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Abstract

This thesis discusses the information-theoretic concepts of Black Holes. Its pri-
mary focus is describing black hole dynamics with unitary operators within the
perspective of quantum information theory and AdS/CFT arguments on why
black hole evaporation is likely to be unitary. This thesis also provides mathe-
matical backgrounds of classical black holes and quantum field theory in curved
space. Then we introduced entanglement entropy and compared the shell of pho-
tons in a pure state to free harmonic oscillators. Afterward, we introduce an inter-
action term in the hamiltonian for t > 0, which we call a sudden quench. Finally,
we have calculated the time evolved entanglement entropy for N-quenched os-
cillators and graphically demonstrated the entanglement entropy for various N.
We want to model the time dependent entanglement entropy S1 between the in-
ternal and emitted radiation of a black hole. As for a future project, we want
to regularize a quantum field to the Hamiltonian of N-quenched oscillators and
compute the entanglement entropy S2 that results from tracing degrees of free-
dom inside an imaginary sphere. Hence, as S1 increases with time as the pho-
tons’ shell begins to collapse, we have a comparable situation, using the ideas
about holography, with the time evolution of the S2.

Keywords: AdS/CFT, Classical Black Holes, Curved Spacetime, Entanglement Entropy,
Quantum Field Theory, Quantum Information Theory, Holography, Quench

iii



Acknowledgement

We would like to thank all the people that have supported us in this journey. We
are truly and deeply grateful to our thesis advisor Dr. Tibra Ali and our greatest
inspiration Dr. Mahbub Alam Majumdar for guiding us throughout this project.

We are most grateful to our family members for providing all the support that we
needed throughout this journey. Without their support and encouragement none
of this would have been possible. We would like to express gratitude to all our
friends and seniors that supported us throughout our undergraduate life.

We would like to thank Professor and Chairperson Dr. A.F.M Yusuf Haider for his
advice, support and time to help inspire us. We would like to thank Dr. Firoze H.
Haque for motivating and introducing us to the fundamental courses that were
essential in order to start this project.

We are extremely grateful to Assistant Professor Mohammad Hassan Murad and
Dr. Sharmina Hussain for helping us grow a strong background in Mathemat-
ics. We would like to thank Assistant Professor Muhammad Lutfor Rahman
for helping us enjoy the Applied Physics courses. We are very grateful to Se-
nior Lecturer Mohammad Mosaddidur Rahman to guide us through his teaching
and course advising. We acknowledge all the other faculty members who have
equally helped us make it so far with a wide understanding and applications of
Physics.

Our undergraduate journey has been memorable and joyous for all your support
and inspiration.

iv



Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures viii

List of Tables xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Classical Black Holes 4
2.1 The Schwarzschild Black Hole . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Kruskal-Szekres Extention . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Penrose Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Collapse of a Spherical Shell of Photons . . . . . . . . . . . . . . . . 9

3 Quantum Field Theory 12
3.1 Quantum Field Theory in Flat Spacetime . . . . . . . . . . . . . . . 12
3.2 Quantum Field Theory in Curved Spacetime . . . . . . . . . . . . . 13
3.3 Quantum Field Theory on Black holes . . . . . . . . . . . . . . . . . 17

3.3.1 Potential Barriers and S-Matrix . . . . . . . . . . . . . . . . . 17
3.3.2 Hawking Radiation . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Quantum Information Theory in a Black Hole Background 21
4.1 Pure versus Mixed States . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The Unitary S-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Recovering Quantum Information from Hawking Radiation and

the Page Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Page’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Quantum Circuit to Test Unitarity . . . . . . . . . . . . . . . . . . . 29
4.6 Extracting Quantum Information from Hawking Radiation . . . . . 30

v



5 AdS/CFT and Holography 32
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Holographic Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 AdS/CFT Correspondence . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 AdS Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Conformal Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.1 The Conformal Algebra . . . . . . . . . . . . . . . . . . . . . 36
5.5.2 Properties of Conformal Field Theories . . . . . . . . . . . . 37

5.6 The dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.7 AdS Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7.1 Schwarzchild Black Hole in AdS . . . . . . . . . . . . . . . . 40
5.7.2 BTZ Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.8 The information paradox resolved in AdS/CFT . . . . . . . . . . . . 41
5.9 Holographic Entanglement Entropy . . . . . . . . . . . . . . . . . . 42

6 Entanglement Entropy Between Subsystems of Harmonic Oscillators 44
6.1 Entanglement Entropy within Flat Space . . . . . . . . . . . . . . . 44
6.2 Characteristics of entanglement entropy . . . . . . . . . . . . . . . . 44
6.3 Entropy of two coupled harmonic oscillators . . . . . . . . . . . . . 46
6.4 Generalization to N-coupled harmonic oscillators . . . . . . . . . . 48
6.5 Generalization for a Quantum Field . . . . . . . . . . . . . . . . . . 50
6.6 Connection with the Entropy of a Black Hole . . . . . . . . . . . . . 51

7 Entanglement Entropy of the Quenched Double Oscillator 52
7.1 The Quenched Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 The State After a Quench . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 The Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4 The Reduced Density Operator . . . . . . . . . . . . . . . . . . . . . 54
7.5 The Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6 The Eigenvalues and the Eigenfunctions . . . . . . . . . . . . . . . . 55
7.7 The Entanglement Entropy . . . . . . . . . . . . . . . . . . . . . . . 56
7.8 Graphical Representation for the Quenched Double Oscillator . . . 57

8 Calculation of Entropy of Quenched N-Oscillators 58
8.1 Time Evolution of a Sudden Quench . . . . . . . . . . . . . . . . . . 58
8.2 The Pure Density Operator and the Reduced Density Operators . . 61
8.3 An Attempt to Diagonalize the Matrices in Reduced Density Op-

erator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.4 The Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.5 The Eigenfunctions and Eigenvalues . . . . . . . . . . . . . . . . . . 63
8.6 The Entanglement Entropy . . . . . . . . . . . . . . . . . . . . . . . 66
8.7 Limiting Cases of the Eigenvalues . . . . . . . . . . . . . . . . . . . 67
8.8 Validation of Approximation . . . . . . . . . . . . . . . . . . . . . . 67
8.9 Properties of the Entanglement Entropy . . . . . . . . . . . . . . . . 73

9 Conclusion 77

Bibliography 79

vi



Appendix 79

A Gaussian Integrals 80
A.1 Single Variable Gaussian Integrals . . . . . . . . . . . . . . . . . . . 80
A.2 Multivariable Gaussian Integrals . . . . . . . . . . . . . . . . . . . . 81

B Graphical Representation of Entanglement Entropy with Mathematica
12.0 82

vii



List of Figures

2.1 Kruskal diagram showing the Schwarzchild solution in R-T plane[32]. 7
2.2 Conformal diagram for Minkowski Space; blue lines represent con-

stant time, red lines represent the constant radius, and green lines
represent light rays, I− and I+ represent past and future null infin-
ity[31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Conformal diagram for the Schwarzchild geometry. Regions II and
IV represent the future and the past of the interior of the blackhole
respectively. Regions I and III are causally disconnected[31]. . . . . 9

2.4 The Penrose Diagram inside the light shell is that of the Minkowski
space; however, outside the shell, it is not Minkowski space and
needs to be discarded[31]. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 The Penrose Diagram outside the shell of photons is that of the
Schwarzchild space. Hence, the portion inside needs to be dis-
carded[31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 The Penrose Diagram for the collapsing shell of photons is the re-
sult of sewing the correct pieces of figures 2.4 and 2.5 together[31]. 11

3.1 Plots for the potential V as a function of r∗ for different values of
l[11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Kruskal geometry [17] . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 The S-matrix is an operator that encodes the transition probabilities
of massive particles and massless particles going from past infin-
ity to future infinity[11]. We have used the orange line to denote
massive particles and the green line to denote massless particles.
The question mark ”?” represents a rather complicated interaction
between the incoming particles. . . . . . . . . . . . . . . . . . . . . . 23

4.2 The straight undashed red line at the bottom indicates a black hole
formation from a shell of photons. The dashed curve to the left
denotes the horizon, and the black dashed straight line indicates
the split of the early and late parts of Hawking radiation. This is
also the S-matrix for the black hole[11]. . . . . . . . . . . . . . . . . 26

4.3 The Page curve shows that the entanglement entropy, for a black
hole in a pure state, initially increases linearly and then starts de-
creasing from Page time tPage ≈ 0.54tevap and S ≈ 0.6S0 [23]. Infor-
mation starts to come out of the black hole afterward. . . . . . . . . 27

viii



4.4 To check for unitarity, we can use the swap test, which swaps the
operator ρ ⊗ σ to σ ⊗ ρ if the swap gate measures the superposi-
tion from Hadamard gate as |1〉 and remains unchanged otherwise.
The expected outcome in the Z basis for the qubit passing through
the Hadamard gate on the right is Tr (ρσ)[11]. . . . . . . . . . . . . 29

4.5 An old black hole whose late radiation E is maximally entangled
with the early radiation B. The quantum memory D, which is
maximally entangled with S is dumped into the black hole. The
black hole applies a thoroughly mixing unitary transformation U,
after which radiation R is emitted and radiation B′ is still inside the
black hole. Hence, we want to find when the subsystem S is close
to being maximally entangled with ER[11]. . . . . . . . . . . . . . . 30

5.1 AdS in Global Coordinates[9] . . . . . . . . . . . . . . . . . . . . . . 34
5.2 The spatially finite Penrose diagram for AdS space [11]. Here ρ ∈

[0, π/2) and t ∈ (−∞,+∞). Light rays move at 45 degree angles
in the plane t-ρ. The left hand side is the origin of the cylindrical
coordinates at ρ = 0 and the right hand side is the boundary of the
cylinder at ρ = π/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 The state-operator correspondence[6]. . . . . . . . . . . . . . . . . . 38
5.4 Calculation of the holographic entanglement entropy using a min-

imal surface from AdS/CFT[28]. . . . . . . . . . . . . . . . . . . . . 43

6.1 The entropy S found by tracing the degrees of freedom inside a
sphere of radius R. The graph connecting the points is a straight
line[30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 The entanglement entropy when N = 2, ω = 1 and λ = 0.1[3]. . . . 57
7.2 The entanglement entropy when N = 2, ω = 1 and λ = 0.9[3]. . . . 57

8.1 Symmetry p when N = 5, k = 2, ω2 = 1 and Ω2 = 0.1 . . . . . . . . 68
8.2 Symmetry p when N = 6, k = 3, ω2 = 1 and Ω2 = 0.1 . . . . . . . . 69
8.3 Symmetry p when N = 8, k = 4, ω2 = 1 and Ω2 = 0.1 . . . . . . . . 69
8.4 The entanglement entropy approximated with N = 6, k = 3, ω2 =

1, Ω2 = 0.1, and it has a time average of 2.85× 10−10. . . . . . . . . 70
8.5 The exact entanglement entropy when N = 6, k = 3, ω2 = 1,

Ω2 = 0.1, and it has a time average of 2.85× 10−10. . . . . . . . . . 70
8.6 The entanglement entropy approximated with N = 8, k = 4, ω2 =

1, Ω2 = 0.9, and it has a time average of 2.11× 10−6. . . . . . . . . . 71
8.7 The exact entanglement entropy when N = 8, k = 4, ω2 = 1,

Ω2 = 0.9, and it has a time average of 2.11× 10−6. . . . . . . . . . . 71
8.8 The absolute difference between the entanglement entropy obtained

using the approximation and the exact solution with N = 6, k = 3,
ω2 = 1, Ω2 = 0.1 and has a time average of 7.44× 10−18. . . . . . . 72

8.9 The absolute difference between the entanglement entropy obtained
using the approximation and the exact solution with N = 8, k = 4,
ω2 = 1, Ω2 = 0.9 and has a time average of 2.40× 10−9. . . . . . . . 72

8.10 The entanglement entropy when N = 2, k = 1, ω2 = 1 and Ω2 =
0.1 with a time average of 7.34× 10−3. . . . . . . . . . . . . . . . . . 73

ix



8.11 The entanglement entropy when N = 2, k = 1, ω2 = 1 and Ω2 =
0.9 with a time average of 0.615. . . . . . . . . . . . . . . . . . . . . . 73

8.12 The entanglement entropy when N = 10, k = 1, ω2 = 1 and
Ω2 = 0.9999999 with a time average of 6.47. Initially, there is some
resemblance to the Page curve (4.3), which ends as our system is
closed. This is likely due to Zk → ω̃k whenever Ω → ω. Then the
matrix Z in (8.25) is Hermitian and its symmetric part (8.24) used
in our work is real. Therefore, our system is comparable to Sred-
nicki’s N oscillator work (6.4) as A → A∗ and Γ becomes real and
symmetric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.13 The entanglement entropy when N = 8, k = 4, ω2 = 2 and Ω2 =
0.9 with a time average of 4.19× 10−9. . . . . . . . . . . . . . . . . . 74

x



List of Tables

8.1 The average of entanglement entropy 〈SEE〉with ω2 = 1, Ω2 = 0.9,
and ∆t = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



Chapter 1

Introduction

The first concept of something similar to a black hole came in as early as 1784.
John Mitchell proposed that if the gravitational force of a star exceeds a certain
amount, the escape velocity of the star will exceed the speed of light. Surprisingly
he obtained the correct result of the radius rh of the horizon but for the wrong
reasons[26]; using the conservation of energy in Newtonian Mechanics:

1
2

mc2 − GMm
rh

= 0,

rh =
2GM

c2 ,

where M is the mass of the dark star, G is the gravitational constant and c is the
speed of light.

This thesis has two portions: a portion where we review the concepts of informa-
tion paradox from many perspectives, and the other portion is our original work
of calculating the entanglement entropy of N-quenched oscillators. First, we start
with classical black holes, then introduce quantum field theory on a black hole
background and explain why it leads to difficulties. Second, to overcome that
problem, we review the S-matrix, the Page curve, and quantum information-
theoretic arguments on the information paradox while assuming that evapora-
tion is unitary. Third, we introduce the AdS/CFT arguments on why black hole
evaporation is likely to be unitary, and then we use the holographic principle
to compare the entanglement entropy between subsystems of oscillators and the
Bekenstein-Hawking entropy of a black hole. We also reviewed the calculation
for the entanglement entropy for the quenched double oscillator. Finally, we
wrote down our original calculation of the entanglement entropy of quenched
N-oscillators.

1.1 Motivation

Srednicki’s idea about holographic entanglement entropy[30] is the primary im-
petus behind our project. The black hole at a specific time t has a horizon area
A, which is proportional to its intrinsic Bekenstein-Hawking entropy. Srednicki
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showed that the entanglement entropy is a more general concept and that the en-
tanglement entropy that results by tracing out degrees of freedom within a sphere
in flat spacetime also depends on its area, suggesting an inherent link between the
entanglement entropy between subsystems of harmonic oscillators and the intrin-
sic entropy of a black hole. Another thing to note is that a paper that studied the
entanglement tsunami[18] connects the time evolution of entanglement entropy
in a strongly coupled holographic system to its dual: black hole formation from
a collapsing shell of matter. Initially, the shell is in a pure state, and therefore,
is comparable to a system of free harmonic oscillators. As the black hole begins
to form, the entanglement entropy between the late and early radiation begins to
rise. We want to study the entanglement entropy of a mathematical model start-
ing from a system of decoupled harmonic oscillators at t = 0 and introducing
an interaction term for t > 0; a situation called the ’sudden quench.’ The time
evolution of the entanglement entropy between the subsystems should then be
of interest to compare with the entanglement entropy between the black hole’s
early and late radiation.

1.2 Literature Review

While writing the review portion of the thesis, we required assistance from nu-
merous sources. To write ”Chapter (2): Classical Black Holes”, we adopted the
Schwarzchild metric from Jerusalem lecture notes [11]. Then we used Carrol’s
textbook [7] to calculate the fully contracted Reimann Tensor. We relied on the
lecture note: Quantum Black Holes [32] for working out the formalism. Finally,
to discuss the collapse of a shell, we used on Susskind’s lecture on black holes
and holography [31].

In ”Chapter (3): Quantum Field Theory,” we used Peskin and Schroeder’s text-
book for the Hamiltonian, followed by Krishnan’s lecture on quantum field the-
ory, black holes, and holography [17] for tortoise coordinates. We adopted the
covariant form as the transition from flat spacetime to curved with Carrol’s text-
book. Furthermore, we related black holes with the remaining chapter with the
help of Jeruslam lecture notes.

For ”Chapter (4): Quantum Information Theory in a Black Hole Background”,
we explained concepts from quantum information theory and complex Gaus-
sian variables using Ong’s thesis on evolution of black holes in AdS space[22].
We worked through different variations of Page’s Theorem with Jerusalem lec-
ture notes. Additionally, this thesis reviewed information-theoretic arguments on
Black Hole with Preskill and Haydens’ article titled ”Black Holes as mirrors”[12].

We did the CFT portion of ”Chapter (5): AdS/CFT and Holography” from ”In-
troduction to the Maldacena conjecture on AdS/CFT”[25]. Also, we worked out
the AdS portion from the Jerusalem lecture notes. Then we combined our un-
derstanding to review AdS/CFT with TASI lectures [1] and Natsuume’s user
guide[20]. Afterward, we turned our attention to mathematical models of black
holes in AdS/CFT and gave arguments supporting unitary evaporation from
Lowe [19]. We took the holographic entanglement entropy bound from
Zwiebach’s and Jerusalem lecture notes [33]. To review some mathematical back-
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ground, we have consulted lectures of Kaplan[16] and Ammon[4]. In the end, we
reviewed the holographic entanglement entropy formula by Ryu and Takayanagi
[28] along with its heuristic derivation[21].

In ”Chapter (6): Entanglement Entropy between Subsystem of Oscillators”, we
worked through the properties of entanglement entropy with Schumacher’s text-
book[29], Polak’s textbook[27], and Headrick’s lecture[14]. To work out the cal-
culation and to use holographic ideas on black holes, we used Srednicki’s paper
[30].

For ”Chapter (7): Calculation of Entropy of Quenched Double Oscillators”, we
reviewed the calculation for the entanglement entropy of the quenched double
oscillator, written by Ali and Moynihan[3]. Here, we have worked with the same
ansatz as that of Srednicki’s work for the coupled two oscillators; however, we
adopted the contour-integral representation of Hermite polynomials from Ali
and Moynihan’s work. Their paper went on to pave the foundation for our work
to generalization to N ≥ 2.

Finally, in our original work, ”Chapter (8): Calculation of Entropy of Quenched
N-Oscillators,” we adopted our Hamiltonian for t > 0 from Ali’s work on circuit
complexity[2]. Then we went on to work with normal modes defined by Jeffer-
son’s article[15]. Srednicki had done similar work for a static case, whereas our
results are time-dependent. We relied on essential concepts such as time evo-
lution from using propagators in normal modes, the reduced density operator’s
eigenbasis, and the contour-integral representation to solve our ansatz from Ali
and Moynihan’s calculation we reviewed in chapter (7). Furthermore, we also
showed that our graphical demonstration for N = 2 is in exact agreement with
their work.

3



Chapter 2

Classical Black Holes

2.1 The Schwarzschild Black Hole

The metric for the geometry of the Schwarzschild spacetime is [11]

ds2 = −r− 2GM
r

dt2 +
r

r− 2GM
dr2 + r2dΩ2, (2.1)

where M is a parameter with dimensions of mass, G is Newton’s gravitational
constant, and dΩ2 =

(
dθ2 + sin2θdφ2) is the unit metric on two sphere S2. The

coordinate t is the time measured by an observer at r � 2GM, which means at a
fixed time t the spacetime consists of concentric two spheres S2 of a surface area
of 4πr2.

To check for singularity, we compute the fully contracted Riemann Tensor[7]:

RµναβRµναβ =
48G2M2

r6 . (2.2)

Equation (2.2) is divergent only when r = 0. Hence, r = 0 is the only singularity
of the Schwarzchild geometry. Furthermore, the metric diverges as it should on
the singularity.

The Schwarzchild radius is given by rs ≡ 2GM. At rs = 2GM, the signs of the
coefficient of dt2 and dr2 swap; therefore, r coordinate becomes timelike, and t
coordinate becomes spacelike. Hence, any test particle at rs < 2GM, regardless of
its mass, will continue to evolve towards the singularity r = 0. The mathematical
surface of S2 at rs = 2GM is called the event horizon of the Schwarzchild black
hole.

2.2 Kruskal-Szekres Extention

For the radial null geodesic[32], ds2 = 0 and the angles θ and φ are constant
=⇒ dΩ2 = 0.

− r− 2GM
r

dt2 +
r

r− 2GM
dr2 = 0 (2.3)

4



∴
dt
dr

= ± r
r− 2GM

(2.4)

Integrating to find t,

t = ±
∫ rdr

r− 2GM
= ± (r + 2GM ln (−2GM + r)) + C.

(2.5)

From here and onwards, the Schwarzchild radius is rs = 2GM is set to rs = 1.
Hence,

t = ±r + ln(r− 1) + C
= ±r∗ + C,

(2.6)

where,
r∗ ≡ r + ln(r− 1), (2.7)

dr∗ =
rdr

r− 1
. (2.8)

The metric has become

ds2 =

(
r− 1

r

)
(−dt2 + dr2

∗) + r2dΩ2. (2.9)

We define newer coordinates in terms of u and v:

u ≡ t + r∗,
v ≡ t− r∗.

(2.10)

Now, the metric becomes

ds2 = −
(

r− 1
r

)
dudv + r2dΩ2. (2.11)

Note that,
1
2
(v− u) = r∗

= r + ln (r− 1) .
(2.12)

Again, we define new coordinates,

v′ ≡ exp
(v

2

)
=
√

r− 1 exp
(

r + t
2

)
,

(2.13)

u′ ≡ − exp
(
−u

2

)
=
√

r− 1 exp
(

r− t
2

)
.

(2.14)

However,

du′dv′ =
1
4

exp(r)(r− 1)dudv. (2.15)
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The Schwarzchild metric is now

ds2 = −4
r

exp(−r)du′dv′ + r2dΩ2. (2.16)

Defining newer coordinates,
when r > rs,

T ≡ 1
2
(
u′ + v′

)
=
√

r− 1 exp
( r

2

)
sinh

(
t
2

)
,

(2.17)

R ≡ 1
2
(v′ − u′)

=
√

r− 1 exp
( r

2

)
cosh

(
t
2

)
.

(2.18)

When r < rs,

T ≡ 1
2
(
u′ + v′

)
=
√

1− r exp
( r

2

)
sinh

(
t
2

)
,

(2.19)

R ≡ 1
2
(v′ − u′)

=
√

1− r exp
( r

2

)
cosh

(
t
2

)
.

(2.20)

Now,

dT =
1
2
(
du′ + dv′

)
,

dR =
1
2
(
dv′ − du′

)
,

−dT2 + dR2 = −du′dv′.

(2.21)

The metric is now,

ds2 =
4
r

exp (−r)
(
−dT2 + dR2

)
+ r2dΩ2. (2.22)

T, R,θ and φ make up the Kruskal-Szekres coordinates. Now, T is always a time-
like coordinate, and R is always a spacelike coordinate. Radial null geodesics
are straight lines with slope ±1. The red region below the R axis represents the
past interior and the one above represents the future interior. Lines of constant
r are hyperbolae in the R-T plane with origin as the center. The pair of straight
lines T = ±R is the horizon of the black hole. From figure 2.1, it is apparent that
any radial null geodesic with points inside the future interior cannot escape the
horizon.
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Figure 2.1: Kruskal diagram showing the Schwarzchild solution in R-T plane[32].

2.3 Penrose Diagram

When we are interested in the causal structure of spacetime, we can do a con-
formal transformation of the metric, which will fit the entire manifold onto a
compact region. The two-dimensional diagram that results from the conformal
compactification of the coordinates is called the Penrose diagram or simply con-
formal diagram.

The metric for the Minkowski space is

ds2 = −dt2 + dr2 + r2dΩ2. (2.23)

We define coordinates T and R such that

T + R ≡ arctan (t + r) ,
T − R ≡ arctan (t− r) .

(2.24)
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Figure 2.2: Conformal diagram for Minkowski Space; blue lines represent con-
stant time, red lines represent the constant radius, and green lines represent light
rays, I− and I+ represent past and future null infinity[31].

This results in a metric conformally equivalent to the Minkowski metric:

ds2 =
[
cos2 (T + R) cos2 (T − R)

]−1
[
−dT2 + dR2 +

(
sin (2R)

2

)2

dΩ2

]
. (2.25)

Figure 2.2 shows the spacetime diagram of this transformation.

To find the conformal compactification of the Kruskal-Szekres coordinates, we
define

V = arctan
(
v′
)

and U = arctan
(
u′
)

. (2.26)

The new coordinates map the entire Kruskal-Szekres extention of Schwarzchild
spacetime into the range −π

2 < U ,V < π
2 . The conformal diagram is given for

reference in figure 2.3. Similar to the Kruskal diagram, radial null geodesics are
still straight lines with slope ±1 in the Penrose diagram. Light rays traveling ra-
dially outwards from the horizon in the region I, will meet the future null infinity
at I+. On the other hand, light rays from the region I moving radially towards
the horizon will be trapped inside region II and approach the future singularity.
Likewise, light rays traveling from region III will behave in the same manner.
As a consequence, regions I and III causally disconnected. Region IV is the past
interior of the black hole.
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Figure 2.3: Conformal diagram for the Schwarzchild geometry. Regions II and
IV represent the future and the past of the interior of the blackhole respectively.
Regions I and III are causally disconnected[31].

2.4 Collapse of a Spherical Shell of Photons

Birkhoff’s theorem states that the spacetime inside a spherically symmetric shell
of matter is flat, whereas outside the spacetime geometry is described by the
Schwarzchild metric[31]. Therefore, the full Penrose Diagram for the collapse
of a shell of photons can be formed by attaching together two Penrose diagrams:
one for Minkowski space and the other describing Schwarzchild space. The left
part of figure 2.4 shows the light shell within flat space; Birkhoff’s theorem says
that the outer portion is incorrect because it is not flat. In contrast, Birkhoff’s
theorem tells us that the outer portion is Schwarzchild space, as shown in figure
2.5. Finally, the two diagrams are combined in figure 2.5 to produce the entire
Penrose diagram of a collapsing shell of photons. A consequence of Birkhoff’s
theorem is that the horizon extends to a portion within the flat space. Hence, an
observer passing through the horizon might not be able to detect anything out of
the ordinary. However, the observer must still meet the singularity. Even more
surprisingly, an observer can be inside the horizon of a black hole that will form
in the future. This depicts the position of the horizon depends on events that
have yet to happen; horizons show acausality.
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Figure 2.4: The Penrose Diagram inside the light shell is that of the Minkowski
space; however, outside the shell, it is not Minkowski space and needs to be dis-
carded[31].

Figure 2.5: The Penrose Diagram outside the shell of photons is that of the
Schwarzchild space. Hence, the portion inside needs to be discarded[31].
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Figure 2.6: The Penrose Diagram for the collapsing shell of photons is the result
of sewing the correct pieces of figures 2.4 and 2.5 together[31].
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Chapter 3

Quantum Field Theory

3.1 Quantum Field Theory in Flat Spacetime

In flat space the Lagrangian density for a real scalar field is

L = −1
2

ηµν∂µφ∂νφ− 1
2

m2φ2. (3.1)

The action is then

S =
∫

dnx
(
−1

2
ηµν∂µφ∂νφ− 1

2
m2φ2

)
, (3.2)

where the
√−g is not necessary since we are working in Minkowski space with

inertial coordinates. This equation is known as the Klein-Gordon equation. The
equation of motion from this action is

∂µ∂µφ−m2φ = 0. (3.3)

In order to quantize the theory, we find the conjugate momentum

π =
∂L

∂(∇0φ)
= φ̇. (3.4)

The Hamiltonian for the free massive scalar field can be given in terms of the
canonical momentum π which is conjugate to the field φ [24]:

H =
1
2

∫
dn−1x(π2(x) +∇2(x) + m2φ2(x)). (3.5)

As an example, we can find plane wave solutions to the Klein-Gordon equation
to be

φ(xµ) = φ0eikµxµ
, (3.6)

where kµ = (ω, k) and ω2 = k2 + m2 is the dispersion relation that is satisfied.
To find the most general set of solutions, we can assume that the solutions to
this equation of motion are φ1 and φ2 and we can write an inner product for the
solutions for a spacelike hypersurface Σ as

(φ1, φ2) = −i
∫

Σ

(
φ1∂µφ∗2 − φ∗2 ∂µφ1

)
dn−1x. (3.7)
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Using our plane wave solutions, we can compute the inner product to get

(eikµ
1 xµ , eikµ

2 xµ) = (ω2 + ω1)e−i(ω1−ω2)t(2π)n−1δ(n−1)(k1 − k2), (3.8)

where ∫
e(ik1−k2)·xdn−1x = (2π)n−1δ(n−1)(k1 − k2).

We now have a set of orthonormal solutions:

fk(xµ) =
eikµxµ

[2ω(2π)n−1]1/2 . (3.9)

We now have the following relations using our solutions

( fk1 , fk2) = δ(n−1)(k1 − k2),
( fk1 , f ∗k2

) = 0,

( f ∗k1
, f ∗k2

) = −δ(n−1)(k1 − k2).

(3.10)

We can finally find a complete orthonormal set of solutions fk and f ∗k that solve
the Klein-Gordon equation where fk are called positive frequency modes, with
and f ∗k are called negative frequency modes.

φ(t, x) =
∫

dn−1k[âk fk(t, x) + â†
k f ∗k (t, x)], (3.11)

where âk is an annihilation operator and â†
k is a creation operator.

3.2 Quantum Field Theory in Curved Spacetime

In curved spacetime the calculations are analogous to the previous section fol-
lowing a replacement with a covariant form. [7] The Lagrangian density for a
real scalar field in curved spacetime is

L =
√
−g
(
−1

2
gµν∇µφ∇νφ−V(φ)

)
. (3.12)

The potential for the scalar field is taken to be quadratic and including another
quadratic interaction term containing the Ricci scalar R parametrized by a dimen-
sionless constant ζ for curved spacetime:

V(φ) =
1
2

m2φ2 + ζRφ2. (3.13)

The action for the scalar field then becomes

S =
∫

dnx
√
−g
(
−1

2
gµν∇µφ∇νφ− 1

2
m2φ2 − 1

2
ζRφ2

)
. (3.14)

There are two interesting choices for the constant ζ. One is to take ζ = 0 which
is known as the minimal coupling and it turns off the interaction with the Ricci
scalar. Another choice is the conformal coupling where ζ = (n−2)

4(n−1) . When m2 = 0
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and the conformal coupling is chosen, the action (3.14) is invariant under confor-
mal transformations

gµν → Ω2(x)gµν,

φ→ Ω
2−n

2 (x)φ.
(3.15)

In order to quantize the theory, we can find the conjugate momentum (3.12)

π =
∂L

∂(∇0φ)
=
√
−g∇0φ, (3.16)

and impose the canonical commutation relations

[φ(t, x), φ(t, x′)] = 0,

[π(t, x), π(t, x′)] = 0,

[φ(t, x), π(t, x′)] =
i√−g

δ(n−1)(x− x′).
(3.17)

The equations of motion from the action for the real scalar field is

∇µ∇µφ−m2φ− ζRφ = 0. (3.18)

Assuming that the solutions to this equation of motion are φ1 and φ2, we can
write an inner product for the solutions for a spacelike hypersurface Σ as

(φ1, φ2) = −i
∫

Σ

(
φ1∇µφ∗2 − φ∗2∇µφ1

)
nµ√γdΣ, (3.19)

where nµ is the unit vector normal to the hypersurface, γij is the metric induced
on the hypersurface and dΣ is a volume element of the hypersurface. The inner
product (3.19) is not dependent on the choice of the hypersurface Σ.

If we have two different disconnected hypersurfaces Σ1 and Σ2 and V is the four
dimensional volume bounded by these two hypersurfaces we can use Stokes the-
orem to get the relation∫

V
∇µ
(
φ1∇µφ∗2 − φ∗2∇µφ1

)
dV = i

∮
∂V

(
φ1∇µφ∗2 − φ∗2∇µφ1

)
dΣµ. (3.20)

From this relation we can clear see that the left hand side can be simplified using
the equation of motion (3.18) to give∫

V
∇µ
(
φ1∇µφ∗2 − φ∗2∇µφ1

)
dV =

∫
V

(
φ1∇µ∇µφ∗2 − φ∗2∇µ∇µφ1

)
dV

= i
∫
V

(
φ1(m2 + ζR)φ∗2 − φ∗2(m

2 + ζR)
)

dV

= 0.
(3.21)

On the right hand side we get

i
∮

∂V

(
φ1∇µφ∗2 − φ∗2∇µφ1

)
dΣµ = (φ1, φ2)Σ1 − (φ1, φ2)Σ2 . (3.22)
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Therefore,
(φ1, φ2)Σ1 − (φ1, φ2)Σ2 = 0. (3.23)

We can always find an orthonormal set of solutions to the equation of motion for
the scalar field. Let us assume these solutions are gi and g∗i . These solutions can
be thought of as a set of basis modes seen by one observer. These solutions satisfy

(gi, gj) = δij,

(g∗i , g∗j ) = −δij,

(gi, g∗j ) = 0.

(3.24)

We can now write the expansion for the field as

φ = ∑
i
(b̂igi + b̂†

i g∗i ). (3.25)

The coefficient b̂i behaves as an annihilation operator and the coefficient b̂†
i be-

haves as a creation operator and thus satisfies the commutation relations

[b̂i, b̂†
j ] = δij,

[b̂i, b̂j] = [b̂†
i , b̂†

j ] = 0.
(3.26)

If we repeatedly apply the annihilation operator b̂i on a state, we get the vacuum
state which is defined as

b̂i |0u〉 = 0. (3.27)

Similarly, we can apply the creation operator b̂†
i to get a state with ni excitations

|ni〉 =
1√
ni!

(b̂†
i )

ni |0u〉 . (3.28)

This is known as the Fock basis for the Hilbert space.

Since the set of solutions gi and g∗i are not the only unique solutions to our equa-
tion of motion, the vacuum state |0u〉 is consequentially also not unique. we can
assume another set of orthonormal solutions to the equation of motion as hi and
h∗i . These solutions can be thought of as a set of basis modes seen by some other
observer. Similarly as before we write the expansion as

φ = ∑
i
(ĉihi + ĉ†

i h∗i ). (3.29)

We similarly have the commutation relations

[ĉi, ĉ†
j ] = δij,

[ĉi, ĉj] = [ĉ†
i , ĉ†

j ] = 0.
(3.30)

Likewise we have the annihilation operator b̂i which can be acted repeatedly to
get the vacuum state

ĉi |0v〉 = 0. (3.31)
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The creation operator ĉ†
i acting repeatedly gives the excited state

|ni〉 =
1√
ni!

(ĉ†
i )

ni |0v〉 . (3.32)

We now apply the Bogolubov transformation to transform from the set of solu-
tions {gi, g∗i } to the solutions {hi, h∗i } each of which help the respective observers
define their notion of particles. With these distinct set of basis modes the ob-
servers will disagree on the number of particles that are being observed, as

gi = ∑
j
(αijhj + βijh∗j ), (3.33)

hi = ∑
j
(α∗jigj − β jih∗j ). (3.34)

Here the matrices αij and βij can be expressed using the orthonormality condi-
tions to be

αij = (gi, hi) and βij = −(gi, h∗i ). (3.35)

These matrices, also known as Bogolubov coefficients, also satisfy the normaliza-
tion conditions

∑
k
(αikαjk − β∗ikβ∗jk) = δij and ∑

k
(αikβ∗jk − βikα∗jk) = 0. (3.36)

Now we can finally transform between our creation and annihilation operators
in these these different modes using the help of our Bogolubov coefficients.

b̂k = ∑
i
(αik ĉi + β∗ik ĉ†

i ) (3.37)

and

ĉk = ∑
i
(α∗kib̂i − β∗kib̂

†
i ). (3.38)

We can define a number operator for each of the u-observer and v-observer

Nu = ∑
k

b̂†
k b̂k,

Nv = ∑
k

ĉ†
k ĉk.

(3.39)

With respect to the observer at u, the number operator Nu has the expectation
value

〈0u|Nu |0u〉 = 0. (3.40)

So no particles are observed from their perspective. However, we can also com-
pute the expectation value of the of this number operator with respect to the
observer at v

〈0u|Nv |0u〉 = 〈0u|∑
k

ĉ†
k ĉk |0u〉 . (3.41)
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Using equation (3.38) we can expand the right hand side

〈0u|∑
k

ĉ†
k ĉk |0u〉 = 〈0u|∑

im
(αkib̂†

i − βkib̂i)(α
∗
kmb̂m − β∗kmb̂†

m) |0u〉

= ∑
im

βkiβ
∗
km 〈0u| (b̂ib̂†

m) |0u〉

= ∑
im

βkiβ
∗
km 〈0u| (b̂†

mb̂i + [b̂i, b̂†
m]) |0u〉 .

(3.42)

Using the commutation relation from (3.26),

〈0u|∑
k

ĉ†
k ĉk |0u〉 = ∑

im
βkiβ

∗
kmδim 〈0u|0u〉

= ∑
i

βkiβ
∗
ki.

(3.43)

So we get
〈0u|Nv |0u〉 = tr(ββ†). (3.44)

This is non vanishing which means that the observer at v there is bubbling of
particles in the vacuum state |0u〉 and thus allows for the possibility of particle
creation due to gravitational fields.

3.3 Quantum Field Theory on Black holes

3.3.1 Potential Barriers and S-Matrix

We first look at the wave equation in the Schwarzchild geometry. Using tortoise
coordinates this has the form [17]

− ∂2

∂r2
∗

ψω,l(r∗) + V(r∗)ψω,l(r∗) = ω2ψω,l(r∗), (3.45)

we have solutions of the form

frlm = ∑
l,m

1
r

Ylm(θ, φ)e−iωtψω,l(r∗). (3.46)

We consider the massless case, m2 = 0 which lets us write a form of the potential
which is

V(r∗) =
r∗ − 1

r∗3

(
m2r∗2 + l(l + 1) +

1
r∗

)
. (3.47)

We can see that the potential vanishes at spatial infinity and at the horizon but
has a peak:

V(r∗) ≈
{

e(r∗/2m) r∗ → −∞,
l(l+1)

r2 r∗ → ∞.
(3.48)

We can then get solutions in terms of waves being propagated between r∗ → ∞
and r∗ → −∞

r∗ → ∞ : ψ(r∗) = A+eiωr∗ + B+e−iωr∗ ,

r∗ → −∞ : ψ(r∗) = B−eiωr∗ + A−e−iωr∗ ,
(3.49)
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Figure 3.1: Plots for the potential V as a function of r∗ for different values of l[11].

where A can be thought of as waves going from the horizon (r∗ → −∞) to the
boundary (r∗ → ∞) and B as waves coming back from the boundary to the hori-
zon. There should exist a linear relation between them which we can express
as (

A+

A−

)
= S

(
B−

B+

)
. (3.50)

where S is a 2× 2 matrix known as an S-matrix, such that

S =

(
s11 s12
s21 s22

)
. (3.51)

The complex conjugate of the solutions are also solutions since they satisfy the
Schrodinger equation

B± → A±∗. (3.52)

Thus we can also have the linear relation(
A−

A+

)
= (S∗)−1

(
B−

B+

)
. (3.53)

The S-matrix is unitary, SS† = 1, as∣∣B+
∣∣2 + ∣∣B−∣∣2 =

∣∣A+
∣∣2 + ∣∣A−∣∣2. (3.54)

Using this, we have a relation between the matrix elements as

s11 = s22. (3.55)

For the elements of the S-matrix to be interpreted as reflection and transmission
coefficients, at least of the coefficients B±, A± must be zero. Taking B+ = 0 and
normalizing to give B− = 1, we have the S-matrix elements as

S =

(
t − tr∗

t∗
r t

)
, (3.56)

where t and r are transmission and reflection coefficients respectively.
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Figure 3.2: Kruskal geometry [17]

3.3.2 Hawking Radiation

It is difficult to study QFT for Black holes formed by gravitational collapse and
so it is relevant to study QFT in the Kruskal geometry which has black holes that
are eternal[11].

Due to the time dependence in the gravitational collapse of realistic black holes
it is difficult to solve the problem using our approach of Bogolubov transforma-
tions of the positive frequency modes of the vacuum state before the collapse.
However, Hawking was able to find solutions to this problem by realization of
the high red-shift of the positive energy modes after a long time has passed since
the gravitational collapse. He realized that these modes start off with high energy
and so can be thought of as particles travelling along a geodesic.

We can approach the problem in a simpler way as done by Unruh which is to
examine the Unruh vacuum of region I in the Kruskal geometry and find the
positive energy modes that define this vacuum. We can then Bogolubov analyze
these modes.

We can first introduce the modes in the different regions of the Kruskal manifold
as

uI,H−
k ≈

{
e−iωku Region I
0 Region II

, (3.57)

uI I,H−
k ≈

{
0 Region I
e+iωku Region II

, (3.58)

where uI,H−
k are modes in region I and uI I,H−

k are modes in region II. For H−
we have the positive energy modes of order e−iωU. We can find the Bogolubov
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transformations to relate our modes with the U plane as

U1
k = (1− e−8πMωk)−1/2

(
uI,H−

k + e−8πMωk/2uI I,H−∗
k

)
,

U2
k = (1− e−8πMωk)−1/2

(
uI I,H−

k + e−8πMωk/2uI,H−∗
k

)
.

(3.59)

The modes U1
k , U2

k , and the positive energy basis UI
−

k ∼ e−iωv are the modes that
define the past vacuum. Now, we can define the future vacuum at the null infin-
ity as VI

+

k ∼ e−iωu and we arbitrarily choose to trace over VH
−

k and the region
beyond reach of the observer lying asymptotic to the null, uI I,H−

k . We then find

a set of Bogolubov transformations that relate the modes
(

U1
k , U2

k , UI
−

k

)
and the

modes
(

VI
+

k , VH
−

k , U I I,I−
k

)
. Now we can write the modes uI,H+

k , UI
−

k , VI
+

k , VH
+

k
in terms of each other since they are not independent. They relate via the trans-
mission and reflection coefficients as

U I,H−
k = tωkVI

+

k + rωkVH
+

k ,

UI
−

k = t∗ωk
VH

+

k + r∗ωk
VI

+

k .
(3.60)

Substituting these expressions into our Bogolubov transformations we have

U1
k =

1
(1− e−8πMωk)1/2

(
tωkVI

+

k + rωkVH
+

k + e−8πMωk/2uI I,H−∗
k

)
,

U2
k =

1
(1− e−8πMωk)1/2

(
t∗ωk

VI
+

k + r∗ωk
VH

+

k + e−8πMωk/2(t∗ωk
VI

+∗
k + r∗ωk

VH
+∗

k )
)

,

UI
−

k = t∗ωk
VH

+

k − r∗ωk
VI

+

k ,
(3.61)

and the corresponding complex conjugate expressions (U1∗
k , U2∗

k , UI
−∗

k ). Using
this we have the S-matrix expression

|0〉past = ∏
ωk

(
1− e−8πMωk

) 1
2

exp
[
e8πMωk/2aI I,H−†

ωk
(tωk aI I,H+†

ωk
+ rωk aH

+†
ωk

)
]
|0〉 f uture ,

(3.62)

where we have our creation operators a and annihilation operators a†. Now we
can finally arrive at the density matrix for region I by tracing out theH− andH+:

ρ = ∏
ωk

(1− e−8πMωk)∑
n

e−8πMnωk|tωk |
2n

(1− |rωk |
2e−8πMωk)n+1

|n〉 〈n| . (3.63)

The |n〉 are states in the Hilbert space of I+. When we have rωk = 0, ρ is equiva-
lent to a canonical ensemble with β = 8πM having a thermal density matrix that
is normalized. Any observer in future will observe the black hole as a thermal
bath with TH = 1/8πM as found by Hawking.
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Chapter 4

Quantum Information Theory in a
Black Hole Background

4.1 Pure versus Mixed States

The density operator associated with a Hilbert space can describe either a pure
state or a mixed state. An arbitrary density operator ρ is a linear combination of
projection operators |ψi〉 〈ψi|,

ρ = ∑
i

pi |ψi〉 〈ψi| , (4.1)

where the states |ψi〉 are normalized, pi ≥ 0 and ∑i pi = 1. Since pi ∈ R, a density
operator is always Hermitian, i.e.,

ρ† = ∑
i

p∗i |ψi〉 〈ψi| = ρ. (4.2)

The trace of a density operator is

Tr (ρ) = ∑
j

〈
ψj
∣∣ ρ
∣∣ψj
〉

= ∑
j

∑
i

pi
〈
ψj
∣∣ψi
〉 〈

ψi
∣∣ψj
〉

= ∑
j

∑
i

piδij

= ∑
i

pi

= 1.

(4.3)

It is possible to write the density operator as ρ = A† A with A = ∑i
√

pi |ψi〉 〈ψi|;
therefore, ρ is positive semidefinite.

ρ ≥ 0 (4.4)

We can construct a density operator with a normalized state vector |Ψ〉 of the
Hilbert space such that [22]

ρ = |Ψ〉 〈Ψ| . (4.5)
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Density operators satisfying (4.5) are pure, and they satisfy several properties.
They are idempotent:

ρ2 = (|Ψ〉 〈Ψ|) (|Ψ〉 〈Ψ|)
= |Ψ〉 〈Ψ|
= ρ.

(4.6)

To quantify a density operator’s purity, we will define the purity as P (ρ) ≡
Tr(ρ2). The purity of a density operator is one if and only if it is pure. When
a density operator is associated with a pure state, then it must be idempotent.
Tracing (4.6) leads to:

Tr
(

ρ2
)
= Tr (ρ) = 1. (4.7)

Since, ∑i pi = 1 and pi ≥ 0, we have 0 ≤ pi ≤ 1. Then we have ∑i p2
i ≤ ∑i pi = 1,

and with Tr
(

p2
i
)
= ∑i p2

i = 1,

p2
i = pi =⇒ pi = 1 or 0. (4.8)

Equation (4.7) restricts exactly one pi to be one and the rest to be zero, which
implies that ρ must satisfy (4.5), and therefore, is pure. Hence a density operator
associated with a mixed state must satisfy

0 < Tr
(

ρ2
)
< 1 (4.9)

A Hilbert spaceHAB is bipartite when it can be factorized into two subsystems:

HAB = HA ⊗HB (4.10)

We can write the unentangled states in AB as tensor products of states in A and
B

|Ψ〉 = |φ〉A ⊗ |ϕ〉B . (4.11)

The density operator associated with seperable mixed states can be written as

ρ = ∑
i

piρ
A
i ⊗ ρB

i . (4.12)

Let ψ(a, b) represent the degrees of freedom in the total system AB. Then the
reduced density operator of subsystem A can be found by integrating the degrees
of freedom in subsystem B,

ρA(a, a′) =
∫

ψ (a, b)ψ
(
a′, b

)
db. (4.13)

(4.13) contains all the statistical information about subsystem A. While the sub-
systems are mixed, the total system AB is pure. Hence, B is a subsystem that
purifies A. If |A| and |B| are used to denote the size of the subsystems and
|A| ≤ 1

2 (|A|+ |B|), then ρA is the Boltzmann distribution in the energy basis,

ρA = diag
(

e−βE1 , e−βE2 , ...
)

, (4.14)

where β is the inverse of temperature.
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Figure 4.1: The S-matrix is an operator that encodes the transition probabilities of
massive particles and massless particles going from past infinity to future infin-
ity[11]. We have used the orange line to denote massive particles and the green
line to denote massless particles. The question mark ”?” represents a rather com-
plicated interaction between the incoming particles.

4.2 The Unitary S-matrix

We can tell from section 3.2 that the notion of vacuum is dependent on the ob-
server when the gravitational coupling G is non-zero; what may be observed
as a vacuum by an observer might be filled with bubbling particles by another.
Hence, we need to rely on a quantity other than the correlation functions of local
operators. This quantity is known as S-matrix. We expect that the spacetimes
which allow the formation and evaporation of black holes to be asymptotically
flat. The separation between the incoming and outgoing particles increases with
time, which allows us to ignore the particles’ gravitational interactions at past
and future infinities. Therefore, the Hilbert space, which contains the states at
past and future infinity, is identical to a free quantum field theory. Then we can
physically interpret the incoming and outgoing states by labeling them with their
spins and appropriate boson or fermion statistics.

S-matrix is a linear operator that takes a state from past infinity to future infin-
ity. Suppose that |φ〉 is an incoming state and |ϕ〉 an outstate, then the S-matrix
describes the following probability:

P (ϕ|ψ) = |〈ϕ| S |ψ〉|2 (4.15)

The diagram in 4.1 aids our understanding of (4.15). Consequently, we can com-
pare the S-matrix with the time evolution operator with t→ ∞:

S = exp (−i∞H) . (4.16)

The BFSS matrix model is an example of a unitary theory that remains consistent
with black hole formation and evaporation[5]. In this model, the unitary S-matrix
is an exact observable of an asymptotically flat quantum field theory.
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4.3 Recovering Quantum Information from Hawking
Radiation and the Page Curve

We will write the Hilbert Space of the early radiation R and late radiation BH of
the black hole as

Htotal = HR ⊗HBH
∼= Cr ⊗Cb, (4.17)

where we denote the dimension of R as r and BH as b. A quantum state |ψ〉which
belongs toHtotal is of the form

|ψ〉 = ∑
i,j

cij |i〉R |j〉BH . (4.18)

We will assume that |ψ〉 is a gaussian vector, which means cij is a symmetric
complex gaussian random variable:

cij ∼ NC

(
0,

1
d

)
. (4.19)

The real part and the imaginary part are independent random variables and are
also normally distributed:

Re
(
cij
)
∼ NR

(
0,

1
2d

)
and Im

(
cij
)
∼ NR

(
0,

1
2d

)
. (4.20)

The following are expectations of the some even powers of
∣∣cij
∣∣, the odd powers

have an expectation value of zero,

E
(∣∣cij

∣∣2) = E
[(

Re
(
cij
)2

+ Im
(
cij
)2
)]

=
1

2d
+

1
2d

=
1
d

,

E
(∣∣cij

∣∣4) = E
[(

Re
(
cij
)4

+ 2 Re
(
cij
)2 Im

(
cij
)2

+ Im
(
cij
)4
)]

=
3

4d2 +
1

2d2 +
3

4d2

=
2
d2 .

(4.21)

Now, we can evalute the expectation of the inner product of the quantum state,

E (〈ψ|ψ〉) = ∑
ij
E
(∣∣cij

∣∣2)
= d

(
1
d

)
= 1.

(4.22)
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Similarly, we can calculate the variance of the inner product of the quantum state,

Var (〈ψ|ψ〉) = E
[
(〈ψ|ψ〉 −E (〈ψ|ψ〉))2

]
= E (〈ψ|ψ〉 − 1)2

= E

[(
∑
ij

∣∣cij
∣∣2 − 1

)(
∑
kl
|ckl|2 − 1

)]
= ∑

i,j,k,l
E
(∣∣cij

∣∣2|ckl|2
)
−∑

ij
E
(∣∣cij

∣∣2)−∑
kl
E
(
|ckl|2

)
+ 1

= ∑
i,j,k,l

E
(∣∣cij

∣∣2|ckl|2
)
− 1

= ∑
(i,j) 6=(k,l)

E
(∣∣cij

∣∣2)E (|ckl|2
)
+ ∑

i,j
E
(∣∣ci,j

∣∣2)− 1

=
(

d2 − d
) 1

d2 + d
(

2
d

)
− 1

=
1
d

.

(4.23)

The reduced density operator on R is

ρR = TrBH |ψ〉 〈ψ|
= TrBH ∑

i,j,i′,j′
ci,jc∗i′,j′ |i〉R |j〉BH

〈
i′
∣∣
R

〈
j′
∣∣
BH

= TrBH ∑
i,j,i′,j′

ci,jc∗i′,j′ |i〉R
〈
i′
∣∣
R |j〉BH

〈
j′
∣∣
BH

= ∑
i,j,i′

ci,jc∗i′,j |i〉R
〈
i′
∣∣
R .

(4.24)

We can calculated the purity of the reduced density operator onR,

P (ρR) = Tr
(

ρ2
)

= Tr

(
∑
i,j,i′

ci,jc∗i′,j |i〉R
〈
i′
∣∣
R ∑

k,l,k′
ck,lc∗k′,l |k〉R

〈
k′
∣∣
R

)
= ∑

i,j,k,l
ci,jc∗k,jck,lc∗i,l.

(4.25)

Now, we are at a position to calculate the expection value of the purity of ρR,

E [P (ρR)] = ∑
i,j,k,l

E
(

ci,jc∗k,jck,lc∗i,l
)

= ∑
i,j
E
(∣∣cij

∣∣4)+ ∑
i,j 6=l

E
(∣∣ci,j

∣∣2|ci,l|2
)
+ ∑

i 6=k,j
E
(∣∣ci,j

∣∣2∣∣ck,j
∣∣2)

= rb

[
2

(rb)2

]
+
(

r2 − r
)

b

[
1

(rb)2

]
+
(

b2 − b
)

r

[
1

(rb)2

]

=
1
r
+

1
b

.

(4.26)
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Figure 4.2: The straight undashed red line at the bottom indicates a black hole
formation from a shell of photons. The dashed curve to the left denotes the hori-
zon, and the black dashed straight line indicates the split of the early and late
parts of Hawking radiation. This is also the S-matrix for the black hole[11].

In this chapter, we refer to the von Neumann entropy as the entanglement en-
tropy. The Rényi entropy is of ρR is given as

Sα (ρR) =
1

1− α
log Tr (ρα

R) , (4.27)

where α ≥ 0 and α 6= 1. When we take the limit α → 1 we get the entanglement
entropy:

S (ρR) = S1 (ρR) = −Tr (ρRlogρR) . (4.28)
The Rényi entropy is non-increasing in α because its derivative is non positive,i.e.
dSα
dα ≤ 0. Therefore, the entanglement entropy satisfies the inequality:

S (ρ) ≥ S2 (ρR)

= − log P (ρR) .
(4.29)

Furthermore, the expectation value of the entanglement entropy also satisfies the
inequality:

E [S (ρR)] ≥ E [S2 (ρR)]

= − logE [P (ρR)]
(4.30)

Hence, the entanglement entropy satisfies,

E [S (ρR)] ≥ − log
(

1
r
+

1
b

)
(4.31)

The Rényi entropy for α = 2 and the entanglement entropy are almost equal,
which allows us to approximate

E [S (ρR)] ≈
{

log b− b
r if b� r

log r− r
b if r � b

. (4.32)
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Figure 4.3: The Page curve shows that the entanglement entropy, for a black hole
in a pure state, initially increases linearly and then starts decreasing from Page
time tPage ≈ 0.54tevap and S ≈ 0.6S0 [23]. Information starts to come out of the
black hole afterward.

Equation (4.32) tells us that information starts to come out after the entanglement
entropy reaches its maximum value when the black hole has emitted roughly
half of its course-grained Bekenstein-Hawking entropy, S0. This particular time
is called the page time, tpage. The entanglement entropy increases linearly with
time, S = tTBH, as it would for purely thermal radiation. If a black hole’s age is
less than its page time, then the black hole is young; otherwise, it is an ’old’ black
hole.

The rate of change of mass of a black hole is

dM
dt

∝ −r2
hT4

BH, (4.33)

where rh is the horizon radius and TBH is the temperature of the black hole. The
solution of the differential equation in (4.33) is

M (t) =
(

M3
0 − 3At

) 1
3 (4.34)

Hence, the Bekenstein-Hawking entropy is now

S (t) = S0

(
1− t

tevap

) 2
3

. (4.35)

We have plotted the entanglement entropy S against time t with the help of Math-
ematica in figure 4.3.

4.4 Page’s Theorem

If we have the have a bipartite Hilbert space,

HAB = HA ⊗HB, (4.36)
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where, without any loss of generality |A| ≤ |B|. Then Page’s theorem tells us
that A and B are nearly maximally entangled whenever |A||B| � 1. In order to state
the theorem precisely, we need two different types of trace norms and integration
over the Haar Measure. One way to measure the difference between states is to
rely on the L1 and L2 norm:

‖M‖1 ≡ Tr
√

M†M and ‖M‖2 ≡
√

Tr (M†M). (4.37)

L1 and L2 norms satisfy the following inequality:

‖M‖2 ≤ ‖M‖1 ≤
√

N‖M‖2. (4.38)

where N is the dimensionality of the Hilbert space. Let U be a random unitary
matrix over the Haar measure, which will randomize a quantum state |ψ〉 such
that,

|ψ (U)〉 ≡ U |ψ0〉 . (4.39)

Then a specific version of Page’s theorem is

∫
dU‖ρA(U)− IA

|A| ‖1 ≤

√
|A|2 − 1
|A||B|+ 1

. (4.40)

In order to prove this theorem, we will need to use the following integrals:∫
dU = 1,∫

dUUijU†
kl =

1
N

δilδjk,∫
dUUijUklU†

mnU†
op =

1
N2 − 1

(
δinδkpδjmδlo + δipδknδjoδlm

)
− 1

N (N2 − 1)
(
δinδkpδjoδlm + δinδknδjmδlo

)
.

(4.41)

(∫
dU‖ρA −

IA

|A| ‖1

)2

≤
∫

dU
(
‖ρA(U)− IA

|A| ‖1

)2

(Jensen’s inequality)

≤ |A|
∫

dU
(
‖ρA(U)− IA

|A| ‖2

)2

(from (4.38))

≤ |A|
∫

dU
[

Tr
(

ρA(U)2
)
− 1
|A|

]
≤ |A|2 − 1
|A||B|+ 1

(4.42)
Therefore, ∫

dU‖ρA(U)− IA

|A| ‖1 ≤

√
|A|2 − 1
|A||B|+ 1

. (4.43)

We can also arrive at Page’s theorem using the entanglement entropy SA. Let us
define

∆ρA ≡ ρA −
IA

|A| . (4.44)
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Figure 4.4: To check for unitarity, we can use the swap test, which swaps the oper-
ator ρ⊗ σ to σ⊗ ρ if the swap gate measures the superposition from Hadamard
gate as |1〉 and remains unchanged otherwise. The expected outcome in the Z
basis for the qubit passing through the Hadamard gate on the right is Tr (ρσ)[11].

Now, we can evaluate the following integral, taking the limit, |A||B| � 1,∫
dUSA = −

∫
dUTr (ρA log ρA)

= Tr
[(

IA

|A| + ∆ρA

)(
log |A| − |A|∆ρA +

1
2
|A|2∆ρ2 + · · ·

)]
= log |A| − |A|

2

∫
dUTr∆ρ2

A + · · ·

= log |A| − 1
2

A
B
· · ·

(4.45)

Both versions of Page’s theorem can explain the Page curve with a similar argu-
ment, as shown with the Gaussian random complex variable in section 4.3.

4.5 Quantum Circuit to Test Unitarity

We can prepare two identical black holes and record the entire radiation as quan-
tum states with a quantum computer. Then we implement the circuit in 4.4,
which measures the swap operator with the outcomes ±1. The expectation value
of this experiment is Tr (ρσ), with the quantity being generally very close to zero.
However, when the states are pure and equal:

Tr (ρσ) = Tr
(

ρ2
)
= 1. (4.46)

Preskill and Hayden[12] suggested that if black hole evaporation is unitary, this
test could distinguish in O(1) number of tries that the states are pure and equal
to very high certainty. There will be a certain degree of error in practice while
experimenting; hence, we will have to rely on quantum error correction.
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Figure 4.5: An old black hole whose late radiation E is maximally entangled with
the early radiation B. The quantum memory D, which is maximally entangled
with S is dumped into the black hole. The black hole applies a thoroughly mixing
unitary transformation U, after which radiation R is emitted and radiation B′ is
still inside the black hole. Hence, we want to find when the subsystem S is close
to being maximally entangled with ER[11].

4.6 Extracting Quantum Information from Hawking
Radiation

Suppose we have a system of n qubits with residing in a Hilbert space of dimen-
sion 2n, such that

|ψ〉 = ∑
i

ci |i〉 . (4.47)

The no-cloning theorem prevents us from copying a quantum state |ψ〉 from sys-
tem A to a blank state |0〉 in system B, the following operation violates unitarity
in quantum mechanics:

|ψ〉A |0〉B → |ψ〉A |ψ〉B . (4.48)

Instead we have to rely on transferring of quantum information:

|ψ〉A |0〉B → |0〉A |ψ〉B . (4.49)

Transferring quantum information is still successful if system B has UB |ψ〉B as
U†

B can act to get |ψ〉B back,

|ψ〉A |0〉B → |0〉A UB |ψ〉B , (4.50)

where UB is unitary. Let us prepare a system C which is maximally entangled
with system A, then

1√
|A|
|i〉A |0〉B |i〉C → |0〉A

1√
|a|

UB |i〉B |i〉C . (4.51)
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If C purifies A, then the density states ρAC must be very close to ρA ⊗ ρB. Now, if
the quantum system D is dumped into the black hole as shown in figure 4.5. To
recover D we have to wait till B′ purifies S, that is

‖ρSB′ − ρS ⊗ ρB′‖ � 1. (4.52)

From the Page Curve we know that black hole which starts from a pure state,
emits no information till Page time. We can rely on integral on the Haar measure
(4.41) and that |B′||R| = |E||D| to find what happens for an old black hole whose
internal radiation is already entangled with E,

∫
dU‖ρSB′ − ρS ⊗ ρB′‖1 ≤

√√√√(|D|2 − 1
) (
|B′|2 − 1

)
|D|2|E|2 − 1

≈ |D||R| .

(4.53)

If k more bits than the contents of D have been radiated after the unitary mix-
ing, then |D|

|R| = 2−k. Hence, information comes out exponentially fast as the
right-hand side of (4.53) becomes extremely small with increasing k. Therefore,
as Preskill and Hayden stated, old black holes are equivalent to information mir-
rors.
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Chapter 5

AdS/CFT and Holography

5.1 Introduction

AdS/CFT of the holographic principle provided compelling evidence in support
of the unitarity of black hole evaporation. AdS/CFT is a vast topic and we explore
parts of it for our relevant discussion in this section. We end this section with a
discussion of the Holographic Entanglement Entropy.

5.2 Holographic Principle

Several developments in theory led to the idea of the Holographic principle. First,
we look at the Bekenstein bound on the universal upper limit of the entropy for any
object,

S ≤ 2πRE, (5.1)

where R is the maximal radius and E is the total energy of the object.

This bound was derived from the condition that black holes must obey the second
law of thermodynamics when any object containing some entropy is dropped
into a Schwarzchild black hole without any radial motion near its horizon.

Susskind later suggested a bound that contains the Planck scale explicitly. This
bound is known as the holographic entropy bound [11][33],

S ≤ A
4l2

p
, (5.2)

where l2
p = h̄G/c3. This gives the idea that the maximum entropy in a region of

spacetime is bounded by the area of the boundary of the region.

This area scaling of entropy led to the idea that a quantum gravity theory can be
related to a theory in one fewer dimension and became known as the holographic
principle as promoted by Susskind.
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5.3 AdS/CFT Correspondence

The Anti- de Sitter/ Conformal Field Theory correspondence emerged initially
from low energy limits in string theory and is the most successful realization of
the holographic principle. Maldacena’s paper from 1997 initiated the study of
this duality between a ’bulk’ theory relating to a ’boundary’ theory.

The statement of AdS/CFT, also known as the Maldacena Conjecture, goes as
follows:

Type IIB String Theory on AdS5 × S5 which is a gravitational theory is dual to to
N=4, SU(N) Super Yang-Mills theory which is a gauge theory and is

conformally invariant. [4]

Instead of going into the details leading to this statement, we present the AdS/
CFT correspondence as a self-consistent framework. In simpler terms, the corre-
spondence establishes a relationship between a strongly coupled gauge theory to
a gravitational theory in one higher dimensional AdS spacetime. At finite temper-
ature, this strongly coupled gauge theory is equivalent to a gravitational theory
in AdS Black hole. [20]

The free parameters on the AdS side are the string coupling gs and the ratio L2/α′

which is dimensionless and where L is the radius of curvature and α′ = l2
s and ls

is the string length. The parameters on the CFT side are the gauge group N and
the coupling constant g2

YM. The correspondence is established by the following
relations: [4]

g2
YM = 2πgs and 2g2

YMN = L4/α′2. (5.3)

In the second equation λ = g2
YMN is the ’t Hooft coupling.

5.4 AdS Spacetime

Anti-de Sitter spacetime is a solution of Einstein’s equations if the vacuum energy
Λ < 0,

Rµν −
1
2

gµνR = Λgµν. (5.4)

AdS Spacetime is the maximally symmetric solution to this equation. In d + 1
spacetime dimensions this has the metric:

ds2 = −
(

1 + (
r

Rads
)2
)

dt2 +

(
1

1 + ( r
Rads

)2

)
dr2 + r2dΩ2

d−1. (5.5)

We can use ’global coordinates’ to describe AdS space by taking r = Rads tan ρ:
[16]

ds2 =
R2

ads
cos2 ρ

(
−dt2 + dρ2 + sin2 ρdΩ2

d−1

)
. (5.6)

In the above equation Rads is the AdS Radius. We will take Rads = 1 in this section.
This has the property that when r << 1 it resembles Minkowski space in sperical
coordinates. The parameter t takes values in the interval (−∞,+∞) and r has the
interval [0, ∞). We have also used d + 1 dimensions for the AdS space
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Figure 5.1: AdS in Global Coordinates[9]

Figure 5.2: The spatially finite Penrose diagram for AdS space [11]. Here ρ ∈
[0, π/2) and t ∈ (−∞,+∞). Light rays move at 45 degree angles in the plane
t-ρ. The left hand side is the origin of the cylindrical coordinates at ρ = 0 and the
right hand side is the boundary of the cylinder at ρ = π/2.

since the dual CFT has one lower dimension and is so it taken to have d spacetime
dimensions.

It is necessary to choose a certain distance and curvature scale for an AdS space-
time. We use ρ ∈ [0, π/2) as the radial coordinate and t ∈ (−∞,+∞). The
angular coordinate Ω covers a d − 1 dimensional sphere. If d = 3 this has the
familiar form:

dΩ2 = dθ2 + sin2 θdφ2. (5.7)

In equation (5.6), we can carry out a conformal rescaling. The diverging prefactor
is 1/ cos2 ρ which can be simply dropped or multiplied by a Weyl factor of cos2 ρ
to get

ds2 = −dt2 + dρ2 + sin2 ρdΩ2
d−1. (5.8)

This is the same metric as the Einstein Static Universe. The only difference is
that ρ takes values between [0, π/2) which has the same boundary structure as
one-half of the Einstein Static Universe where ρ ∈ [0, π). We call such a space-
time Asymtotically AdS. This is particularly useful since the boundary of AdS is
important in the study of AdS/CFT.
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We can now also visualize a spatially finite Penrose diagram. The boundary of
AdS is the cylinder R× Sd−1 which we get by taking the limiting value at spatial
infinity as ρ→ π/2. If we consider looking at (n + 1) dimensional AdSn+1 space
which can be embedded onto a (n + 2) dimensional Minkowski spacetime,
where (y0, y1, ..., yn, yn+1) ∈ Rn,2 we have the interval

ds2 = −(dy0)2 + (dy1)2 + ... + (dyn)2 − (dyn+1)2, (5.9)

ds2 = ηMNdyMdyN, (5.10)

where η = diag(−,+,+, ...,+,−) and M, N ∈ {0, ..., n + 1}. AdSn+1 can be rep-
resented by a hypersurface in Rn,2:

ηMNyMyN = −(y0) +
n

∑
i=1

(yi)2 − (yn+1)2. (5.11)

This hypersurface is invariant under the isometry group SO(n, 2). The dimen-
sion of this group is 1

2(n + 1)(n + 2) which is the same as the dimension of the
group SO(n + 2) which is for a flat space of same dimensionality that is invariant
under the Poincarè group where translations give n + 1 dimensions and Lorentz
transformations give the remaining 1

2 n(n + 1) dimensions.

5.5 Conformal Field Theory

A Conformal Field Theory is a quantum field theory that is invariant under the
conformal group. The conformal group is the group of transformations that pre-
serve angles but not necessarily lengths. The Conformal Group is generated by
Poincarè transformations, dilations, and special conformal transformations.

The usual Poincarè transformations are transformations of the form:

xµ → Λµ
ν xν + aµ, (5.12)

which includes spacetime translations: xµ → xµ + αµ and (Lorentz) rotations:
xµ → xµ + ω

µ
ν xν.

If we consider n-dimensional Euclidean Space En, we know that the Poincareé
group has n translation generators and 1

2 n(n− 1) rotation generators.

dim Poincaré(En) =
1
2

n(n + 1) (5.13)

The Conformal group is SO(1, n + 1) which has: [25]

dim SO(1, n + 1) =
1
2
(n + 2)(n + 1). (5.14)

The SO(1, n + 1) group has n + 1 more generators than the Poincaré group in
n dimensions. These additional generators arise from the dilations and special
conformal transformations.
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Dilations are scale transformations:

x′µ → λxµ, (5.15)

where λ ∈ R. This gives one generator.

We can also use discrete transformations known as inversions which have the
form

xµ → xµ

x2 . (5.16)

The inversion of x follow by a translation by α can be represented as

x′µ

x′2
=

xµ

x2 + αµ. (5.17)

We can now think of another inversion in the form

x′2 =
x2

1 + 2αµxµ + α2x2 . (5.18)

Using this we can write:

x′µ =
xµ + αµx2

1 + 2αµxµ + α2x2 . (5.19)

which are Special Conformal Transformations (SCT). Here αµ has n parameters
as µ = 1, ..., n which gives the remaining n generators. The isometry group
SO(1, n + 1) in Euclidean signature is the same as the SO(2, n) group in the
Minkowski case. So we see that the conformal group is identical to the isome-
try group on AdSn+1.

5.5.1 The Conformal Algebra

Since the conformal group is a continuous group we can have a Lie algebra of
the conformal group. We can do the representation in terms of scalar fields φ(x)
with xµ which has a Cartesian coordinate where µ = 1, ..., n. The infinitesimal
generators of the conformal group are:

Translations: Pµ = i∂µ,
Rotations: Lµν = i(xµ∂ν − xν∂µ)

= −(xµPν − xνPµ),
Dilations: D = −ixµ∂µ,

SCT: Kµ = i(2xµx · ∂− x2∂µ)

= −2xµD + x2Pµ.

(5.20)

Using these generators we can work out the Lie Algebra of this group[
D, Pµ

]
= +iPµ,[

D, Kµ

]
= −iKµ,[

Pµ, Kν

]
= 2i(gµνD + Lµν),[

Lµν, Pρ

]
= i(gνρPρ − gµρPµ),[

Lµν, Lρτ

]
= i(gµτ Lνρ + gνρLµτ − gµρLντ − gντ Lµρ),[

Lµν, Kρ

]
= i(gνρKµ − gµρKν).

(5.21)
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5.5.2 Properties of Conformal Field Theories

Primary Operators

Primary operators are a special set of local operators that can transform under
conformal transformations. The scaling dimensions of these operators, ∆, is real
and non negative in a unitary CFT, i.e ∆ ≥ 0. Using the commutation relations in
(5.20), we find

DKµO(x) =
(
[D, Kµ] + KµD

)
O(0) = i(∆− 1)KµO(x). (5.22)

Similarly,
DPµO(x) =

(
[D, Pµ] + PµD

)
O(x) = i(∆ + 1)PµO(x), (5.23)

where O(x) is an operator that transforms irreducibly under dilations and so is
an eigen-operator of D which means [D,O(x)] = ∆O(x).

This means that the operator Pµ raises the scaling dimension and Kµ lowers it.
Hence, if we apply Kµ repeatedly on an operator O we obtain Kµ1 ...KµNO but since
the allowed dimensions must be positive, we will have a special set of operators
such that

[Kµ,O(x)] = 0. (5.24)

Operators that satisfy this condition are knows as primary operators or primary
fields. Under dilations the primary operators transform as

O′(x′) = λ−∆O(x). (5.25)

The Pµ generators give derivatives of primary operators which are called descen-
dants. We apply these generators an infinite number of times Pµ1 ...PµNO(0) which
would give a conformal dimension of ∆ + n. Under dilations they would rescale
as λ−∆−n but they are not primary anymore. Primary operators are of interest
since they have simple correlation functions. As an example we can consider the
time ordered two point function of a scalar primary operator O with conformal
dimension ∆, [11]

〈Ω| TO(x, t)O(0, 0) |Ω〉 = 1
(|x|2 − t2 + iε)∆ . (5.26)

The State-operator correspondence

In CFTs the state-operator correspondence is a powerful tool. This correspon-
dence states that a special set of local operators known as primary operators on
Rd can be related to a state on Sd−1. This is possible due to a conformal transfor-
mation from Rd to R× Sd−1.

In Euclidean plane Rd we can write the metric in spherical coordinates as

ds2 = dρ2 + ρ2dΩ2
d−1; (5.27)

this is conformally equivalent to R× Sd−1 for which if we do the coordinate
change ρ = etE and remove the conformal factor Ω2 = e2tE we get the form

ds2 = e2tE
(

dt2
E + dΩd−1

)
. (5.28)
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Figure 5.3: The state-operator correspondence[6].

We see that the dilations ρ have become time translations of tE. In 5.3, we see
that we have a state at tE = 0 in the R× Sd−1 cylinder with boundary conditions
at tE = −∞ which is being exponentially mapped onto the Euclidean plane Rd

where the state is on the sphere at ρ = 1. The boundary condition at tE = −∞
gets exponentially mapped to a local condition at ρ = 0.

Using the state-operator correspondence we can see that a condition at ρ = 0
is equivalent to the insertion of a local operator in the CFT. The Euclidean path
integral on the sphere ρ < 1 in Rd results in a quantum state at tE = 0 on the
cylinder R× Sd−1. If the local operator has a dimension of ∆ at ρ = 0 then the
quantum state has an energy ∆ at tE = 0. This means that there is a bijective
map and an path integral over a compact manifold which are two fundamental
properties of the state-operator correspondence.

5.6 The dictionary

We can review the statement of AdS/CFT as the following:

Any CFT on R× Sd−1 is equivalent to a quantum gravity theory in
asymptotically AdSn+1×M spacetime where M is a compact manifold.

The mapping of the observables between the theories is known as the dictionary.
We have previously shown that the isometry group SO(2, n) is both the confor-
mal group and the asymptotic symmetry group of AdSn+1. The dictionary states
that the duality arises due to an isomorphism between the AdSn+1 Hilbert space
HAdS and the CFT Hilbert space HCFT. The dictionary establishes the idea that
extrapolating a bulk scalar field to the boundary gives a primary operator of di-
mension ∆ in the CFT. This means for a CFT there is always a semiclassical dual
near the vacuum:[1]

O(t, Ω) = lim
r→∞

r∆φ(t, r, Ω). (5.29)

As an example, can consider that the time-ordered two point function for a free
massive scalar field in AdS with the two points on Sd−1. The application of the

38



dictionary results in obtaining the two-point function in the CFT on R× Sd−1 for
a scalar of dimension ∆,

lim
r→∞
〈0| φ(t′, Ω′)φ(t, Ω) |0〉 = 〈0|O(t′, Ω′)O(t, Ω) |0〉 . (5.30)

To reproduce everything we know about the bulk quantum gravity another con-
dition must be satisfied. We must look at which particular cases of the CFT
give a good semiclassical definition: where the Planck length lp is much smaller
than the AdS Radius, Rads. A semiclassical dual can exist if the induced met-
ric on the boundary is arbitrary and has a Euclidean geometry as allowed by
asymptotically-AdS boundary conditions in addition to the existence of the dual
near the vacuum.

5.7 AdS Black Holes

Black holes have thermodynamic properties quantum mechanically. Considering
this quantum effect of matter we know a black hole emits Hawking radiation. For
a Schwarzchild black hole this temperature is given by

kBT =
h̄c3

8πGM
. (5.31)

Comparing the first law of black holes with the first law of thermodynamics dE =
TdS we get

S =
A

4Gh̄
kBc3 =

A
4lp

2 , (5.32)

which is the exact bound as discussed earlier in equation 5.2.

In AdS, the Hawking Radiation from black holes bounces back from the bound-
ary in finite time. Small black holes evaporate fully before their radiation reaches
the boundary so are unstable and large black holes are eternal and stable. For
black holes with their Schwarzchild radius approaching the AdS radius, the re-
flection and the radiation rates become equal.

The transition between the stability and instability for AdS4 was estimated by
statistical arguments to be

ERads =

(
Rads

lp

)2(Rads
lp

)−2/5

. (5.33)

Here the E is an energy state in the CFT for a black hole whose Schwarzchild
radius is of the order of the AdS radius. This equation shows that the transition
happens when for the black hole the Rads

lp
is parametrically smaller than the AdS

radius. In AdSd+1 the scaling has the order of − (d−1)(d−2)
2d−1 instead of being para-

metric for the transition. This means that the transition expression turns out to
be

ERads =

(
Rads

lp

)d−1(Rads
lp

)− (d−1)(d−2)
2d−1

, (5.34)

or

ERads =

(
Rads

lp

) d2−1
2d−1

. (5.35)
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5.7.1 Schwarzchild Black Hole in AdS

In d + 1 dimensional asymptotically AdS spacetime the static Schwarzchild black
hole has the metric:

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2
d−1, (5.36)

Here

f (r) = 1 +
r2

R2
ads
− α

rd−2 , (5.37)

where α is the mass of the black hole multiplied with the Newton’s constant in
d + 1 dimensions

α =
8Γ( d

2 )GM
(d− 1)π(d−2)/2

. (5.38)

Taking the positive root of f at the horizon r = rs where we approach the coordi-
nate singularity,

1 +
r2

s

R2
ads
− α

rd−2
s

= 0. (5.39)

Furthermore, assuming that the Euclidean version of the geometry is smooth we
get the Hawking temperature

T =
(d− 2)R2

ads + dr2
s

4πrsR2
ads

. (5.40)

For the small black hole mass limit (α� Rd−2
ads ) we get

T ≈ d− 2
4πrs

. (5.41)

For the large black hole mass limit (α� Rd−2
ads ) we get

T ≈ drs

4πR2
ads

. (5.42)

We can also calculate the evaporation rate of a small black hole in AdS using the
Stefan-Boltzmann law

dα

dt
∼ α−2/(d−2). (5.43)

This gives the lifetime growing as an order of the mass of the black hole

τ ∼ αd/(d−2). (5.44)

For large black holes we get can calculate the evaporation rate to be

dα

dt
∼ α2, (5.45)

which gives the lifetime
τ0 − τ ∼ µ−1, (5.46)

where τ0 is the upper bound for which the mass of the black hole is infinite and
τ is the time until the black hole evaporates to the Schwarzchild radius of order
of the AdS radius. [19]
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5.7.2 BTZ Black Hole

The BTZ black hole is a special case for d = 2 dimensions. In this case the metric
in equation 5.36 for the Schwarzchild black hole is replaced by the metric

ds2 = (
r2

R2
ads
−m)dt2 − (

r2

R2
ads
−m)−1dr2 − r2dφ2. (5.47)

To relate the m with the mass of this BTZ black hole, if the geometry of the result-
ing 3 dimensional AdS spacetime AdS3 is defined to have zero mass we get

m = 8GMads − 1. (5.48)

In this case the BTZ black hole does not have a minimum mass that is zero. In-
stead, if we take m=0 for our metric in equation 5.47 we get the relation

m = 8GMBTZ. (5.49)

This case is more relevant to us as it gives us the Schwarzchild radius, rs =√
mRads which means that as m→ 0, rs → 0.

The Hawking temperature of the BTZ black hole is calculated to be

T =

√
m

2πRads
, (5.50)

and its entropy is

S =
π
√

mRads
2G

. (5.51)

In 5.50 we can see that the hawking temperature of these black holes decrease
as their mass decreases so their lifetime is infinite. These small black holes are
therefore unstable.

5.8 The information paradox resolved in AdS/CFT

Hawking imagined the formation of a black hole through gravitational collapse
and its evaporation into AdS/CFT by emitting Hawking radiation. The black
hole of our concern must be sufficiently big to be semiclassical and small to evap-
orate completely leaving behind only the hawking radiation. Using our case for
AdSd+1 in (5.35) this has the range

(
Rads

lp

)
� ERads �

(
Rads

lp

) d2−1
2d−1

. (5.52)

The infalling matter onto the black hole must somehow be correlated to the out-
going Hawking radiation. So if the infalling matter has a pure state configuration
then the final state should also be a pure state. This is only possible if the evo-
lution is unitary. AdS/CFT allows this possibility since the CFT is a supersym-
metric gauge theory on the boundary which is manifestly unitary. Some issues
arise in the AdS spacetime interpretation due its global structure. This arises
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since the boundary of the cylindrical structure can be heuristically interpreted to
be at infinity, any spacelike slice can allow lightlike signals to propagate from the
boundary to the region inside the structure in an affine parameter that is finite.
Thus, even in the absence of black holes it is difficult to define any evolution in
the AdS space to have a quantum mechanical evolution. By imposing boundary
conditions at infinity and studying special black holes which have a short life-
time we can bypass this issue leading to the evolution obeying unitarity. This is
how the conjecture shows that the information is preserved in the quantum me-
chanical black hole evolution. In the following chapter 6, we will look at how the
principle of holographic duality relates to the Bekenstein-Hawking entropy of a
black hole.

5.9 Holographic Entanglement Entropy

The holographic description of the entanglement entropy is one of the most in-
teresting proposals derived by Ryu and Takayanagi [28] using the AdS/CFT cor-
respondence.

The proposed formula using the AdSd+2/CFTd+1 correspondence for the Entan-
glement entropy for a subsystem A which has a boundary in d− 1 dimension ∂A
in Sd in a CFT on R× Sd is

SA =
Area of γA

4G(d+2)
N

, (5.53)

where γA is the minimal d dimensional surface area in AdSd+2 which has the
boundary ∂A and 4G(d+2)

N is the Newton constant in d + 2 dimensions.

A heuristic derivation has been shown in the following way: [21]
The Ricci Scalar is comparable with the delta function under the assumption that
the n-sheeted AdSd+2 describes the backreacted geometry Sn,

R = 4π (1− n) δ (γA) + R(0). (5.54)

In the equation above (5.54), we have the boundary conditions that

δ (γA) =

{
∞ x ∈ γA

0 otherwise
, (5.55)

and R0 is that of the pure AdSd+2. Now, we will substitute R into the supergravity
action ,

SAdS = − 1

16πG(d+2)
N

∫
M

dxd+2√g (R + Λ) + · · · . (5.56)

We have written only the bulk Einstein-Hilbert action because the other terms are
proportional to n, which leads to them being cancelled in the following ratio:

Tr (ρn
A) = (Z1)

−n
∫
(tE,x)∈Rn

Dφe−S(φ)

≡ Zn

(Z1)
n .

(5.57)
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Figure 5.4: Calculation of the holographic entanglement entropy using a minimal
surface from AdS/CFT[28].

Hence, we can use the equivalence of the partition functions of CFT and AdS
gravity

ZCFT = ZAdS Gravity, (5.58)

to calculate the holographic entanglement entropy:

SA = − ∂

∂n
log Trρn

A|n=1

= − ∂

∂n

[
(1− n)Area (γA)

4Gd+2
N

]
n=1

=
Area (γA)

4Gd+2
N

.

(5.59)

Therefore, we have derived the formula for holographic entanglement entropy
in (5.53) [10]. It can be seen that the formula satisfies the basic properties of the
entanglement entropy [28] which include (i) SA = SB where B is the complement
of A and (ii) SA1 + SA2 ≤ SA1∪A2 which is the strong-subadditivity condition
which will be discussed again in the next section (6.2).

The computations of Holographic Entanglement Entropy in AdS3/CFT2, in higher
dimensions and for Yang-Mills at Finite Temperature all have been explicitly
shown by Ryu and Takayanagi [28]. Furthermore, the assumption that we used
on the Ricci Scalar in (5.54) is satisfied in 3-dimensional pure gravity with cer-
tainty.

Interestingly, the holographic entanglement entropy formula (5.53) scales as the
area. This is analogous to the Area law for entropy of harmonic oscillators [30]
and the holographic entropy bound as shown in equation 5.2.
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Chapter 6

Entanglement Entropy Between
Subsystems of Harmonic Oscillators

6.1 Entanglement Entropy within Flat Space

Assume that there is a massless, scalar quantum field represented by a bipartite
Hilbert space H. Since the space is bipartite, we can write it as a tensor prod-
uct of two Hilbert spaces Hin and Hout, i.e H = Hin ⊗Hout. We can choose the
non-degenerate ground state on H to be represented by |ψ0〉. This state is asso-
ciated with the pure state density operator ρ0 = |ψ0〉 〈ψ0|. Imagine that there is
a sphere in the flat space with an arbitrary radius R, which has degrees of free-
dom residing inside of it and can be associated with Hin. The degrees of freedom
lying outside the sphere can be associated with Hout The von Neumann entropy
(also referred to as entanglement entropy) associated with the outer sphere is
S = −Trρout ln ρout [14] which also represents the tracing of all the internal de-
grees of freedom lying inside the sphere. We will investigate the relationship
between S and R.
Now let us define S′ = Trρin ln ρin which has the same eigenvalues as S. As any
entanglement entropy S”’ in terms of eigenvalues is S′′′ = ∑n pn ln pn, S and S’
must be equal as they share the same set of eigenvalues. Hence, both entropies
S and S’ must depend on a common property, which is the area of the sphere.
Since the area is dimensional and S is dimensionless, we need a dimensionful
parameter to relate it with the area A. Furthermore, the interior of the sphere is
independent of the infrared cutoff, which leaves only one dimensionful param-
eter, the ultraviolet cutoff M. Therefore, S must be a function of M2A(which is
dimensionless).

6.2 Characteristics of entanglement entropy

The density matrix for finite-dimensional Hilbert Space is

ρ = ∑
α

pα |ψα〉 〈ψα| (6.1)

where α is used to represent a vector from a particular quantum system.
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The density operator have the following properties[29][14]:
The expectation value of an operator A with respect to a subset of ensemble with
the state ψα is

〈A〉 = ∑
α

pα 〈ψα| A |ψα〉

= ∑
α

pαTr |ψα〉 〈ψα| A

= TrρA.

(6.2)

The density matrix is Hermitian, positive semidefinite with a trace of 1. The proof
of these properties are in 4.1.

ρ† = ρ

ρ ≥ 0
Trρ = 1

(6.3)

The density matrix is pure, whenever it can be expressed as

ρ = |ψ〉 〈ψ| . (6.4)

Eq.(5.3) implies that ρ is diagonalizable and has eigenvalues pa. The associated
Shannon entropy is the von Neumann entropy:

S(ρ) = −Trρ ln ρ = 〈− ln ρ〉ρ. (6.5)

Since the trace is cyclic, the entanglement entropy is invariant under unitary
transformations of the form

S(UρU†) = S(ρ). (6.6)

Let us consider a bipartite Hilbert space HAB such that

HAB = HA ⊗HB. (6.7)

The reduced density matrix ρA which can give the expectation values of operators
of the form OA ⊗ IB is the partial trace of ρAB

ρA := TrBρAB. (6.8)

For a pure state, ρAB is a tensor product ρAB = ρA ⊗ ρB, the correlation functions
of operators on A and B vanish:

〈OA ⊗OB〉ρAB − 〈OA〉ρA〈OB〉ρB = 0. (6.9)

The von Neumann entropy is extensive and subadditive:

ρAB = ρA ⊗ ρB ⇐⇒ S(AB) = S(A) + S(B),
ρAB 6= ρA ⊗ ρB ⇐⇒ S(AB) < S(A) + S(B).

(6.10)

The mutual information is defined as

I(A : B) := S(A) + S(B)− S(AB). (6.11)
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The mutual information also bounds correlators

1
2

(
〈OA ⊗OB〉 − 〈OA〉〈OB〉

‖OA‖‖OB‖

)2

≤ I(A : B). (6.12)

The mutual information does not decrease upon adjoining systems, i.e.,

I(A : BC) ≥ I(A : B). (6.13)

The entropy satisfies three inequalities, strong subadditivity, Araki-Lieb inequal-
ity, and the second form of strong subadditivity, respectively, by adjoining a sys-
tem C:

S(AB) + S(BC) ≥ S(B) + S(ABC),
S(AB) + S(BC) ≥ S(A) + S(C),

S(AB) ≥ |S(A)− S(B)|.
(6.14)

When AB is pure,
S(A) = S(B). (6.15)

ρA is a Gibbs state in terms of modular Hamiltonian HA,

ρA =
1
Z

e−HA . (6.16)

Eq.(5.5) also implies
S(A) = 〈HA〉+ ln Z. (6.17)

Eq.(5.16) tell us that we can think of any state as being in a canonical ensemble
which will allow us to use statistical physics. The spectrum of HA is also called
the entanglement spectrum.

6.3 Entropy of two coupled harmonic oscillators

Let |ψ〉 be an arbitrary state of the composite system; we will expand it in terms
of basis vectors |xin〉 in Hin and |xout〉 in Hout. Here, |xin〉 represents the position
basis in a single harmonic oscillator in Hin and |xout〉 represents a position basis
for a single harmonic oscillator in Hout.
The normal coordinates are defined as follows:

x± =
1√
2
(xin ± xout) ,

ω+ =
√

k0,

ω− =
√

k0 + 2k1,

p± =
1√
2
(pin + pout) .

(6.18)

The Hamiltonian for a coupled harmonic oscillator is

H =
1
2

[
p2

in + p2
out + k0

(
x2

in + x2
out

)
+ k1

(
xin − x2

out

)]
. (6.19)
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Under coordinate transformation, the Hamiltonian becomes:

H =
1
2

(
p2
+ + p2

− + ω2
+x +2 ω2

−x2
−

)
. (6.20)

The normalized ground state wave function for entangled coupled oscillators of
the composite system are given by[8]

ψ0 (xin, xout) = π−
1
2 (ω−ω+)

1/4 exp

(
−ω+x2

+ + ω−x2
−

2

)
. (6.21)

|ψ〉 =
∫

dxin

∫
dxoutψ (xin, xout) |xin〉 |xout〉 (6.22)

Here, ψ (xin, xout) wave function in position space. Similarly, we can write the
ground state as

|ψ0〉 =
∫

dxin

∫
dxoutψ0 (xin, xout) |xin〉 |xout〉 . (6.23)

Hence,
ρ0 = |ψ0〉 〈ψ0| (6.24)

=
∫

dxin

∫
dxout

∫
dx′in

∫
dx′outψ0 (xin, xout)ψ∗0

(
x′in, x′out

)
|xin〉 |xout〉

〈
x′in
∣∣ 〈x′out

∣∣ .

Since, an operator O = Oin ⊗Oout is a tensor product of subsystems [27],

Trin(O) = OoutTr (Oin)

Trin
(
|xin〉 |xout〉

〈
x′in
∣∣ 〈x′out

∣∣) = Trin
(
|xin〉

〈
x′in
∣∣⊗ |xout〉

〈
x′out

∣∣)
= |xout〉

〈
x′out

∣∣ Tr
(
|xin〉

〈
x′in
∣∣)

= |xout〉
〈

x′out
∣∣ δ
(
xin − x′in

)
,

(6.25)

and

ρout = Trin (ρ0)

=
∫

dxin

∫
dxout

∫
dx′in

∫
dx′outψ0 (xin, xout)ψ

∗
0
(
x′in, x′out

)
|xout〉

〈
x′out

∣∣ δ
(
xin − x′in

)
=
∫

dxin

∫
dxout

∫
dx′outψ0 (xin, xout)ψ∗0

(
x′in, x′out

)
|xout〉

〈
x′out

∣∣ . (6.26)

The matrix elements are ρout (xout, x′out) = 〈xout| ρ0 |x′out〉, which kills the ’out’
integrals of(5.7). Writing the integral with limits:

ρout
(
xout, x′out

)
=
∫ +∞

−∞
dxinψ0 (xin, xout)ψ∗0

(
xin, x′out

)
=
∫ +∞

−∞
dxin

√
ω+ω−

π
exp

[
w+ + w−

2
x2

in+(
ω−xout

2
− ω+xout

2
+

ω−x′out
2

− ω+xout

2

)
xin

− ω+ + ω−
4

x′2out

]
,

(6.27)
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where we used the Gaussian integral from (A.1). Defining constants β and γ such
that:

β =
1
4
(ω+ −ω−)

2

ω+ + ω−
,

γ− β =
2ω+ω−

ω+ + ω−
.

(6.28)

The matrix elements become

ρout(xout, x′out) =

√
γ− β

π
exp

[
−γ

2

(
x2

out + x′2out

)
+ βxoutx′out

]
. (6.29)

Since, entropy can be described in terms of eigenvalues, pn of ρout, we want to
solve the eigenvalue equation∫ +∞

−∞
dx′ρout (x, x) fn

(
x′
)
= pn fn (x) . (6.30)

The solution to the equation is quite easily found by guessing[30]:

pn = (1− ξ) ξn,

fn (x) = Hn(
√

αx) exp
(
−αx2

2

)
,

(6.31)

where Hn is a Hermite polynomial of nth degree, and

α =
√

γ2 − β2 =
√

ω+ω−,

ξ =
β

γ + α
.

(6.32)

It can be inferred that ρout is equivalent to a thermal density matrix for a simple
harmonic oscillator with a frequency of α and a temperature of T = − α

ln (ξ)
with

the help equation(5.16).
The entanglement entropy can be expressed in terms of eigenvalues of ρout

S =
∞

∑
n=0

pn ln pn

= −ξ ln ξ + (1− ξ) ln (1− ξ)

1− ξ

= −
[

ξ

1− ξ
ln ξ + ln (1− ξ)

] (6.33)

It should be noted that since ξ is a function of K1/k0, so is the entanglement
entropy.

6.4 Generalization to N-coupled harmonic oscillators

The Hamiltonian for the oscillator is

H =
1
2

N

∑
i=1

p2
i +

1
2

N

∑
i,j

xiKijxj, (6.34)
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where K is a real N × N symmetric positive matrix; hence, it is Hermitian with
positive eigenvalues. If KD is a diagonal matrix and U is orthoginal, then K can

be expressed as K = UTKDU. Therefore, the square root of K is Ω = UTK
1
2
DU.

The normalised ground state wave function for N-coupled oscillators:

ψ0 (x1, ..., xn) = π−
N
4 (detΩ)

1
4 exp

(
−x ·Ω · x

2

)
. (6.35)

Tracing over the first n, which is analogous to the ”inside” case for 2-coupled
oscillators, yields ρout:

ρout
(
xn+1, xn+2, ..., xN; x′n+1, x′n+2, ..., x′Nx

)
=∫ n

∏
i=1

dxiψ0 (x1, ..., xn, xn+1, .., xN)ψ∗0
(
x1, ..., xn, x′n+1, ..., x′N

)
.

(6.36)

We can write Ω in terms of matrices A, B and C, where A is n× n, B and C are
(N − n)× (N − n).

Ω =

(
A B
BT C

)
(6.37)

The integral is now evaluated with higher dimensional Gaussian Integral (A.3);
hence, ρout is

ρout(x, x′) ∼ exp
(
−xT · γ · x + x′T · γ · x′

2
+ xT · β · x′

)
. (6.38)

Now x has N − n components and β = 1
2 BT A−1B. Since, β and γ do not com-

mute, equation(5.23) does not represent a thermal density matrix for a system
of oscillators. The generalization of Eq. (5.14) implies that (detG)ρout (Gx, Gx′)
and ρout(x, x′) share the same eigenvalues as ρout(x, x′), when G is a non-singular
matrix. Let x = γ−

1
2 y and β′ = γ−

1
2 βγ−

1
2 . This leads to

ρout(y, y′) ∼ exp
[
−y.y + y′.y′

2
+ y · β′ · y′

]
. (6.39)

Let y = Wz, where W is orthogonal with WTβ′W diagonal and βi is the eigen-
value of β, then

ρout
(
z, z′

)
∼

N

∏
i=n+1

exp

(
−

z2
i + z′2i

2
+ β′iziz′i

)
. (6.40)

This is the same equation as Eq.(5.13) if γ → 1 and β → β′i. Hence, the entropy
is found by adding individual entropies associated with βi the help of Eq. (5.17)

with ξi =
β′i

1+(1−β′2i )
1
2

,

S = ∑
i

S (ξi) . (6.41)
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6.5 Generalization for a Quantum Field

This result can be generalized for the Hamiltonian of a quantum field.

H =
1
2

∫
dx3

(
π2 (~x) + |∇ · ϕ (~x)|2

)
. (6.42)

If x = |~x| and Zlm are real spherical harmonics: Zl0 = Yl0, Zlm =
√

2ReYlm for
m > 0, and Zlm =

√
2ImYlm for m < 0. The wave partial wave components are

ϕlm (x) = x
∫

dΩZlm(θ, φ)φ (~x)

πlm (x) = x
∫

dΩ, Zlm (θ, φ)π (~x) .
(6.43)

These operators are Hermitian and obey the canonical commutation relations in
natural units,

[ϕlm (x) , πl′m′ (x)] = iδll′δmm′δ
(
x− x′

)
. (6.44)

We can define Hlm such that H = ∑lm Hlm:

Hlm =
1
2

∫ ∞

0
dx{π2

lm (x) + x2
[

∂

∂x

(
ϕ (x)

x

)]2

+
l(l + 1)

x2 ϕ2 (x)}. (6.45)

Now, we impose the constraints due to ultraviolet and infrared cutoff. Trans-
forming from the radial coordinate x to the lattice coordinate where each point
has a separation length of a, which is the inverse ultraviolet cutoff. This implies
M = a−1. Let L = (N + 1)a, where N is a large integer such that ϕlm (x) vanishes
when x ≥ L which implies that L−1 is the infrared cutoff so that

Hlm =
1
2a

N

∑
j=1

[
π2

lm,j +

(
j +

1
2

)2 (ϕlm,j

j
−

ϕlm,j+1

j + 1

)2

+
l(l + 1)

j2
ϕ2

lm,j

]
. (6.46)

Here, ϕlm, N + 1 = 0,φlm,j and πlm, j are hermitian and dimensionless. They also
satisfy the commutation relationship[

ϕlm,j, πl′m′,j′
]
= iδll′δmm′δjj′ . (6.47)

Hlm has the same form of Eq.(5.35). Therefore, we can numerically compute the
entropy Slm (n, N) by tracing over the ground state of Hlm. Hence, the total en-
tropy is S = ∑lm Slm(n, N). Eq.(5.35) also implies that Hlm is independent of l,
so Sl(n, N) = Slm(n, N). Summing over all values of m is 2l + 1, which gives the
total entropy as S = ∑l(2l + 1)Sl(n, N). When l >> N, Sl(n, N) is computed
perturbatively as follows:

Sl(n, N) = ξl(n) [− ln ξl (n) + 1] ,

ξ(n) =
n (n + 1) (2n + 1)2

64l2(l + 1)2 + O
(

l−6
)

.
(6.48)

The graph in 6.1 demonstrate the situation where the R = (n + 1
2)a and S(n, N)

as a function of R2 are calculated for 1 ≤ n ≤ 30 and N = 60. The points fit
equation of a straight line S = 0.3M2R2.
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Figure 6.1: The entropy S found by tracing the degrees of freedom inside a sphere
of radius R. The graph connecting the points is a straight line[30].

6.6 Connection with the Entropy of a Black Hole

The above calculations show that the entropy is independent of the information
contained inside the sphere. Generalization of this calculation is that for any black
hole which resides in a 3-dimensional space, it must have entropy, which depends
on a quantity of one lower dimension, i.e., the area. This interpretation agrees
very well with the formula for the intrinsic entropy of a black hole, SBH = 1

4 M2
Pl A,

where MPl is the Planck Mass, and A is the surface area of the black hole.
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Chapter 7

Entanglement Entropy of the
Quenched Double Oscillator

7.1 The Quenched Hamiltonian

In this section we review the calculation as done by Ali and Moynihan on the
entanglement entropy of the quenched double oscillator [3] which we plan to
generalize to the N oscillator case in the next chapter (8) for our calculation. We
briefly review the setup, calculations and the results from this paper below.

In the double oscillator case the non-interacting hamiltonian is

H1 =
1
2
(p2

x + p2
y) +

ω2

2
(x2 + y2). (7.1)

The ground state of this hamiltonian in the position basis is

ψo(x, y) =
√

ω

π
exp

[
−ω

2
(x2 + y2)

]
. (7.2)

When the double oscillator is quenched at t = 0, it has an interaction term and
the new hamiltonian is

H2 =
1
2
(p2

x + p2
y) +

ω2

2
(x2 + y2) + λxy. (7.3)

Due to the interaction term being quadratic, the ground state is found by switch-
ing to normal coordinates using the position and momentum operators z± =

1√
2
(x± y) and p± = 1√

2
(px + py) respectively. This gives us the hamiltonian H2

in the new coordinates

H2 =
1
2
(p2

+ + p2
−)

2 +
ω2
+z2

+

2
+

ω2
−z2
−

2
, (7.4)

where ω± =
√

ω2 ± λ The ground state oh H1 which is ψ0(x, y) in the normal
coordinates is now

ψ0(z+, z−) =
√

ω

π
exp

{
[−ω

2
(z2

+ + z2
−)]
}

. (7.5)
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7.2 The State After a Quench

We can time evolve this ground state

|ψ1(t)〉 = e−iH2t |ψ0〉 . (7.6)

This gives us

ψ1(z+, z−, t) = 〈z+, z−| e−iH2t |ψ0〉

=
∫

dz′+dz′−K(z+, z−; z′+, z′−; z′+, z′−; t)ψ0(z′+, z′−),
(7.7)

where K(z+, z−; z′+, z′−; z′+, z′−; t) is the propagator for the double oscillator. In
normal coordinates this propagator can be written as a product of propagators of
two single free oscillators:

K(z+, z−; z′+, z′−; z′+, z′−; t) = K(z+, t; z′+, , 0)K(z−, t; z′−, 0). (7.8)

Where the propagator

K(z+, t; z′+, 0) =
√

ω+

2πi sin ω+t
exp

[
iω+

2 sin ω+t
{
(z2

+ + z′2+) cos ω+t− 2z+z′+
}]

,

(7.9)
and similarly

K(z−, t; z′−, 0) =
√

ω−
2πi sin ω−t

exp
[

iω−
2 sin ω−t

{
(z2
− + z′2−) cos ω−t− 2z−z′−

}]
.

(7.10)
Substituting these expressions into (7.7) and carrying out Gaussian integrals for
the z′+ and z′− using (A.1) we obtain

ψ1 = N exp
{
(x2 + y2)

2
(α+ + α−) + xy(α+ − α−)

}
, (7.11)

where N is a time dependent constant that we have defined as

N =

√
ω

π

√
−ω+ω−

sin ω+t sin ω−t
1√

ω− iω+ cot ω+t)(ω− iω− cot ω−t)
(7.12)

and

α± =
1
2

{
iω± cot ω±t− ω2

±
ω sin2 ω±t− iω± cos ω± cos ω±t sin ω±t

}
. (7.13)

7.3 The Density Operator

For this pure state, ψ1, we have the density operator

ρ(x, y; x′, y′) = ψ1(x, y)ψ∗1(x′, y′)

= |N | exp
{

x2 + y2

2
(α+ + α−) + xy(α+ − α−)

}
(7.14)

× exp
{

x′2 + y′2

2
(α∗+ + α∗−) + x′y′(α∗+ − α∗−)

}
.
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7.4 The Reduced Density Operator

We can now find the reduced density operator with position x by setting y = y′

and integrating with respect to y. This gives

ρout(x, x′) =
∫

dyρ(x, y; x′, y)

= N exp{Λx2 −Λ∗x′2 + Γxx′},
(7.15)

where we have defined

Λ = −1
2
(α+ + α−) +

1
4

(α+ − α−)2

Re(α+ + α−)
,

Λ∗ = −1
2
(α∗+ + α∗−) +

1
4

(α∗+ − α∗−)
2

Re(α∗+ + α∗−)
,

Γ = −1
2
|α+ + α−|2

Re(α+ + α−)
,

N = i|N |2
√

π

Re(α+ + α−)
.

(7.16)

7.5 The Eigenvalue Problem

In the eigenbasis of ρout
ρout |m〉 = λm |m〉 , (7.17)

ρout =
ρout

Trρout
, (7.18)

Trρout =
∞

∑
i=0
〈m| ρout |m〉

=
∞

∑
i=0

λm 〈m|m〉

=
∞

∑
i=0

λm.

(7.19)

We want to find the eigenvalues of the normalized reduced density operator,

ρout |m〉 =
ρout

∑∞
i=0 λm

|m〉

=
λm

∑∞
i=0 λm

|m〉

= pm |l〉 .

(7.20)

Here,

pm =
λm

∑∞
i=0 λm

and
∞

∑
i=0

pm = 1. (7.21)

54



7.6 The Eigenvalues and the Eigenfunctions

We will adopt Srednicki’s eigenfunction ansatz

fm (x) = CmHm
(√

ax
)

exp
(
−b

2
x2
)

, (7.22)

where Cm are the normalization constants and Hm are the Hermite polynomi-
ads of degree m. Furthermore, we will use the contour-integral representation of
Hermite polynomials,

Hm
(√

ax′
)
=

m!
2πi

∮
C

exp
(
2t
√

ax′ − t2)
tn+1 dt. (7.23)

After doing the integral in x′, we have

NCmm!
2πi

√
π

Λ∗ + b/2

∮
C

dt exp

(Γx + 2t
√

a
)2

4
(

Λ∗ + b
2

)
 exp

(
−t2)

tn+1 , (7.24)

which must be proportional to exp
(
− b

2 x2
)

:

− Γ +
Γ2

4
(

Λ∗ + b
2

) = −b
2

. (7.25)

This is a quadratic equation in terms b, for which we will take the positive square
root to ensure that entanglement entropy is non-negative,

b = (Λ−Λ∗) +
√
(Λ∗ + Λ)2 − Γ2. (7.26)

Now, let us define the remaining parts of equation (7.24), which has to be propor-
tional to Hm

(√
ax′
)

Xm =
m!
2πi

∮
C

dt
exp

(
−t2)

tn+1 exp
(

4t2a + 4t
√

aΓx
4Λ∗ + 2b

)
. (7.27)

We will do a variable transformation such that

τ =
tΓ

2Λ∗ + b
. (7.28)

Using (7.28) we have,

Xm =

(
Γ

2Λ∗ + b

)m m!
2πi

∮
C

dτ
exp

(
2τ
√

ax− τ2)
τn+1 . (7.29)

Hence, to ensure proportionality, we have the following equation,(
2Λ∗ + b

Γ

)2 [4Λ∗ + 2b− 4a
4Λ∗ + 2b

]
= 1. (7.30)
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The solution of equation (7.30) is

a =
(2Λ∗ + b)

2

[
1−

(
Γ

2Λ∗ + b

)2
]

. (7.31)

Now, we have solved the eigenvalue equation:∫
dx′ρout

(
x, x′

)
fm
(
x′
)
= N

(
Γ

2Λ∗ + b

)m
fm (x) . (7.32)

Therefore, the unnormalized eigenvalues are

λm =
N Γn

(2Λ∗ + b)n . (7.33)

To get the normalized eigenvalues, we use equation (7.21),

pm = βm (1− β) . (7.34)

where β is

β =
Γ

2Λ∗ + b

=
Γ

Λ + Λ∗ +
√
(Λ∗ + Λ)− Γ2

.
(7.35)

In order to carry out the infinite sum to get (7.34), we have to impose the following
constraint:

Λ + Λ∗ > Γ, (7.36)

so that |β| < 1.

7.7 The Entanglement Entropy

The entanglement entropy is now given in terms of β,

SEE = −
∞

∑
m=0

pm ln (pm)

= −β ln (β) + (1− β) ln (1− β)

1− β
.

(7.37)

In the following section 7.8, we will show how the entanglement entropy can be
represented graphically due to its time-dependence. We used the source code for
producing the result from Ali and Moynihan.
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7.8 Graphical Representation for the Quenched Dou-
ble Oscillator

20 40 60 80 100
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0.010

0.015

Figure 7.1: The entanglement entropy when N = 2, ω = 1 and λ = 0.1[3].
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Figure 7.2: The entanglement entropy when N = 2, ω = 1 and λ = 0.9[3].
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Chapter 8

Calculation of Entropy of Quenched
N-Oscillators

8.1 Time Evolution of a Sudden Quench

We will start with the Hamiltonian for non-interacting N harmonic oscillators,
whose Hamiltonian is given by,

H1 =
1
2

N−1

∑
a=0

(
p2

a + ω2x2
a

)
. (8.1)

The Hamiltonian for a free field theory on a discretized circular lattice is [2]

H2 =
1
2

N−1

∑
a=0

(
p2

a + ω2x2
a + Ω2xaxa+1

)
, (8.2)

where we define the boundary conditions that xa = xa+N. We will decouple the
Hamiltonian in terms of normal modes obtained by a discrete Fourier transform
[15],

x̃k =
1√
N

N−1

∑
a=0

exp
(
−2πik

N
a
)

xa p̃k =
1√
N

N−1

∑
a=0

exp
(

2πik
N

a
)

pa, (8.3)

and

ω̃2
k = ω2 + Ω2 cos

2πk
N

. (8.4)

The reason for choosing the opposite signs in (8.3) is to produce the conventional
canonical commutation relationships [x̃k, p̃k′ ] = iδk,k′ and [x̃k, x̃k′ ] = [ p̃k, p̃k′ ] = 0.
The Fourier transformation results in the following normal mode Hamiltonian,

H2 =
1
2

N−1

∑
k=0

(
| p̃k|2 + ω̃2

k |x̃k|2
)

. (8.5)

The ground state wave function for H1 (8.1) above is

ψ0(x0, ..., xN−1) =
N−1

∏
a=0

(ω

π

) 1
4 exp

(
−1

2
ωx2

a

)
. (8.6)
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We will define the vectors x and x̃

x = (x0, x1, . . . , xn−1)
T ,

x̃ = (x̃0, x̃1, . . . , x̃n−1)
T .

(8.7)

The Fourier transformation in (8.3) is now described by the unitary matrix Λ,
such that x̃ = Λx and x̃† = xTΛ†, where Λ is defined by its elements, which is
indexed from 0 to N − 1, denoted by a and b

(Λ)ab ≡
1√
N

exp
(
−2πiab

N

)
. (8.8)

If we define column vectors of Λ as |ub〉, then the row vectors of Λ† is 〈ua|. In
order to prove that Λ is unitary, it is sufficient to show that 〈ua|ub〉 = δa,b.

〈ua|ub〉 =
1
N

N−1

∑
k=0

exp
(
−2πi (a− b)

N
k
)

(8.9)

When a = b, 〈ua|ub〉 = 1 and when a 6= b,

〈ua|ub〉 =
1
N

N−1

∑
k=0

exp
(
−2πi (a− b)

N
k
)

=
1
N

1− exp [−2πi (a− b)]

1− exp
(
−2πi(a−b)

N

)
= 0

(8.10)

Hence, 〈ua|ub〉 = δa,b. Now, we can write the ground state wavefunction as

ψ0 =
(ω

π

) N
4 exp

(
−1

2
ω

N−1

∑
a=0

x2
a

)

=
(ω

π

) N
4 exp

(
−1

2
ωxTx

)
=
(ω

π

) N
4 exp

(
−1

2
ωx̃†ΛΛ† x̃

)
=

N−1

∏
a=0

(ω

π

) 1
4 exp

(
−1

2
ω|x̃k|2

)
.

(8.11)

To interpret the wave function consistently in both normal and position coordi-
nates, we define the normalization scheme in normal coordinates.∫ dx̃∗k dx̃k

−2µki
ψ0 (x̃k)

∗ ψ0 (x̃k) = 1, (8.12)

where

µk =

√∫ dx̃∗k dx̃k

−2i
ψ0 (x̃k)

∗ ψ0 (x̃k). (8.13)
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Now we are in a position to time evolve ψ0 for the quenched Hamiltonian H2.
Our idea is to find the state’s wavefunction after t > 0 from when there are inter-
actions between the oscillators. The term ”sudden quench” highlights the change
from the non-interacting behaviors to interacting behaviors.

Ψ1 = 〈x̃0, ..., x̃N−1| exp (−iH2t) |ψ0〉

=
∫

dx̃dx̃†K
(
x̃0, .., x̃N−1; x̃′0, ..., x̃′N−1

)
ψ0,

(8.14)

where the propagator K is the product of propagators of N free oscillators

K
(
x̃0, .., x̃N−1; x̃′0, ..., x̃′N−1

)
=

N−1

∏
k=0

K
(
x̃k, t; x̃′k, 0

)
, (8.15)

where

K
(

x̃k, t; x̃′k, 0
)
=

√
ω̃k

2πi sin ω̃kt
exp

[
iω̃k

2 sin ω̃kt

{(
|x̃k|2+|x̃k|′2

)
cos ω̃kt

− x̃k x̃′∗k − x̃∗k x̃′k
}]

,

(8.16)

and

dx̃dx̃† =
N−1

∏
i=0

dx̃kdx̃∗k
−2µi

. (8.17)

So we have the quenched state by solving the integral in equation (8.14) using
(A.2) from appendix A:

Ψ1 = N
N−1

∏
k=0

exp

(
iω̃k|x̃k|2

2
cot ω̃kt−

ω2
k |x̃k|2

2
(
ω sin2 ω̃kt− iω̃k cos ω̃kt sin ω̃kt

))

= N
N−1

∏
k=0

exp
(
−1

2
Zk|x̃k|2

)
,

(8.18)
where N is a time-dependent constant which we have defined

N =
N−1

∏
k=0

(
ω̃k
π

) 1
4
√

ω̃k
2πi sin ω̃kt

(ω− iωkcotωkt)−
1
2 (8.19)

and

Zk = −iω̃k cot ω̃kt +
ω2

k

ω sin2 ω̃kt− iω̃k cos ω̃kt sin ω̃kt
(8.20)

The real part of Zk is positive as required by Ψ1 to be square-integrable:

Re (Zk) =
ωω̃2

k

cos2 (ω̃kt) + ω2 sin2 (ω̃kt)
. (8.21)

60



Therefore, our quenched ground state is

Ψ1 = N
N−1

∏
k=0

exp
(
−1

2
Zk|x̃k|2

)

= N exp

(
−1

2

N−1

∑
k=0
Zk|x̃k|2

)

= N exp
(
−1

2
x̃†Zd x̃

)
= N exp

(
−1

2
xTΛ†ZdΛx

)
,

(8.22)

where Zd ≡ diag (Z0,Z1, ...,ZN−1). Now, we will define Z ≡ Λ†ZdΛ so that,

Ψ1 = N exp
(
−1

2
xTZx

)
. (8.23)

Only the symmetric part of Z contributes to the quadratic term xTZx as xTZx =

xT
[

1
2

(
Z +ZT)] x. Hence, we will redefine Z as its symmetric part, i.e,

Z ≡ 1
2

(
Z +ZT

)
. (8.24)

8.2 The Pure Density Operator and the Reduced Den-
sity Operators

The density operator associated with the pure state is

ρ
(
x, x′

)
= Ψ1 (x)Ψ1

(
x′
)∗

= |N |2 exp
(
−1

2
xTZx

)
exp

(
−1

2
x′TZ∗x′

)
.

(8.25)

The density operator can be thought of as an infinite dimensional matrix with
indices x and x′ with elements described by (8.25). It is Hermitian, as swapping
x and x′ and then performing a conjugation will keep it invariant:

ρ
(
x, x′

)
= ρ

(
x′, x

)∗ . (8.26)

Letting xi = x′i where i ∈ {0, 1 . . . , n− 1} and x′ = (x0, x1 . . . , xn−1, x′m, . . . x′N−1),

x = (y z)T and x′ =
(
y z′

)T . (8.27)

As Z is symmetric,

Z =

(
A C

CT B

)
, (8.28)

xTZx = yT Ay + zTCTy + yTCz + zTBz

= yT Ay + 2zTCTy + zTBz,

x′TZ∗x′ = yT A∗y + z′TC†y + yTC∗z′ + z′TB∗z′

= yT A∗y + 2z′TC†y + z′TB∗z′.

(8.29)
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To find the elements of the reduced density operator,

ρout(z, z′) =
∫
|N |2 exp

(
−1

2
yT (A + A∗) y + J Ty− 1

2
zTBz− 1

2
z′TB∗z′

)
dy

= |N |2
√

(π)n

det (Re (A))
exp

(
1
2
J Tα−1J − 1

2
zTBz− 1

2
z′TB∗z′

)
= N exp

(
−1

2
zTAz− 1

2
z′TA∗z′ + zTΓz′

)
,

(8.30)
where

α = 2 Re (A) ,

J = −Cz− C†z′,

A = B− CTα−1C

Γ = CTα−1C∗,

N = |N |2
√

(2π)n

det (α)
,

(8.31)

and we used the Gaussian integral (A.3).

To show that the reduced density operator is Hermitian, we swap the indices and
use the fact that Γ is Hermitian, ΓT = Γ∗ and note that the expression remains the
same:

zTΓz′ =
1
2

(
zTΓz′ + z′TΓTz

)
=

1
2

(
zTΓz′ + z′TΓ∗z

)
.

(8.32)

8.3 An Attempt to Diagonalize the Matrices in Re-
duced Density Operator

The first line of attack would be to diagonalize the matrices inside density op-
erator. Diagonalization would have been possible had we, not time evolved,
in which case A = A∗, and the operator would be identical to Srednicki’s one
[30]. Then it would be possible to diagonalize the operator in two steps. First
we would do the basis transformation z = A− 1

2 z1 and this would free up the
first two quadratic terms, then an orthogonal transformation z1 = Oz2 such that
OTA− 1

2 ΓA− 1
2 O is diagonal. However, as A has an imaginary component, with

the transfromation z = A− 1
2 z1, we will end up with

ρout
(
z1, z′1

)
= N exp

(
−1

2
zT

1 z1 −
1
2

z′T1 A−
1
2A∗A− 1

2 z′1 + zT
1A−

1
2 ΓA− 1

2 z′
)

. (8.33)

We can diagonalize (8.33) if and only if A− 1
2A∗A− 1

2 commutes with A− 1
2 ΓA− 1

2 .
Since, they will not commute in general, we cannot proceed with this approach.
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8.4 The Eigenvalue Problem

In the eigenbasis of ρout
ρout |m〉 = λm |m〉 , (8.34)

ρout =
ρout

Trρout
, (8.35)

Trρout =
∞

∑
i=0
〈m| ρout |m〉

=
∞

∑
i=0

λm 〈m|m〉

=
∞

∑
i=0

λm.

(8.36)

We want to find the eigenvalues of the normalized reduced density operator,

ρout |m〉 =
ρout

∑∞
i=0 λm

|m〉

=
λm

∑∞
i=0 λm

|m〉

= pm |l〉 .

(8.37)

Here,

pm =
λm

∑∞
i=0 λm

and
∞

∑
i=0

pm = 1. (8.38)

8.5 The Eigenfunctions and Eigenvalues

We attempt to solve the following integral equation, with the ansatz f (z)m we
discovered, ∫

ρout f (z′)mdz′ = λm f (z)m,

N exp
(
−1

2
zTAz

) ∫
exp

(
−1

2
z′TA∗z′ + zTΓz′

)
f (z′)mdz′ = λm f (z)m.

(8.39)

In the following, B, M and M′ are time-dependent constant complex matrices.

f (z)m = CmHm (Mz) exp
[
−1

2
zT (B −A∗) z

]
V = (vm, vn+1, ..., vN−1)

T

k = N − n

〈V〉 =
N−1

∏
i=n

vm+1
i

H (Mz)m ≡
(

m!
2πi

)k ∮
C

e2VT Mz+VT RV

〈V〉 dV

Λ (V, z) = ΓTz + 2MTV

(8.40)
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We will assume that B is a symmetric and positive definite matrix so that the
following Gaussian integral is convergent, which is solved as follows:∮

C

eVT RV

〈V〉

∫
exp

(
−1

2
z′TBz′ +

(
ΓTz + 2MTV

)T
z′
)

dz′dV

=

√
(2π)k

det (B)

∮
C

eVT RV

〈V〉 exp
(

1
2

ΛT (V, z)B−1Λ (V, z)
)

dV

(8.41)

The term inside the exponential of equation (8.41)

1
2

ΛT (V, z)B−1Λ (V, z) =
1
2

(
ΓTz + 2MTV

)T
B−1

(
ΓTz + 2MTV

)
=

1
2

zTΓB−1ΓTz + zTΓB−1MTV

+ VT MB−1ΓTz + 2VT MB−1MTV

(8.42)

Equating the coefficient matrices in the quadratic form to solve for B:

A+A∗ − ΓB−1ΓT = B (8.43)

In general, equation (8.43) cannot be solved analytically and requires numeri-
cal treatment. However, we have an approximate analytical solution when we
assume that the symmetric part of Γ contributes to the product ΓB−1ΓT, which
leads to ΓB−1ΓT = ΓsymB−1Γsym. There is strong numerical evidence that this
approximation has an extremely high degree of precision.

A+A∗ − ΓsymB−1Γsym = B, (8.44)

which has a solution when Γ is not singular with C = Γ−
1
2

sym (A+A∗) Γ−
1
2

sym, as we

sandwich both sides by Γ−
1
2

sym

C − Γ
1
2
symB−1Γ

1
2
sym = Γ−

1
2

symBΓ−
1
2

sym

X2 − CX + I = 0,
(8.45)

where X = Γ−
1
2

symBΓ−
1
2

sym. The analytical solution to the matrix quadratic equation
(8.43) exists only because C commutes with I. In terms of B, then the solution
becomes

B =
1
2

Γ
1
2
sym

(
C +

√
C2 − 4I

)
Γ

1
2
sym

=
1
2

(
A+A∗ +

√
Γ

1
2
sym (A+A∗) Γ−1

sym (A+A∗) Γ
1
2
sym − 4Γ2

sym

)
.

(8.46)

Now, let us define

Xm ≡
(

m!
2πi

)k ∮
C

eVT RV

〈V〉 exp
(

zTΓB−1MTV+

VT MB−1ΓTz + 2VT MB−1MTV
)

dV.

(8.47)
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Xm is proportional to Hm (MV)

zTΓB−1MTV + VT MB−1ΓTz = 2WT Mz, (8.48)

where,
WT = VT MB−1ΓT M−1. (8.49)

We will construct M as a matrix which diagonalizes B−1ΓT, such that
D = MB−1ΓT M−1 will be diagonal. This is always possible because product of
a positive definite symmetric matrix with a Hermitian matrix is diagonalizable.
Hence, we can write the following,

W = DV and WT = VTD. (8.50)

2VT MB−1MTV + VTRV

= 2WTD−1MB−1MTD−1W + WTD−1RD−1W

= WT
(

2D−1MB−1MTD−1 +D−1RD−1
)

W

(8.51)

Equating (7.50) with the coefficients of Xm withH to solve for R,

2D−1MB−1MT +D−1RD−1 = R. (8.52)

Equation (7.45) is a linear equation of the form K1 +K2RK2 = R with a unique so-
lution of R, where k1 = 2DMB−1MT, K2 = D−1.We will proceed with the ”vec”
trick, which is formed from a matrix R by stacking its element into a column ma-
trix which is denoted by vec(R). The Kronecker product is denoted by ”⊗”.The
following equation

K1 + K2RK2 = R, (8.53)

is equivalent to

vec (K1) +
(

KT
2 ⊗ K2

)
vec (R) = vec (R)(

I − KT
2 ⊗ K2

)
vec (R) = vec (K1)

vec (R) =
(

I − KT
2 ⊗ K2

)−1
vec (K1) .

(8.54)

Hence,

vec (R) =
(

I −D−1 ⊗D−1
)−1

vec
(
D−1MB−1MT

)
. (8.55)

Since V = D−1W, the Jacobian of the transfromation from dV to dW is

dV = det
(
D−1

)
dW. (8.56)

Since D is a diagonal matrix,

〈V〉 = det
(
D−1

)m+1
〈W〉 (8.57)
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Xm now becomes

Xm = det
(
D−1

)−m
(

m!
2πi

)k ∮
C

e2WT Mz+WT RW

〈W〉 dW

= det (D)m
(

m!
2πi

)k ∮
C

e2WT Mz+WT RW

〈W〉 dW.

(8.58)

Hence, ∫
ρout fm(z′)dz′ = N ′det (D)m fm (z)

= N ′det
(

MB−1ΓT M−1
)m

fm(z)

= N ′det
(
B−1Γ

)m
fm (z)

(8.59)

where N ′ is the m independent constant. Therefore, the eigenvalues which are
yet to be normalized are

λm = N ′det (D)m (8.60)

N ′ is cancelled during normalization.

pm =
N ′det (D)m

∑∞
l=0N

′det (D)l

=
βm

∑∞
l=0 βl

= βm (1− β)

(8.61)

Here, β is defined as
β ≡ det

(
B−1Γ

)
. (8.62)

We must impose the constraint that β < 1, which leads to

det
(
B−1Γ

)
< 1

det (Γ) < det (B) .
(8.63)

8.6 The Entanglement Entropy

The entanglement entropy is now given in terms of β,

SEE = −
∞

∑
m=0

pm ln (pm)

= −β ln (β) + (1− β) ln (1− β)

1− β
,

(8.64)

where β is

β =
det (Γ)
det (B) . (8.65)
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8.7 Limiting Cases of the Eigenvalues

The solution to (8.44) does not exist using our formalism when the determinant of
Γ is a time-independent constant of zero, which happens whenever k > N/2, as it

no longer allows multiplying both sides of (8.44) by Γ−
1
2

sym as Γsym simultaneously
becomes singular. The limit det (Γ)→ 0 does not make sense as a constant cannot
approach anything. Instead, we must apply our cyclic boundary condition and
that (8.25) describes a pure density state. Let ρ be the density operator of the pure
state, ρin be one of the subsystems that result after tracing out, and ρout be the
remaining subsystem. As ρ is pure, the Araki-Lieb equality can be applied,

S (ρout) = S (ρin) . (8.66)

Without loss of generality, let us assume that ρout describes the system with k =
min (n, N − n) oscillators. Then det (Γ) is time-varying, and limits can be applied,
and our formalism will work. Since we can calculate the entanglement entropy
using either of the reduced density operator, ρout, or ρin, we choose to work only
with ρout. We are now at a position to apply the limit det (Γ) → 0. First, we can
approximate that the diagonal elements of C2 are much larger than 4. This makes
sense because as det

(
Γsym

)
keeps getting smaller so does det

(
Γ1/2

sym

)
, the ele-

ments of Γ−
1
2

sym will keep getting larger, which results in the elements of C getting
larger. Therefore, using the fact that (A+A∗) is symmetric, real, and positive
definite,

lim
det(Γ)→0

det (B) = lim
det(Γ)→0

det
(

1
2

Γ
1
2
sym

(
C +

√
C2 − 4I

)
Γ

1
2
sym

)
= lim

det(Γ)→0
det

(
1
2

Γ
1
2
sym

(
C +
√
C2
)

Γ
1
2
sym

)
= lim

det(Γ)→0
det (A+A∗)

> 0.

(8.67)

Now,

β = lim
det(Γ)→0

det (Γ)
det (β)

= 0.
(8.68)

Hence,
SEE = 0. (8.69)

8.8 Validation of Approximation

Since we are working with the non-analytical equation (8.43), in this section, the
exact solution refers to being exact with a certain degree of precision. To com-
pare the solution of (8.44) with (8.43), we will first show that Γ has a high degree
of symmetry so that the required exact solution of (8.43) is close enough to the
solution of (8.44) that we can feed the solution of (8.44) as the initial guess to
any numerical root-finding method for a set of non-linear equations. One such
method is Newton’s method. In this section, we will look at the symmetry of Γ,
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Figure 8.1: Symmetry p when N = 5, k = 2, ω2 = 1 and Ω2 = 0.1

and the entanglement entropy obtained using our approximation contrasted with
the same obtained by using the ”FindRoot” method in Mathematica, and the cor-
responding absolute difference. The symmetric part and the antisymmetric part
of Γ are defined as

Γsym ≡
1
2

(
Γ + ΓT

)
and Γasm ≡

1
2

(
Γ− ΓT

)
. (8.70)

The Frobenius norm of the symmetric and antisymmetric part of Γ are defined as

‖Γsym‖ ≡
√

Tr
(

ΓsymΓ†
sym

)
and ‖Γasm‖ ≡

√
Tr (ΓasmΓ†

asm), (8.71)

where ‖.‖ is used to denote the Frobenius norm of the respective matrix. The
amount of symmetry of a matrix can be measured by using the Frobenius norm
of its symmetric and antisymmetric part. We can define the metric to measure the
symmetry of Γ as

p ≡
‖Γsym‖ − ‖Γasm‖
‖Γsym‖+ ‖Γasm‖

. (8.72)

From (8.72), we can see that when Gamma is perfectly symmetric p = 1 as
‖Γasm‖ = 0; similarly, when Gamma is perfectly antisymmetric p = −1 as
‖Γsym‖ = 0, and when the symmetric and the antisymmetric part are compara-
ble p = 0. Moreover, anything in between describes Γ being more symmetric
than antisymmetric, i.e., when 0 < p < 1, or Γ being more antisymmetric than
symmetric, i.e., when −1 < p < 0.

When k = 1, Γ is simply a number, which is symmetric in terms of matrix sym-
metry. When K = 2, Γ is real and symmetric; figure 8.1 shows the variation of
symmetry with time. When k = 3, Γ is Hermitian, and has antisymmetric imag-
inary part. Figure 8.2 shows one such case. We can compute the time average
of
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Figure 8.2: Symmetry p when N = 6, k = 3, ω2 = 1 and Ω2 = 0.1
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Figure 8.3: Symmetry p when N = 8, k = 4, ω2 = 1 and Ω2 = 0.1

any function f , with ∆t as the time interval,

〈 f 〉 = 1
∆t

∫ ∆t

0
f (t) dt. (8.73)

The average symmetry for figure 8.2 is 0.72, indicating a significant amount of
symmetry in Γ. As we increase N and k in figure 8.3, the average symmetry be-
comes 0.63. Although the symmetry seems to have decreased with k, we will find
evidence that the antisymmetric part contributes insignificantly to the product
ΓTB−1Γ. Since Gamma is always more symmetric than antisymmetric, we can
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Figure 8.4: The entanglement entropy approximated with N = 6, k = 3, ω2 = 1,
Ω2 = 0.1, and it has a time average of 2.85× 10−10.
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Figure 8.5: The exact entanglement entropy when N = 6, k = 3, ω2 = 1, Ω2 = 0.1,
and it has a time average of 2.85× 10−10.

use the solution of (8.44) as the initial guess of the ”FindRoot” method in Mathe-
matica. It is interesting to note that both figures 8.4 and 8.5 are identical. In order
to distinguish them, we cannot rely exclusively on the graphs. We see the same
for with a larger N and k in figures 8.6 and 8.7. The resemblance is independent
of the oscillators’ energy or coupling, as increasing Ω from 0.1 to 0.9 still results
in entanglement entropies to be the same in the graphs. The pairs of graphs
[(8.4, 8.5) , (8.6, 8.7)] between the approximate and the exact solution also follow
the same pattern at which the entanglement entropy increases or decreases.

Both figures 8.4 and 8.5 and their corresponding time averages show that the
order of entanglement entropy is around O(10−10). In comparison, the absolute
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Figure 8.6: The entanglement entropy approximated with N = 8, k = 4, ω2 = 1,
Ω2 = 0.9, and it has a time average of 2.11× 10−6.
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Figure 8.7: The exact entanglement entropy when N = 8, k = 4, ω2 = 1, Ω2 = 0.9,
and it has a time average of 2.11× 10−6.

difference is of a much smaller order of O(10−18). Hence, relative to the entangle-
ment entropy, the difference is of the order O(10−8). Similarly, for figures 7.6 and
7.7, the entanglement entropy order is O(10−6), and the absolute difference is of
the order O(10−9). Therefore, relative to the entanglement entropy, the difference
is of the order O(10−3). We should keep in mind that the answer we obtained
using the numerical method has a small degree of error that will contribute to the
difference. If we want to decrease the error, we can always increase the numerical
method’s number of iterations.

The symmetry p of Γ always being positive allows finding the solution analyti-
cally using the symmetric part Γsym and using it as an initial guess of a numerical
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Figure 8.8: The absolute difference between the entanglement entropy obtained
using the approximation and the exact solution with N = 6, k = 3, ω2 = 1,
Ω2 = 0.1 and has a time average of 7.44× 10−18.
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Figure 8.9: The absolute difference between the entanglement entropy obtained
using the approximation and the exact solution with N = 8, k = 4, ω2 = 1,
Ω2 = 0.9 and has a time average of 2.40× 10−9.

root finding method. Our analysis found that the approximate analytical solution
and the slightly more accurate numerical solution differ insignificantly. It is also
worth noting that both solutions behave in the same manner as to how they vary
with time. Therefore, the analytical solution of equation (8.44) has the potential
to offer meaningful physical insights. Since we are calculating the entanglement
entropy, we are concerned with the determinant of B more than B itself. The
analysis shows that the antisymmetric part of Gamma modifies the determinant
of B to the point that fails to produce a noticeable change in the scale of the en-
tanglement entropy.
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Figure 8.10: The entanglement entropy when N = 2, k = 1, ω2 = 1 and Ω2 = 0.1
with a time average of 7.34× 10−3.
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Figure 8.11: The entanglement entropy when N = 2, k = 1, ω2 = 1 and Ω2 = 0.9
with a time average of 0.615.

8.9 Properties of the Entanglement Entropy

• The entanglement entropy increases with the coupling term Ω.

• The entanglement entropy is consistent with the work by Ali and Moyni-
han[3] when N = 2, which is also shown in figures 7.1 and 7.2.
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Figure 8.12: The entanglement entropy when N = 10, k = 1, ω2 = 1 and
Ω2 = 0.9999999 with a time average of 6.47. Initially, there is some resemblance
to the Page curve (4.3), which ends as our system is closed. This is likely due to
Zk → ω̃k whenever Ω → ω. Then the matrix Z in (8.25) is Hermitian and its
symmetric part (8.24) used in our work is real. Therefore, our system is compa-
rable to Srednicki’s N oscillator work (6.4) as A → A∗ and Γ becomes real and
symmetric.
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Figure 8.13: The entanglement entropy when N = 8, k = 4, ω2 = 2 and Ω2 = 0.9
with a time average of 4.19× 10−9.

We expect that the entanglement entropy shows the degree of interaction between
the oscillators; therefore, increasing Ω should increase the entanglement entropy.
Figures 8.10 and 8.11 demonstrate that the average entanglement entropy has
gone up by an increase in Ω.
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N k 〈SEE〉
8 1 0.40× 100

8 2 2.19× 10−2

8 3 4.16× 10−4

8 4 2.05× 10−6

10 1 0.40× 100

10 2 2.34× 10−2

10 3 5.72× 10−4

10 4 6.74× 10−6

10 5 2.56× 10−8

20 3 9.29× 10−4

Table 8.1: The average of entanglement entropy 〈SEE〉with ω2 = 1, Ω2 = 0.9, and
∆t = 1000.

• The entanglement entropy is always fluctuating and keeps dropping to zero
and then continues to rise again. For some configurations such as 8.12, the
timescale for the entanglement entropy to fall to zero can be extremely large.

Figure 8.12 shows that when Ω approaching ω; the entanglement entropy is of
the highest order (compared to other graphs in this chapter) and slowly reaches
a maximum value and then decreases back to zero.

• The entanglement entropy decreases with the kinetic term ω.

The kinetic term ω increases the degree of ’decoupling’ of the oscillators. We have
demonstrated one such situation by comparing 8.6 and 8.13.

• The entanglement entropy increases with Ω
ω .

Combining the properties of entropy related with ω and Ω, the subsystems of
oscillators decouple when Ω

ω → 0 and the oscillators couple most strongly when
Ω
ω → 1.

• The entanglement entropy also increases from zero continuously which is
what we would expect from a sudden quench.

Suppose that our pure state Ψ1 is a state on the Hilbert spaceHtot, which is bipar-
tite as it can be factorized asHtot = Hin ⊗Hout, then we can find the eigenvalues
of either ρin or ρout as they are equal regardless of which we trace out. We impose
the restriction k ≤ N/2 so that |out| ≤ 1

2 (|out|+ |in|) to avoid repeating values
of the entanglement entropy, where |.| indicates the ’size’ of the system[22] and
is a measure of the number of oscillators in the system. Table 8.1 shows an inter-
esting pattern of the way the average entanglement entropy changes with N and
k.

• The entanglement entropy is maximal for a given N whenever k = 1 and
Ω→ ω.

• The order of entanglement entropy decreases with k. This is a consequence
of Page’s theorem as the subsystems are close to being maximally entangled
whenever |out|

|in| � 1.
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• The order of entanglement entanglement depends mostly on k and decreases
exponentially.
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Chapter 9

Conclusion

One way to solve the black hole information paradox is to compute the Page
curve; in other words, the problem is to find the time evolution of the entan-
glement entropy between the early and late radiation of a black hole. However,
physicists are far from computing the Page curve, even in AdS/CFT or the BFFS
Matrix Model. In the previous chapter (8), we designed a simple model moti-
vated by the holographic principle that a black hole’s intrinsic entropy is related
with the the entanglement entropy that results from tracing out degrees of free-
dom. Since a pure state of a collapsing shell of photons has no entanglement
entropy, it is comparable to a system of non-interactive harmonic oscillators. As
the black hole’s entropy begins to rise, so does the entanglement entropy of the
quenched harmonic oscillators.

Moreover, for a specific time t, our quenched Hamiltonian’s reduced density
operator does not have the same form as that of Srednicki’s time independent
Hamiltonian. Therefore, the entanglement entropy of the quenched oscillators
will not necessarily resemble the Bekenstein-Hawking entropy of a black hole. In
contrast to Srednicki’s N-oscillator work, the matrix equation we have to solve
is not analytical (which we expect with periodic lattices)[13]. The fact that the
entanglement entropy becomes mostly independent of N indicates that after reg-
ularization of a quantum field theory with appropriate limits to the Hamiltonian
of the quenched oscillators, the theory is likely to be completely independent of
N and, therefore, the infrared cutoff, which is common in both Srednicki and our
work.

With more research, this model can be subject to many changes, including how
the particles interact with each other. To get a more realistic model, we should
probably rely on a ”gradual” quench instead of a ”sudden” quench by allowing
the coupling Ω to be a function of time with Ω(0) = 0. Furthermore, the entan-
glement entropy between the early and late radiation of a black hole increases
linearly as the black hole starts to form. Our model needs refinement to reflect
this property. As for our future project, we want to regularize a quantum field
and modify our working to lead us more towards the time evolution of the en-
tanglement entropy of the late and early radiation of a black hole.
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Appendix A

Gaussian Integrals

A.1 Single Variable Gaussian Integrals

This appendix will contain various Gaussian integrals required to work through
this paper. x and y are real variables. a and b are complex constants with Re (a) >
0 and z = x + iy is a complex variable. All limits of the integrals with are from
−∞ to +∞. ∫

exp
(
−ax2 + bx

)
dx =

√
π

a
exp

(
b2

4a

)
(A.1)

We will attempt to evaluate the following integral. First, we note that the Jacobian
determinant of the transformation is

dz∗dz =

∣∣∣∣∣
(

∂z
∂x

∂z
∂y

∂z∗
∂x

∂z∗
∂y

)∣∣∣∣∣dxdy

=

∣∣∣∣(1 i
1 −i

)∣∣∣∣dxdy

= −2idxdy.

Now, ∫ dz∗dz
−2i

exp
(
−a|z|2 + bz∗ + b∗z

)
=∫ ∫

exp
(
−a
(

x2 + y2
)
+ b (x− iy) + b∗ (x + iy)

)
dxdy

=
∫

exp
(
−ax2 + 2 Re (b)

)
dx
∫

exp
(
−ay2 + 2 Im (b)

)
dy

=

√
π

a
exp

(
Re (b)2

a

)√
π

a
exp

(
Im (b)2

a

)
.

Therefore,

∫ dz∗dz
−2i

exp
(
−a|z|2 + bz∗ + b∗z

)
=

π

a
exp

(
|b|2

a

)
. (A.2)
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A.2 Multivariable Gaussian Integrals

We only need one multivariable Gaussian integral, which can be proved by using
diagonalization and the results from A.1. Let x and J be n dimensional real vec-
tors such that x, J ∈ Rn, dx = ∏i xi and A be a n× n complex symmetric matrix,
such that AT = A and A has a positive definite real part. Then,

∫
exp

(
−1

2
xT Ax + Jx

)
dx =

√
(2π)n

detA
exp

(
1
2

JT A−1 J
)

. (A.3)
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Appendix B

Graphical Representation of
Entanglement Entropy with
Mathematica 12.0

In this appendix, we have written down our original code that was used to pro-
duce the graphs of chapter (8). The approximation procedure is computationally
a lot more efficient than the exact solution. The following shows the portion of
the code identical for both exact and approximate solutions.

Remove[“Global̀*”]Remove[“Global̀*”]Remove[“Global̀*”]
$Messages = {};$Messages = {};$Messages = {};
n = Input[“Enter number of oscillators N:”];n = Input[“Enter number of oscillators N:”];n = Input[“Enter number of oscillators N:”];
traced = Input[“Enter number of oscillators to be traced out:”];traced = Input[“Enter number of oscillators to be traced out:”];traced = Input[“Enter number of oscillators to be traced out:”];
µ = Exp[−2π I/n];µ = Exp[−2π I/n];µ = Exp[−2π I/n];
inputFlag = True;inputFlag = True;inputFlag = True;

Λ = 1√
n Table

[
µ(a−1)(b−1), {a, n}, {b, n}

]
;Λ = 1√

n Table
[
µ(a−1)(b−1), {a, n}, {b, n}

]
;Λ = 1√

n Table
[
µ(a−1)(b−1), {a, n}, {b, n}

]
;

ωTilde[k ] = Sqrt
[
ω2 + Ω2Cos

[
2πk

n

]]
;ωTilde[k ] = Sqrt

[
ω2 + Ω2Cos

[
2πk

n

]]
;ωTilde[k ] = Sqrt

[
ω2 + Ω2Cos

[
2πk

n

]]
;

ω =
√

Input[“Enter ω sqaured:”];ω =
√

Input[“Enter ω sqaured:”];ω =
√

Input[“Enter ω sqaured:”];
Ω =

√
Input[“Enter Ω squared:”];Ω =
√

Input[“Enter Ω squared:”];Ω =
√

Input[“Enter Ω squared:”];
time = Input[“Enter time interval:”];time = Input[“Enter time interval:”];time = Input[“Enter time interval:”];
str = StringForm

[
"N=̀1̀, Traced=̀2̀, ω2=̀3̀, Ω2=̀4̀", n, traced, ω2, Ω2] ;str = StringForm
[
"N=̀1̀, Traced=̀2̀, ω2=̀3̀, Ω2=̀4̀", n, traced, ω2, Ω2] ;str = StringForm
[
"N=̀1̀, Traced=̀2̀, ω2=̀3̀, Ω2=̀4̀", n, traced, ω2, Ω2] ;

S = {{0, 0}};S = {{0, 0}};S = {{0, 0}};
If[n ≥ traced&&ω > Ω&&ω > 0&&Ω > 0&&n ≥ 2&&n == Round[n]&&If[n ≥ traced&&ω > Ω&&ω > 0&&Ω > 0&&n ≥ 2&&n == Round[n]&&If[n ≥ traced&&ω > Ω&&ω > 0&&Ω > 0&&n ≥ 2&&n == Round[n]&&
traced == Round[traced], Do[traced == Round[traced], Do[traced == Round[traced], Do[

z[k ] = −IωTilde[k]Cot[ωTilde[k]t] + ωTilde[k]2

ωSin[ωTilde[k]t]2−IωTilde[k]Cos[ωTilde[k]t]Sin[ωTilde[k]t] ;z[k ] = −IωTilde[k]Cot[ωTilde[k]t] + ωTilde[k]2

ωSin[ωTilde[k]t]2−IωTilde[k]Cos[ωTilde[k]t]Sin[ωTilde[k]t] ;z[k ] = −IωTilde[k]Cot[ωTilde[k]t] + ωTilde[k]2

ωSin[ωTilde[k]t]2−IωTilde[k]Cos[ωTilde[k]t]Sin[ωTilde[k]t] ;
v = Table[z[k− 1], {k, n}];v = Table[z[k− 1], {k, n}];v = Table[z[k− 1], {k, n}];

mZ = 1/2(ConjugateTranspose[Λ].DiagonalMatrix[v].Λ+mZ = 1/2(ConjugateTranspose[Λ].DiagonalMatrix[v].Λ+mZ = 1/2(ConjugateTranspose[Λ].DiagonalMatrix[v].Λ+
Transpose[ConjugateTranspose[Λ].DiagonalMatrix[v].Λ]);Transpose[ConjugateTranspose[Λ].DiagonalMatrix[v].Λ]);Transpose[ConjugateTranspose[Λ].DiagonalMatrix[v].Λ]);
If[traced < n/2, traced = n− traced];If[traced < n/2, traced = n− traced];If[traced < n/2, traced = n− traced];
mA1 = mZ[[1;;traced, 1;;traced]];mA1 = mZ[[1;;traced, 1;;traced]];mA1 = mZ[[1;;traced, 1;;traced]];
mB = mZ[[traced + 1;;n, traced + 1;;n]];mB = mZ[[traced + 1;;n, traced + 1;;n]];mB = mZ[[traced + 1;;n, traced + 1;;n]];
mC1 = mZ[[1;;traced, traced + 1;;n]];mC1 = mZ[[1;;traced, traced + 1;;n]];mC1 = mZ[[1;;traced, traced + 1;;n]];
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α = 2Re[mA1];α = 2Re[mA1];α = 2Re[mA1];
mA2 = mB− Transpose[mC1].Inverse[α].mC1;mA2 = mB− Transpose[mC1].Inverse[α].mC1;mA2 = mB− Transpose[mC1].Inverse[α].mC1;

Γ = 1
2(Transpose[mC1].Inverse[α].Conjugate[mC1]+Γ = 1
2(Transpose[mC1].Inverse[α].Conjugate[mC1]+Γ = 1
2(Transpose[mC1].Inverse[α].Conjugate[mC1]+

ConjugateTranspose[Transpose[mC1].Inverse[α].Conjugate[mC1]]);ConjugateTranspose[Transpose[mC1].Inverse[α].Conjugate[mC1]]);ConjugateTranspose[Transpose[mC1].Inverse[α].Conjugate[mC1]]);
Γs = 1

2(Γ + Transpose[Γ]);Γs = 1
2(Γ + Transpose[Γ]);Γs = 1
2(Γ + Transpose[Γ]);

gRoot = MatrixPower[Γs, 1/2];gRoot = MatrixPower[Γs, 1/2];gRoot = MatrixPower[Γs, 1/2];
mC2 = Inverse[gRoot].(mA2 + Conjugate[mA2]).Inverse[gRoot];mC2 = Inverse[gRoot].(mA2 + Conjugate[mA2]).Inverse[gRoot];mC2 = Inverse[gRoot].(mA2 + Conjugate[mA2]).Inverse[gRoot];
sol = 1

2gRoot.(mC2 + MatrixPower[mC2.mC2− 4IdentityMatrix[n− traced], 1/2]).gRoot;sol = 1
2gRoot.(mC2 + MatrixPower[mC2.mC2− 4IdentityMatrix[n− traced], 1/2]).gRoot;sol = 1
2gRoot.(mC2 + MatrixPower[mC2.mC2− 4IdentityMatrix[n− traced], 1/2]).gRoot;

The following portion of code is for the exact solution:

l = Flatten
[
Table

[{
xi,j, sol[[i, j]]

}
, {i, n− traced}, {j, n− traced}

]
, 1
]

;l = Flatten
[
Table

[{
xi,j, sol[[i, j]]

}
, {i, n− traced}, {j, n− traced}

]
, 1
]

;l = Flatten
[
Table

[{
xi,j, sol[[i, j]]

}
, {i, n− traced}, {j, n− traced}

]
, 1
]

;
mX = Table

[
xi,j, {i, n− traced}, {j, n− traced}

]
;mX = Table

[
xi,j, {i, n− traced}, {j, n− traced}

]
;mX = Table

[
xi,j, {i, n− traced}, {j, n− traced}

]
;

sol = mX/.FindRoot[mA2 + Conjugate[mA2]− Γ.Inverse[mX].Transpose[Γ] == mX, l,sol = mX/.FindRoot[mA2 + Conjugate[mA2]− Γ.Inverse[mX].Transpose[Γ] == mX, l,sol = mX/.FindRoot[mA2 + Conjugate[mA2]− Γ.Inverse[mX].Transpose[Γ] == mX, l,
WorkingPrecision→ MachinePrecision + 1, MaxIterations→ 100];WorkingPrecision→ MachinePrecision + 1, MaxIterations→ 100];WorkingPrecision→ MachinePrecision + 1, MaxIterations→ 100];
β = Det[Γ]

Det[sol] ;β = Det[Γ]
Det[sol] ;β = Det[Γ]
Det[sol] ;

S = Append
[
S,
{

t,− ((1−β)Log[1−β]+βLog[β])
(1−β)

}]
;S = Append

[
S,
{

t,− ((1−β)Log[1−β]+βLog[β])
(1−β)

}]
;S = Append

[
S,
{

t,− ((1−β)Log[1−β]+βLog[β])
(1−β)

}]
;

If[Det[Γ]==0, S[[Length[S]]] = {t, 0}]If[Det[Γ]==0, S[[Length[S]]] = {t, 0}]If[Det[Γ]==0, S[[Length[S]]] = {t, 0}]
, {t, 0.05, time, 0.05}], inputFlag = False; ], {t, 0.05, time, 0.05}], inputFlag = False; ], {t, 0.05, time, 0.05}], inputFlag = False; ]
If[inputFlag == False, Print[“Incorrect Input.”]]If[inputFlag == False, Print[“Incorrect Input.”]]If[inputFlag == False, Print[“Incorrect Input.”]]
If [inputFlag, ListLinePlot [S, AxesLabel→ {t, "SEE"} , PlotLegends→ Placed[str, Above],If [inputFlag, ListLinePlot [S, AxesLabel→ {t, "SEE"} , PlotLegends→ Placed[str, Above],If [inputFlag, ListLinePlot [S, AxesLabel→ {t, "SEE"} , PlotLegends→ Placed[str, Above],
PlotStyle→ Black, PlotRange→ Full]]PlotStyle→ Black, PlotRange→ Full]]PlotStyle→ Black, PlotRange→ Full]]

The following portion of code is for the approximate analytical solution:

β = Det[Γ]
Det[sol] ;β = Det[Γ]
Det[sol] ;β = Det[Γ]
Det[sol] ;

S = Append
[
S,
{

t,− ((1−β)Log[1−β]+βLog[β])
(1−β)

}]
;S = Append

[
S,
{

t,− ((1−β)Log[1−β]+βLog[β])
(1−β)

}]
;S = Append

[
S,
{

t,− ((1−β)Log[1−β]+βLog[β])
(1−β)

}]
;

If[Det[Γ]==0, S[[Length[S]]] = {t, 0}]If[Det[Γ]==0, S[[Length[S]]] = {t, 0}]If[Det[Γ]==0, S[[Length[S]]] = {t, 0}]
, {t, 0.05, time, 0.05}], inputFlag = False; ], {t, 0.05, time, 0.05}], inputFlag = False; ], {t, 0.05, time, 0.05}], inputFlag = False; ]
If[inputFlag == False, Print[“Incorrect Input.”]]If[inputFlag == False, Print[“Incorrect Input.”]]If[inputFlag == False, Print[“Incorrect Input.”]]
If [inputFlag, ListLinePlot [S, AxesLabel→ {t, "SEE"} , PlotLegends→ Placed[str, Above],If [inputFlag, ListLinePlot [S, AxesLabel→ {t, "SEE"} , PlotLegends→ Placed[str, Above],If [inputFlag, ListLinePlot [S, AxesLabel→ {t, "SEE"} , PlotLegends→ Placed[str, Above],
PlotRange→ Full]]PlotRange→ Full]]PlotRange→ Full]]
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