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Abstract 

Plants display immunity towards invading pathogens through layers of immunity. The pattern 

triggered immunity in Arabidopsis thaliana is the first layer of immunity against pathogens. 

Pattern Recognition Receptor Kinase, HAESA binds to Damage Associated Molecular Pattern, 

IDA, with the coreceptor SERK1. SERK1 is a member of the greater SERK family of receptor-

like kinases. BAK1, alternatively known as SERK3, is also a representative of the SERK protein 

family. Therefore, it can be hypothesized that BAK1 could function alternatively to SERK1 protein 

in the HAESA-IDA complex. Besides, the elongated (elg) phenotype of BAK1 shows a mutation 

in the 122nd residue from Aspartate (Asp) to Asparagine (Asn). The viability of this mutated 

BAK1 as an alternative to SERK1 protein in the complex of HAESA LRR and IDA DAMP in 

terms of structural and residual alterations is checked in this research. The HAESA-IDA complex 

is docked and run through molecular dynamics simulation. The external molecular structure and 

internal residual arrangements are studied before and after the molecular dynamics simulation and 

checked for similarities and dissimilarities. Structural comparisons were made using HAESA-

IDA-SERK1 (PDB ID: 5IYX) complex, and the FLS2-flg22-BAK1 complex (PDB ID: 4MN8) 

were used as references for the constructed experimental complex of HAESA-IDA-BAK1. 

Parameters like Root Mean Square Deviation (RMSD), Root Mean Square Fluctuations (RMSF), 

Hydrogen bonding, Solvent Accessible Surface Area (SASA), and Radius of Gyration (Rg) of the 

constructed tri-protein complex showed whether the complex is viable or not. High fluctuations in 

respective graphical data and incoherence of bond stability showed that mutated BAK1 in 

HAESA-IDA-BAK1 cannot form as a stable complex, hence the mutated BAK1 protein cannot be 

substituted for SERK1 in plant pattern triggered immunity.   
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Chapter 1: Introduction 

1.1 Background of Study 

In the plant Arabidopsis thaliana, the Pattern-Triggered Immunity (PTI) is imparted by the action 

of pattern recognition receptor (PRR) called HAESA, along with the involvement of signalling 

peptide Damage Associated Molecular Patterns (DAMP) called IDA. Usually in natural 

abundance, HAESA and IDA work with Somatic Embryogenesis Receptor-like Kinase protein, 

abbreviated as SERK1. In other instances, it is found that BAK1 forms a complex with two other 

proteins FLS2 and flg22, to impart pattern triggered immunity against bacterial flagellin. BAK1, 

archaically known as SERK3, is a member of the greater SERK protein family of proteins and has 

some structural and functional similarities to the SERK1 protein. Therefore, this dissertation 

investigates the possibility of BAK1 potentially being used as a replacement for SERK1 in future 

studies to interact with HAESA and IDA proteins successfully. 

1.2 Significance of Study 

This research allows us to observe the changes in structural properties and associated energy 

coefficients that arise due to the mutation of one protein (BAK1) from the virtually constructed 

tri-protein complex, HAESA-IDA-BAK1. 

1.3 Research Aims and Objectives 

This research aims to use biotechnological expertise to investigate how the Pattern Triggered 

Immunity of the model plant Arabidopsis thaliana connected in relation to HAESA- LRR 

ectodomain is related to the BAK1 protein complex. Specific objectives are fulfilled to reach the 

final result of the research. Those are overviewed as follows: 
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1. Examining the relation between PRR HAESA, peptide IDA and co-receptor BAK1 by 

the use of Molecular Dynamics Simulation 

2. Significance of mutation in BAK1 coreceptor in HAESA-IDA-BAK1 complex 

3. Examining HAESA-IDA-BAK1 complex in terms of its structural dynamics 

 

1.4 Literature Review 

This chapter presents the overview of the binding of protein structures HAESA, IDA and BAK1 

which are related in the pattern triggered immune responses and the lateral root development of 

the plant species Arabidopsis thaliana. Reference complexes for the experimental complex of the 

study, that is, FLS2-flg22-BAK1 complex and HAESA-IDA-SERK1 complex have been studied.  
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1.5 Plant Immune System 

Living organisms display defensive responses towards invasive infectious agents, which are 

triggered by the invasion of infectious agents to inactivate, neutralize, and kill the infectious agents 

to impart immunity within the host organism. The combination of immune responses builds the 

overall broad-spectrum immunity that protects the plant from external and internal harm. [1] 

The overall broad-spectrum immunity of plants, otherwise called Systemic Acquired Resistance 

(SAR), is administered by two types of immunological responses combined, namely – Pattern 

Trigger Immunity and Effector Triggered Immunity. [2] This defense mechanism was adapted 

through years of evolution of the selective pressure to distinguish pathogenic substances within 

the host organisms. Multicellular host organisms can detect non-self compounds from supposedly 

pathogenic sources through germline-encoded receptors, thus imparting the “innate immunity” in 

the hosts as a primary layer of defense. This mechanism is referred to as Pattern Triggered 

Immunity, abbreviated as PTI. [1,6,8] 

Eventual signaling events, for example, the activation of the mitogen-activated protein kinase 

(MAPK) kinase cascades, an influx of Ca2+ ion into the cytosol, and the generation of reactive 

oxygen species trigger the subsequent activation of defense genes that secrete antimicrobial 

compounds. Subsequently, the secondary layer of PTI defense comes to play, where nucleotide-

binding (NB) and leucine-rich-repeat (LRR)-containing receptors (NLRs) detect isolate-specific 

pathogen effectors. A resultant conformational change triggers the hypersensitive response (HR) 

or other defense responses that ultimately impart innate immunity as Effector Triggered Immunity, 

abbreviated as ETI. Contrary to multicellular animals, plants lack specialized immune cells and an 

adaptive immune system; therefore, they must rely exclusively on innate immune responses that 

result in local and systemic responses. [5,8] The Pattern Triggered Immunity was formerly 
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considered to play a minor role in Effector Triggered Immunity. On the other hand, recent 

investigations have demonstrated the natural occurrences of crosstalk and collaboration between 

the two types of immune responses. [8] 

 

Figure : A brief overview of the plant immune system. [44] 
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1.6 Plant Pattern Triggered Immunity 

The plant Pattern Triggered Immunity, otherwise known as PTI, is triggered when non-self, highly 

conserved microbial signature molecules called the Pathogen Associated Molecular Patterns (or, 

PAMPs) come in contact with the plant body. Specialized receptors trigger the surveillance of 

‘non-self’ agents through plant innate immune responses to distinguish patterns called the Pattern 

Recognition Receptors (PRRs), which recognize conserved patterns called the pathogen-

associated molecular patterns PAMPs. Alternatively, the resistance proteins in the plant adaptive 

immune system perceive isolate-specific pathogen effectors. For the sake of innate immunity, the 

detection of PAMP is critical to warn the host of the presence of pathogens and the activation of 

plant defense mechanisms. [3, 4, 6] The PAMPs that are specific to microbes are called Microbe 

Associated Molecular Pattern or MAMPs. These PAMPs and MAMPs a have evolved in the plant 

to detect the attacking pathogens or microbes from the harmless non-attacking substances inside 

or outside the plant body. [3, 4] Besides DAMPs, resulting in the activation of MAPK cascade and 

eventually the expression of defense genes against the attacking pathogens. [3] 

1.7 Plant Effector Triggered Immunity 

In plants, although pattern recognition receptors (PRRs) can recognize Pathogen Associated 

Molecular Patterns (or PAMPs) or Damage Associated Molecular Patterns (or DAMPs), some 

pathogens might sneak past the PTI system. [3,4] Therefore, as a second line of defense in enforced 

which uses the R-gene based or the vertical disease transfer-based system, which in turn 

administers the Effector Triggered Immunity (ETI) for more intense and qualitative responses. 

[7,10] The intracellular receptor proteins called the NLR receptors are employed by the host plant 

that mediates polymorphic effectors that are not conserved among microbes for more specific 

detection to bind Leucine Rich Repeat (NB-LRR). [7,8] These receptors make way for consequent 
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activation of calcium ion channels, formation of reactive oxygen species, and accumulation of 

pathogenic proteins, altering plant hormone levels. [10] This process most often includes a 

programmed cell death (PCD) phenomenon termed the hypersensitive response (HR), the 

synthesis of salicylic acid (SA) defense hormone, and the induction of defense genes. [8,9] 

1.8 Arabidopsis thaliana 

Arabidopsis thaliana is a small flowering weed of the Brassicaceae family that includes cultivated 

species such as mustard, cabbage, and radish. It has multiple stages in its life cycle, including seed 

germination, maturation of rosette, main stem bolting, and flowering. [11, 16] The history of 

Arabidopsis thaliana as a genetic model plant starts with Friedrich Laibach in the late 1800s. He 

proposed using the mentioned plant since it had a common genetic lineage to most eukaryotic 

organisms and utility in genetic research, which was finally unanimously agreed upon in the 1980s, 

in contrast to the other potential model organisms. [12, 13, 14, 15] Characteristics 

like small generation period, volumetric size, and nuclear genome compared to a more significant 

offspring birth number made Arabidopsis thaliana suitable for the choice. [16] 
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Figure : Mature Arabidopsis thaliana plant. [45] 

 

1.9 Pattern Recognition Receptor 

Within the Arabidopsis thaliana, about 600 Receptor Kinases (RKs) are composed of three main 

components— one transmembrane helix, one cytoplasmic kinase domain, and one ligand-binding 

domain that resides outside the cellular structure. A plethora of functions are carried out by several 

RLKs. Notably, BRI1 regulates brassinosteroid signaling, CLV1 regulates meristem growth, FLS2 

regulates flagellin perception, Crinkly4 governs leaf development, HAESA regulates abscission, 

SERKs modulate self-incompatibility, and Xa21 promotes bacterial resistance. [17, 18, 24] 
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Besides, the organism consists of over 1000 genes that code for 'putative' secreted peptides found 

for receptor kinases, namely SRK, CLV1, BRI1, and FLS2. These components facilitate proper 

peptide ligand-receptor interactions, which are pivotal for inter and intra-cell communication. 

Additionally, RLK kinase domains communicate with multiple proteins. [17, 18, 21, 24] 

An important family of receptor kinases termed Leucine-rich repeat RLK (LR-RLK) is the largest 

and functionally significant. They consist of the Extracellular domain (ECD) containing several 

LRR repeats that sense small molecules, total protein or peptides; and Kinase domain (KD) 

containing 12 conserved and three-dimensionally folded subdomains that play crucial roles in 

enzyme function. [25, 26] 

1.10 DAMPs 

Pathogen-associated molecular patterns (PAMP) are conserved motifs that work as ligands for host 

pattern recognition molecules, for example, PRRs (Pattern Recognition Receptors), to activate 

innate immune responses. [27] Similar kinds of proteins are called DAMPs, which stand for 

Damage Associated Molecular Patterns. Upon distress or trauma, living organisms release these 

signaling “danger” peptides. These are endogenous molecules that are excreted from damaged or 

dying cells, which allows the activation of the innate immune system through association with 

pattern recognition receptors (PRRs). [28] DAMPs aid PAMPs by enabling them to amplify 

immune signals in order for PAMPs to detect in the beginning phases of the pathogen intrusion. 

Examples of DAMPs include Homogalacturonans-derived DAMPs in plant primary cell walls, 

Plant Elicitor Peptides (PEPs), and PAMP-induced Peptide 1 (PIP1) in Arabidopsis thaliana, and 

Rapid Alkalinization Factors (RALFs) in monocot plants. [7, 24, 29] 
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1.11 RLK HAESA and DAMP IDA 

HAESA is present on the plasma membrane of cells at the base of the petioles and pedicels of 

plants and in its abscission zones of the floral organs. HAESA was previously known as RLK5 as 

a receptor-like kinase (RLK) type in the protein receptor family. [17, 30, 31] 

On the other hand, the protein Inflorescence Deficient in Abscission, otherwise known as IDA, is 

an n-terminal signal peptide secreted by an ethylene sensitive ida gene that works as ligands to 

specific plant receptor kinases. [17, 32, 33] 

After pollination of the flowers in Arabidopsis thaliana, they are shed by breaking up the 

Abscission Zone (AZ) in order to release fruits and disperse seeds to facilitate the production of 

plant progeny. [30, 35] The organs are shed by a mechanism where the IDA hormone binds directly 

and instructs HAESA to trigger the shedding process. After subsequent morphogenetic changes 

caused by hormonal changes, cell wall remodeling (CWR) and so forth, SERK1 comes into action.  

HAESA LRR senses IDA hormone through the co-receptor SERK1 protein and permits the flower 

shedding process. [22, 30] A good presence of IDA mutant and the HAESA/HLS2 double mutant 

proteins allows the breakdown of the abscission zone cell layers of the middle lamella to shed or 

abscise their floral organs from the base. In contrast, the absence of such mutants prevents 

abscission and therefore keeps the organ attached indefinitely. [19, 22, 23] Besides, an ida mutant 

gene forms an IDA protein that develops an Abscission Zone, but the non-mutant or wild ida gene 

that secretes IDA protein lacks Floral Abscission. [34] 

Simultaneous to the role in floral abscission, HAESA and IDA also has an important role in the 

lateral root emergence of Arabidopsis thaliana. By the influence of the plant hormone Auxin, IDA 

peptide is induced to regulate CWR genes along with HAESA. [19, 31, 32] Alternative to its role 
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in the floral abscission pathway, the wild ida allows lateral root emergence, while the mutant ida 

restricts the activity. [34] 

 

Figure : Ribbon structure (A) and surface view (B) of HAESA ectodomain 

 

 

Figure : Ribbon structure (A) and surface view (B) of IDA ectodomain 
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1.12 Coreceptor BAK1 

BRI1-associated kinase 1, otherwise known as BAK1, is a leucine-rich repeat receptor-like kinase 

(LRR-RLK) with five repeats containing the extracellular LRR domain. BAK1 can modulate PRR 

responses for downstream PAMP perception events to impart immunity against a vast legion of 

invading pathogens [36, 37]. It was initially termed SERK3, which stands for Somatic 

Embryogenesis Receptor-Like Kinase-3, being one of the five members of the SERK (Somatic 

Embryogenesis Receptor-Like Kinase) family of Leucine-rich RLKs. The SERK LR-RLKs are 

classified based on their expression during somatic embryogenesis [17, 36, 37]. Besides, SERK3 

was renamed as BAK1 also because researchers discovered that SERK3 function as a signaling 

partner of BRI1, which is the acronym for Brassinosteroid Insensitive1 [40]. 

BAK1 has small ectodomains composed of five LRRs with a serine and proline rich domain follow 

the LRR domain, which actually defines the SERK protein family. [17, 33, 40] Additionally, it 

contains a membrane-spanning domain, a cytoplasmic kinase domain, and a short C-terminal tail. 

In Arabidopsis thaliana, BAK1 (AtSERK3) generates an elicitor-dependent complex with the 

FLAGELLIN SENSING 2 (FLS2) receptor for the bacterial PAMP flagellin and its peptide 

derivative flg22. In one example for Arabidopsis thaliana, BAK1 (AtSERK3) generates an 

elicitor-dependent complex with the FLAGELLIN SENSING 2 (FLS2) receptor for the bacterial 

PAMP flagellin and its peptide derivative flg22 in Arabidopsis thaliana. [17, 40, 42]  

Additionally, BAK1 is engaged in identifying the bacterial PAMPs elongation factor Tu (EF-Tu), 

the cold shock protein PGN, lipopolysaccharides (LPS), DAMP AtPep1, and so forth [39, 40, 41, 

42, 43]. Besides signaling in Pattern Triggered Immunity, it also contributes to the modulation and 

control of brassinosteriod (BR) responses, light signaling, and cell death. [39] 
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Figure :  Ribbon structure (A) and surface view (B) of BAK1 enzyme 

 

1.13 Significance of mutation in BAK1 

A point mutation (GGA to GAA) which is precisely 1,370 bp downstream from the transcriptional 

start site in the third Leucine-rich repeat, was discovered when the BAK1/SERK3 (At4g33430) 

locus of elg (elongated) mutant plants was sequenced. The mutation occurs at the position D122N 

that changes Aspartate (D-122) to an Asparagine (N-122). [42] In vitro experiments proved the 

inability of wild-type BAK1 to interact with FLS2, where BRI1 interacts with FLS2. Therefore, 

an introduction of the D122N mutation in BAK1 is predicted to induce a salt bridge formation 

within expected amino acids, which is structurally and functionally similar to the D128N mutation 

in Oryza sativa rice OsSERK2 Asp128-Arg152 and Asn128-Glu174. [43] However, the effect of 

the alteration in Asp122 to Asn122 in this case within BAK1 is yet to be discovered.  
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Figure : Ribbon structure (A) and surface view (B) of BAK1 with D122N mutation (highlighted with yellow color) 
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1.14 Reference Model Structures 

For comparison, the structure of the LRR-RLK HAESA, DAMP IDA, and coreceptor SERK1 

complex (PDB ID: 5IYX), and the LRR-RLK FLS2, PAMP BAK1 and flagellin peptide flg22 

(PDB ID: 4MN8) are taken into consideration. HAESA-IDA-SERK1 functions in the pattern 

triggered immunity in Arabidopsis thaliana. FLS2-flg22-BAK1 functions similarly in the immune 

response to detect bacterial flagellin and its derivatives. The structural comparison is necessary to 

observe the docking association of the components of the experimental model structure of 

HAESA-IDA-BAK1. 

1.15 Bioinformatic Methods for Study 

Computer simulations are efficient tools that supplement traditional, in-laboratory "wet lab" 

experiments to thoroughly understand the characteristics of molecular assemblies in terms of 

structural and microscopic interactions. [46] Molecular dynamics (MD) simulations function 

based on a general model of physics that governs the inter- or intra-molecular movement of all or 

some atoms in a protein, or other molecular complex system monitored within a specified time 

frame. [47] Such simulations capture a broad range of critical biomolecular events, such as 

conformational change, ligand binding, and protein folding. They are showing their locations at a 

temporal resolution of time units smaller than seconds. They also demonstrate the interactions of 

the molecules to systemic shifts, for example, the addition or subtraction of a ligand, mutation, 

protonation, and so forth. [48] 

In order to execute dynamics simulation for a given molecular complex, appropriate programs with 

suitable computational power are necessary. Simulations run with greater temporal resolutions 

show the best results by canceling out as much noise as possible.  Potential energy functions to 

study molecular systems are carried out by programs, for instance, CHARMM (Chemistry at 
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Harvard Macromolecular Mechanics), AMBER (Assisted Model Building with Energy 

Refinement), GROMOS (GROningen Machines for Chemical Simulations), etc.  Similarities 

measured using Normal Node Refinement methods, such as RMSD (Root Mean Square Deviation) 

and RMSF (Root Mean Square Fluctuation), are used to refine the structures of extracted molecular 

motion characteristics. SASA (Solvent Accessible Surface Area) is used to understand the 

influence of solvation on complex biomolecular associations. 

A couple of computational software and tools were used for the purpose of this experiment. The 

list of such tools is provided below: 

1.15.1 GROMACS 

“GROningen MAchine for Chemical Simulation”, or in short, GROMACS is a molecular 

dynamics simulation suite. It can simulate molecular interaction of a protein or other complexes 

of interest within a liquid or membrane system. To generate the required outputs, it employs force 

fields for bonded, non-bonded or special interactions of the complex of interest for an experiment, 

calculate and modulate free energy and other complex algorithms. [51, 52] 

1.15.2 UCSF Chimera 

UCSF Chimera is a graphical representation software that uses Python, C++, and other 

programming languages to generate three-dimensional graphics of molecular structures and 

sequences. The structures can be visualized as ribbons, balls and sticks, or surface structures with 

interacting bonds. [54, 55] 

1.15.3 XMGRACE 

XMGRACE or Grace is a two-dimensional graphical plotting software to visualize input data 

points that is based on Python programming language. [56] 
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1.15.4 ClusPro, PatchDock 

ClusPro and PatchDock are online molecular docking servers that allow for protein-ligand and 

protein-protein docking. The algorithm of this processing software can detect highly populated 

clusters of low energy conformations, which helps to generate the best possible results of docking 

in a quick and efficient manner. PatchDock results were furnished by a part of the server called 

FireDock, which showed the best results with low energy coefficients. The software shows cluster 

sizes, energy levels, and comparative structural similarities to references, making it easier to 

choose the perfect docked result [58, 59, 60, 61]. 

1.15.5 PIC 

Protein Interaction Calculator (PIC) server shows the interactions of proteins input into its system. 

It shows results for various parameters, for example, hydrophobic interactions, hydrogen bonding, 

main-chain interactions with other main chain/s or side chain/s, side chains interactions, etc. [62] 

1.15.6 RMSD 

The RMSD (Root Mean Square Deviation) is the mean displacement of the atoms compared to the 

initial frame, crystallographic structure, or any structure considered a reference at a particular point 

in the simulation at a given time. This parameter allows to observe the binding affinity of the 

components of a protein-protein or protein-ligand complex. [57] 

1.15.7 RMSF 

The RMSF is a scale of the displacement of an individual atom or a group of atoms from the 

structure of reference whose mean average value is calculated over the number of atoms. This 

parameter tells whether the protein is folded or unfolded, therefore indicating the strength of 

interaction of the residues within the complex. [57] 
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1.15.8 SASA 

Solvent-Accessible Surface Area, abbreviated as SASA, is a measure of protein stability that 

measures the amount of surface of a given biomolecule by a solvent or solvation system. It denotes 

the stability of the protein complex in the presence of a solvation layer surrounding the complex 

[63]. 

1.15.9 Rg 

The radius of gyration or Rg is characterized as the root-mean-square average of the distance of 

all dispersed particles measured from the center of mass of the molecule-of-interest, indicating the 

compactness of the system. Along with SASA, it allows to measure protein stability in relationship 

to LRR modules. [63, 64]  
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Chapter 2: Materials and Methods 

2.1 Preparation of the HAESA-IDA protein complex 

The crystal structure of Arabidopsis thaliana HAESA LRR-RK in complex with the peptide 

hormone IDA (PDB ID: 5IXQ) [68] is taken and its PDB file is downloaded. The crystal waters, 

heteroatoms, for example, NAG, SO2, BMA, MAN, MG, EDO, HOH, and other unnecessary 

information are erased form the file and only the amino acid residue information are kept. The 

missing atoms of the updated protein structure file are checked with the software “Swiss 

PdbViewer” [70]. 

Using the GROMACS version 2020.1 [71], “pdb2gmx”, which prompts a list of optional force 

fields. The force field “OPLS-AA/L: all atom force field” is chosen. Next, an aqueous box is 

defined and filled with solvent (“SOL” ions) to acquire solvation with SPC water model. Next 

Energy minimization is run for 50000 number of steps. Next, equilibration is conducted in two 

phases. First, the NVT equilibration is run for 1000000 for 2000 ps (2 ns). Next the NPT 

equilibration is run for 1500000 steps for 3000 ps (3 ns).  

2.2 Preparation of Mutated BAK1 coreceptor 

The crystal structure of flg22 with FLS2 and BAK1 ectodomains (PDB ID: 4MN8) [69] was taken, 

which was modified to remove heteroatoms along with FLS2 and flg22 chains, keeping only the 

BAK1 chain. UCSF Chimera software is used to locate the 122nd Amino Acid, Asparatate (Asp) 

and changed to Asparagine (Asn).  
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2.3 Docking of Mutated BAK1 to HAESA-IDA protein complex 

The formed “npt.gro” file during NPT Equilibration stage is converted to “.pdb” file for 

interpretation as a receptor file. The mutated BAK1 and the receptor file are input in the following 

websites: 

1. ClusPro 

2. PatchDock 

In both of these servers, the HAESA-IDA complex is interpreted as the receptor while the mutated 

BAK1 is interpreted as a ligand to the HAESA-IDA complex. After a few hours, the servers send 

the resulting docked results through email. Finally, using UCSF Chimera software [54], each 

docked results are compared with reference crystal structures of FLS2-flg22-BAK1 complex (PDB 

ID: 4MN8) and HAESA-IDA-SERK1 complex (PDB ID: 5IYX). Besides, the largest cluster size 

and the lowest energy of the complexes are also considered. Finally, the chosen docked file is 

prepared for molecular dynamics simulation by correcting the file format with correct parameters 

readable by GROMACS, namely, adding spacing, name of chains, terminal sequence and atom 

numbers sequence. 

2.4 Molecular Dynamics Simulation of docked complex 

Similar to the first step, “pdb2gmx” command is run which prompts a list of optional force fields 

by using the GROMACS version 2020.1. The force field “OPLS-AA/L: all atom force field” is 

chosen. Next, an aqueous box is defined and filled with solvent (“SOL” ions) to acquire solvation 

with SPC water model. Next Energy minimization is run for 50000 number of steps. Next, 

equilibration is conducted in two phases. First, the NVT equilibration is run for 1000000 for 2000 
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ps (2 ns). Next the NPT equilibration is run for 1500000 steps for 30 ns. Finally, the Molecular 

Dynamics simulation is run for 10000000 steps for 30 ns. 
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Chapter 3: Result and Discussion 

3.1 Results: 

This section assesses the data and graphical analysis of the interactions between HAESA LRR 

with signalling peptide IDA and co-receptor BAK1. It also discusses the pre-and post- Molecular 

Dynamics analyses of the molecular interactions among each component of the tri-protein 

complex, the molecular interactions between HAESA and IDA, and the molecular interaction 

between HAESA and SERK1 MD simulation, which are calculated using several tools, for 

instance: RMSD, RMSF, H-bond, PIC, SASA and Rg. 

3.1.1 RMSD 

The Root Mean Square Deviation, or in short RMSD values, were generated from the molecular 

dynamics trajectory for 30 ns. The graph shows the uneven fluctuations that exist for the HAESA-

IDA-BAK1 complex. From time intervals 0 ns to 10 ns, the graph fluctuates less. Moving forward 

to 20 ns shows increasing fluctuations from 0.2 nm to up to 0.5 nm, ranging for about 5 ns interval. 

This graph has a propensity towards an upward trend, meaning that the components become more 

unstable with time. 
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Figure : RMSD graph of HAESA-IDA-BAK1 complex. Black graph shows fluctuations. 

 

3.1.2 RMSF 

Root Mean Square Fluctuation, or in short RMSF values, were generated from the molecular 

dynamics trajectory for 30 ns. Three graphs were generated for HAESA, IDA, and BAK1 

separately. 

The generated graph for HAESA shows that HAESA within the tri-protein complex has a low 

fluctuation rate of less than 0.1 nm at the N terminal residues (from residue 1 to about the first 50 

residues). Gradual progression towards the C terminal residues shows increasing fluctuations 

without regular frequency intervals. The RMSF graph for IDA shows a similar high fluctuation 

ranging from 0.05 nm to 0.3 nm. Finally, the RMSF graph for BAK1 shows that BAK1 within the 
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HAESA-IDA-BAK1 complex has increased but uniform fluctuations that spike near the C 

terminal. 

 

Figure : RMSF value of HAESA from 30 ns Molecular Dynamics trajectories. 

 

 

Figure : RMSF value of IDA from 30 ns Molecular Dynamics trajectories. 
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Figure : RMSF value of BAK1 from 30 ns Molecular Dynamics trajectories. 
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3.1.3 H-bond 

Graphical analysis using xmgrace program shows the number of hydrogen bonds (h-bond) created 

or broken off during the course of the molecular dynamics simulation (30 ns). Here, the hydrogen 

bond value for the combination of proteins is calculated, viz- HAESE and IDA (Figure 11 A), 

HAESA-BAK1 (Figure 11 B), and IDA-BAK1 (Figure 11 C) are taken. The black lines denote the 

hydrogen bonds. 

From the graph of the HAESA-IDA complex, it is noticed that the fluctuation is somewhat stable 

and consistent throughout the entire run time. Alternatively, the graphs for HAESA-BAK1 and 

IDA-BAK1 show extreme volatility which makes the graph almost unreadable. This means that 

hydrogen bonds are unstable and subject to frequent alterations. 
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Figure : Hydrogen bond analysis of HAESA-IDA-BAK1 complex. (A) H-bond value of HAESA and IDA from 30 

ns trajectory. (B) H-bond value of IDA and BAK1 from 30 ns trajectory. (C) H-bond value of HAESA and BAK1 

from 30 ns trajectory. 
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3.1.4 PIC 

PIC allows to perform calculations of the exact bonds within any protein structure. Here, the PIC 

values of the HAESA-IDA-BAK1 complex were calculated once before the molecular dynamics 

(MD) simulation was run, and later after MD simulation. 

The Protein Interaction calculator yielded several types of bonds of interacting amino acid residues 

for each component of the complex. Here, the inter-protein interactions in the main chain-main, 

main chain-side chain, and side chain-side chain are the most important in order to give a clear 

idea about the interacting hydrogen bond within the experimental protein complex, which will, 

later on, clarify the stability of the entire complex. Besides the hydrogen bonds, the hydrophobic 

interactions, ionic interactions, aromatic interactions are also considered. Furthermore, protein-

protein disulfide bridges and aromatic sulfur interactions were absent for the complex both before 

and after the molecular dynamics simulation. 

The common bonds between the pre- and post-molecular dynamics simulations are highlighted in 

the following tables. Additionally, a summary table of all the interacting bonds pre- and post-

simulation is given at the end.  
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3.1.4.1 Hydrophobic Interactions within 5 Angstroms 

Table : Hydrophobic Interactions within 5 Angstroms, before and after molecular Dynamics Simulations. 

Before Simulation 

Position Residue     Chain           Position Residue Chain 

78 VAL A 168 VAL C 

125 LEU A 144 PHE C 

125 LEU A 168 VAL C 

127 VAL A 192 ILE C 

171 ALA A 59 ILE B 

174 PHE A 100 TYR C 

174 PHE A 124 TYR C 

174 PHE A 125 LEU C 

196 TYR A 59 ILE B 

196 TYR A 60 PRO B 

218 TRP A 59 ILE B 

245 PHE A 45 VAL C 

245 PHE A 60 PHE C 

268 PHE A 60 PHE C 

383 TYR A 54 VAL C 

After Simulation 

Position Residue     Chain           Position Residue Chain 

60 PRO B 100 TYR C 

61 PRO B 60 PHE C 

78 VAL A 188 LEU C 

80 PRO A 188 LEU C 

125 LEU A 144 PHE C 

125 LEU A 168 VAL C 

127 VAL A 192 ILE C 

171 ALA A 59 ILE B 

174 PHE A 124 TYR C 

174 PHE A 125 LEU C 

196 TYR A 59 ILE B 
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196 TYR A 60 PRO B 

198 LEU A 125 LEU C 

218 TRP A 59 ILE B 

245 PHE A 45 VAL C 

245 PHE A 60 PHE C 

245 PHE A 78 ALA C 

268 PHE A 60 PHE C 
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3.1.4.2 Protein-Protein Main Chain-Main Chain Hydrogen Bonds 

Table : Protein-Protein Main Chain-Main Chain Hydrogen Bonds, before and after Molecular Dynamics 

Simulations. 

After Simulation 

Donor Acceptor Parameter 

Position Chain Residue Atom Position Chain Residue Atom Dd-a 

67 B ARG N 58 C THR O 3.29 

 

Here, 

Dd-a       =   Distance Between Donor and Acceptor 

 

This parameter is considered for the interacting residues of the experimental complex. 
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3.1.4.3 Protein-Protein Main Chain-Side Chain Hydrogen Bonds 

Table : Protein-Protein Main Chain-Side Chain Hydrogen Bonds, before and after Molecular Dynamics Simulations. 

Donor Acceptor Parameters 

Position Chain Residue Atom Position Chain Residue Atom Mo Dd-A 

264 A GLN NE2 62 B SER O 1 2.95 

264 A GLN NE2 62 B SER O 2 2.95 

269 A ASN ND2 44 C LYS O 1 3.03 

269 A ASN ND2 44 C LYS O 2 3.03 

407 A ARG NE 69 B ASN O - 3.30 

407 A ARG NE 69 B ASN OXT - 2.89 

407 A ARG NH2 69 B ASN O 1 2.71 

407 A ARG NH2 69 B ASN O 2 2.71 

407 A ARG NH2 52 C THR O 1 2.56 

407 A ARG NH2 52 C THR O 2 2.56 

407 A ARG NH1 53 C LEU O 1 2.75 

407 A ARG NH1 53 C LEU O 2 2.75 

407 A ARG NH2 53 C LEU O 1 2.66 

407 A ARG NH2 53 C LEU O 2 2.66 

409 A ARG NH1 69 B ASN O 1 2.72 

409 A ARG NH1 69 B ASN O 2 2.72 

66 B LYS NZ 57 C CYS O - 2.51 

66 B LYS NZ 59 C TRP O - 2.62 

66 B LYS NZ 62 C VAL O - 2.54 

67 B ARG NH1 47 C GLN O 1 2.71 

67 B ARG NH1 47 C GLN O 2 2.71 

69 B ASN N 361 A ASP OD2 - 3.20 

77 C ASN OD1 173 A ASN O 1 3.37 

77 C ASN OD1 173 A ASN O 2 3.37 

77 C ASN ND2 173 A ASN O 1 2.80 
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77 C ASN ND2 173 A ASN O 2 2.80 

77 C ASN ND2 196 A TYR O 1 2.85 

77 C ASN ND2 196 A TYR O 2 2.85 

100 C TYR OH 172 A GLY O - 2.63 

167 C GLN NE2 76 A MET O 1 2.92 

167 C GLN NE2 76 A MET O 2 2.92 

After Simulation 

Donor Acceptor Parameters 

Position Chain Residue Atom Position Chain Residue Atom Mo Dd-A 

102 A ASN ND2 188 C LEU O 1 2.80 

102 A ASN ND2 188 C LEU O 2 2.80 

269 A ASN ND2 43 C ASN O 1 2.71 

269 A ASN ND2 43 C ASN O 2 2.71 

269 A ASN ND2 44 C LYS O 1 3.40 

269 A ASN ND2 44 C LYS O 2 3.40 

337 A LYS NZ 67 B ARG O - 2.86 

66 B LYS NZ 57 C CYS O - 3.02 

66 B LYS NZ 62 C VAL O - 2.83 

69 B ASN N 361 A ASP OD2 - 2.88 

44 C LYS NZ 270 A ASN O - 2.77 

44 C LYS NZ 293 A MET O - 2.66 

77 C ASN OD1 196 A TYR O 1 3.23 

77 C ASN OD1 196 A TYR O 2 3.23 

190 C THR N 102 A ASN OD1 - 2.94 

 

3.1.4.4 Protein-Protein Side Chain-Side Chain Hydrogen Bonds 
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Table : Protein-Protein Side Chain-Side Chain Hydrogen Bonds, before and after Molecular Dynamics Simulations. 

Donor Acceptor Parameters 

Position Chain Residue Atom Positio

n 

Chain Residue Atom Mo Dd-A 

150 A ASN OD1 124 C TYR OH 1 2.69 

150 A ASN OD1 124 C TYR OH 2 2.69 

150 A ASN ND2 124 C TYR OH 1 2.96 

150 A ASN ND2 124 C TYR OH 2 2.96 

62 B SER OG 242 A ASP OD2 - 2.86 

67 B ARG NE 293 A MET SD - 3.54 

67 B ARG NH1 293 A MET SD 1 3.42 

67 B ARG NH1 293 A MET SD 2 3.42 

67 B ARG NH2 293 A MET SD 1 3.98 

67 B ARG NH2 293 A MET SD 2 3.98 

67 B ARG NE 316 A GLU OE1 - 2.87 

67 B ARG NH2 316 A GLU OE1 1 2.73 

67 B ARG NH2 316 A GLU OE1 2 2.73 

67 B ARG NH2 316 A GLU OE2 1 2.67 

67 B ARG NH2 316 A GLU OE2 2 2.67 

68 B HIS NE2 58 C THR OG1 - 3.06 

69 B ASN ND2 50 C ASP OD2 1 2.83 

69 B ASN ND2 50 C ASP OD2 2 2.83 

69 B ASN ND2 52 C THR OG1 1 3.38 

69 B ASN ND2 52 C THR OG1 2 3.38 

50 C ASP OD2 69 B ASN ND2 1 2.83 

50 C ASP OD2 69 B ASN ND2 2 2.83 

52 C THR OG1 69 B ASN ND2 - 3.38 

58 C THR OG1 68 B HIS NE2 - 3.06 

124 C TYR OH 150 A ASN OD1 - 2.69 

124 C TYR OH 150 A ASN ND2 - 2.96 
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143 C ARG NH1 76 A MET SD 1 3.40 

143 C ARG NH1 76 A MET SD 2 3.40 

After Simulation 

Donor Acceptor Parameters 

POS CHAIN RES ATOM POS CHAIN RES ATOM MO Dd-a 

100 A SER OG 167 C GLN OE1 - 3.47 

223 A ASN OD1 79 C ASN ND2 1 3.45 

223 A ASN OD1 79 C ASN ND2 2 3.45 

361 A ASP OD1 69 B ASN ND2 1 3.40 

361 A ASP OD1 69 B ASN ND2 2 3.40 

361 A ASP OD2 69 B ASN ND2 1 2.75 

361 A ASP OD2 69 B ASN ND2 2 2.75 

67 B ARG NH1 316 A GLU OE1 1 3.17 

67 B ARG NH1 316 A GLU OE1 2 3.17 

67 B ARG NH2 316 A GLU OE1 1 2.90 

67 B ARG NH2 316 A GLU OE1 2 2.90 

69 B ASN ND2 361 A ASP OD1 1 3.40 

69 B ASN ND2 361 A ASP OD1 2 3.40 

69 B ASN ND2 361 A ASP OD2 1 2.75 

69 B ASN ND2 361 A ASP OD2 2 2.75 

79 C ASN ND2 223 A ASN OD1 1 3.45 

79 C ASN ND2 223 A ASN OD1 2 3.45 

167 C GLN OE1 100 A SER OG 1 3.47 

167 C GLN OE1 100 A SER OG 2 3.47 
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3.1.4.5 Protein-Protein Ionic Interactions 

Table : Protein-Protein Ionic Interactions, before and after Molecular Dynamics Simulation 

Before Simulation 

Position      Residue      Chain      Position         Residue      Chain 

123 GLU A 72 ARG C 

316 GLU A 67 ARG B 

After Simulation 

Position      Residue      Chain      Position         Residue      Chain 

67 ARG B 50 ASP C 

316 GLU A 67 ARG B 
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3.1.4.6 Protein-Protein Aromatic-Aromatic Interactions 

Table : Protein-Protein Aromatic-Aromatic Interactions, before and after Molecular Dynamics Simulation. 

Before Simulation 

Position Residue Chain Position Residue Chain D(centroid-

centroid) 

Dihedral 

Angle 

174 PHE A 100 TYR C 4.53 57.41 

174 PHE A 124 TYR C 5.79 40.71 

245 PHE A 60 PHE C 4.94 116.52 

268 PHE A 60 PHE C 5.26 10.84 

After Simulation 

Position Residue Chain Position Residue Chain D(centroid-

centroid) 

Dihedral 

Angle 

174 PHE A 124 TYR C 5.45 73.36 

245 PHE A 60 PHE C 6.42 82.56 

268 PHE A 60 PHE C 5.80 66.26 

 

3.1.4.7 Protein-Protein Cation-Pi Interactions 

 

Table : Protein-Protein Cation-Pi Interactions 

Before Simulation 

Position  

   

Residue  

   

Chain        

   

Position  

   

Residue  

   

Chain  

   

D(cation

-Pi) 

Angle 

60 PHE C 67 ARG B 5.94 128.8

3 

After Simulation 

Position  

   

Residue  

   

Chain        

   

Position  

   

Residue  

   

Chain  

   

D(cation

-Pi) 

Angle 

339 PHE A 67 ARG B 5.39 84.41 
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3.1.4.8 Summary of interactions among HAESA, IDA and BAK1 proteins 

before and after simulation 

Table : Summary of Interactions among HAESA, IDA and BAK1, before and after simulation 

Comp

lex 

Intera

cting 

protei

ns 

H-bond Hydroph

obic 

Interactio

ns 

Ionic 

Interactio

n 

Cation 

Pi- 

Interactio

n 

Aromatic

- 

Aromatic 

Interactio

n 

Aromatic 

- Sulphur 

Interacti 

on 

B.m

.d. 

A.

m.d

. 

B.m

.d. 

A.

m.d

. 

B.m

.d. 

A.

m.d

. 

B.m

.d. 

A.

m.d

. 

B.m

.d. 

A.

m.d

. 

B.m

.d. 

B.m

.d. 

HAE-

IDA-

BAK1 

HAE-

IDA 

20 14 4 4 1 1 0 1 0 0 0 0 

HAE-

BAK1 

25 18 11 12 1 0 0 0 4 3 0 0 

IDA-

BAK1 

14 3 0 2 0 1 1 0 0 0 0 0 

HAE-

IDA- 

SERK

1[67] 

HAE-

IDA 

36 14 5 7 1 0 0 0 0 0 0 0 

HAE-

SERK

1 

35 74 9 8 4 2 1 1 1 0 0 0 

IDA-

SERK

1 

4 3 0 0 1 0 0 0 0 0 0 0 
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3.1.5 Radius of Gyration (Rg) 

The radius of gyration (Rg) denotes the compactness of a given molecular complex. The HAESA-

IDA-BAK1 complex was processed to generate the radius of gyration at 30 ns run time. The graph 

below illustrates the state of the radius of gyration of the complex HAESA-IDA-BAK1.  Here, the 

graph is seen to be fluctuating from the beginning, which gradually increases with the increasing 

time parameter. Although all radius of gyration graphs usually fluctuate until they reach a stable 

time stamp, this graph does not show any sign of stability throughout the run time. 

 

Figure : Radius of gyration (Rg) of HAESA-IDA-BAK1 complex 
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3.1.6 Solvent-Accessible Surface Area (SASA) 

The Solvent-Accessible Surface Area (SASA) graph helps to measure the compactness of a given 

protein complex. For the HAESA-IDA-BAK1 complex, SASA analysis was run for 30 ns. The 

graph is observed to fluctuate through 5 ns intervals. The significant fluctuation in the area (nm2) 

values implies that the residues are largely dispersed throughout the solvation area, which holds 

the HAESA-IDA-BAK1 complex. 

 

Figure : Solvent Accessible Surface Area (SASA) of HAESA-IDA-BAK1 complex 
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3.1.7 Structural Comparison of Docked Model with Reference Models 

The docked complex of LRR HAESA, DAMP IDA, and coreceptor BAK1 is constructed from the 

references of two reference complexes, viz.- HAESA-IDA-SERK1 complex in Arabidopsis 

thaliana (PDB ID: 5IYX) [72] and flg22-BAK1-FLS2 complex in Arabidopsis thaliana (PDB ID: 

4MN8) [69]. The comparative illustration shows that the binding of LRR HAESA and peptide 

IDA in HAE-IDA-BAK1 is visually similar to the construction of LRR HAESA and DAMP IDA 

from the HAE-IDA-SERK1 reference complex. On the other hand, the coreceptor BAK1 in the 

HAE-IDA-BAK1 complex is positioned similarly to the BAK1 present in the fls2-bak1-flg22 

complex. This structural comparison can acquire not much information about the residual changes 

through visualizing the molecular structures. 
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Figure : Structural Comparison (surface) between (A)FLS2-flg22-BAK1, (B)HAESA-IDA-SERK1 and 

(C)HAESA-IDA-BAK1 
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Figure : Structural Comparison (ribbon) between (A)FLS2-flg22-BAK1, (B)HAESA-IDA-SERK1 and (C)HAESA-

IDA-BAK1 
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3.2 Discussion 

This section of the dissertation describes the computational analysis of PRR-RLK HAESA, which 

imparts Pattern Triggered immunity in Arabidopsis thaliana and its interaction with DAMP IDA 

and Co-receptor BAK1. 

Firstly, the Root Mean Square Deviation or, in short, RMSD was determined for the HAESA-IDA-

BAK1 complex. The graph's large deviation values and erratic fluctuations imply that the 

association of HAESA LRR and IDA peptide with the co-receptor BAK1 is an unstable complex. 

The high fluctuations tell that the components of the complex have a low binding affinity; 

therefore, the root-mean-square deviation value cannot be efficiently generated. Besides, irregular 

spikes in data could occur due to the short simulation period of 30 ns used for the experiment. A 

simulation of 100ns would smoothen out the fluctuations and could yield a more reliable result. 

Next, three separate graphs determined the Root Mean Square Fluctuation, or in brief, RMSF, for 

the HAESA-IDA-BAK1 complex. RMSF data for all three, viz- HAESA, IDA, and BAK1, show 

that they fluctuate a lot. Large amounts of residual fluctuations hint that the amino acids within 

the tri-protein complex are unstable, therefore, incapable of efficiently interacting with 

surrounding residues. The N-terminal residues of HAESA have more fluctuations because BAK1 

binds to the N-terminal residues of HAESA. 

Hydrogen bonding after the simulation was determined using a graphical method using xmgrace, 

and before and after simulations using the Protein Interaction Calculator. The reference data for 

HAESA-IDA-SERK1 protein complex was taken for comparison with the HAESA-IDA-BAK1 

complex. [67, 72] Both kinds of data infer that the hydrogen bonds are greatly unstable within the 
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complex. The constant bonds before and after molecular dynamics simulation do not show any 

effect on the mutated BAK1 protein. 

The Radius of Gyration or Rg gives an idea about the compactness of protein, calculated by taking 

the distance between the center of mass of the protein to both of its terminal ends. It allows 

calculating the degree of folding of the protein structure. The Rg value of the HAESA-IDA-BAK1 

protein complex demonstrates that the complex lacks rigidity. Since no reliably rigid interactions 

are observed in the complex, the result tells that the Rg parameter does not support the formation 

of the HAESA-IDA-BAK1 protein complex similar to the previously mentioned parameters. 

The Solvent Accessible Surface Area or SASA measures how much solvent is accessed or allowed 

upon the surface of the protein-of-interest. The graph for SASA shows massive fluctuations of 

residues per unit area, which implies that the residues on the surface are far apart and non-

interactive. Hence the surface formed by the HAESA-IDA-BAK1 is unsustainable. The solvents 

from the solvation box, which was made to observe the molecular dynamics, enters through the 

surface of the protein complex. Strong residual interactions would allow the protein complex to 

occupy a condensed area in an ideal output and prevent solvents from entering inside the complex. 

The structural comparison of the reference models FLS2-flg22-BAK1 and HAESA-IDA-SERK1 

and consequently comparison with HAESA-IDA-BAK1 complex before and after the simulation 

does not show a massive change in the visual structure. 
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Figure : Structural Differences (ribbon) of HAESA-IDA-BAK1 complex, before (A) and after (B) Molecular 

Dynamics Simulation. Zoomed view of mutated BAK1, before (C) and after (D) Molecular Dynamics Simulation. 

  



 
 

61 
 

Chapter 4: Conclusion and Recommendation 

4.1 Conclusion 

After the molecular dynamics simulation at 30 ns and subsequent confirmatory examinations, it 

can be said that the mutated BAK1 cannot be associated with HAESA LRR and IDA peptide. It 

was hypothesized in this paper that BAK1, similar to SERK1 protein kinase, could bind to the 

HAESA-IDA complex to activate pattern-triggered immunity or other alternative functions to 

SERK1. The hypothesis is proven wrong because the tri-protein association is proven unfavorable. 

No literature has shown an available mutation of SERK1 protein that is naturally present for BAK1 

protein. Therefore, the association of mutated BAK1 to the PRR-signal proteins cannot be 

transcribed as equal or valid to the association of SERK1 to the same complex.  

4.2 Recommendations 

The research done here can be further developed by adopting some measures. 

Firstly, this study can be improved by running the molecular dynamic simulation for much longer 

durations, for instance, 50 ns or 100 ns. This would yield more excellent temporal resolution and 

allow more selective and conclusive results from the study to improve understanding of protein 

nature that could be constructed. This experiment run at 30 ns could not yield reliably good results. 

Secondly, the study might be helpful in the interaction of HAESA LRR with other mutated PAMPs 

in plant Arabidopsis thaliana. The interaction of the HAESA PRR and IDA signalling peptide 

complex with the mutated co-receptor BAK1 does not work, but an equivalent mutation in the 

coreceptor SERK1 can show how mutant molecules can affect specific residues, ultimately leading 

to pattern triggered immunity (PTI). 

Lastly, post-processing free energy calculation methods, for instance, MM/PBSA could be used to 

calculate the free energy from the interior energy (MM) of the residues and estimating its 



 
 

62 
 

connection with a solvent (PBSA). For solvation-free energies of proteins, DNA, and other 

molecules, MM/PBSA is sufficiently precise while avoiding the enormous expense that would 

result from using decoupling methods. [66] 
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