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Abstract

Cancer is a multifactorial disorder that occurs due to the complex interaction be-
tween the environment and gene. The susceptibility of a person to cancer depends on
his genetic build-up. Recently, the study of genomes in discovering the interaction
between disease and genes and how their interaction leads to specific phenotype,
has grown exponentially. To analyze the expression of thousands of genes, one of
the most important and revolutionary techniques used in genomics and systems bi-
ology is high-throughput microarray technology. To produce an accurate prognosis
from such high-dimensional gene expressional data, machine learning can be an ideal
choice. In this paper, we have tried to apply principal component analysis (PCA)
and autoencoder on a brain cancer gene expression data retrieved from CuMiDa
database and make an analysis of which technique produce better and more accu-
rate reduced dimensional vectors and how different classical machine learning algo-
rithms performs on these newly generated datasets. Finally, we also discussed how
to improve these current techniques and how it can lead to better and sophisticated
outcomes.

Keywords: Gene expression, PCA, Autoencoder, CuMiDa database
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Chapter 1

Introduction

1.1 Human Genome Project

The importance of heredity and its principles of crossbreeding has been demon-
strated by the Czech Republican scientist, Gregor Johann Mendel. He implemented
its concepts for the quality improvement of crops and domestic animals. He was the
one who discovered the governing laws of inheritance by studying pea plants. His
work pushed the scientific community to go through intensive research to uncover
the mysteries of genetics and the hidden world laid inside the chromosome until the
groundbreaking discovery in 1953 when James Watson and Francis Crick discov-
ered the DNA and its structure. Then in 1988, the Human Genome Project had
commenced with three main goals: identifying all the bases in our genome’s DNA,
producing maps for major sections of all our chromosomes showing the location of
genes, and last but not least, generating linkage maps by whose aid inherited traits,
such as genetic disease, could be tracked over generation [2]. In short, generating
a human genetic map, then a human genome physical map, and finally a sequence
map. The word genome means that it is an organism’s complete set of DNA with
the inclusion of all its genes and it is comprised of more than 3 billion DNA base
pairs. The Human Genome Project has revolutionized the field of biology and is now
propelling the transformation of the molecular medicine industry [4], [11]. It has
contributed to a more sophisticated diagnosis of diseases, early detection of some
cancer gene therapy, organ cloning, and control system for drugs.

1.2 Basics of DNA

The basic building block of almost every living organism is Deoxyribonucleic Acid
(DNA). It is mostly found inside the nucleus of a cell coiled up around a protein
called histones in the form of chromosomes, while a small amount of it can also be
found inside the mitochondria of a cell. A DNA is composed of 4 chemical bases,
Adenine (A), Guanine (G), Cytosine (C), and Thymine (T).

The sequence of these bases along the backbones provides instructions for assembling
protein and RNA molecules, Figure (1.1). The physical and functional nature of a
species is determined by the fragments of DNA known as genes. Genes can be made
of hundreds to millions of DNA bases in length. All human beings have similar
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Figure 1.1: Constituent of a DNA molecule)

genes, the only little variations take place during meiosis and during the formation
of the zygote which alters the genotype and thus resulting in different phenotypes.

1.3 Gene Expression Data

A microarray is an instrument that is used to identify the expression of thousands of
genes simultaneously. The DNA chips or gene chips are tiny spots located on the mi-
croscopic slides where each probe consists of a known sequence of DNA or gene. The
DNA molecules are strapped to each slide serve and act as probes. These probes
are also known as the transcriptome or the messenger RNA (mRNA) transcripts
[brazma2000gene]. For performing microarray analysis,mRNA molecules from both
the experimental sample and a reference sample are collected. The reference sample
is collected from a healthy individual, and the experimental sample is obtained from
a patient suffering from diseases such as cancer. After transforming both the sample
into complementary DNA, the samples are allowed to mix and ‘attach to the sides
of DNA probes by a binding process known as hybridization. The microarray is
scanned following the hybridization to evaluate the expression of each gene printed
on the slide. The data obtained from the microarrays can be used to generate profiles
of gene expression, which demonstrates that in response to a particular condition
or treatment, there is a simultaneous altering in the expression of various genes. A
sample figure of a gene expression is shown in Figure 1.2.

With the advancement of technologies, the size of these biological data, produced
by this sector, is extremely large and this needs to be transformed into useful in-
formation. Machine learning is the study of the algorithms which could learn from
experience and then make predictions. Statistics and computer science are the-
oretical elements of machine learning, however, computational considerations are
also important. Due to the complexity of the biological, machine learning plays an
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Figure 1.2: Gene Expression data

important role in the analysis step.

1.4 Research Objectives

In this paper, our main objectives are as follows:

• To analyze gene expression data of brain cancer

• Use of different feature Extraction technique

• Validate the feature extraction techniques by running different machine learn-
ing models

• Analyze the models and evaluate which performs better in classifying different
tumor subgroups
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Chapter 2

Literature Review

The complexity of mining massive genomic data with the aid of only a visual in-
vestigation of pairwise correlations is quite an enormous challenge. Analytical tools
are necessary to discover the unanticipated relationship, derive novel hypotheses
and models, and make predictions [7], [14]. Some algorithms require hardcoding of
domain expertise and assumptions, but unlike them, machine-learning algorithms
are constructed to detect patterns automatically. Therefore, machine learning al-
gorithms are suitable for genomics. [3], [18]. However, the representation of data
and the computation of features strongly determine machine learning algorithms’
performances. A preprocessing algorithm could detect cells, identify their type,
and generate a list of counts for each cell type to classify a tumor as malignant or
benign from a fluorescent microscopy image. A machine-learning algorithm then
uses the estimated cell counts as input features to classify the tumor type. These
machine learning algorithms’ performance for classification strongly depends upon
the relevance and quality of these features. For example, cell morphology, distances
between cells, or position within an organ have not been considered in cell counts,
and these inaccurate data representations result in a reduction in the precision of
the classification. Deep learning solves this problem by incorporating feature com-
putation into the machine learning algorithm itself in order to establish end-to-end
models[21]. This yielding has come to light with machine learning and deep neural
networks’ progression, which include successive elementary operations, taking the
effects of previous operations as input, and determining more complex features. The
improvement in the prediction accuracy with the discovery of high complexity rele-
vant features, such as the spatial organization of cells and cell morphology, can be
achieved by deep neural networks.

The explosion of data has facilitated the creation and training of deep neural net-
works, algorithmic advances, and a significant rise in computational power, in par-
ticular, through the use of Graphic processing units (GPUs) [22]. Deep neural
networks have contributed to numerous breakthroughs in speech recognition, ma-
chine translation, and computer vision[13], [16], [19]. Since the demonstration of
the applicability of deep neural networks to DNA sequence data [17], [20] in 2015
seminal studies, the number of articles related to the application of deep neural
networks to genomics has grown exponentially.

In some of the recent studies, [6], [12], [15], the proposition of many feature selection

5



methods has been made. The authors in [6] have tried to differentiate samples using
the relief-f filtering feature selection method and use an SVM classifier. To enhance
the classification accuracy and feature selection stability, authors have used an en-
semble of feature selection methods [10]. Some early cancer prognosis attempts have
been made to construct models using either the genes expression data [9], clinical
tumor and patient data [8], or some cellular features of tissue slides. These studies
have made a comparison to demonstrate the similar performance acquirement of
Neural Network’s success output to Cox-PH and Kaplan Meier methods. The deep
neural network model, DeepSurv, built by Katzman et al., has outperformed the
CoxPH model. The model uses the patient’s clinical data as input and incorporates
regularization, dropout, and learning rate decay, to optimize for different dataset
[23]. Huang et al. had collected five omics data and then performed feature extrac-
tion from these data before creating a deep learning model to predict the survival of
patients with breast cancer[26].In the multi-omics NN (or SALMON) model, the au-
thors have performed feature extraction using a local maximum Quasi-Clique Merger
(lmQCM) spectral clustering algorithm from mRNA and miRNA data [26]. Another
study had devised a support vector machine (SVM) classifier to identify biomarker
genes related to prostate cancer progression using next-generation sequencing data.
They were able to distinguish successive prostate cancer stages with relative high
performances [24].
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Chapter 3

Methodology

3.1 Model

3.1.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is an orthogonal linear transformation tech-
nique which is well-known procedure for feature extraction and dimensionality re-
duction. The goal of PCA is to map high-dimensional data into a lower-dimensional
space such that maximum variance from the original data can be preserved, while
minimising the total squared error. This also causes there is a reduction of space and
time complexities as well. The method is mostly beneficial for differentiating signals
from various sources. If the number of independent components is aware ahead of
time then the technique is easier to carry out as with standard clustering methods.
The process of working with principal components is theoretically rather straight-
forward. Firstly, for the complete dataset, the xd dimensional mean vector µand
x × x covariance matrix is computationally calculated. Consequently, in terms of
decreasing eigenvalue, the eigenvectors and eigenvalues are computed and organized
accordingly [5].Thereafter, the largest ksuch eigenvectors are selected by examining
the array of eigenvectors. The rest of the dimensions are noise. A k × k matrix
A is formed whose columns consist of k eigenvectors. The data is pre-processed
according to x = At(x− µ).

3.1.2 Autoencoders

An autoencoder is a neural network which, other than being helpful for a lot of tasks,
is also an entry point to learn more complex concepts in machine learning. In deep
autoencoding, autoencoder focuses on deriving complex transformations from simple
ones and performs autonomous learning to identify hierarchies of features and thus
fragmenting the data to generate features [1]. In this procedure, an addition of one
more autoencoder layer means an addition of inputs with abstract representations.
The use of an autoencoder can overcome the limitations of neural networks with
randomly initialized weight values, meaning that the input features are independent
of each other. However, if there exists a correlation between input features, the
association can be learned and simultaneously exploited when the input is passed
through the neural network’s bottleneck.
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Figure 3.1: Bottleneck Linear Autoencoder

As seen in the above figure 3.1, an unlabeled dataset is taken and is made to output
x̂, a reconstruction of the original input x, given that the unlabeled dataset is framed
as a supervised learning problem. By shrinking the reconstruction error, L (x, x̂),
the network can be trained and thus measure the differences between the original
input and the subsequent reconstruction. The bottleneck being the key attribute of
the network design, constrains the amount of information that can flow through the
whole network thus constraining a learned compression of the input data, otherwise,
the input values could easily traverse through the network by simply memorizing
the input values as inferred in the figure 3.2 below.

Figure 3.2: Linear Autoencoder

The autoencoder could produce a result similar to the dimensionality reduction as
seen in PCA if the constructed network was linear, i.e., at each layer, nonlinear acti-
vation functions were omitted. The two balancing properties of an ideal autoencoder
are the model’s sensitivity to the inputs during the actual rebuilding of the model
and its insensitivity to the model such that the model does not overfit or memorize
the training data. Such a balance forces the model to retain only the differences in
the data used to rebuild the input, thus disregarding any repetitions within the in-
put. Almost in all cases, a loss function is built where one term stimulates the model
to be reactive to the input, that is, reconstruction loss L (x, x̂) and the consequent
term dissuades memorization/overfitting, which in this case is an added regularizer.

L (x, x̂) + regularizer

To adjust the trade-off among the two objectives, a scaling parameter is also added
in front of the regularization term.

3.1.3 Supervised Models

The main goal of supervised machine learning models is to make a prediction for
a target output by building a model which takes features as input. In order to
construct a model, the model is first needs to be trained using the features vectors.
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The training of a machine learning model infers to learning its parameters, and this
requires minimizing of the loss function on training data with the goal of achieving
accurate prediction on unseen data.

3.2 Proposed methodology

Figure 3.3: Workflow
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3.2.1 Dataset

In this paper, we have the brain cancer gene expression dataset retrieved from
Curated Microarray Database [25]. The microarray dataset found in CuMida have
been extensively curated from the 30000 studies from Gene Expression Omnibus
(GEO), dedicated for machine learning. The dataset have already preprocess and
free from null values, reading from unwanted probe, and normalized. To ensure
the validity of the dataset, 3-fold cross validation have been performed on it. The
dataset is retrieved from platform GSE50161 and contains the gene expression levels
of 54676 genes (columns) from 130 samples (rows). There are in total 5 classes,
where 4 of them are different types of brain cancer (ependymoma, glioblastoma,
medulloblastoma, pilocytic astrocytoma) and the last one is normal healthy human
tissue.

3.2.2 Preprocessing

First of all, we have categorize the output classes where normal = 0, ependymoma
= 1, glioblastoma = 2,’medulloblastoma = 3, pilocytic astrocytoma = 4 have been
labelled. Then we have split the dataset into a 80:20 ratio where 80% are split into
training set and rest as testing set. Then we have used “Standardscaler” of sklearn
library.

Figure 3.4: Feature Scaling)

3.2.3 Dimensionality Reduction

After the preprocessing, we have first applied Principal component analysis (PCA)
on the dataset. We have checked for which value of k, the variance is greater than
95%. Here variance means 95% of the original components can represented by the
k number of vectors. Then using that value of k, we reduced the number of features
of the original dataset. As for the auto-encoder, we have tried a lot of combina-
tion for instance, decreasing the number of neurons by a factor of 2 in the encoded
section of the network. But the main problem was that the current configuration
of our hardware wasn’t powerful enough to support our approach. First, we ran
our program on a desktop with a configuration of Core i5 9th Generation 2.4GHz
processor, 16GB RAM, and NVIDEA GTX GeForce 1650 8GB graphics card. The
entire 16GB RAM wasn’t being used since some of it were being used to run OS
and other background software. So, we decided to run to our program on Kaggle
platform which allow us to have a dedicated 16 GB RAM to run the program. But
unfortunately, our algorithm failed to run in this configuration as well. So, we have
decided to change the neural architecture and the final version of it is shown below
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in figure 3.3.

Figure 3.5: Proposed Autoencoder Architecture

In our linear autoencoder architecture, we have used ‘relu’ activation function for
all the layers except the final layer in which we have incorporated softmax. More-
over, we have included ‘mean squared logarithmic error loss function and ‘adamax’
optimizer in the final output layer. We have trained our model for 20 epochs with
a batch size of 6.
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3.2.4 Classification

For classification between different classes of brain cancer type, we have applied six
different supervised algorithms including, Gaussian Näıve Bayes, Support Vector
Machine (SVM), Decision Tree, Bagging, Random Forest and Ada Boost.
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Chapter 4

Result

At first we have tried to determine for which value of k, the PCA algorithm can
represent 97% of the feature vector. Figure 4.1 shows that, for k = 79, we get our
desired result. After determination of our desired k value, we have used it to reduce

Figure 4.1: Proposed Autoencoder Architecture

our features from 54575 to 79 components for both the training and the test set.
Then using the reduced dataset, we train our supervised machine learning models.

Table 4.1: Accuracy achieved while using PCA-generated dataset

Algorithm Accuracy
Random Forest 92.31%

DecisionTree 84.61%
Naive Bayes 92.31%

SVMK 92.31%
Bagging 92.31%

Ada Boosting 88.46%

For the autoencoder, we have trained the dataset for 20 epochs with a batch size of
6. For running each epoch, it took approximately 100 seconds on an average and
in total, the network took around 34 minute to get trained completely with a final
minimal loss of around 2.33%. The loss of both the training and testing data is
shown below.
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Table 4.2: Accuracy achieved while using Autoencoder-generated dataset

Algorithm Accuracy
Random Forest 80.77%

DecisionTree 73.08%
Naive Bayes 80.77%

SVMK 80.77%
Bagging 76.92%

Ada Boosting 61.54%

Figure 4.2: Proposed Autoencoder Architecture

The encoder section bottlenecks with 77 neurons meaning that this layer will act
as the output for the feature vectors. After this, using the encoder part from the
trained architecture, we have generated new datasets for training and testing with
reduced features. Using these, the above mentioned classifiers are trained to obtain
the following results on test datasets:

14



Chapter 5

Discussion

First of all, the importance of feature reduction is important for preparing the data to
be used for training classifiers. When using PCA, we have seen that it can compact
more 97% of the features within 79 feature vectors and the training time took approx-
imately 15 seconds whereas in training the linear autoencoder, it took almost 34 min-
utes. The difference in training is massive. Moreover, on comparing the predictions
made by the classifiers from both the dataset, we have seen that models trained on
PCA-generated dataset outperforms the models trained on autoencoder-generated
dataset. The accuracy scores of Gaussian Näıve Bayes, Decision Tree, Support Vec-
tor Machine, Bagging, Random Forest, and Ada Boost on PCA-generated datasets
are 92.31%, 84.62%, 92.31%, 92.31%, 92.31% and 88.46% respectively whereas for
autoencoder-generated dataset the scores are 80.77%, 73.08%, 76.92%, 73.08%,
80.77% 61.54%. So the maximum score on autoencoder-generated dataset is 80.77%
and on PCA-generated dataset it is 92.31%. On a first look, it may look like that
PCA has better performances in reducing dimensions than autoencoder. But the
main problem with the performances of autoencoder is the limitation of hardware
performances. During its training, the loss on the training set has diminished to
around 2.33% where in the test set its around 14%. On observing the curve, we
can make an assumption that the model is probably overfitted which can be due to
limited number of training samples. But due to hardware limitation, the number
of neurons in each layer had to be reduced, for instance in the second layer the
number of neurons has decreased from 54675 to 6834. This has caused a loss of
transferring of information onto the second layer. Furthermore, this has contributed
to the reduced number of layers till the bottleneck of the encoder section, so thus
the weight matrices of both the encoder and decoder has been wrongly constructed.
Another important observation is that the loss function was over 200% when the au-
toencoder model was being trained on standardized dataset. So it can be concluded
that the feature extraction done on an unscaled dataset using autoencoder on gene
expression, generates better feature vectors, although the dataset, which was used
from CuMida database [25], was already normalized using log transformation. So
we can conclude that reducing the differences of neurons between two layers in the
encoder and decoder section would have probably enhance quality of feature vectors
and thus leading to better performances of classification models.
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Chapter 6

Conclusion and Future Prospects

Overall, it is quite clear that reducing the number of features of dataset leads to
better performances of models on datasets and PCA is a better choice. This is very
important since our dataset contains expression levels of only 54676 genes whereas
on a larger scale there can be millions of genes. It is also clear that the autoencoder
can also play a vital role on a large-scaled data given that there is sufficient RAM,
CPU and GPU requirements. But the main problem with the gene expression data
is that there are less number of samples which is why the neural network do not
get to train properly. This is where General Advarsarial Network (GAN) come
into play. Addition of synthetic data to the original set can really boost up the
performances of the neural network and in this paper we have already proved that
the models make better predictions if the gene expression data are not scaled. We
are planning to continue our works in this field to verify our hypothesis as in the
future, the genomic based prediction will play a major role in understanding how
the effects of diseases vary from person to person, since these cause an alteration of
gene expression levels.
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