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Abstract

With rapid advancements of Medical IoT sensors in recent years, using them to
recognize an individual’s affective state has become more easily attainable. If an
individual’s physiological signals are recorded while they are made to experience
certain feelings, the data can be used to create a model that can recognize those
feelings using the sensor data. In this paper, a system is created to use data collected
from physiological sensors to predict the affective state of the individual the data is
extracted from. First, the sensor data was trimmed down to just the portions where
the participants experience the feeling and filtered to get rid of unnecessary features
and bad data. Then, the data was processed to condense the sensor readings of the
entire time a user experienced a feeling into a single row that represents that time
period. Finally, the data was mapped to the feeling felt. Instead of using generic
colloquial terms for emotions, more abstract notions of defining emotions were used
- specifically, the Valence-Arousal-Dominance space which defines emotions using
these three parameters. Using that data-set, feature selection was done to find
the most important features to feed to Machine Learning Models to detect the
affective state of the patient in the Valence-Arousal-Dominance space. The novelty
of our research comes from the features used to predict the emotions, which include
statistical representations of the raw signal data and special domain features that
give further insight into the signal data from EEG and ECG.
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Chapter 1

Introduction

There is much merit in the idea of computationally reading the emotions of humans.
Phones with increasingly powerful processors and rapidly improving cameras are
carried by people everyday, everywhere they go. That, coupled with an increase in
the popularity of wearable devices with heart rate and other M-IoT sensors in them
that pair with the phones, means that there is, at the very least, potential for these
to become good sources of data for emotional state recognition in the future. With
the phone and wearables gathering data and sending them to powerful servers for
processing, it is not difficult to imagine a future where data about users’ feelings
can be extrapolated and used to gauge user satisfaction or frustrations.

In terms of more clinical usage, the aforementioned pair can be used to easily track
moods of patients with psychological disorders that could be useful in outpatient
settings or just to constantly monitor problematic patients. In addition, even dis-
regarding the future of mobile human data-set gathering, the traditional methods
of gathering data currently in use for research can be used for many applications.
In the media industry, advertisements and movies that are meant to elicit specific
emotions can use automatic tagging of emotions using sensor data to get accurate
reads and judge the effectiveness of their product.

However, there is also the problem with different languages not having a word defin-
ing a specific emotion that the model might try to predict. The Valence-Arousal-
Dominance space of defining emotions eliminates this problem. It creates a stan-
dardized form of defining different emotions based on the combination of ratings on a
9 point scale for the different dimensions. The valence scale can have ratings ranging
from pleasant to unpleasant. Similarly, the arousal scale can have ratings ranging
from passive to active. Lastly, dominance scale can have ratings ranging from sub-
missive to dominant. Creating a model to recognize these features rather than an
emotion defined by colloquial words has merit in defining emotions universally and
can also help to identify more complex feelings from recorded data.

1.1 Motivation

Active adoption of wearable technology with advanced hardware to record the
wearer’s physiological signals opens up numerous possibilities of using them. One
such usage is the ability to determine the wearer’s emotions using these sensor data.
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Learning the emotional responses of people using these sensors have uses ranging
from gauging if a product or service is providing the appropriate emotional responses,
to finding out if a wearer is in a state of emotional distress and preventing emergen-
cies. It can also have uses in the medical field to track at-risk individuals. As such,
investigating different models to process the data from M-IoT sensors and provide
estimations of affective state is required to eventually standardize the procedure of
predicting emotions from such sensor data.

1.2 Problem Statement

It is often difficult to correctly identify an individual’s underlying feelings. In general,
people can attempt to piece together a person’s feelings based on facial expressions
and the way a person communicates - whether it is by spoken or written words.
However, there are still issues with these methods. Firstly, people do not always
effectively communicate what they are feeling in any form or even necessarily com-
municate about other things unrelated to the feeling that could be interpreted to
point towards an affective state. This can have issues ranging from mental health
concerns to people being dishonest about their feelings in cases like - giving emotional
feedback for advertisements and movie previews’ test audiences. Second, reading fa-
cial expressions to identify emotions is difficult for both humans and computers in its
current state. Fortunately, all emotions also have physiological patterns that are as-
sociated with each emotion that could be recorded and processed to computationally
predict the emotion that is felt.

1.3 Thesis Objectives

The objective of this paper is to create a model that can accurately label an indi-
vidual’s affective state by using physiological signals that are provided by M-IoT
sensors. In order to do this, the first step is to gather M-IoT sensor data recorded
while an individual is experiencing certain feelings and having the user self-report
the feelings to be mapped to the recorded data.

The next step is to interpret the data-set and preprocess it to prepare for it to be fed
to a machine learning model. The raw sensor data recorded must have data points
that are not of any use to the project and need to be trimmed and features that
need to be dropped. Lastly, recorded data needs to be simplified to a single row of
data to map the users’ self reported emotional ratings to.

After the necessary processing of the data is done, the final data-set must then be
divided into three parts for training and testing the SVM and XGBoost model to
obtain and verify the results.

In short, the objectives can be summarized as follows:

• Using data collected from M-IoT sensors recorded while subjects are made to
feel specific emotions
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• Cleaning the data-set to prepare for processing by getting rid of rows contain-
ing erroneous or null values.

• Using statistical functions like mean, skewness and variance of the data to
condense the full array of sensor readings from the time period the individual
experienced the emotion into a single row of features.

• Mapping the participants’ self reported ratings for valence, arousal and emo-
tion felt to the features extracted from the session.

• Dividing the data-set to train the model and avoid underfitting or overfitting
issues.

• Training various machine learning models such as Support Vector Machine,
KNN, Gaussian Naive Bayes, Random Forest, Decision Tree with the training
data-set to predict the affective state in terms of valence, arousal and emotion
felt.

• Testing the completed model with the test data-set to verify results.

1.4 Thesis Organization

The paper is structured to outline a model to predict the affective state of an in-
dividual using data collected from physiological signals that are recorded as they
experience the emotion. The main contribution to predicting the affective state
that the authors hope to achieve is to engineer a set of features that can assist in
the classification of the affective state.

First, in the Introduction section (Chapter 1), the motivation behind the research
is made clear, highlighting the many uses this could have. It also clearly states the
problem that this solves, in that, humans are not able to correctly identify others’
emotions without external aid. Lastly, it gives a brief overview of what the paper’s
objectives are to outline what comes in the next sections.

After that, in the Literature review section (Chapter 2), further context is added to
the background of the work. Firstly, it covers other work that the authors researched
to identify how physiological signals are affected by an individual’s feelings. It also
covers work from external sources that outline different databases containing the
necessary physiological data and what approaches others used to make similar clas-
sifications. Therefore, this section provides background on how these physiological
signals can be used for this purpose and allowed the authors to come up with a novel
approach to the problem.

Following that, in the Methodology section (Chapter 3), a more detailed description
of the process is outlined and visualized. Also, the data-set and the features ex-
tracted from it is explored in detail. Lastly, the feature selection process is outlined,
with explanations of how each model used functions.

Then, in the Performance Evaluation section (Chapter 4), the models that were
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used for classification are listed and briefly described. After that, the performance
metrics that were used are described and the training and testing procedure is out-
lined. Then, the accuracy for each classifier is visualized using plots and discussed
in detail. Finally, the best accuracy results are presented and conclusions are drawn.

Finally, the Conclusion section (Chapter 5), concludes the paper by summarizing
the work and speculating what future work using the same approach could entail.
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Chapter 2

Literature Review

To gather information about how the research should be conducted, we had to re-
view existing work on how emotions are correlated to physiological signals, what
kind of data exists that can be used to research the prediction of emotion from
physiological signals and what approaches others took when doing similar work.

To gather knowledge on how physiological signals can be correlated to different
emotions, or affective states, of human subjects, several papers were studied. First,
it was discovered that the eye, specifically the pupil, has several responses to what
an individual is feeling. In the paper [7] Margaret M., et al. monitored the pupil
diameter and the effects of emotional arousal and hedonic valence on it as pupillary
response during image viewing. Heart Rate and skin conductance was simulta-
neously measured to identify whether parasympathetic or sympathetic activation
mediate pupillary changes. Preliminary conclusions showed that pupillary changes
were larger when viewing emotionally arousing images, be it pleasant or unpleasant.
The pupillary changes in correspondence to the skin conductance change, solidified
the interpretation that in terms of affective image viewing, sympathetic nervous
system activity modulates these changes. Considering all these, the hypothesis that
pupil’s response during affective image viewing shows emotional arousal associated,
is solidified with the data obtained. After that, information about the phenomonon
of hippus was learned as H. Bouma, et al. described hippus as a sustained oscillation
of the pupil with a period of 5 sec or so in their paper [2]. Hippus was found in almost
every tested subject, although hippus shows a tendency of random occurrence, it is
more evidently found when subjects are at a relaxed or passive state. Disappearance
of hippus is directly correlated to mental activity in their paper. They concluded
a continuous monitoring of the pupil as a good option to prevent hippus affecting
pupillary measurements.

Other physiological signals that could be analyzed to detect emotional states in-
clude cardiorespiratory patterns like P. Rainville et al. suggests that specific emo-
tions have specific cardiorespiratory activity patterns that can be identified and used
to automatically detect said emotions in their paper [6]. The researchers focused
on four emotions – fear, anger, happiness, sadness – and gathered 43 test subjects
consisting of healthy adults. The test subjects were instructed to visualize a specific
moment in their life where they felt one of these emotions and had their cardiores-
piratory activity recorded while they thought about that memory. Similarly, they
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also followed the same procedure while thinking of a neutral memory and were all
made to self report the intensity of the feeling on a scale of 0 – 4. The researchers
then extracted features like changes in heart rate, heart rate variability, changes in
respiration and respiration variability using exploratory principal component anal-
ysis Then, they created a model to map these feelings to a combination of these
features using stepwise discriminant analysis.

It was also found that skin temperature also changes in response to feelings, as
R. A. McFarland showcases the phenomenon of human skin temperatures chang-
ing with respect to emotions accompanying music they listen to[3]. The author
worked with a test case consisting of one hundred college psychology students who
are made to listen to two pieces of music evoking different two types of emotions.
The first piece was to elicit arousing, negative feelings and the second was to elicit
calming, positive feelings. In the first test run, the music evoking negative emotions
caused the listeners’ skin temperatures to decrease while the other piece, evoking
positive feelings, caused the listeners’ skin temperatures to increase. In a second
run, with the same pieces, both music cased temperature increases but the calm,
positive music had a negligible increase in the test subjects. The author concluded
that music does affect skin temperatures predictably based on positive or negative
feelings elicited by the piece, but the effect is dependable on whether the subject’s
prior familiarity with the piece.

M. Pantic et al, establishes the idea of “Implicit Human-Centered Tagging” in their
paper [8]. They describe it as the generation of tags for multimedia data by the
spontaneous, subconsciously done actions and behaviors of the users interacting
with it. In fact, the tagging is termed implicit because the users exhibit these fea-
tures without any conscious effort. In this study, they focus mainly on features
extracted from behavior captured by audio-visual sensors, they acknowledge that
physiological sensors can further aid in this and even solve some problems with us-
ing audio-visual sensors. Some examples of the features extracted would be body
postures, like head tilts or nods, and facial expressions like frowns or smiles. They
also describe the issues with this, like different cultures and backgrounds, or even
the location where the data is taken from, affecting the spontaneous reactions to
the data and not having the proper equipment to extract these features effectively.

After researching how physiological signals can affect emotions, research began on
finding a set of data that could be used for our purpose. One such data base was
created by M. Soleymani et al. who sought to create a database that could be used
for research on recognizing and implicitly tagging emotions felt by humans [11]. In
their paper, they provide detailed descriptions on their methods of data collection
and provide reasoning behind the data they chose. To create the database, they ar-
ranged a multimodal setup to simultaneously record the participants’ physiological
data - like ecg, eeg, galvanic skin response and skin temperatures – along with others
like face video from multiple angles and eye gaze data. Using this setup, 27 healthy
adult participants of both genders were shown videos that are meant to elicit spe-
cific feelings and their data was recorded. After that, the participants were asked to
report the feelings they felt in terms of the 3D valence-arousal-dominance space of
defining emotions. The combined data was then tested to show that they are usable
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in models to predict emotions using features from this dataset. In combination to it,
J. Lichtenauer et al. details the different readings in the MAHNOB HCI database
in their manual [10]. It provides context on how to read certain keywords, acting as
a comprehensive guide for users. It also provides extra detail on the process of data
collection, like which title in the bdf data maps to which electrode and the time
buffer recorded before and after each session.

Aside from that, another dataset was by T. Kanade et al., who discuss the vari-
ous issues faced while analyzing facial expressions and points out that there have
been limited data sets to work with up till that point, with the methods they used
for data collection being uncertain in terms of being generalized in their paper [4].
Specifically, they present a problem space for analyzing facial expressions with 8
dimensions that they discuss at length and believe must be adequately sampled to
create robust systems of analyzing facial expressions. Two examples from the di-
mensions mentioned are the level at which each facial expression is described and the
orientation of a subject’s head and the background in which they are being pictured
or videotaped etc. After that, they present their database, which was evaluated to
be consistent with the established problem space during data collection and includes
2105 digital images from 182 adults of different ethnic backgrounds.

Finally, a multitude of papers were reviewed to gauge how others conducted similar
research. For example, in their paper [14], Mimoun Ben Henia Weim et al. clas-
sified emotional statements using peripheral physiological signals based on arousal-
valence evaluation. They used the MAHNOB-HCI Tagging multimodal database,
from which the Electrocardiogram, Respiration Volume, Skin Temperature and Gal-
vanic Skin response signals were utilized. Emotions were defined in three different
ways, two ways included using self rating scales and and one used 9 emotional key-
words. 169 features were extracted after removing artefacts and noise from the
signals, the SVM model was used to classify emotional states. The results showed
two signals to be most relevant in terms of detecting human emotions, they were
respiration volume and electrocardiogram signals, the obtained accuracy was also
substantial compared to related work on it.

C.Godin et al. discussed in the paper [13] how the development of wearable phys-
iological sensors bring a lot of interest to the topic of emotion detection. Many
databases of physiological signals exist and machine learning algorithms are applied
to them, still there is scope to identify the most relevant signals to detect emo-
tion. To identify these most relevant signals, they applied several feature selection
algorithms to two databases DEAP and MAHNOB-HCI. Both the databases are
available for research and use short video clips shown to the participants to insti-
gate various emotions. Finally it was concluded that the Galvanic Skin response,
Eye closing rate, Variance of Zygomatic EMG, Heart rate variability were the most
relevant signals to identify emotions accurately.

Detecting Stress During Real-World Driving Tasks Using Physiological Sensors [5] is
a paper that offers methods for interpreting and collecting physiological data during
real world driving scenarios that helps in determination of relative stress levels of
the driver. Jennifer A. Healey, et al. continuously recorded electrocardiogram, elec-
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tromyogram, skin conductance and respiration of the drivers during a drive through
the greater Boston Area on a set route. Data of 24 different drivers were analysed
in two different ways, in Analysis 1, the features of five minute intervals were used
to identify three levels of stress during three segments of the route, rest, highway
and city driving conditions. Analysis 1 achieved an accuracy of 97%. Analysis 2
used continuous features at one second intervals through the entire drive with a met-
ric of observable stressors, the results indicate that physiological signals can provide
a measure of driver stress in future cars with ability of monitoring physiological data.

Upon reviewing these papers, we found that the combination of special domain
features of Hjorth Components, Wavelets and Fourier Transform for EEG and ECG
data, along with the use of statistical features to condense the session data was not
explicitly used in others. Thus, making our approach novel.
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Chapter 3

Methodology

The process begins with preparing the data for the final training and testing of the
model. To begin with, each dataset - both the eye gaze and physiological data - in
every session needs to be trimmed down to only contain the readings from when the
participants are actually viewing the video. After that, rows that contain bad data
needs to be dropped along with columns and features that are irrelevant.

Once that is done, both datasets need to be condensed into a single row of fea-
tures that can then both be combined into a single row of features for that session
and the user’s self reported ratings can be mapped to it as the expected output.
After that, this must be repeated for all the sessions and all the sessions’ data must
be combined to form a single dataset that contains all the sessions’ data. This pro-
vides the final dataset that can be used with the model.

After that, the next step would be to find the most important features using feature
selection algorithms, then use that as the dataset to feed the models. The feature
selection methods that are to be used are: SelectKBest, Chi Square, Feature Impor-
tance and Recursive Feature Elimination.

Then, split up the data and feed the training data for classification to the model.
Once the model is trained, the data that was split can be used to test the model
to predict the affective state and crosscheck with the existing outputs. The models
that are to be used are: SVM Linear, SVM Polynomial, SVM RBF, SVM Sigmoid,
Decision Tree, KNN, Gaussian Bayes and Random Forest.
The entire process is outlined in fig.3.1 as the workflow diagram.
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Figure 3.1: Workflow Diagram
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3.1 Dataset Details

The MAHNOB HCI database was released to the public for use in research in tagging
and predicting emotional states, it was the benchmark dataset used in this research
in place of physically collecting physiological data from individuals. Specifically, the
database provides multimodal data recorded while showing participants clips that
are meant to elicit different emotions. There are 20 sessions for each participant
and the participant pool consisted of healthy adults of both genders. Information
about these participants are available in a directory named subjects and contain
information about each subject like - date of birth, nationality and gender.

In case of sessions, there are directories for each session, with each session consist-
ing of two separate datasets - one for the eye gaze data and the other for the eeg
and physiological data. The eye gaze data is stored in a TSV file format and the
physiological data is stored in a BDF file format.

The eye gaze data consists of data from the Tobii Eye Tracker and provides data like
pupil size, the location on the screen where the participant is looking and location of
the pupils in the camera image. It also contains the timestamps recording the entire
duration of the session and has event indicators under the columns named “Event”
and “EventKey”. The event indicators signify actions the participants took, like
a mouse click or keypress and when the media starts and stops playing. The self
reported ratings of the user also appear in this column.

The physiological data contains the data from 32 EEG electrodes from the EEG
cap worn by participants, three ECG sensors on the participants’ chest, a respi-
ration belt, Galvanic Skin Response from the left and middle finger, temperature
taken from the left pinky and a status channel. All this data is mapped to channels
named 1 to 47. The status channel is used to determine events like the “Events”
column in the eye gaze data.

There is also a XML file containing all the user inputs and other specific data,
like what media was played, in every session directory. Since this file has all the
compiled user inputs, including the self reported ratings for emotions and valence-
arousal-dominance, it is ideal for extracting the user ratings for that session. The
ratings for Valence-Arousal-Dominance reported by the user range from 1-9.

3.2 Data Pre-Processing

In this section, all the processing done to prepare the data in order to train the
model is covered in detail - exploring the thought process that was used. This aims
to elaborate on the previously covered methodology and explain the current progress
of the research.
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First, the eye gaze data in the tsv and physiological sensor data in the tsv need
to be trimmed to only have the readings from when the media plays. To do this, the
beginning and end of the media being played must be identified for both datasets.
In case of the TSV, there are events showing the beginning and ending of the media
in the “Event” column termed “MovieStart” and “MovieEnd”. For the BDF, it was
mentioned that there was a 30 second buffer in the beginning and ending of the
session. So, in each case both can be used to identify the index of the start and end
of the media and trim the recordings before and after.

Next, certain columns which hold no significance for this research must be dropped,
like the timestamps and events columns. Also, rows with NaN values are dropped.
Then, the remaining columns must have the entire session’s readings summarized
and condensed into a single row for both the TSV and BDF. This is done using
a combination of statistical functions to summarize the readings for each feature,
condensing it to a single row with multiple columns for each feature. For the BDF
data, there are additional features, the HJORTH Parameters, Wavelets and Fast
Fourier Transform, for the wave data.

After that, the two datasets in the session need to be merged into a single row
and the user reported ratings must be extracted from the XML file to be mapped
to the row of data for the session.

Finally, this is all to be repeated for every session and compiled into a single csv file
to get a row of data corresponding to each session. This final combined csv contains
512 session data, i.e rows, and 2241 features, i.e columns.

3.3 Feature Extraction

For the data pre-processing we used many statistical features as well as many special
domain features depending on the type of data we were working on. We used only
statistical features for features such as Eye Gaze, Temperature and Respiration,
where as for features such as ECG readings, EEG readings and Galvanic Skin Re-
sponse, special domain features were also used alongside statistical features. After
pre-processing the data, we feed the data into Machine Learning Models to be used
for classification of affective states.

3.3.1 Statistical Features

The statistical features were mainly used to provide a representation of the entire
session data to be condensed into a single row of features that can be mapped
to the used ratings for Arousal and Valence for that session. They provide relevant
information about the data values recorded throughout the session in a concise form.

Mean

The arithmetic mean for a set of numbers is found by first summing up all the values
in the set, then dividing the summation by the total number of values that are in
the set. It represents the average of that specific set of values.
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m =
sum of terms

number of terms

Median

Median is the value that seperates the higher half of a set of numbers from the lower
half. It represents the middle value of the set, provided that its values are sorted.

median(x) =
1

2
(xb(n+1)/2c + xd(n+1)/2e)

Standard Deviation

Standard deviation in a set of values indicates the level of variation or dispersion
from the mean of that set of values. A lower standard deviation indicates that the
values are generally closer to the mean, that is, they are spread over a smaller range
from the mean value. Similarly, a higher standard deviation indicates that they are
spread further from the mean, over a larger range.

s =

√√√√ 1

N − 1

N∑
i=1

(xi)− x)2

Variance

Variance represents the square deviation from the mean of a set of values. It indicates
how spread out the values in a dataset are from its arithmetic mean.

Var(x) = E[(X − µ)2]

Kurtosis

Kurtosis measures the degree of ”tailedness” in the probability distribution of a
random variable with real value. It defines the shape of the probability distribution.
Kurtosis can be measured in several different ways for a theoretical distribution and
have corresponding methods of estimation when extracting it from a population
sample.
The fourth standardized moment, defined by the following equation, refers to kur-
tosis. Here, the fourth central moment is defined by µ4 and σ is the standard
deviation.
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Kurt[X] = E

[(
X − µ
σ

)4
]

=
E
[
(X − µ)4

]
(E [(X − µ)2])2

=
µ4

σ4

Skewness Skewness measures the degree of asymmetry in the probability distribu-
tion of a real-valued random variable. The asymmetry is measured about the mean
of the set of data. The skew can have values that are positive, negative, zero, or
undefined - each indicating the shape of the skew. For example, a positive value
means that the tail of an unimodal distribution is on the right and a negative value
means that it is on the left. There is no simple rule in skewness for situations where
one tail is flat and the other is tall. If the value is zero, for instance, it means that
on both sides of the mean, the tails balance out in case of a symmetric distribution.
However, in an asymmetric distribution, if one tail is short and fat while the other
is long and thin, the same can be true.

Figure 3.2: Skewness Diagram

µ̃3 = E

[(
X − µ
σ

)3
]

=
µ3

σ3
=

E [(X − µ)3]

(E [(X − µ)2])3/2
=

κ3

κ
3/2
2

The above equation defines skewness. Here, the mean is denoted by , standard
deviation is denoted by σ, expectation operator is denoted by E, the third central
moment is denoted by µ3, and the t-th cumulants are denoted by κt.

3.3.2 Special Domain Features

The Special Domain Features are used to add more texture to the EEG and ECG
data, allowing the generation of more features which could contribute to the classi-
fication. These generated features also spanned the whole session, so they also had
to be condensed using the statistical features to a single row of data.
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Wavelets

A common tool for computational harmonic analysis is Wavelets, as detailed in the
manual for Gwyddion [15], a tool for spectral probe microscopy analysis and visu-
alization, that explains how wavelets function. In both the temporal (or spatial)
domain and the frequency domain, they provide localization. The ability to con-
duct a multi-resolution assessment is a popular attribute. In a small fraction of
the coefficients, the wavelet transformation of natural signals and images appears
to have much of its energy concentrated. In applications such as data compression
and denoising, this sparse representation property is fundamental to the good per-
formance of wavelets. The wavelet transform, for instance, is a key component of
the standard for JPEG 2000 image compression.

Two types of wavelet transformations were used: continuous and discrete.

In continuous wavelet transformations, the projection of a specific signal of finite
energy is done on a continuous family of frequency bands (or subspaces of the Lp
function space L2(R)). For example, the signal maybe represented on each band of
frequency in the form [f, 2f] for all frequencies that are positive, that is, f ¿ 0. Then,
the original signal can be restored by effectively integrating across all the frequency
components that resulted from the original signal.

Frequency bands or subspaces (sub-bands) are the scaled representations of a sub-
space at scale 1. In turn, changing the mother wavelet, which is one of the functions
in L2(R), generates this subspace. This feature is an example of the one-frequency
band scale [1,2].

ψ(t) = 2 sinc(2t)− sinc(t) =
sin(2πt)− sin(πt)

πt

The functions, often referred to as child wavelets, generate the subspace of the
scale or frequency band [1/a, 2/a].

ψa,b(t) =
1√
a
ψ

(
t− b
a

)

In the above equation, a defines the scale and is positive, and b defines the shift and
can be any real number. A point in the right half plane R+ x R is defined by the
pair (a, b).

The mapping of a function x onto the subspace of scale a then has the form

xa(t) =

∫
R

WTψ{x}(a, b) · ψa,b(t)db
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with wavelet coefficients

WTψ{x}(a, b) = 〈x, ψa,b〉 =

∫
R

x(t)ψa,b(t)dt

Discrete transformations of wavelets are any transformation of wavelets for which the
wavelets are discreetly sampled. As with other wavelet transformations, temporal
resolution is a key benefit it has over Fourier transformations: it gathers information
about both frequency and position.

In discrete transformations, wavelets that are formed are mutually orthogonal wavelets
decomposed from the input signal. The wavelets could be created by using a scaling
function that describes the scaling properties of the wavelets. The implication that
certain mathematical conditions are applied on them are stated everywhere comes
from the constraint that the functions used for scaling must be orthogonal to their
separate translations. An example is the equation for dilation, as shown below.

φ(x) =
∞∑

k=−∞

akφ(Sx− k)

In the above equation, S acts as a scaling factor (usually valued at 2). Also, nor-
malization but be done for the area in-between the function and function for scaling
must be made to be orthogonal to the translations of its integers, i.e.

∫ ∞
−∞

φ(x)φ(x+ l)dx = δ0,l

The results of all these equations can be obtained after some more conditions are
introduced, for example - a set of coefficients a k which are finite and simultane-
ously define both the scaling function and the wavelet. This needs to be done as the
above restrictions do not produce a solution that is unique. Finally, the wavelet is
obtained from the scaling function as

ψ(x) =
∞∑

k=−∞

(−1)kaN−1−kψ(2x− k)

In the above equation, N is an even integer. The set of wavelets then forms an
orthonormal basis which we use to decompose signals. Note that usually only few
of the coefficients a k are nonzero which simplifies the calculations.
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For our dataset, the PyWavelets python library[16] was used for wavelet trans-
formations.

Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) is an algorithm to calculate either the discrete Fourier
transform (DFT) or the inverse discrete Fourier transform (IDFT) of a sequence.
Fourier transform is used to transform a signal from its original domain, usually
space or time, to represent it in the frequency domain. The reverse can also be
done using the inverse Fourier transform. For instance, discrete Fourier transform
(DFT) is used on a series of values to decompose them into components of varying
frequencies. While this function has uses in a lot of fields, the computation from the
general definition is impractical due to the time it takes to complete. As a result, fast
Fourier transforms (FFT) are used to do these transformations with greater speed
by performing factorization on the DFT matrix to obtain factors that are sparse
(mostly zero). In fact, when applying FFT, the computation time complexity for
calculating DFT is reduced to O(NlogN) from its original value of O(N2) that arises
from calculating it using its definition. In the big O notation, the N is used as a
stand in for the size of the data. Therefore, for data that is very large i.e., with
N with valued at several thousand or even several million, the speed at which the
computation is completed for FFT or regular DFT can have extreme differences.

Hjorth Parameters

Hjorth Parameters were introduced in 1970 by Bo Hjorth [1] to further the analysis
of signals in the domain of time by using statistical properties, mainly using the
standard deviation of specific elements of the signal. Specifically, the Hjorth param-
eters consist of Activity, Complexity and Mobility. When working with analyzing
electroencephalography signals, the parameters can be used to extract features from
the signal data.

Hjorth Activity measures the square of the standard deviation of the amplitude.
It could also be described as the signal power or as the surface of the power spec-
trum, as it is a measure of the variance of the time function in the frequency domain.
This is expressed by the equation below, where the signal is represented by y(t):

Activity = var(y(t))

The mobility parameter is calculated by dividing the standard deviation of the first
derivative of the slope with that of the amplitude, that is, the standard deviation
of the first derivative of the amplitude. The ratio here is only affected by the shape
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of the curve itself so it acts as a measure of the relative average of the slope. The
equation below showcases the calculation of Mobility.

Mobility =

√√√√var
(
dy(t)
dt

)
var(y(t))

In the Hjorth Complexity parameter, using the sine wave as a reference, any ex-
tra details that differentiate it from the reference is measured to find the shift in
frequencies. This is done by dividing the mobility parameters of the first derivative
or the signal with that of the signal itself.

Complexity =
Mobility

(
dy(t)
dt

)
Mobility (y(t))

For our dataset, we used both Hjorth Mobility and Hjorth Complexity parameters.
The compute hjorth complexity and compute hjorth mobility functions were used
from the MNE-Features python library.

3.4 Feature Selection

A total of 2241 features for 512 sessions were attained after the data prepossessing
stage, from which the more important features had to be found to be fed to the
machine learning models. This was done using various feature selection algorithms
described in the earlier section, i.e. SelectKBest, Chi-square, Feature Importance
and Recursive Feature Elimination.

The number of features to be selected were adjusted various times to give the best
accuracy for the models. At first, a smaller number like 20 were selected and then
tested. After that, iteration was made with larger numbers to check for accuracy
increases. It was found that, for our models, a larger number of features led to a
better result.

The conclusion reached was that the number of sessions are not enough to find
a smaller number of features that are strong enough to predict the outcomes by
training, especially because the initial data-set is further divided to test and train
data-sets. As such, a larger number, closer to the original size of the data-set was
used to train and test the models. Figure 3.3 shows the difference in accuracy for the
models using various number of features selected, using Valence. Figure 3.4 shows
the difference in accuracy for the models using various number of features selected,
using Arousal.
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Figure 3.3: Accuracy of Models for various numbers of features selected (Valence)

Figure 3.4: Accuracy of Models for various numbers of features selected (Arousal)

All the feature selection methods listed were used from the Python Scikit-Learn[9]
Library, using mostly default settings. The methods also informed the understand-
ing of the inner workings of the feature selection algorithms.
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3.4.1 SelectKBest

SelectKBest feature selection has an internal function that is run to assign the fea-
tures in the data-set given to it a score. Then, only the highest scored features, K
number of them as stated when running the algorithm, are selected from the dataset.

3.4.2 Chi-Square Feature Selection

Chi-Square is a statistical feature that tests the degree of independence of two
variables. Using this, the features that have the higher degree of dependence to the
results are more likely to contribute to the prediction of the result and are picked.
The following is the Chi-Squared Test equation, where E is the expected value and
O is the Observed value.

χ2 =
∑ (Oi − Ei)2

Ei

3.4.3 Recursive Feature Elimination

In recursive feature elimination (RFE), first, a data-set is used in its entirety to run
a model internally and weights are assigned to each feature. After that, features
with the lowest weights are dropped and the process is done again. This continues
until the desired number of features are found.

3.4.4 Feature Importance

Similar to Recursive Feature Elimination, Feature Importance has a model run in-
ternally that assigns weights to the features in the data-set that it is used on. After
that, the most important features can be sorted to use the most important features
and weed out the ones that are not as important, picking as many features as needed.
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Chapter 4

Performance Evaluation

4.1 Model Specification

This section lists all the models used and briefly outlines how each model used in
this paper make classifications.

4.1.1 Support Vector Machines (SVM)

In several classifications and regression problems, Support Vector Machines (SVM)
are used as they are supervised machine learning algorithms. The support vector
machine works to correctly distinguish 2 or more different classes in a classification
problem by seeking an ideal separation line called a ’hyper-plane’. Using the SVM
algorithm, data that is linearly separable is trained to find the optimal hyper-plane
separation.

More formally, the algorithm (SVM) produces a higher dimensional space hyper-
plane (if not linearly separable) that will assist with classification, outlier detection,
regression, etc. By having a hyper-plane with the greatest distance to the data
points used for training that are closest to it, a successful separation of classes is
achieved.

In cases that are linearly separable, SVM is used to ensure that the hyper-plane
has each observation on the correct side and correctly pick the optimal line such
that the distance between the points closest to the hyper-plane and the hyper-plane
itself is maximum. The hyper-plane acts as the decision boundary between the
classes. The distance between the separating line and the data points closest to it
is the margin [12].

For data that is not linearly separable, SVM can adjust itself using the concepts
of Soft Margin and Kernel Tricks. Soft Margins try to find a line that separates
classes with some added tolerance for datapoints that don’t quite fall under the
classification. To do this, they tolerate points that do not fall on the right side of
the decision boundary but fall on either the correct or incorrect side of the margin.
Kernel Tricks create new features that aid in correctly producing a decision boundary
by using the features that already exist and applying some transformations on them.
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The SVM kernels used for classifying in this case were: Linear, Polynomial, Ra-
dial Basis Function and Sigmoid.

The linear kernel is defined by the following equation:

K (xi, xj) = xi · xj

The polynomial kernel is defined by the following equation, where d is the degree of
the polynomial:

K (xi, xj) = (xi · xj + c)d

The RBF kernel is defined by the following equation:

K (xi, xj) = exp
(
−γ ‖xi − xj‖2

)
The Sigmoid kernel is defined by the following equation:

k(x, y) = tanh
(
αxTy + c

)
4.1.2 Gaussian Naive Bayes

Using Bayes’ Theorem, which is used to calculate the probability of an event occur-
ring by using the probability of another event which is assumed to have occurred,
Naive Bayes classifiers are used to classify data. The assumption made when ap-
plying Naive Bayes classifiers is that all the features are independent and that they
all equally contribute to the result, that is, they have the same weight. For Gaus-
sian Naive Bayes classification, it is assumed that the features are distributed in a
Gaussian distribution or normal distribution.

4.1.3 K Nearest Neighbour

K Nearest Neighbours is a supervised machine learning algorithm that can be used
to classify data. To do this, it uses data points nearest to the given value it is
meant to classify. The number of data points nearest to the value that the algo-
rithm considers is denoted by k and the nearness of the points is calculated based
in the Euclidean distance from the given point.

In short, when a new point is introduced and needs to be labelled under a class, it
uses k number of points nearest to it in order to place it in a specific class.

4.1.4 Decision Tree

Decision Trees are used for classification of data. It is a supervised machine learning
algorithm that classifies data using a directed tree that is rooted where the classifi-
cations are on the leaf node. All the connected nodes in-between that are not leaf
nodes are the features and the branches contain the collections of features that get
to a specific classification.

The branching features contribute to the classification, finally reaching the leaf nodes
that contain a specific classification once the branch conditions are satisfied.
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4.1.5 Random Forest

Random Forest operates as an ensemble with each tree in the forest giving a class
prediction. There are a large amount of decision trees in the forest that individually
work and give out a prediction, then the one with the most votes is picked as the
final result.

The forest as a whole being relatively uncorrelated allows it to have better per-
formance by protecting each tree from individual trees’ errors. As a whole, they
have better performance than any individual tree might have produced.

4.2 Performance Evaluation Measure

A very renowned performance measure, F-Score, has been used to evaluate the
results of our research. To calculate F-Score precision and recall of the test is used.
The precision is the total number of correct identification of positive results, divided
by the number of all positive results inclusive of incorrect results. The recall is the
fraction where the divisor is the total number of samples which were expected to
be identified correctly, and the dividend is the total number of results that were
identified correctly. The maximum possible value for F-Score is 1, which is the best
accuracy, and the lowest possible value for F-Score is 0, which is the worst accuracy.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

F-Score can be calculated using the following equation:

F − Score = 2 · precision · recall

precision + recall
=

TP

TP + 1
2
(FP + FN)

TP = number of true positives
FP = number of false postitive
FN = number of false negatives

4.3 Training and Testing the Models

After the final data-set is found, it is further divided into two parts, a training set
and a testing set. The training set is used to train the models and the test set is
used to test the model. Also, to evaluate the models at different cross-fold values
(CV) a script was written to to test each model at CV ranging from 2 to 9 and
note the accuracy for each. The accuracy numbers for each model were then used
to generate graphs that show their accuracy at each level.

The graphs detail the accuracy of the model named in the figure at each CV. The
plot has CV in the X axis and accuracy in the Y axis. The peak shows the highest
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accuracy achieved by that model and shows the CV at which it was found in an
easily readable format.

There was a possibility that the number of sessions collected were not enough to
accurately predict the Valence and Arousal classes in a scale or 1-9 as the users
reported, i.e with 9 classes. This was confirmed after preliminary tests were done
with 9 classes for each, which had very low accuracy scores.

Following that, the number of classes were reduced to test it further and it was
decided to settle on these two classifications. The tables show how the Arousal and
Valence ratings were translated from values ranging from 1-9 to 3 classes, table 7.3,
and 2 classes, table 7.4, respectively.

Arousal Valence Rating (r)

Calm Unpleasant 1 ≥ r ≥ 3
Medium Neutral 4 ≥ r ≥ 6
Excited Pleasant 7 ≥ r ≥ 9

Table 4.1: Classification of Valence and Arousal from Initial User Ratings (3 Classes)

Arousal Valence Rating (r)

Low Low r ≤ 4.5
High High r ≥ 9

Table 4.2: Classification of Valence and Arousal from Initial User Ratings (2 Classes)

The tests run with the above classes had the most promising results and were com-
parable to other research done on emotional classification using physiological data.
As such, those classifications were chosen for training and testing. The results of
the testing are detailed in the next section.
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4.4 Accuracy for Three Classes

This section discusses the accuracy found for testing with three classes for Valence
and Arousal. Separate subsections are dedicated to discussing the accuracy found
for Valence and Arousal. In each subsection, the resulting accuracy of the models
are discussed in terms of accuracy score, visible similarity in accuracy, consistency
of accuracy and peaks of accuracy.

4.4.1 Accuracy for Valence

Figure 4.1: Accuracy of Models for Valence

Figure 4.1 illustrates the accuracy at different CV for all the classifiers tested for
Valence with 3 Classes.The plot shows that for the CV tested, Gaussian Naive Bayes
and SVM with the Linear kernel gave the lowest accuracy, with the Linear SVM
being the worst amongst all the classification models. It is also visible that Random
Forest and Decision Tree classifiers had the highest peaks and therefore the highest
accuracy of the remaining classifers, both peaking above 0.60, at different CV. The
remaining models formed a cluster, with performance in the accuracy range of 0.35
and 0.45. They also gave more stable accuracy with changing CV, with less dramatic
peaks. It is also worth noting that the two models with the worst accuracy also have
stable accuracy results with no dramatic peaks.
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4.4.2 Accuracy for Arousal

Figure 4.2: Accuracy of Models for Arousal

Figure 4.2 illustrates the accuracy at different CV for all the classifiers tested for
Arousal with 3 Classes. Once again, SVM with the Linear kernel performed the
worst in terms of accuracy. However, unlike for Valence, Gaussian Naive Bayes
has risen to the middle of the pack for Arousal, joining the rest of the classifiers
in the accuracy range of around 0.40 to 0.45. Leaving that aside, all the classifiers
barring SVM with the RBF kernel and SVM with Polynomial kernel have dramatic
peaks. Returning to similarities, like the results found in Valence, Random Forest
and Decision Tree classifiers have the highest accuracy with peaks close to 0.55,
which is higher than the rest of the classifiers for Arousal.
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4.5 Accuracy for Two Classes

This section discusses the accuracy found for testing with two classes for Valence
and Arousal. Separate subsections are dedicated to discussing the accuracy found
for Valence and Arousal. In each subsection, the resulting accuracy of the models
are discussed in terms of accuracy score, visible similarity in accuracy, consistency
of accuracy and peaks of accuracy.

4.5.1 Accuracy for Valence

Figure 4.3: Accuracy of Models for Valence

Figure 4.3 illustrates the accuracy at different CV for all the classifiers tested for
Valence with 2 Classes. In general, the accuracy plots show less significant peaks,
with more consistent accuracy with different CV when compared to the 3 class
figures. There are also more classifiers clustered towards the 0.7-0.8 range. The
highest accuracy peaks come once again from the Random Forest and Decision
Tree classifiers both peaking above 0.8 at different CV. Once again, SVM with the
linear kernel had the lowest accuracy of all the models and it is joined by Gaussian
Naive Bayes to be two models with lowest recorded accuracy of the rest. They
also happen to have lower accuracy by a significant margin, Gaussian Naive Bayes
peaking at around 0.4 and Linear SVM peaking around 0.2. The SVM classifiers with
Polynomial, RBF and Sigmoid kernels also had nearly identical accuracy numbers
in this case, both strictly staying near the middle of 0.7 and 0.8.
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4.5.2 Accuracy for Arousal

Figure 4.4: Accuracy of Models for Arousal

Figure 4.4 illustrates the accuracy at different CV for all the classifiers tested for
Arousal with 2 Classes. Starting with similarities to the figure 4.4, the SVM Lin-
ear Kernel once again gives the lowest accuracy for all values for CV consistently.
Gaussian Naive Bayes has accuracy results closer to the rest but have extreme peaks
and dips bringing it farther down in accuracy from the range where the others fall.
The rest fall firmly between 0.7 and 0.8 in terms of accuracy, with Decision Tree
and Random Forest classifiers once again having the highest peaks of the bunch.
However, Decision Tree does have some dips in accuracy in the CV range 2 to 4 that
bring it out of line with the rest which fall squarely between 0.7 and 0.8 in accuracy.
Only the Random Forest Classifier peaks above 0.8 in this case, the rest of the clas-
sifiers not named having a consistent accuracy around the 0.75 accuracy threshold
with little peaks or dips. In fact, the SVM classifiers with RBF, Polynomial and
Sigmoid kernels having accuracy that is nearly identical over all the CV.
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4.6 Results and Discussions

From the observations in the previous section, it is evident that in general, using two
classes for Valence and Arousal yields more accurate results at different CV when
compared to using three classes. There are also less peaks and more consistent
accuracy at different CV observed for most of the classifiers when only two classes
are used. Migrating to specificity, the comparison now moves to the best accuracy
from each classifier.

Model Arousal Valence

SVM POLY 0.422 0.411
SVM LINEAR 0.250 0.252
SVM RBF 0.453 0.447
SVM SIGMOID 0.509 0.465
DECISION TREE 0.553 0.641
KNN 0.474 0.439
BAYES 0.484 0.333
RANDOM FOREST 0.547 0.651

Table 4.3: Best Results for all the models using three defined classes for Arousal
and Valence

Table 7.1 shows the highest accuracy found for each model for both Arousal and
Valence, when using 3 classes for each. For predicting both Arousal, Decision tree
had the greatest accuracy of all the models tested, with an accuracy of 0.553, while
for Valence, Random Forest had the greatest accuracy of all models tested with an
accuracy of 0.651. The rest hovered around the 0.4 to 0.5 range, with the worst
accuracy coming from SVM Linear.

Model Arousal Valence

SVM POLY 0.772 0.766
SVM LINEAR 0.246 0.252
SVM RBF 0.772 0.766
SVM SIGMOID 0.772 0.755
DECISION TREE 0.788 0.812
KNN 0.766 0.754
BAYES 0.723 0.424
RANDOM FOREST 0.812 0.860

Table 4.4: Best Results for all the models using three defined classes for Arousal
and Valence

Table 7.2 shows the highest accuracy found for each model for both Arousal and
Valence, when using 2 classes for each. For predicting both Arousal and Valence,
Random Forest Classifier had the greatest accuracy of all the models tested, with
an accuracy of 0.812 for Arousal and 0.860 for Valence. The rest hovered around
the 0.7 to 0.8 range, with the worst accuracy coming once again from SVM with the
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Linear kernel.

The results show a substantial jump in accuracy as the classes are decreased. A
jump from average accuracy goes to the range of 0.7-0.8 from an average accuracy
of 0.4-0.5 as the classes are decreased from 3 to 2. The highest classification accu-
racy for the model also increases from 0.641 to 0.860 for Valence and 0.55 to 0.812
for Arousal. In both cases, the Decision Tree and Random Forest Classifiers per-
formed provided the highest accuracy. On the other end, SVM using Linear kernel
consistently had the lowest accuracy recorded.

The results of our efforts are comparable to other papers covering the same sub-
ject. In fact, the approach taken here produced better results than other work we
reviewed [14], which worked with the same data-set and produced a highest accuracy
of 0.6503 for Valence with two classes and a highest accuracy of 0.6875 for Arousal
with two classes. Whereas in our case, with two classes, the highest achieved accu-
racy for Valence was 0.860 and for Arousal, the highest achieved accuracy was 0.812.

Lastly, the increase in accuracy observed over the course of testing as classes are
reduced - first from the user reported nine classes, then reduced to three classes and
finally the reduction to two classes - could indicate that there aren’t enough sessions
to extensively train and test the model to its fullest potential. The relatively low
number of data existing in the data-set used had to be further divided for testing and
training, which further reduces the available data for training. It could also explain
why a larger number of features yielded better accuracy than when attempting with
a smaller number of features.
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Chapter 5

Conclusion

In conclusion, in this paper we have used physiological signals collected from par-
ticipants experiencing an emotion for affective state recognition of the participants.
The sensor readings were filtered and combined in the pre-processing stage. Once
that is done, the readings for the entire session was condensed to a single row using
statistical features. To gain further information on the EEG and ECG signal data,
special domain features like Wavelets, Fourier Transformation and Hjorth Compo-
nents were added, which also had to be condensed using statistical features to a
single row for each session. Then, the user ratings were appended to each session
and all sessions were compiled into a single data set. The data-sets then undergo
feature selection to further identify important features and the final trimmed data-
set is used with the models. The final data-set is divided into test and train sets
that are used with the models. Lastly, The models were trained and tested twice,
once with Arousal-Valence classification of two and another with a classification of
three. The models used were SVM, KNN, Gaussian Naive Bayes, Decision Tree and
Random Forest.

Finally, the models were able to accurately predict the Arousal-Valence classifi-
cation in case of two classes, but had lower accuracy when trained to predict three
classes. This is speculated to be due to the relatively low number of sessions, or
rows, present in the data-set that are further reduced when the data-set is split to
be used for training and testing. In the future, with more sessions to collect data
using a similar setup, a more favourable result could possibly be found with three
classes or even a higher number of classes for Arousal-Valence.
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