Gym dependencies into the environment, we can use the
following code
Again we developed an Agent class to train the model. Then, using the DQN
algorithm, we construct a DQN Agent, which determines the outcome after training
the Agent.
For DQN: To estimate the optimal action-value function, we utilize a deep neural
network as follows:

Figure 8.2: Equation

Here, Q represents the action-value function, s represents states, a represents actions,
rt represents the maximum amount of rewards discounted by at each time step t,
and represents the behavior policy.
PQC(or QVC) based DRL LunarLander:
TensorFlow-quantum must be installed before we can run the LunarLander with
the DQN algorithm in the PQC or QVC. To perform this operation, we use 5
qubits. Because LunarLander is such a complicated environment. A complicated
environment necessitates a large number of measurements. Here’s an example of
employing 5 qubits:

Figure 8.3: QVC based on 5 qubits

In this case, we employ Rx, Ry, and Rz gates, each of which is parametrized by a
distinct Q. Then, in the rotation gates, we utilize a set of CNOT gates to act on the
qubits. We receive the result after training the Agent with the PQC(or QVC) DQN
method, which is displayed in the result section.

Owen Lockwood’s QVC based RL for CartPole , 3 Qubit based QVC on
CartPole using the DQN Algorithm VS 4 Qubit based QVC on CartPole
using the DQN Algorithm:
CartPole is a game included with OpenAI Gym. It seems to be a pendulum in this
setting, taking gravity in the middle to its pivot point. It may be unstable at first,
which means it will shift to the right or left to steady itself. As a result, the major
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goal of this game is to maintain the CartPole steady by adjusting the pivot point.
[1] A pole is attached to a cart that moves over a frictionless track with the help of
an unactuated joint. The device is controlled by applying a +1 or -1 pressure on
the cart. The pendulum starts out upright, and the goal is to keep it from falling
over. For each timestep that the pole remains erect, a +1 is awarded. The episode
finishes when the pole travels more than 15 degrees from vertical or the cart moves
more than 2.4 inches from the center. The author of the PosterLockwood article
utilized Directional Encoding to construct QVC RL using the DQN algorithm. They
utilized Directional Encoding because it has an endless number of input values and
can tackle complex settings such as CartPole. This encoding has simplified the
technique by allowing the input to be arrays of floating point and integer data. In
the result section, a graph depicts the outcome of this Encoding CartPole.
To finish the job, we used three qubits in the 3 Qubit CartPole. Here’s an example:

Figure 8.4: QVC based on 3 qubits

We utilized 1000 episodes to see which system produced the best outcomes.

Figure 8.5: Figure representing 1000 episodes

Another picture of using 4 qubits to train the agent:

Figure 8.6: QVC based on 4 qubits

The result and graph obtained after training the agent are shown in the Result
section.
Classical DQN based Atari VS QVC DQN based Atari:
In this work, we use DQN on OpenAI Gym Atari games. OpenAI Gym is a simple to
use general intelligence benchmark with a unique setting. The environment, which
determines the game in which our reinforcement algorithm will compete, is the most
important aspect of OpenAI-Gym. The Gym library environment may provide us
with a variety of features. To build up the gym library, we’re utilizing Breakout-v0.
Here’s an example of how to use Breakoutv0:
Atari(Pong-v0), First and foremost, we chose Pong-V0 to practice the Atari game.
This version is observed on an RGB (Red, Green, Blue) picture of the screen. It
is an array with the size [210, 160, 3], with each action repeating for k intervals.
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Figure 8.7: Atari Environment form OpenAI Gym

Following that, we select the maximum number of iterations since increasing the
number of collecting stages will help the algorithm train well. The next step is to
configure Atari’s Environment to carry out the following process. The environments
of several Atari games change depending on whether they are shown in 2D or 3D. In
our study, the Atari games are represented as a 3D using Open-AI Gym. For effective
computing To speed up the computation, we skipped certain frames, lowering the
resolution.
We created the Pong-v0 environment after utilizing Breakout-V4. Here is an image
of the game’s module:

Figure 8.8: Atari game’s module

8.2 Results

Classical DQN based LunarLander VS QVC DQN based LunarLander:
We achieve 200.02 in 987 episodes after training the agent with the DQN method
in conventional RL. Furthermore, after training the agent in PQC with the DQN
algorithm: 291.3 within 220 episodes. Here is the picture:

Figure 8.9: Result of DQN algorithm in classical RL.

Here, We set the average score for both trials at 200, and after computing the job,
we see that the traditional RL requires 987 episodes to achieve 200.02 and the PQC
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Figure 8.10: Result of DQN algorithm in PQC RL.

Figure 8.11: Graph of DQN Algorithm using classical RL

Figure 8.12: Graph of DQN Algorithm with PQC RL
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Rl requires 220 episodes to reach 291.3. Based on this finding, we may infer that
PQC RL outperforms traditional RL.
Here is a table that clearly shows the distinction between them:

Name Episodes Score Time
Classical RL 987 200.02 4 hours
QVC based RL 220 291.3 6 Hours

Table 8.1: Comparison between Classical RL and QVC base RL with DQN Algo-
rithm
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Owen Lockwood’s QVC based RL for CartPole , 3 Qubit based QVC on
CartPole using the DQN Algorithm VS 4 Qubit based QVC on CartPole
using the DQN Algorithm: From the PosterLockwood paper we get the graph:[1]

Figure 8.13: Graph of DQN algorithm in QVC RL [1]

They utilized 1000 episodes and received an average reward of approximately 125.5.
On the other hand, we get the following graph as a consequence of participating
three qubits based QVC with the DQN Algorithm:

Figure 8.14: Graph of DQN Algorithm with 3 qubits QVC RL

The result is shown here:

Figure 8.15: Result of DQN Algorithm with 3 qubits QVC RL

Here is the another graph of 4 Qubits based QVC DQN:
In QVC DQN, we present the entire result of 4 Qubits based QVC of the DQN
Algorithm:
From this diagram, we can see that after 500 episodes, all of the average prizes are
more than 200, and it took a long time to finish till 1000 episodes. That is why we
are only displaying the most recent 540 episodes for 4 qubits based QVC.
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Figure 8.16: Graph of DQN Algorithm with 4 Qubits QVC RL

Figure 8.17: Result of DQN Algorithm with 4 qubits QVC RL

We can use a table to compare among the three:

Name Episodes Rewards
Owen Lockwood’s QVC based RL for CartPole [1] 1000 125.5
3 Qubit based QVC on CartPole using the DQN Algorithm 1000 182.9
4 Qubit based QVC on CartPole using the DQN Algorithm 540 500

Table 8.2: Comparison among Owen Lockwood’s QVC based RL for CartPole [1], 3
Qubit based QVC on CartPole using the DQN Algorithm and 4 Qubit based QVC
on CartPole using the DQN Algorithm

Based on this analysis, we can conclude that the 4 Qubit CartPole outperforms the
others. Because increasing the qubit in a system or environment allows it to operate
with more qubits, which can do many more measurements than fewer qubits. For
them, the measurement will be speedier and the task will be completed in less time.

Atari DQN with Classical RL VS Atari DQN with QVC RL: We obtained
the following result after training the agent using traditional DQN (Figure 8.18):
Furthermore, after training the agent using QVC based DQN, we obtained the
following result (Figure 8.19):
A table can be used to compare the Classical DQN based Atari and the QVC based
Atari using DQN algorithm (Table 8.3):
We can see from the data that the QVC based Atari using DQN performed better
than the Classical DQN based Atari.
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Figure 8.18: Result of DQN Algorithm with 4 qubits QVC RL

Figure 8.19: Result of DQN Algorithm with 4 qubits QVC RL

Name Steps Avg. Return Time
Classical DQN based Atari QVC RL 250000 2.40 14 hours
QVC based Atari using DQN 175000 2.67 11 hours

Table 8.3: Comparison between the Classical DQN based Atari and QVC based
Atari using DQN
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Chapter 9

Conclusion

We built the QVC-based RL in our study to see if it outperformed the conventional
RL. In addition, we demonstrated that our QVC-based RL approach outperformed
their QVC RL system. Furthermore, we discovered that training an agent with
enough iterations or episodes can result in better results. Taking more Qubits may
result in higher scores or better incentives after the agent has been trained. To
solve a complex environment, we need more computations and time. In this case,
increasing the number of Qubits will allow us to measure the result more quickly and
precisely. Although we used the QVC-based approach in the CartPole, Atari, and
Lunar Lander settings, there should be opportunities to use it in other situations
in the future. Adopting the DDQN algorithm may yield better results than the
DQN Algorithm in the future. Furthermore, using various Encoding techniques to
solve the QVC-based RL may yield better results in the future. We will be able to
improve performance if we can apply Quantum Computing to other fields such as
quantum finance optimization problems and quantum web security.
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