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Abstract
Optical Character Recognition or OCR is a technology that enables us to detect
and extract text from images. In our project, we are designing our OCR system
around the Bangla language. This is primarily because, there are many models of
text recognition of the English language in the market but there are very few on
Bangla. Our proposed system comprises of acquiring the input image, pre-processing
it, passing it into the Tesseract OCR engine (the backbone of our system) and finally
getting digital output of the text. We have used the latest version of Tesseract, that
is, version 5 and even though this is in its alpha stage, it is still stable for end-
users. Next, to improve accuracy, we have focused on pre-processing the image as
thoroughly as possible and laid out our chosen algorithm in each step. For example,
for binarization, we have used Otsu’s Thresholding algorithm as this gave us the best
results. For segmentation, we have used the Fully Automatic Page Segmentation
from Tesseracts own repertoire of segmentation modes. Then we have done our
training through Tesseract’s new LSTM engine and improved upon their existing
trained file with our fonts. We have selected these fonts based on their popularity of
use. We calculated our accuracy at the word level and our model gave us an average
accuracy of 95.9% on multiple fonts and on multiple real life scenarios. At best case
scenario we have even managed to secure 100% accuracy. Finally, we have discussed
future improvements like the addition of a custom dictionary in our model and how
it would increase the overall accuracy in all cases.

Keywords: Optical Character Recognition, Bangla Language, Bangla OCR, Tesser-
act, RNN, LSTM, Open CV, Otsu’s Thresholding Algorithm, Python, jTessEdi-
torFX, Image Processing, Custom Dictionary.
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Chapter 1

Introduction

At first, we have described the problem statement to layout an idea about the im-
portance of our project. Following that we have our suggested approach to this
issue. Then we have talked about some related works that have previously been
done and served as an inspiration to our project. After that, we discussed about
the various intricacies that we had to take into consideration regarding the Bangla
language. Then, we moved on to talking about all the factors that can affect the
output accuracy of our results and laid out available solutions and our selected ap-
proach for each issue. After that, we have given an overview about our methodology
and the Tesseract engine. Up next, we have talked in details and laid out a step by
step guide to our approach and finally concluded with results and analysis of our
project along with suggestions for future improvements.

1.1 Problem Statement
Data and our ability to store, maneuver, manage and make use of this data in the
most efficient manner will help us achieve all sorts of feats in this digital era. That
is why we chose to base our thesis project on OCR technology. Innumerable data
are being generated manually by hand everyday for office work or other purposes.
These then may need to be inputted into the system for various purposes, which can
consume a lot of time if the data is very heavy. The use of computer and its fast
processing capability is the most effective tool we have in hand to make use of data
in accordance to our needs. So, one needs an effective and simple mechanism that
would allow for us to transfer data that is in non-digital format, to digital format.
A well trained Optical Character Recognition system is the answer in these cases.
Now, there are many OCR systems available for English language in the market.
Hence,the digitalization of English based text falls in the norms. But for Bangla,
it’s not as readily available.
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1.2 Solution
Bangla is a language that is used by more than 400 million people, approximately.
And our goal is to create a model that would help reach these people the benefits
that come with digitalization of Bangla texts. The benefits include, reading aid for
the blind, automatic text entry into the computer for desktop publication, library
cataloging, ledgering, automatic reading for sorting of postal mail, bank cheques and
other documents, document data compression, language processing such as indexing,
spell checking, grammar checking and the list of possibilities go on. There are no
models for Bangla that are capitalizing on so many practical applications and our
vision is to venture towards a model that can be a starting point of Bangla text
recognition being readily available for use for the mass. So as a starting point, we
want to design a model that can recognize printed text and output an editable and
digitally storable version of that text for the Bangla language. Not only that, we
also want our system to be accurate in multiple trending Bangla fonts and show
near perfect accuracy for the most popular font based on our research.
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Chapter 2

Related Work

The importance and use of OCR are increasing day by day due to technological
advancement[3]. Some practical use cases could include reading aids for the blind,
automated data entry, library cataloging, ledgering, compression of data, indexing,
spell checking, grammatical checking, etc. Due to the rise of such applications, re-
search focusing on Bangla OCR was done recently to shed more light on this topic
as few have done so.

SK Alamgir Hossain and T. Tabassum in their paper “Neural net based complete
character recognition scheme for Bangla printed text books” discussed how their
system was specialized for detecting printed text more efficiently[14]. The rota-
tion invariant capability of their OCR system made it special and stand out when
compared to other OCRs. The system consisted of mainly 4 stages. They were
pre-processing, segmentation, training/recognition, and lastly post-processing. The
process begins by pre-processing the input image through binarization, rotation,
scaling, and noise elimination. This is because the input image may have noise, im-
proper scale, or rotation, therefore these issues must be eliminated before proceeding
with the segmentation stage. This input image is obtained using a flatbed scanner as
a grayscale image. During binarization, the grayscale image is converted to a black
and white image where each pixel either has a value of 1 or 0, so no gray value or in
between is allowed. Then this image is rotated and aligned properly. This is because
it’s very common for the input image to be slightly rotated which usually causes
OCRs to have trouble recognizing characters. One of the difficult tasks for them
was to find the exact degree at which the image was rotated, which they solved by
creating an algorithm specialized for it. It was then later scaled properly to a ratio of
1 to 0.8, which is the ratio of standard letter-size pages. It was then segmented and
the individual characters are extracted out from the input image. In this stage, the
texts are first segmented into lines which were then transformed into words, which
were then later transformed into characters. These were forwarded to the system so
that they can be trained and for the characters to be recognized. The normalized
vector of each character, which is 256-bit long, obtained from the training dataset
was used to train this neural network. This network primarily consisted of four neu-
ral network layers along with two hidden layers to enhance the classification ability.
The network is then trained with random data so that the weights are updated.
During the recognition phase, the confidence value is obtained from just one single
iteration of each class of the character set. With the help of the 256-bit vector we
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got previously, if the output of the system matches with one of the characters with
a certain amount threshold, then that specific character is recognized. However, if it
is outside that specific threshold, then the system is unable to detect the character
and hence returns 0, representing its inability to recognize the character properly.
After training and recognition, the next step for the system was to reconstruct the
original texts with the help of Bangla word formation rules[2]. After rigorous test-
ing and experimentation, it was found out that the character segmentation success
rate was 81 percent, word segmentation success rate was around 96 percent, and
lastly, the line segmentation rate was determined to be 98.8 percent. For testing,
the authors used 32 pages from the novel “Pather Panchali”[1]. “AdorshoLipi” was
used for the font type. Fonts like “Sulekha”, “Rupali”, and “Siyam” showed very
good recognition success rates when compared to other fonts upon further analysis.
The main goal of the writers was to build an OCR system for printed textbooks
that would be rotation invariant while also providing decent or satisfactory results.
Based on the results they got from the test cases, they were able to confirm that
the system had the potential to digitize text for Bangla books.

In the paper “An open source Tesseract based Optical Character Recognizer for
Bangla script” the authors Md. Abul Hasnat, Muttakinur Rahman Chowhudry,
and Mumit Khan discussed how they built a Bangla OCR from scratch by using
both Tesseract and BanglaOCR engine[8] [5]. It mainly utilizes the best features
of both Tesseract and BanglaOCR, which is the incredible recognition ability and
script processing power respectively. The authors primarily focused on preparing
the training data, integrating the Tesseract engine, and the post-processing proce-
dures for the OCR in this paper. BanglaOCR is a full-fledged OCR framework with
a recognition rate of up to 98 percent. However, it is a challenge to achieve this rate
as it is heavily dependent on the document type, typeface, font size, and a large
training dataset. On the other hand, “Tesseract based BanglaOCR” is an OCR
software that is combined with BanglaOCR which takes advantage of Tesseract’s
incredible character recognition engine. It consists of a GUI that enables the user
to input an image, detect the characters in the image, and then provide sugges-
tions to the user to improve the accuracy of the results. The complete methodology
of this system consists of 5 primary steps, which are preparing the training data,
pre-processing the aforementioned training data, assembling those data for it to be
supported by Tesseract, identifying the characters with the help of Tesseract engine,
and lastly outputting the final generated text after post-processing. The authors ini-
tially followed the guidelines described in[9] to prepare the training data for Bangla
script. At first, 340 characters were listed which were considered to be the primary
training units. The authors had to do a lot of testing and experimentation to figure
out the right combination of training data that would yield them the highest accu-
racy. In the end, they had to prepare 14 datasets of training data with 5 parameters:
the type of the document image, type and size of the fonts used, DPI information
of the image, segmentation, and lastly degradation. The reason why such large
data sets were created was because of Tesseract’s limitation of only supporting 32
configuration files for every unit[10]. The values that these parameters would hold
were all very crucial since all of the training images were auto-generated in the data
preparation phase. The font type “SutonnyMJ” was used for these combinations
with a size of 24 and a DPI of 300. The primary objective of the pre-processing step
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was to get information about the characters after segmentation was applied. The
ability to read any format of input image was a vital part of the system, therefore,
acquiring images and the process of extracting data from those images were all very
important. In order to finish the remaining tasks of the pre-processing stage the
authors used the techniques at[9]. All the character information were later stored in
an array at the end of this stage. Since Tesseract is only capable of reading uncom-
pressed 1bit/8bit tiff encoded images, the generated images also had to be encoded
in that format for them to be supported and readable. These images were generated,
using segmentation data from previous steps, and were then temporarily saved. The
temporarily saved images were then used and processed in the recognition phase of
the Tesseract engine to obtain the output texts. The final post-processing stage was
composed of two levels, the first level used the raw text output from the previous
stage and the second level used the output from the first stage of the post-processing.
The first level was divided into further two separate tasks, where the first task was
to reorder the Unicode text from the previous step, and the second task was to
correct any known recognition errors by following a set of rules. The second level
then tries to spell check the output generated by the first level by using a dictionary
that consists of 180k words. The authors followed the post-processor mentioned
here[6] to perform the steps of this level. The authors concluded by mentioning the
accuracy of the system which was 93 percent for high-quality input images and 83
percent for images that are of poor quality or have small font size.

Sanjit Kumar Saha, M. Shamsuzzaman, and M. A. Bhuiyan in their paper “On
Bangla Character Recognition”, talked about how they implemented a hybrid neu-
ral network that merged both artificial neural networks and local image sampling for
their Bangla OCR[11]. It depended on multi-layer perception and dimensional re-
duction, therefore BAM was used as a base for it. A backpropagation algorithm was
used to train such a network, however, it was found out that their system required
a huge amount of iterations to train it to a satisfactory level. The process began by
first acquiring Bangla texts using a scanner which was then geometrically normal-
ized and binarized. Afterward, the “matra’ lines were detected and separated. The
baseline detection was attained by making use of a special type of histogram con-
struction. This was done by counting the number of black pixels followed by white
pixels of a single line. After the words are segmented, a word was taken out from
the “matra” to baseline. A horizontal histogram was created, and with the help of
this, the number of white pixels that separate each character was found, which also
later helped to distinguish between the characters. The hybrid neural network that
they used is said to be made of 2 neural networks. They are BAM (Bidirectional
Associative Memory) NN and Bidirectional NN. BAM’s main purpose was to speed
up recognition and make it more efficient. Consequently, the neural network was
then trained to obtain feature specific data for each character. Next, the system
was tested with different test patterns to get a performance report of the network,
which was later found out to have 98 percent accuracy.

In their paper “Text Pre-processing and Text Segmentation”, Archana A. Shinde
and D.G. Chougule discussed the application areas in the implementation of an
OCR software[13] and focuses on 2 major functions: an algorithm to correct the
skew angle of an input image which may come from scanning, and a segmenta-
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tion procedure that uses a novel profile-based method which aids in differentiating
between lines, characters, and words. Skews are a distortion in the scanned input
image which is very common to find in scanned documents. Skew detection and cor-
rection algorithms have a significant effect on the character recognition rate, which
is why it’s essential to correct any skews related errors before proceeding to further
stages. This is also one of the main reasons why most document analysis programs
today have such algorithms to tackle these issues. In conjunction with their paper,
a standard OCR system included collecting images, pre-processing, segmentation,
feature retrieval, and lastly recognition. Segmentation is an important aspect of
an OCR system since wrongly segmented characters are not adequately recognized.
This would cause the recognition rate of the OCR system to fall. Several approaches
are available in the literature for image de-skewing. The system mentioned is based
on the Fourier transform[3][4]. The input image needed to be first transformed from
the spatial domain to the frequency domain. After that, the “frequency domain”
was needed to be observed. Projection profiles were used as a base for the segmen-
tation of the proposed algorithm. The binary image was segmented at various levels
which included line segmentation, word segmentation, and character segmentation.
The approach suggested began by segmenting the lines and words from binarized
de-skewed images by making use of a method that involved horizontal and vertical
projection respectively. The horizontal and vertical profiles were then determined
in the projection profile methods. The vertical projection profile could then be used
to segment each word into individual characters. In the pre-processing stage, since
Bangla texts are usually a series of letters arranged horizontally and the lines are
piled over one another, the authors made use of this assumption and were able to
predict and confirm that these lines would be the area where the frequency domain
would be the highest. The image would then be captured from a random angle, and
this angle was later saved for upcoming testing stages. To minimize the possibility
of errors and to get better de-skewing results, the spectrum of this image was seg-
mented into four quadrants, like the four quadrants which represent the Cartesian
coordinate system. Around 15 to 20 bright points are found in this spectrum, which
the authors used to draw a straight line that would fit and go along those points.
This helped them to determine the angle between the x-axis and the line. This same
process is applied for the other three quadrants and the angle between the line and
the x-axis is determined for each of those quadrants. Next, these angles would then
be averaged to evaluate the actual skew angle which would in turn help to obtain
the de-skewed image by rotating the binarized image at the averaged angle found
from the quadrants. The author then proceeds to the segmentation phase where
they implemented their own custom algorithm to make the process of separating
words and lines from texts much faster and efficient. This method involved using
horizontal projection profiles to separate the words from texts, whereas vertical pro-
jection profiles would be used to separate the lines from texts. In this algorithm,
segmentation of the lines was done first, and then the system proceeded with the
word segmentation. The horizontal projection profile (also known as HPP), which
the line segmentation depends on, consists of a histogram that has a series of ON
pixels on every row of the image. The word segmentation on the other hand relies
on the spaces between the words in the text which is found by utilizing the vertical
projection profile (also known as VPP). Similar to the horizontal projection profile,
the vertical projection profile is a histogram that consists of the sum of ON pix-
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els on every column of the image. Lastly, all the algorithms were later set up in
Matlab and heavily tested with documents that have clean and good image quality
and didn’t have any overlapping or broken characters that might interfere with the
recognition, though this is an area which the authors would like to touch upon in
the future to make their system even better.

In the next paper, ”A Complete Workflow for Development of Bangla OCR” by
Farjana Yeasmin Omee, Shiam Shabbir Himel and MD Abu Naser Bikas, they talk
about a more traditional approach towards implementing Bangla OCR[12]. They
have laid out the primary steps, that is scanning, pre-processing, feature extraction
or pattern recognition, recognition using one or more classifiers and lastly, contex-
tual verification or post-processing. For scanning, a simple hand-held scanner or
flat-bed scanner was suggested. Basically, higher the resolution, the better the out-
put will come in the end. Then they talk about pre-processing which comprises the
following steps: 1) Binarization 2) Noise Detection and Reduction 3) Skew detection
and correction 4) Page layout analysis and 5) Segmentation. They then further talk
about various algorithms and techniques for each of the steps. Then they talk about
the importance of segmentation, especially in the case of the Bangla language. As
we know, Bangla has the matra line which needs to be recognized. Also, we have
compound characters, which are a combination of 1,2 or 3 consonants combined
together. So the segmentation has to recognize and take care of these intricacies.
Hence suitable algorithms and approaches were talked about in their paper. Lastly,
they talk about the introduction of the Tesseract OCR engine in the realm of OCR
technology and how it eliminates a lot of the steps like feature extraction and pre-
processing, that are traditionally required in the making of an OCR system.

Nishatul Majid and Elisa H. Barney Smith presents an offline Bangla handwriting
dataset and an algorithm for the recognition of isolated Bangla basic characters in
their paper “Introducing the Boise State Bangla Handwriting Dataset and an Effi-
cient Offline Recognizer of Isolated Bangla Characters”[17]. The database consists
of 2 pages. The first one has a character essay of 104 words/364. The essay uses
49 simple characters, including 11 diacritics of vowels and 32 conjuncts of conso-
nants of high frequency. The second page includes 84 isolated units with all basic
characters, numbers, vowel diacritics, and multiple high frequency conjuncts. The
initial release is based on 100 individual authors’ voluntary contributions. One of
the highlights and unique features of this database is that all its contents are marked
from various component hierarchies, such as characters, words and lines, with the
associated ground truth information. It is expected to be useful for research on
offline handwriting recognition in Bangladesh, especially with segmentation based
approaches. Furthermore, a basic character recognition method is presented where
the features are extracted based on zonal pixel counts, structural strokes and grid
points with U-SURF descriptors modeled with bags of features. The highest clas-
sification accuracy obtained with an SVM classifier based on a cubic kernel is 96.8
percent using the isolated characters from the Boise State dataset together with 3
other datasets to ensure the versatility and robustness of this process.
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Chapter 3

Special Characteristics of Bangla
Text

3.1 Characteristics of Bengali Script
Typical Bangla alphabet has 11 vowels, 39 consonants and 10 basic numerical char-
acters. Bengali font is made up of a complex script pattern as shown in Figure
3.3. There are vowels, consonants and combinations of characters made up of dif-
ferent characters and unclassified characters. In Bangla, each word is connected by
a ‘Maatra’. It is a horizontal line at the top that connects all characters but there
are some exceptions. Some of the basic bengali script features are mentioned below.

• Bangla is written from left to right

• Bangla does not have lower case or upper case letters.

• Bangla has several short forms of vowels and consonants, such as ‘Kar’, written
as ি◌, ◌া, ◌ু and ‘Fola’ as কয্, ক্ল

• A compound character consisting of several consonants partly retains the
shape of the original characters in a single syllable of a word. (Shown in
Figure 3.1 and 3.3)

Figure 3.1: Compound Characters

• All characters, except a few (e.g গ,খ,ঙ,ধ) have a horizontal line connecting
them called ‘maatra’.

• All characters containing ‘maatra’ stay connected except the one without
‘maatra’ lines.
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• Modifiers are vowels which take on a different form in a word. (Shown in Table
3.2)

Figure 3.2: Vowel Modifiers

Figure 3.3: Sample of Characters

3.2 Properties of Digital Bengali Font
One very important thing to keep in mind is that Bangla font works differently when
put into an OCR. For example, the word খা is the combination of খ and the short
form of the vowel আ. Short forms are represented as a dotted circle alongside. For
example : ◌া ি◌ ◌ী ◌ু ◌ৃ ে◌ ৈ◌ ে◌া ে◌ৗ

The OCR has a hard time recognizing these character sets. For this reason alone,
researchers need to include all possible patterns of a character in Bangla language
in the data set. For example : the character ক can have form like (িক কী কু কূ কৃ েক
ৈক েকা েকৗ)

These combinations when combined with special characters such as ‘◌ঁ’ called ‘chan-
drabindu’ which when placed on top of other characters change the pronunciation.
For these reasons, the digital Bengali font is very different from the traditional
handwritten Bangla font. Also for this reason, we have to come up with different
ways to solve the problems that arise with digital Bengali font.
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Chapter 4

Output Accuracy Factors

In the past few decades,the technology behind Optical Character Recognition has seen
drastic improvements, just in terms of sheer capability alone. Advanced machine
learning methodologies, more defined algorithms and the existence of higher than
ever computing power have enabled these developments in the OCR realm. But,
even with all these tools at hand, reaching accuracy levels of around 99 percent
falls under the category of an exception and not at all easy to achieve. But we can
get closer and closer to these high numbers and pre-possessing our test images play
a big role in that.

4.1 OCR Accuracy
OCR accuracy defines the reliability of the system and can be measured on two
levels[15]:

• Accuracy on a character level

• Accuracy on a word level

4.1.1 Character Level Accuracy
The norm on judging the accuracy in OCR technology is upon the character level
[15]. It translates to how well an OCR system can recognize a character correctly
versus the times the character is recognized incorrectly.The accuracy is assessed by
taking the output of an image processed by an OCR engine and comparing it to the
original version of the text. For example, a 99 percent accuracy means, only 1 out
of every 100 characters is prone to error or “uncertain” and gives us a rough idea
of how big of a feat it is to achieve high levels of accuracy. Now, the uncertain
character can be correct or incorrect. Basically, what it means is, the OCR system
was not able to make a final decision about it, despite all the built-in classifiers and
voting algorithms. A way to work around this issue in a real life scenario would
require a person to ultimately determine whether the word is wrong or right.[15]

4.1.2 Word Level Accuracy
The recognition quality of an OCR system can also be quantified by measuring
the accuracy on a world level, instead of character level [15]. This approach is
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particularly sought after in scenarios, where proper words need to be found, for
example, searching a document or a book.

4.2 Improving OCR Accuracy
If we are talking about making improvements in the accuracy of Optical Character
Recognition, then there are two main factors that one would need to consider.

Source Image Quality :

The clarity of the original source image is an important constituent in this matter.
That is, if a human can perceive the contents of the image clearly and perfectly,
then that raises the possibility of good OCR results. But if it happens to be otherwise
and the image is of not decent quality, then that would leave the OCR results prone
to errors. In short, a better quality source image translates to the system being
able to distinguish characters more easily, hence resulting in higher overall accuracy.

The OCR Engine :

It is the responsibility of the engine to recognize the text from whatever input
image is being provided to it. Now, there are various OCR engines available in
the market, Google Cloud Vision, Tesseract, ABBY FineReader, OCRopus to name a
few and these range from free open source engines to proprietary solutions with a
significant price tag.

These engines, as they are trying to achieve the same outcome,at times do share in
common the type of algorithms used, but each of them do have their own pros and
cons as well that comes with them. Choosing the right type of engine is important
and mostly depends on specific use-cases and financial budget.

For us, we chose to go with Tesseract as currently it is considered the best open
source OCR engine. We will be talking in detail about this engine in another section
of this report. For now it is important to note, our reason for choosing this engine
was because it is open source, and its developer community is very active in the
scene. With proper preprocessing tool-chain, the accuracy of Tesseract can be
substantially increased.

4.3 Image Processing
All the input images must be pre-processed before passing it to the Tesseract OCR
engine. This stage is mostly about preparing the test images in a format that is
suitable for Tesseract OCR to process and is very vital in determining the output
accuracy percentage. The output is dependent on the quality of the input images,
therefore the resolution of each image should be kept as high as possible. Majority
of the top OCR and Automated Forms Processing software companies suggest a
minimum resolution of 300 dpi for the most effective extraction of data. In an
ideal real life scenario, one would need to take scanned images of the book or
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samples through a scanner machine. It’s best advised to use a scanner which has
an approximate resolution in the range of 300-1000 dots per inch for reliable scan
accuracy for extraction. If the images are captured with a mobile phone camera,
then the high tier lenses would be able to provide for the best results. At present
day, mobile phone cameras have taken generational leaps in terms of quality and
hence it is actually a very viable option. Besides the source image being of as high
quality as possible, there are some other processing being done through our engine
to prepare the best pre-processed input image. Now.we will be talking about some
of these pre-processing techniques which were achieved through the help of the
Open CV library. [20]

4.3.1 Re-scaling
As we have previously talked about, according to the official Tesseract documenta-
tion, their preferred minimum resolution is 300 dpi for the most optimum results.
Now, if the input image is lower than the recommended resolution, we can scale
it to a larger size. This would enable the engine to recognize small characters,
which is very important for the Bangla language. For example, one of the hurdles
our machine can face is distinguishing between characters like ব and র [6]. If the
image is low resolution, then the dot below র will be considered as a noise and
removed in the noise elimination process. To re-scale images, python, our primary
choice of language provides us a number of options like INTER_AREA, INTER_CUBIC
AND INTER_LINEAR. Upon research and experimentation, we found INTER_CUBIC
and INTER_AREA is best suited to upscale an image and INTER_AREA is best when
down scaling/shrinking an image.[16]

Figure 4.1: INTER_CUBIC command

Figure 4.2: INTER_AREA command

The INTER_CUBIC method is relatively slow though, but it gives very accurate results.
If speed is an issue, then INTER_LINEAR is a good option, trading off a bit of accuracy
for faster performance.

4.3.2 Noise elimination by blurring
When taking pictures with a camera, specially a mobile phone camera, there may be
noise added to the image, due to lighting conditions and other factors. Noise may
also be produced automatically when scanning documents. The blurring is usually
done by convolving the test image with a low-pass filter kernel [16]. Below, we will
discuss some methods about blurring to eliminate noise.[16]
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• Averaging : This is a basic blurring technique where the image is convoluted
with a normalized box filter by taking a mean of all the pixels under the
kernel and replacing the central element.

Figure 4.3: Command for Averaging technique

• Gaussian Blurring : This form of blurring functions similarly to the Averaging
technique but the difference is, it uses Gaussian kernel instead of normalized
box filter for convolution. The kernel dimensions and standard deviations in
both directions can be independently calculated. The Gaussian blurring is very
effective when it comes to removing Gaussian noise from the image. But on
another note, it does not preserve input edges. [16]

Figure 4.4: Command for Gaussian blurring

• Median Blurring : One form of noise that may form on the images is known
as salt-and-pepper noise. The median blurring technique performs the best
when it comes to dealing with this form of noise. It does so, by replacing
the central element in the kernel area with a median of all the pixels under
the kernel. Moreover, it is noteworthy that this is a non-linear filter. In
contrast to linear filters, median blurring substitutes the pixel values with
the median value available in the neighborhood values, unlike linear filters.
Median blurring thus retains borders, since the value of one of the adjacent
pixels must be the median value.[16]

Figure 4.5: Command for Median blurring

• Bilateral filtering : Finally, we have bilateral filtering. In order to eliminate the
noise without smoothing the edges, bilateral filtering gives the best results.This
method also uses a gaussian filter to find the gaussian weighted average in
the neighborhood. However, while blurring the nearby pixels, it also takes
pixel variations into account. This therefore makes sure that only pixels with
an intensity close to that of the central pixel are blurred, while pixels with
distinct values are not. As a result, the edges that have greater variance in
strength, are preserved. [16]
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Figure 4.6: Command for Bilateral blurring

All in all, go for median blurring or bilateral filtering if you are interested in
conserving the edges. Gaussian blurring is, on the other hand, likely to be quicker
than median blurring. Bilateral filtering is the slowest of all approaches because of
its computational complexity. We can select any of these methods in accordance to
our needs.

4.4 Binarization
Next, to help in the recognition process, we need to make it easy for our engine to
be able to distinguish between foreground text and background. For that we need
to effectively convert our image into a black and white form and this is known
as binarization of the image. And the best way to achieve this is through image
thresholding. In its simplest form, the basic idea is that we select a threshold value
at random and assign it globally for every pixel in the image. If the pixel value is
greater than the threshold value, we set the pixel to white. If it is smaller, we set
it to black.

Below is a comparison between input and output.

Figure 4.7: Input image on the left and Output image on the right

4.4.1 Adaptive Thresholding
But we also have to keep in mind that, in reality, an image may have different light-
ing conditions throughout its layout. So, adaptive thresholding would yield better
results in such scenarios. The algorithm here calculates the threshold value based
on a small region around it. As a result, for different regions of the same image, we
get different thresholds and that offer better results for images with inconsistent
lighting conditions. This method determines the threshold value in two ways. It can
calculate the threshold value as a mean of the neighbourhood area minus a constant,
C. The method call would be “cv.ADAPTIVE_THRESH_MEAN_C” for this. Another way
would be determining a Gaussian-weighted sum of neighborhood values minus the
constant, C. The call for this would be “ cv.ADAPTIVE_THRESH_GAUSSIAN_C”.

The following example has been taken for demonstration purposes from the docu-
mentation of Open-CV[20].
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Figure 4.8: Image with varying lighting conditions

Figure 4.9: After applying Adaptive mean thresholding
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Figure 4.10: After applying Adaptive Gaussian thresholding

4.4.2 Otsu’s Binarization
This method was used for our project. What this process does is, it takes an
approximate threshold value from the histogram of a bi-modal image. Bi-modal
images have histograms with only two peaks, and the threshold value is taken from
the middle of those two peaks. This selection of the value is done automatically
by the algorithm. Keeping all these in mind, we can tell that if the image is not
bi-modal, the Otsu’s method will not be accurate. According to the instructions
and testing of the Open-CV documentation, they further advised to at first apply
a 5x5 Gaussian kernel and then applying Otsu’s thresholding. What this does is,
it gives a more distinct histogram, hence the algorithm can make a more accurate
calculation of the threshold value. The following image has been taken from their
documentation. [20]

Figure 4.11: Histogram with Gaussian filter

Figure 4.12: Histogram without Gaussian filter
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4.5 Further Improvements
Lastly, we will talk about some additional improvements that can be done through
pre-processing algorithms, but will not go into algorithmic details as we have man-
ually taken care of these issues rather than through coding. At first, there is the
issue of Dilation and Erosion [21]. Various fonts come in various shapes and sizes.
Or the document may suffer from heavy ink bleeding resulting in unclear heavy
texts. This can prove to be a major issue in recognition especially in the case of
the Bangla language, where the sentence structure is already complex. If the font
is too heavy, then Erosion techniques can be used to shrink the text and if the
text is too thin to be recognised correctly then Dilation techniques can be used to
enhance its size [21]. And then another major factor that needs to be handled is
the alignment of the text. If the scanned image is not straight this would greatly
deteriorate the output accuracy. This needs to be addressed beforehand so that text
lines are always horizontal.
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Chapter 5

System Overview

5.1 Characteristic Features of the System
This paper offers a variety of features both old and new that helps in training and
using a machine learning engine for language and image processing.

• The system has been implemented with a lot of thought about the Bangla
language and its quirks.

• It is very easy to train and implement.

• It is very user friendly as it can be implemented and used in the Windows OS.

5.2 Overview of the System Procedures
The system uses a Tesseract OCR Engine with the Command Line Interface. The
engine uses a Long Short-Term Memory Recurrent Neural Network, which is sig-
nificantly better at processing and recognizing images for text extraction than the
engines used in the previous versions of Tesseract [7]. The OCR needs only one file
with the extension “.traineddata” to be able to recognize and segment the text from
an image. This file is the culmination of several different files packed together.
After this file has been put in a specific location in the Tesseract directory called
“tessdata”, the OCR engine can use this file to uniquely identify each character.
If the aim is to get better accuracy in recognition of these characters, then the
“.traineddata” needs to be rich and has to have a deep dataset. The Bangla lan-
guage is a complicated language, with its vowels, consonants and modifiers, and
the different combinations and permutations of these base characters [6]. We have
trained our engine to recognize the “Siyam Rupali”, "Sagar" and "Akaash" Bangla
fonts, for each of the basic characters and its combinations. We have acquired
and developed a huge dataset containing all the combinations of each vowel and
consonant. It should also be mentioned that the dataset needs to contain every
amalgamation of the characters for the OCR to be able to recognize it with a good
amount of accuracy and precision [6] .

The system uses a scanned image from a printed book or newspaper to recognize the
characters, so “.tif” formatted images were made of the characters used and their
combinations, for the font used in the scanned images first. Then we used these
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images to generate box files for each image. We then generated an “.lstm” file from
the existing “.traineddata” file. Then using the “.tif” images and their respective
box files, we created a “.lstmf” file for each respective image. We then ran the
command for training the OCR engine, which at the end gives us a checkpoint file
but this is for the font that we trained the OCR on. We then use the checkpoint
file to generate a new “.traineddata” file for our font and combine the old and new
“.traineddata” files. The old “.traineddata” file is then replaced with the new and
combined “.traineddata” file in the Tesseract directory. All of the training part was
done in CLI on Windows Command Prompt. This can be done in both Windows
and any Linux distribution but Windows is much more user friendly. We then used
VSCode and a python script to run our images for recognition and extraction of
text, which gives us an output in the form of an editable text file.

In our paper, we did not train the OCR from scratch but just to add support for
a new Bengali font [21]. This training process is called Fine-Tuning in Tesseract,
where we train an already trained language with our additional data, which in this
case is a font[21]. This process might work with the existing training data file if
the font is different from it in a subtle way but would be hard to train for a font
in this process, if the font is really unusual. There are other methods of train-
ing the engine but they are a daunting task in their own respective ways and they
also require the engine to be trained from either scratch or from a more deeper level.

The overall training process is conceptually similar from Tesseract ver. 3.04, but
there are some key differences. One of them being, the boxes of the “.box” files now
tend to be textline level so that it is far easier to make training data from an image
data. Secondly, the “.tr” files have been replaced by “.lstmf” files. Furthermore, dif-
ferent fonts of the same language can now be mixed together instead of them being
separate and this is what we should do from on[21]. The different steps required
for clustering has now been replaced by a single lstmtraining command line given
in the command prompt. Moreover, new performance upgrades and some quality of
life upgrades have also been implemented in Tesseract 5 so it now performs much
better than Tesseract 4. The engine has also been improved upon since Tesseract 4
as well.[21]

The accuracy of the output, that is to say, how many words or characters the OCR
recognizes correctly depends on how well trained the engine is and on the quality
of the image used for recognition and training. If the input file is taken from a
camera, it is essential to look for any shadows in the image. This is because the
OCR engine will have trouble differentiating between the text in the image and the
shadows. We get a higher quality image when the input file is scanned from a book
or any printed medium. We have to make sure that the resolution of the scanned
images is 400 pixels or more for better efficiency.
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Figure 5.1: Block Diagram of System Procedures
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Figure 5.2: Flowchart of System Use
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Chapter 6

System Implementation

The steps for developing and implementing a Bangla OCR application are listed
below:

• Preparing the training data/dataset of the Bangla font.

• Training the OCR engine for the Bangla font.

• Performing recognition using the Tesseract engine.

6.1 Required Tools and Programs
Tools required to implement the OCR application are listed below:

• Tesseract 5.0

• jTessEditorFX 2.3.1

• Visual Studio Code

• Python

6.2 Preparing Training Data
The very first thing we need to do to train the engine is to prepare a dataset. This
dataset needs to contain all combinations of the vowels, consonants and modifiers
in the Bangla language. We need to determine the full character set that needs
to be trained along with all its combinations. We need to make a text file which
contains all these combinations of characters, where a character sample of at least
10 is good, 5 if the characters are rare. The more frequent characters that appear in
the Bangla language should have a sample amount of 20 [8]. We also need to make
sure that the dataset is encoded in UTF-8, otherwise the “.txt” to “.tif” converter
will be unable to do its job. This paper has prepared and used a dataset that has
3200 units of data, where each unit is a character or a permutation of a character.[8]

The dataset generation can be done in 2 ways for the modifiers of the Bangla
language. We have considered both and went with the combining the 2 approaches,
as we felt it would give a better recognition rate for the engine.
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6.2.1 Dataset with dependent modifiers separate from the
basic characters

A word in Bangla consists of some modifiers (vowels and consonants) wrapped
around a basic character, according to the grammatical structure of the language.
In almost all of the cases, the modifiers and the basic characters overlap with each
other [8]. In this case, it is very difficult for Tesseract to make a horizontal or vertical
boundary separately for the characters and modifiers. This is no problem for the
English language, where the characters do not overlap with each other at all and
there's no modifiers. Tesseract can, with some success, recognize certain characters
or modifiers that it can separate and that has less overlapping [8]. However, in the
rest of the many cases it fails to recognize them as Tesseract cannot separate the
modifiers simply using a vertical box or line and thus fails to identify the bounding
box between the character and the modifier.[9]

6.2.2 Dataset with dependent modifiers combined with the
basic characters

To overcome the limitations presented in 6.2.1, a dataset that contains all the com-
binations of the characters and any modifiers is used. Thus, the engine can now
be trained for all possible combinations, instead of separately where it might fail to
recognize a compound character.[9]

Therefore, the dataset will contain all the listed combinations:

• All vowels, consonants and numerals

• Consonants + vowel modifiers

• Consonants + consonant modifiers

• Combined consonants (compound character)

• Compound characters + vowel modifiers

• Compound characters + consonants modifiers

Combining these 2 approaches of preparing the dataset, we have gathered a dataset
consisting of 3200 units and trained for the Siyam Rupali, Sagar and Akaash fonts.
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Figure 6.1: Dataset

6.3 Training the OCR for a Bangla Font
The training process has been described and illustrated in the following subsections.

6.3.1 Generate Training Images
After we have made the dataset text file containing all the possible combinations of
the language in the desired font, we will have to convert this text file into a “.tif”
formatted image. We do this conversion by using a tool called jTessEditorFX. This
software is made using java and requires Java Runtime Environment (jre). From past
papers, it was suggested as a good measure to artificially add some noise to the TIF
image for the OCR to work better on the scanned images from books or newspapers.
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Figure 6.2: Generating TIF File in jTessEditor

Figure 6.3: Generated TIF Image

6.3.2 Generate Box Files
Training the OCR engine, requires us to create box files from the respective TIF
images. A box-file is a UTF-8 encoded, plain text file, which has the coordinates
of a given text or a character in the image and the needed information of the
bounding box of the character or the line [21]. Since this is a LSTM system, the
coordinates of an entire line is considered instead of an individual character in the
image. The box file generated will be much different from the ones that may use
the coordinates of the characters instead [21]. Tesseract itself has some builtin tools
which helps us in generating a box file for a TIF image. We call a command from
the Tesseract directory to generate our box files for the images. Sometimes, the box
files might contain some errors or anomalies, and this requires us to manually edit
the box files using jTessEditorFX. jTessEditorFX, not only helps us convert images,
but also helps when we need to edit the boxes in the box files, like merging boxes
for vowel/consonant with modifiers and compound characters, change the width
and height of the box if it fails to capture a line or a character in a bounding box.
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For our purposes, we first converted the whole “.tif” image into separate “.jpg”
images. We than ran the below command to generate box files for each of those
“.jpg” images which are really just the different pages of the “.tif” image.

Figure 6.4: Command for generating Box File

Figure 6.5: Generating Box Files

Figure 6.6: Generated Box Files
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Figure 6.7: Box File

Figure 6.8: Format of generated Box File

Figure 6.9: Box Coordinate System

6.3.3 Editing Box File
After the box files have been generated, we can open it in jTessEditorFX. We will
see a whole bunch of bounding boxes, around our character units. If everything is
bounded by boxes, then it means that we do not need to edit anything in the file
and can move on to the next step. Alas, reality is harsh and sometimes boxes might
simply not appear around some characters, some forms vowels are also treated
separately and we would need to merge or split them depending on our character
needs. jTessEditorFX gives us a number of options to do these various tasks and we
would need to do this task manually for every character which might be special or
for its alternate form.
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Figure 6.10: Editing Bounding Boxes

6.3.4 Extracting the Recognition Model
We need to extract the recognition model from an existing “.traineddata” file. The
output of this would be an “.lstm” file [18]. This paper uses and extracts the recog-
nition model from the github repo tesseract-ocr/tessdata_best as this paper was
used using Tesseract 5 which has a LSTM RNN.

Figure 6.11: Command for Extracting Recognition Model
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Figure 6.12: Generating LSTM File

Figure 6.13: Generated LSTM File

6.3.5 Creating LSTMF Files
We would also need a lstmf binary file from a “.jpg” image and its box file. The
training data is provided via this ”.lstmf” file, which is a serialized DocumentData
[21]. It contains an image and its respective UTF-8 text transcription [21]. The
process here is similar to the way the older engines used to create “.tr” files. We
create multiple “.lstmf” files from all our JPG/box pairs and make a list in a text file
called “ben.training_files.txt” [18], where all the “.lstmf” files are listed with their
full paths.

Figure 6.14: Command for creating LSTMF Files
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Figure 6.15: Generating LSTMF Files

Figure 6.16: Generated LSTMF Files

6.3.6 Training the Engine
After all the ”.lstmf” files have been created, we will proceed to finally training
the engine for our font. A standard behaviour for any neural network, such as
the one in Tesseract, is to write checkpoint files during its training. The cause of
making these checkpoint files is so that the training can be stopped and continued
when we desire. The Tesseract trainer also makes various checkpoint files for when
the training has hit a new best record or achievement in training for our font
[21]. The “--continue_from” parameter in the below command, also lets us modify
and retrain the network or just fine tune specific parts of the language, by letting
the trainer “continue from” a naked “.lstm” file like we did below or even from a
checkpoint file. The “--model_output” parameter lets the trainer periodically save
checkpoints. Thus it is possible to stop the training midway and restart it again
from that checkpoint.[21]
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Figure 6.17: Command for starting the Training of the OCR

Figure 6.18: Training the OCR Engine

Figure 6.19: Generated Checkpoint Files

6.3.7 Combining
Once the training process has run its course, it is time for us to generate the new
“.traineddata” file by combining it with our checkpoint file from our previous step
and our existing “.traineddata” file. By using the “--stop_training” parameter in
our below code, we’re telling the engine to use our checkpoint file and convert it
to a fully fledged “.traineddata” file ready for recognition. The “--model_output”
parameter tells the engine to save the file in the desired basename [21]. This
new “.traineddata” file is what we are going to use from now on as our default
traineddata file, since this is optimized and trained for our font and as well as has
the support to recognize the previous fonts from the old traineddata file.

Figure 6.20: Command for combining the TRAINEDDATA Files
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Figure 6.21: Generating new TRAINEDDATA File

Figure 6.22: Generated TRAINEDDATA File

6.4 Performing Recognition with the Tesseract En-
gine

After we have trained the engine and generated our new “.traineddata” file, it is
now time to use the engine for recognition of scanned images from printed mediums
like, newspapers, books, journals etc. For our convenience and simplicity, we have
used the Python programming language to write a script that would do our recog-
nition for us and give a text file as an output which would contain the text that
we are supposed to extract from our images. We could have run the recognition
using Tesseract and the command line interface provided by Windows but then we
would have to write a big one-liner command, everytime for every image, where we
have to set our parameters again. The easy part of using a python script is that we
can just set the parameters we want as a default inside the script and need to only
mention the image directory and the script's name in the command line interface
to run the script ready with all the arguments.

We have to do a bit of preprocessing too to run the image for recognition. This is
where using the python script shines more. The script itself is going to preprocess
the image for us before the recognition process starts, so that we don't have to do
it separately for each image, and give us our desired output.
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6.4.1 Overview of the Recognition Script
The script first imports the necessary libraries and tools using a new “imports”.
Then the script will require 1 argument by default, which is the image location and
name and the second argument it asks for in the command prompt before it runs
the script is the pre-processing method, but this is optional.
After we have provided the command to run the script, it will first read the image
and convert it to grayscale image. After grayscaling the image, the next step that
the image goes through is the binarization method. Here, the script uses Otsu’s
Thresholding method to binarize the image, which is one of the best, if not the best
method tailored for our needs. We can also use a Blur method here for some noisy
images containing blur in the image. The binarized image is then saved temporarily
in the run directory for the next step. Once the binarized image is generated and
saved for the time being, the script itself runs the command used for recognition
in the command prompt which uses the Tesseract engine to recognize the texts in
the image and extract them. Afterwards, when the extraction is fully complete on a
particular image, the extracted text is saved in a text file in the current directory.

Figure 6.23: Python Script
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Figure 6.24: Running the Python Script
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Chapter 7

Result Analysis

We used Tesseract 5.0 for our entire project. Tesseract 5.0 comes with its own
improvements over Tesseract 3.0 and 4.0. We had varying accuracy according to
the type of picture that was used for recognition. Figure shows extracted font from
a single line of text. The input and output are shown below. A grayscale image
produces the best result.

All of our results are based on best case scenarios, we can see accuracy up to a 100%
as well. We used a simple formula to calculate the accuracy of our experiments,
which is

Accuracy =
Total Number of Words - Total Number of Mistakes

Total Number of Words 100% (7.1)

[19]

We ran an accuracy test on a word based level. In Figure 7.7, we can see that there
are 92 words and there is one mistake so the accuracy comes out to be 98.9%. Our
average accuracy across several test images and fonts came out to be 95.9%.
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7.1 Experiment using Single-Line Text Image
Below is an example of single-line text image.

Figure 7.1: Extraction from single line text image
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7.2 Experiment using Multi-Line Text Image
Below is a comparison of input and output on multiple line text image from a
textbook.

Figure 7.2: Printed text as input
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Figure 7.3: Extracted Text
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7.3 Experiment using Colored Image taken using
Cellphone Camera and Scanned Image from a
Scanner

Below is an example of of colored image taken using cellphone camera and scanned
image scanned using a scanner from a textbook.

Figure 7.4: Colored image input
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Figure 7.5: Output from colored image
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Figure 7.6: Input for scanned image
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Figure 7.7: Output from the scanned image with error highlighted
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Chapter 8

Conclusion and Future Work

8.1 Conclusion
OCR is becoming increasingly popular nowadays. But there are not a lot of Bangla
OCR available out there. We wanted to make an OCR that is accurate across several
fonts and is easy to use. To do this, we trained our OCR with multiple fonts. The
training process is one that is tedious and requires a lot of time and effort. We
repeated all of the steps for three different fonts. We experimented with multiple
input methods such as Single Line Text image, Multiple Line Text image, Colored
Image, Scanned Image. All of them seemed to produce consistent results. During
the overall process we faced several challenges starting from Tesseract not working
as intended to facing problems with our box files. We proceeded with a positive
mindset and with the help of the internet and our beloved teacher, we were able to
overcome the challenges. We plan to make our project open source for the public to
use and modify. In this way, we intend to contribute to the evergrowning research
of Bangla OCR.

8.2 Future Work
Although the entire project was for our thesis project we plan to further work on it
and make improvements to the system. Firstly, we would like to include more fonts
for training. Fonts which are widely used and popular. We plan to also add support
for fonts with varied typefaces and styles over time. Another major improvement
would be added dictionary support. A lot of the errors can be fixed by matching
words with a dictionary with the highest similarity. Also, with the help of Artificial
Intelligence, we can further improve the accuracy of our OCR. Artificial Intelligence
makes automatic correction to the text based on the context of a sentence. As
Tesseract in itself becomes more and more accurate, we are very hopeful for the
future of Bangla OCR.
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