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Abstract

There are a lot of novel approaches to image processing using Machine learning
and classical image processing. But most of them take a huge dataset[like machine
learning] or they are slow and inefficient[like plain image processing]. Keeping this
in context it was always a center of attraction to solve the problem of denoising
and clarity enhancing in night vision images. As night vision images are like an
asset sometimes, most of the CCTV footage is considered in this. Because if we
think simply a complete footage of a CCTV has 50 percent of the recording in day
time and 50 percent in night time. And just like that there is 50 percent chance
of capturing any event at night. Now if we consider a crime scene which has to
be extracted from the cctv footage at night time there is a huge probability of the
footage to contain noise , distortion and clarity compromisation. In these scenarios
identity extraction is difficult. But along the progress of computation we have image
processing and machine learning to develop and filter these images but we talked
about the disadvantages before. To train a big dataset for extracting 1 footage is
not feasible. So, we are considering a new novel approach which is also considered
as state-of-the-art approach of using AI to filter a noisy night time single channel
image and enhancing clarity and retain identity in it. In this work we will be facing
limited resources and gradually developing those images by training an intelligent
agent based on reward bias.So that after training the agent a limited resource it
can predict future pixels based on it’s reward bias. Our approach on processing the
images will consider deep Q learning and using a convolutional network based on
Q learning. Our Aim will be to retain most of the information dealing with these
limited resources using a reinforcement learning based approach built with the above
stated structure.

Keywords: limited dataset, Deep Q learning, AI , intelligent agent , reinforcement
learning , Deep Q network, single channel images, night cctv footage
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Chapter 1

Introduction

1.1 Introduction

Almost everyone takes pictures and videos with a purpose of sharing it on our social
media. But nowadays pictures and videos are not only used for entertainment pur-
poses but also as evidence, data and so on. So devices also vary depending on the
purpose of the pictures and videos that are captured. For example, incase of profes-
sional photography people use DSLR, for medical purposes people use microscopic
devices, for security purposes CC cameras etc. Capturing quality differs from device
to device according to their uses. The same video recorder via 2 different devices
such as CC camera and DSLR camera will never be the same as the devices have two
different dedicated purposes. Here cc camera’s footage has lower resolutions rather
than DSLR footages. But CC cameras are used for security purposes which is more
valuable for further investigations. Low resolution footage made it a tough job for
investigators because of lower pixel footages, moreover things get more tougher when
it is night time footage. As single channel images in cctv footage things are hardly
recognised so we thought we can take those single channel images of CC camera
footage to a prominent level where people can easily identify those objects that they
are desiring to see or investigate. So we looked at many studies related to this topic.
One of them was “Waterloo Exploration Database: New Challenges for Image Qual-
ity Assessment Models”. In their paper to assess the generalization ability and aid
the broad application of Image Quality Assessment (IQA), they made a large scale
database called Waterloo Exploration database having 4744 clear natural images
and 94880 distorted images.[21] We focused on the outcomes of the footage with
more clarity, details, less noise which will be discussed in details in various sections
of our study.

1.2 Problem Statement

In the era of the 21st century still we can see the newspapers where some incidents
could not be investigated properly due to lack of vivid footage. Almost every signifi-
cant place has their own CC cameras but if any occurrence happened target objects
can not be recognised for heavy noise footages, objects located at very long distance.
As a result their target does not achieve for which they establish a camera there.
Also there is a drastic change of footages during daylight and night time. Night
footages are more noisy and less vivid due to less light and fog and other floating air
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particles etc. So it is harder to find the target object from night footage. Basically
night footages are grayscale. So desired object identification also gets tougher for
not having RGB scale. However, this problem happens to almost every CC camera
footage at night time. So we decided to work on this particular sector which may
help in a broader ranger to get rid of this problem and to objectify target objects
at night time as well.

1.3 Aim of Study

Analysing single channel night vision footage and enhancing vividity of footage to
objectify the target object is the main goal of our thesis. We will be taking AI based
approaches which will include deep reinforcement learning and Q learning based on
reward bais methodes.Here we have discussed in detail about from which part of
view we relate night vision CC camera footage to single channel image. How those
footages are related to less clarity images and more noisy images. We also give rise
to all those questionnaires which are connected to limitations of diminished pixel
of images to pursue target object identification. Moreover our sumptuous dataset
which hooked up to all real single channel images helps to outcome a more valorie
image to objectify the target. These particular features more or less answer those
questionnaires. Apart from this, the algorithm we used here suits perfect in the box
to get desired output for which we are looking for. After running that model we
noticed that the features we are looking for have come out with the output data.And
this was we will be completing an implementation of AI in image processing

1.4 Research Methodology

Our main vision is to make single channel images more comprehensive where objects
are complicated for bisecting in details. Keeping this vision in mind we started to
collect data from different CC camera footages at night which are basically single
channel images. We focused to get those data where objects can not be labelled
properly due to lacking of details. We targeted open source CC camera footages
but here were less footages which are at night vision. So we came up with building
our own dataset. For our own dataset we collected many footage from different
areas where they remain under surveillance all the time under CC cameras. We
also used the Waterloo exploration database. To make our dataset usable for our
model we pre process footage into single channel footage. Some of the footage was
from daylight. So we converted those footage into grey scaled footage by using the
cvtColor function in OpenCV. After that we made those footage into individual
single frames. Those footages finally got ready to be our dataset. From those we
selected a portion for our test dataset and another portion for our train dataset. We
created a deep Q network based on reinforcement learning. Where a neural network
which is approximate to the Q- value function where inputs are given as state and
output is generated all the possible values of the Q- value function. As our main
goal is to maximize the value function of Q. Which helps us to gain low pixelated
images to our desired output image. Our implementation is based on a3c on python
in ChainerRL library. Where learning begins from episode one to the last number of
episodes. Results of each hundred number of episodes we saved as a model. End of
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the training we saved the results of outcome reward as our testing model. Moreover,
each model of hundred episodes tested according to our testing dataset. We also use
here fully Convolutional Network (FCN). The benefits we got here by using FCN is
that the shareable parameters and learn effectiveness of all agents. We will ensure
data relainvency based peak signal to noise ratio (PSNR) for noise reductions and
variance of laplacian variance to get rid of blurriness. Finally reinforcement learning
with pixel-wise rewards (PixelIRL) takes us to get the results.

1.5 Thesis Outline

Our study keeps impacts on establishing a model for betterment of objectifying any
kind of object no matter if that is a single channel image or normal image. Here our
authors high aim is to work on a dataset on the context of our country which can
be use in the furthermost research work in this particular field of work to classify a
whole new observation. The whole study light on the steps which were followed by
researchers.

Firstly, the introduction part (Chapter 1) focuses on the motivation for which au-
thors were on that particular problem for solving. Here mainly the focal objective
and our work briefly talked here.

Secondly, in the literature review portion (Chapter 2) we talked about various pa-
pers from computer science background which also discussed almost similar topics.
The main goal of background study was discovering the inadequacies of past inves-
tigations. Moreover, we have expressed our commitment and purposes for essential
information assortment.

Thirdly, in the data collection section (Chapter 3) , we explained the way we col-
lected the dataset and mixed Waterloo dataset for preparing test train splits. After
data collection procedure there we did some data preprocessing.Then on the later
part of this chapter we discussed the integrity of the dataset along with PSNR anal-
ysis and count so that we ensure the dataset is relevant. Feature selection discussed
about the embedded feature of the dataset we will be considering for training and
testing. We show the laplacian variance and PSNR analysis of the dataset which
confirms the feature of our ground truth.

Fourthly , Model Selection (Chapter 4), includes the building procedure of the
model we proposed. We showed how the Q learning model is gradually developed
by embedding into convolutional network thus creating a multi step deep Q learning
environment,

Furthermore in the result analysis section we mapped all the test output data and
visualized to prove our proposed ground truth.
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Figure 1.1: shows our workflow and steps of our thesis outline.

Figure 1.1 shows our workflow and steps of our thesis outline
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Chapter 2

Related Work

Currently machine learning is one of the fundamental advancements utilized in set-
tling different tasks such as picture division, feature detection,object acknowledg-
ment and following. Modernized and complex systems such as robots are outfitted
with visual sensors from which they learn the condition of the general environment
by solving corresponding PC vision assignments or tasks and the solutions to these
tasks utilized for settling on choices about conceivable future actions. Reinforcement
learning is one of current AI technologies in which learning is helped out through
association and interchange with the environment. Lately, Reinforcement learning
has been utilized both for addressing such applied undertakings as handling and
investigation of visual data, and for taking care of specific computer vision issues,
for example extricating picture highlights, limiting items in scenes, and numerous
others. [29]

Fundamentally, RL calculation causes the operator to pick activities under some
particular strategies, which expand rewards gathered from a successive consequence
of the activities. Reinforcement learning has empowered to manage a high dimen-
sional state space with the goal that crude pictures can be considered as states. Be
that as it may, utilizing crude pictures as state spaces need broad computational
assets at times due to their high measurement, so there has been a lot of study
utilizing additional calculations, for example, Convolutional Neural Network (CNN)
to separate highlights from pictures. At the same time those algorithms decrease
the computational load, it is still a very intricate process. [9]

With deep reinforcement learning(DRL) add the autonomous system to a higher
level of understanding. The DQN or deep Q network establishes a reward biased
platform where the algorithm developed a capability to predict the future steps or
moves, thus without need of a classed dataset the system is able to explore and
exploit unsupervised data and enhances decision making.[14]

Despite the limitation in the uses of deep reinforcement learning in terms of image
processing, a new extension called pixel reinforcement learning had good results.
An agent is set for a pixel so the number of agents are equal to the number of pixels
and by taking an action the agent changes the value of the pixel. Additionally a
proposal was given for a successful learning strategy for pixel reinforcement learning
that fundamentally upgrades the exhibition by thinking about not just the future
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conditions of the it’s own pixel but also in addition to those of the neighboring
pixels. The suggested technique can be implemented on some picture handling un-
dertakings that need pixel-wise controls, where profound Reinforcement Learning
has never been implemented before. [27]

Another form of reinforcement learning, Offline Reinforcement learning, alludes to
the issue of taking in arrangements from a static dataset of environment interac-
tions.It empowers broad use and re-utilization of historical datasets, while likewise
reducing wellbeing concerns related with online investigation, consequently growing
this real time a useability of RL. Most earlier works in offline RL have zeroed in on
tasks with minimized state portrayals. Nonetheless, the capacity to gain straight-
forwardly from rich perception spaces like pictures is basic for true applications, for
example, mechanical technology. [28]

A captivating Reinforcement Learning (RL) calculation, Asynchronous Advantage
Actor Critic (A3C), is for a wide scope of undertakings. As an example, Atari games
and bot control, where the agent learns strategies and worth capacity through ex-
perimentation cooperations with the climate until combining to an ideal approach.
Dependability robustness are very important in RL; in any case, neural network
can be powerless against clamor or noise from unanticipated sources and isn’t prob-
ably going to withstand slight unsettling influences.We note that the agents created
from gentle environment utilizing A3C can’t deal with testing conditions. Gaining
from antagonistic models, we proposed a calculation called Adversary Robust A3C
(AR-A3C) to improve the agent’s execution under boisterous conditions. In this
calculation, an antagonistic agent is acquainted with the learning cycle to make it
more hearty against unsettling influences or anomalies , consequently increasing its
versatility to uproarious conditions. The two reproductions and certifiable analyses
are done to represent the steadiness of the proposed calculation. The AR-A3C cal-
culation beats A3C in both perfect and uproarious conditions. [26]

Ongoing exploration has demonstrated that map raw pixels from a solitary for-
ward looking camera straightforwardly to directing orders are shockingly incredible.
A research has been done where convolutional neural organization (CNN) to play
the CarRacing-v0 utilizing impersonation learning in OpenAI Gym. The dataset is
created by playing the game physically in Gym and utilized an information growth
strategy to extend the dataset to multiple times bigger than before. Likewise, the
genuine speed, four ABS sensors, controlling wheel position, and gyrator for each
picture and crafted a blended model by joining the sensor information and picture
input. Subsequent to preparing, this model can consequently recognize the limits of
street highlights and drive the robot like humans.[30]

Works like single-channel image blind reclamation by utilizing iterative principal
component analysis (PCA) can be taken as reference. Beforehand it was seen that
the iterative PCA approaches for dazzle rebuilding and demonstrated its prevalence
over customary strategies. In any case, there are a few issues that are to be sorted
out. An exact and automatic approach to decide the iteration number is one of
the ways of trying to solve the issues. This research attempts to address this by
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applying a visually impaired picture quality evaluation for automatic optimization
of the iterative number. [10]

In this study the analyzing and synthesizing of frames, formalizing the BM3D pic-
ture displaying and utilizing these casings to create unique iterative deblurring algo-
rithms. Two distinct plans of deblurring were shown: one given by minimization of
the single target work and another dependent on the Nash equilibrium formulation
of two target capacities. The last outcomes in an algorithm where the denoising and
deblurring activities are decoupled. The intermingling of the created calculations
is demonstrated. Simulation tests show that the decoupled calculation obtained
from the Nash equilibrium formulation exhibits the best mathematical and visual
outcomes and shows prevalence with deference over the best in class in the field,
affirming a significant capability of BM3D-outlines as a high level picture displaying
device. [7]

Asynchronous gradient descent for optimization of deep neural network controllers
were used in a basic and lightweight system for Deep Reinforcement learning. The
paper talks about a nonconcurrent variation of four standard reinforcement learning
algorithms and demonstrates that actor-learners have a stabilizing effect permitting
every one of the four techniques to effectively prepare neural organization regulators.
[19]
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Chapter 3

Data Collection and Added
Feature

3.1 Data Collection

The inaccuracy and lack of the quality in the modernized night time recording equip-
ment is something that is being worked on to improve the efficiency of the night time
clips or images that are later used for various purposes. Our aim was to introduce a
system that would ultimately improve the quality of the night time clips or images
by a significant amount. Initially we searched about already existing systems that
would help us get a better understanding of this which can be seen by our research
in the literature review section. We wanted a system that would allow us to imple-
ment deep reinforcement learning on single channel night vision images to enhance
the clarity of it.

The reason behind using reinforcement learning instead of the popular choice (ma-
chine learning) is because in reinforcement learning the system works on reward
basis and due to this the system is able to work faster and needs less iterations than
a system run by machine learning. We particularly targeted the night vision section
because we wanted to improve the quality of the images we see nowadays.

Initially our group had countless discussion sessions as to how we are going to
approach this mammoth like task, then after that discussions were done on which
member will be looking out for which sections of this system. We planned out a
workflow that would be good for the whole group and started working accordingly.

We used two kinds of data: Primary data and Secondary data. The data that
is procured through first- hand research is known as Primary data. An example of
this sort of data will be the data collected by us directly from cctv cameras from our
building and neighbouring buildings. This was very tough to do as not everyone is
cooperative and so we depended more on the Secondary data. The data type that
was already collected by someone else. In this case we resorted to collecting the
data from open sources present all over the internet. These datas are available to
all for use for the general public.
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The validity of our data was checked by PSNR method. PNSR stands for Peak
signal-to-noise ratio which is a term indicating the ratio between max feasible power
of a signal and the influence of corrupting noise that affects its representation’s fi-
delity.The standard of reconstruction of lossy compression codecs is most generally
calculated by PSNR.[3] Here using PNSR we compared the noise level of the datas
that we collected by setting a reference image to which all the data was compared
with.

Figure 3.1: : Stages of data collection and prepossessing

In the data preprocessing part initially we turned all the images into single channeled
grey scale images. The reason behind separating such pictures from some other kind
of textured picture is that fewer data will be collected for every pixel. Indeed ’grey’
texture is one in which the red, green and blue segments all have the same power in
RGB space, thus it is simply salient to indicate a sole force as an incentive for every
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pixel, instead of the three powers that are awaited to determine every pixel in a full
shading picture. [4]

Frequently, the grayscale force is termed as a 8-digit whole number handing 256
potential numerous conceals of dark from dark to white. In the event that the levels
are equally separated, at that point the distinction between progressive gray levels is
altogether in a way that is better than the gray level settling intensity of the natural
eye [4]

For our model we set the image canvas size to width 481 pixel and height 321
pixel. In general there is no problem with anysize of the image but for better ef-
ficiency and less storage cost we chose to keep the image size to 481 pixels width
and 321 pixels height respectively keeping the image quality intact. This is all done
after the conversion of the image to a single channel grey-scaled version of it.

According to our previous statement, we had 446 unique images with which we
added a Waterloo dataset to increase the size of the train/test images. Waterloo
Exploration database is a large scale database that holds around 4744 clean natural
pictures and around 94880 distorted pictures, we used a chunk of data from this
dataset. [21] After getting all the dataset in a place we split the dataset into 2
halves. One for testing and one for training. We trained our model with the major-
ity portion of images from the dataset and then tested them against the minority of
the pictures that we kept aside as they were better compared to the ones that our
model trained with.

This concluded our data collection and data preprocessing part and in the next
section we will be discussing the data relevancy of our data and how accurate is our
data for our study.

3.2 Data Relevancy

Data relevancy basically means the regularity of data in the field of interest of the
user. If a data does not match the field of use that it was procured for then that
data is discarded as not relevant data.

The importance of data relevancy is emphasized in every field of education and
work. We live in a world which is ruled by science, science is ruled by theories
and these theories are proved by datas so if the datas are wrong then the theory
is automatically incorrect which can lead to a very bad impact on that field of ed-
ucation/work. The legitimacy of a work or business is determined by the data or
results that it provides and that result is solely dependent on the data.

To show that our data is relevant, we used PSNR. As stated before, PSNR stands
for Peak Signal-to-noise ratio that indicates the ratio between max feasible power of
a signal and the influence of corrupting noise that affects its representation’s fidelity.
[6]
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PSNR is also defined by Mean Squared Error(MSE) which has a formula of:

MSE =
1

pq

p∑
u=0

q∑
v=0

[I(u, v) K(u, v)]2 (3.1)

And PSNR is referred by:

PSNR = 10 · log10

(
MAX2

I

MSE

)
= 20 · log10

(
MAXI√
MSE

)
= 20 · log10 (MAXI) 10 · log10(MSE)

(3.2)

It is usually used to evaluate the quality of rebuilding of lossy pressured codecs.
The sign for this instance is the initial information, and the disturbance is the mis-
take due to the pressure or compression. When looking at pressure codecs, the
PSNR count is an approximation of human impression of recreation quality.

Figure 3.2: : Graphical representation of PSNR of our initial data

The above Figure 3.2 is the PNSR count of the images that we initially collected.
It can be seen that the average value of the initial image ranges from 24.4 to 25.
This count means that there is a decent amount of noise in the images. And this
amount of noise is relevant for our model. Later on we will be increasing the noise
count so that the effectiveness of our model can be demonstrated more easily.

Although the fact that a higher range of the PSNR value mostly demonstrates
that the recreation is of higher caliber but it’s not always the case. Being incredi-
bly cautious with the range of legitimacy of this measurement, decisively legitimate
when it is utilized to analyze results from the identical codec (or codec type) and
similar content.[6]
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An example of a noisy picture that we used in our dataset is given below:

Figure 3.3: : Example of a noisy image data representing the dataset. [12]

The PNSR count of this sample image which resembles most of the images that we
collected to use as a dataset is 24.185236788799553. The value that we got here is
a decent amount of noise which we will be increasing furthermore later on to see if
our model can efficiently decrease the amount of noise a picture possesses.

Thus it can be concluded that the initial data that we have accumulated for our
model is relevant and we can move forward with this study.

3.3 Added Feature

3.3.1 Variance of Laplacian

After our initial data collection and preprocessing which qualifies the Peak signal-to-
noise ratio or PSNR then they need to be sorted according to the proposed features
which will help us to reach the ground truth that we have claimed after we test our
trained model. As we have discussed before our dataset is majorly emphasized on
low quality images containing noise and blur scenarios. In the PSNR it has already
qualified for the high noise level but another key feature which is our prime focus
is blurred images. To make sure we are making our intelligent agent learn the right
data we need to set some ground rules here too for ensuring data qualifications. For
that we are going to analyze Variance of the Laplacian. [15]
The laplacian operator is expressed as :
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dst = ∆src =
∂2src

∂a2
+
∂2src

∂b2
(3.3)

We will be taking a pre processed a single channel image(grayscale converted) and
convolve it in a 3x3 kernel:

 0 1 0
1 −4 1
0 1 0

 (3.4)

After mapping the squared standard deviation of the response. If the variance is
recorded within a threshold, at that point the picture is considered foggy or blur.The
explanation for which it works is due to the influence of the Laplacian administra-
tor, which is utilized to the second degree subordinate of the picture.As a result
of this the laplacian variance generated can differentiate the quick intensity of the
kernel changes, much or just like the Sobel and Scharr administrators.Similarly like
this administrator the Laplacian variance is repeatedly used for edge discovery. The
presumption here is that on the off chance that a picture contains high fluctua-
tion at that point there’s a wide spread of reactions, both edged and non-edged
like agent of a ordinary focused picture. But in case there’s quiet a low volume of
variance change, at that point there’s a minor spread of reactions,both edged and
non-edges like, agent of a ordinary, in-focus picture. But in case there’s exception-
ally low variance, at that point With a modest spread of reactions, indicating there
are exceptionally small edges within the picture. As we know, the more a picture is
obscured, the less edges there are. [13]
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Figure 3.4: : Example of a high laplacian variance image representing blurry image
in dataset

Obviously the strategy here is setting the proper edge threshold which can be very
space subordinate. As well moo of an edge and you’ll erroneously stamp pictures as
foggy when they are not. As well tall of a edge at that point pictures that are really
hazy will not be stamped as hazy.

Thus by setting up the laplacian variance architecture we run the whole pre-processed
dataset and analyze the data further in data visualization to confirm the relevance
of the dataset , reliability and proving the ground truth of the work.

In the analysis we will take the combined dataset and run into the openCV Laplacian
operator to extract the data and plot the data visualization for further analysis.[17]
The opencv laplacian contains the similar algorithm built for our laplacian variance
determination. After the iterative calculation the result Is obtained.An example
visual of the obtained numerical data of the laplacian variance of the dataset has
been shown for better understanding:
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Table 3.1: : Table showing the variance of the laplacian count of the dataset

On the later part of this chapter we will visualize this obtained data and check the
relevance of data for our proposed model

3.3.2 Salt And Pepper Noise

Salt and pepper noise is in some cases called impulse noise or spike noise or arbitrary
noise. In salt and pepper noise , pixels in the picture are exceptionally diverse in
color or concentrated not at all like their surrounding pixels. Salt and pepper cor-
ruption can be caused by sharp and sudden unsettling influence within the picture
signal. Generally this sort of noise will as it were influence a little number of picture
pixels. When seen, the picture contains dull and white specks, thus the term salt
and pepper noise. Typical sources incorporate bits of tidy interior the camera and
overheated or defective elements. An picture containing salt-and-pepper noise will
have dark pixels in shinning locales and This sort of noise can be caused by dead
pixels,It known as incautious noise. It appearances is haphazardly scattered white
or dark pixel over the picture.

Salt and pepper noise delivers a wide variety of processing and results in basic
image distortion.It creates an effect of noise by accumulating dead pixels with a few
noisy pixel, but they are very noisy. The impact is comparative to sprinkling white
and dark dots—salt and pepper—on the image.

One case where salt and pepper noise emerges is in transmitting pictures over noisy
digital joins. Let each pixel be quantized to A bits within the normal mold. The
value of the pixel can be composed as
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Y =
A−1∑
i=0

bi2
i (3.5)

Accept the channel could be a twofold symmetric one with a hybrid likelihood of
. At that point each bit is flipped with likelihood . Call the gotten esteem, X. At
that point, accepting the bit flips are autonomous,

Pr
[
|Y −X| = 2i

]
= ε(1− ε)A−1 (3.6)

For i= 0,1.2,....,m-1 .The MSE due to the foremost critical bit is ε4A−1 compar-
ing to e(4m−1-1)/3 for all the other bits combined. To say in other sentences, the
commitment to the MSE from the foremost noteworthy bit is around three times
that of all the other bits. The pixels whose most critical bits are changed will likely
show up as dark or white dots. Salt and pepper clamor is an case of (exceptionally)
overwhelming followed noise. A simple model is the taking after: Let f(x,y) be the
initial picture and q(x,y) be the picture after it is modified by salt and pepper noise.
[18]

Pr[q = f ] = 1− γ
Pr[q = MAX] = γ/2
Pr[q = MIN] = γ/2

(3.7)

Here, MAX and MIN are the greatest along with the least picture values, sepa-
rately. For 8 bit pictures, MIN = and MAX = 255. The thought is that with
likelihood 1 the pixels are unaltered; with likelihood the pixels are changed to
the biggest or littlest values. The modified pixels see like dark and white specks
sprinkled over the image. Figure 3.5 appears to show the impact of salt and pepper
commotion. Around 15% of the pixels have been set to dark or white (85% are
unaltered). Take note the sprinkling of the dark and white dabs. Salt and pepper
noise is effectively expelled along different arrange measurement channels, particu-
larly the center weighted middle and the LUM channel. [16]
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H]

Figure 3.5: : Example of a high PSNR count added with salt and pepper image
representing noisy image in dataset.[31]

Salt and pepper noise, moreover known as information drop-out, can cause pointed
and unexpected unsettling influences within the picture flag. The clamor thickness
here is 0.01. The pictures mutilated by this commotion and the watermarks extri-
cated from them are appeared in Figure 3.5 for standard pictures and restorative
pictures. The objective measurements for the mutilated pictures are detailed in
Table 3.2. Since this sort of clamor is particular (i.e., as it were a few pixels are
supplanted, either by 255 or by 0), a recognizable watermark is extricated, but from
the related table and figure, it is obvious that the impact of the commotion is un-
mistakable to the human eye and consequently the proposed framework is delicate
to this particular clamor.

Keeping salt and pepper distortion as one of the major feature of our training
model , the dataset was trimmed and after preprocessing we need to ensure the sp
or any gaussian noise presence in the dataset so that we can prove the ground truth
of removing the noise. Just like we discussed the PSNR in the dataset section we
will be running the PSNR again to ensure gain of PSNR over the post stage of the
dataset processing. The dataset will be going through the PSNR algorithm and the
data is presented in the Table 3.2
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Table 3.2: : Table showing the PSNR count of the salt and pepper noise added
dataset

On the later part of this chapter we will take a closer look on this data’s visualization
and take a look on the relative analysis on the final features rolling to the model
training.
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3.4 Feature Analysis

According to the previous discussion the result we generated by using laplacian vari-
ance and PNSR of salt pepper noise or any other noise present like gaussian noise.
Now we will visualize the data in chart scaling so that it is easier to have the idea
about the whole dataset quality and further analysis to come to a conclusion on the
features we are using in relevance of the dataset
Firstly, let us take a look of the chart data of laplacian variance of the whole dataset

Figure 3.6: : Graph representation of Laplacian variance of the dataset

Here we can see the variance count of the laplacian over a gradual count of images.
Keeping the note here that we can see a high peak of the variance that is confirming
very blurry image. So on the later part of the work we will be training our Q agent
and generate model according to reward biases and again will have a look on the
output data. And look for a decrease of the variance to approve our ground truth
of decreasing blur in image. But for now we can confirm the feature relevancy ac-
cording to the laplacian variance of the dataset.

Secondly, Let us have a look on the PSNR analysis of added noise based on salt
pepper[First priority] or any other noise like gaussian noise[if previously available ]
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Figure 3.7: : Graph representation of PSNR count of the dataset

Let us have a clear idea what we are seeing here. In the whole chart we can see
the PSNR values mapped against the image sequence of the dataset. The lowest
value is approximately near 5 and highest value is approximately near 15, [Values
have been shown in Figure 3.7. Before the explanation let’s know a bit more about
how this ratio is working and how we should be expecting the future generation of
results to be.
As, PSNR represents a ratio that means ∆ = x/y where x is a standard which
represents a non-blurry image and y represents blurry image from dataset. So the
resulting ∆ or the PSNR value will be less in range of the axis it has been plotted.
Or in other words more the noise is less the ∆ value.

So the visualized data is confirming the final dataset and the feature with pres-
ence of enough noise that needs to be filled by prediction though our Q learning
agent. Let’s keep a note of this chart and move onto our gradual development of the
trained model and the test result and see if this ∆ expands it’s range and confirms
the ground truth of denoising the image dataset.

To conclude after the feature analysis let us use a diagram to overview the process
we gradually developed our feature in our dataset.The features has been artificially
added so that the ground truth can be obtained after this distorted images are run
into the trained model.
Firstly the laplacian variance was compiled and any image not reaching the thresh-
old was excluded.And added noise based on salt and pepper / gaussian noise so that
the images can be developed by the intelligent agent.
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Figure 3.8: : Process overview of adding features

Thus a proper dataset containing suitable features for further training of the model
has been generated by following the procedure table of Figure 3.8
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Chapter 4

Model Selection and Results
Analysis

4.1 Q-Mapping

Q – learning is a reinforcement learning model calculation to learn the nature of
activities mentioning to an agent what move to make under what conditions. It
doesn’t need a specific environment to work on and it can deal with issues with
stochastic changes and rewards, without requiring transformations

In the Q-learning algorithm (4) the activity esteem capacity of the ideal approach
π * is iteratively approximated by refreshing the assessed Q-values:

Q(s, a)← (1− α)Q(s, a) + α
(
r + γmax

a
Q (s′, a′)

)
(4.1)

Here it utilizes recently experienced advances (s, a, s’, r) and a learning rate which
is signified by . In -greedy search, this yield worth can be utilizing to make greedy
exploration which is a = arg maxa Q (s, a) or irregular activities consistently a U(A)
with probability denoted by . At last, the objective r +γ maxa’ Q (s’, a’) doesn’t
rely upon the procedure used to deliver the data, permits Q-learning to figure out
how to learn off – approach, beneficially re-using past advances set aside in a replay
support or made by another segment.[23]

Q – mapping is mainly an advanced version of Universal value function model which
takes observation and the goal as an input and creates q – values as an output for
every action. But by using q-map it works slightly differently which is it takes an
observant as input but generates both goals for every outcome and action as an
output. For the observant height and width of each frame may be different from
each other according to the requirement of the observation’s resolution. All this
output works as a Q – value which is mainly a goal reaching reward function where
the objective arriving at completing an episode will give reward as 1.[23]

But if it fails to reach the goal i.e., if it doesn’t complete the episode then it will get
0. There is a γ which is used as a discount value which creates dramatically decaying
esteems γ(k−1) which express the quantity of steps k to the objectives. Starting, a
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forward pass which is in the model is compiled with the accompanying perception
in data and afterward the made framework are augmented on the movement esti-
mation to deliver a solitary edge addressing an extent of the base foreseen quantity
of steps towards all of the goals. Now the edge is cut in the range (0, 1) to lessen
the under and over appraisal. At last, the edge is restricted by γ and the territory
came to at the accompanying stage is set to 1.

This system sufficiently utilizes one common advancement to basically make a lot
of autonomous one episode, one for every objective, with an end point on success
and halfway scene bootstrapping [22]. To create Q-frames to arrive at an objective,
one just needs to take the vector of Q-values at the objective area and select the
movement of most outrageous worth.

Figure 4.1: Training process for the proposed model, updating the prediction to-
wards all goals at once.[23]

4.2 Asynchronous Advantage Actor Critic(A3C)

A3C is a kind of algorithm where there is a global system where numerous specific
agents which each have their own arrangement of network parameters. Every one of
these agents cooperates with their own duplicate of the environment simultaneously
as different agents are communicating with their surroundings. The main reason
this process works in a way that is better than having a solitary agent, is that the
experience of every agent is free of the experience of the others. In this manner the
general experience accessible for preparing turns out to be more assorted. [25]
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So in this algorithm it keeps a policy π (at | st; θ) also, a measure of a value esteem
function V (st; θv). This algorithm is fairly irregular on the grounds as it works in
the forward view by unequivocally computing n step returns, rather than the more
normal in reverse . [2] To register a solitary update, the calculation initially chooses
action utilizing its exploration strategy for up to tmax steps or until a terminal state
is reached. This cycle brings about the specialist accepting up to tmax rewards from
the environment since its last update. The calculation at that point registers angles
for n-step Q-learning refreshes for every one of the state-activity sets experienced
since the last update. Every n-step update uses the longest conceivable n-step re-
turn bringing about a one-step update for the last express, a two-step update for
the second keep going state, etc for a sum of up to tmax refreshes. The gathered
updates are applied in a solitary inclination step .[20] The update performed A3C
can be seen as

∇0 log π (at | st; θ′)A (st, at; θ, θv) (4.2)

Here A (st, at; θ, θy) is a gauge of the preferred position function given by

k−1∑
i=0

γirt+i + γkV (st+k; θv)− V (st; θv) (4.3)

Here k will change for every step.
Similarly, as with the worth put together strategies, we depend with respect to re-
semble actor learners and amassed refreshes for improving training stability. As the
boundaries θ of the arrangement furthermore, θv of the worth capacity appear as
being isolated for over-simplification, we generally share a portion of the boundaries
in practice. We commonly utilize a convolutional neural organization that has a
specific softmax yield for the strategy π (at—st; θ) and a direct yield worth capac-
ity V (st; θv), with all non-yield layers shared.
We likewise found that adding the entropy of the policy π to the target work im-
proved investigation by debilitating untimely combination to imperfect deterministic
strategies [1]. The gradient of the function combining entropy regulation with the
requirement of policy parameter takes the form

∇θ, log π (att; θ
′) (Rt − V (st; θx)) + β∇′θH (π (st; θ

′)) (4.4)

4.3 Pixel Reinforcement Learning

PixelRL is also one of the effective learning methods. In this method every pixel
has its own agent and that agent changes the pixel esteem by taking an activity. It
additionally has a compelling learning technique that fundamentally improves the
presentation by thinking about not just the future conditions of the own pixel yet ad-
ditionally those of the neighbour pixels. It can be applied to a few picture handlings
errands that require pixel-wise controls, where profound reinforcement learning has
never been applied. Plus, it is conceivable to envision what sort of activity is uti-
lized for every pixel at every cycle, which would assist us with getting why and how
such an activity is picked. We additionally accept that our innovation can improve
the logic and interpretability of the profound neural organizations. Furthermore, in
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light of the fact that the tasks executed at every pixel are envisioned, we can change
or adjust the activities in the event that is vital. [24] In this section we portray the
proposed PixelRL issue setting. Let us take Ii the ith pixel which is utilize as an
input image A that contain a set of N number of pixels so the series extend from
1 to N. Each pixel is backed by their own agents and the policy that are contained
for them is denoted as

πi

(
a
(t)
i | s

(t)
i

)
and in this expression a

(t)
i (∈ A) and s

(t)
i are the activity and the con-

straints of the ith agent at the given time t.A is the pre-characterized activity set,

and s
(0)
i = Ai. The agents get the following phase s(t+1) =

(
s
(t+1)
1 , · · · , s(t+1)

N

)
and

rewards are stated as r(t) =
(
r
(t)
1 , · · · , r

(t)
N

)
from the created situation by making the

moves a(t) =
(
a
(t)
1 , · · · , a

(t)
N

)
[25] The goal of the pixelRL issue is to become familiar

with the ideal strategies π = (π1, · · · , πN)

Figure 4.2: Network architecture of the fully convolutional A3C. The numbers in
the table denote the filter size, dilation factor, and output channels respectively. [24]

For which it maxed the mean of all the rewards that can be obtained by all pixels.

π∗ = argmax
π

Eπ
(∑∞

t=0 γ
tr̄(t)

)
r̄(t) = 1

N

∑N
i=1 r

(t)
i

(4.5)

In this equation r(t) represents the rewards of the pixel and r
(t)
i represents the pixel.

Another arrangement is to isolate this issue into N autonomous subproblems and
train N networks, where we train the ith agent to boost the normal absolute com-
pensation at the ith pixel:

π∗i = argmax
πi

Eπi

(
∞∑
t=0

γtr
(t)
i

)
(4.6)
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A simple method to settle this issue is to set up an organization that yields Q
esteems for all possible game plan of exercises a(t). But preparing N number of net-
works is in like manner computationally impossible at the time when the quantity
of pixels is colossal. In addition, it treats simply the fixed size of pictures. For this
we utilize FCN where all the N number of agents can equally utilize the boundaries,
and we can parallelize the count of N number of agents on a GPU, which delivers
the testing capability.[24]
Pixel RL is essentially unique in relation to multi agent RL issues for some terms.
One of the reasons is the number of agents. The number of agents required are an
extremely huge amount so multi agent technique cannot be applied directly in pixel
IRL.

4.4 Edge Detection for blur reduction

Another method that is used in this research is edge detection/finder method. An
edge finder is a straightforward calculation to separate edges from a picture. Ap-
plying an edge identifier to a picture creates a bunch of associated curves which
follow the limits of an object. Most edge finder methods utilize either first order
derivatives or second order derivatives. [5] By first derivatives to find the local edge
direction it gives the direction of the local maximum of a point. By the second
order derivatives are used to locate local maxima of a gradient. These maxima can
be found from zero crossing of Laplacian or nonlinear differential expressions. [8]
This method mainly works by detecting the change of intensity between two close
points. The higher the intensity difference the more accurately we can detect the
edge between those points. There are many types of edge detection methods where
we use the Sobel edge detection type.[8] By this we attempt to accomplish greater
adaptability and versatility with our exploration.
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Figure 4.3: Q-Learning framework architecture. [8]

In figure 4.3 we try to show the framework of our Q – learning algorithm where
there is a Q – learning agent (QL), a reinforcement learning agent (RL), Q- learning
implementation (QL), there is a policy containing the data structure of the system.
It contains the learning rate and discount factor of the algorithm. For this algorithm
there are many types of activity to detect edges for every step of the calculation so in
the action set it holds all the action it needs to perform. Also, there is an initial state
which we need to implement and cannot be changed later. Selection and exploration
policy control the policy inside the framework which policy will be active in which
case/ environment.[8]

27



Figure 4.4: The proposed automatic parameterization for the Sobel edge detector.
[8]

In figure 4.4 we have shown the working procedure of the Sobel edge detector method
that we used in this research. This method mainly figures out how to locate the
optimal edge discovery edge for numerous pictures. States are spoken to as quali-
ties for the looked through boundary the only two potential activities are addition
and decrement of state’s worth and rewards are registered utilizing Pratt Figure
of merits [11]. The Sobel edge detector takes edges from the pictures utilizing an
edge esteem given by the reinforcement learning agents. The separated edges are
evaluated by the assessment module and the outcome is used as a compensation
for the reinforcement learning agents, which takes the related action and gives an-
other edge detector threshold. The learning measure proceeds until the ideal limit
is found. Pratt Figure of Merit is a notable measure used to analyse edge detectors
output. It tries to adjust three sorts of mistakes that can create wrong edge map-
pings: missing legitimate edge points, disengaged edge points and misclassification
of commotion variances as edge points. Pratt Figure of Merit utilizes a known edge
for correlation [11]. We consider a known edge the edge came about because of the
output of a Canny edge locator dependent on a manual picked edge. For various
edge recognition edges, we outwardly examine the subsequent edges for the Canny
detector and we picked the limit that accomplishes the ideal conceivable edge
The figure of merit [11] is defined as –

K =
1

IN

IA∑
i

1

1 + αd2i
(4.7)
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In this equation 4.7 IA represents the summation of all test edge pixels and Ii
presents the number of known edge pixels in the picture. α is a scaling consistent,
while di is the distance from a genuine edge highlighting the closest known edge
point. The scaling factor is utilized to penalize edge points that are bunched how-
ever away from the known edge pixels. After exploring different avenues regarding
different qualities, we chose to utilize α = 0.9. This value is prepared by Pratt in [8],
a value that drastically penalizes pixels far away from the known edge. Q-Learning
algorithm updates its Q-values using:

Q (st, ai) = Q (st, ai) (1− α) + α [ri+1 + γmax
a Q (st+1, a)] (4.8)

Here ri is the rate of reward at time t. Also γ is the discount factor range be-
tween 0 and 1. We used greedy policy in this paper. The learning rate is utilized
to set up the impact of the new gained data against past encounters. A little factor
will cause the agent to learn next to none and depend exclusively on past experience
gained or given as info premises, while a major factor would cause the agent to
consider just the latest data. The discount factor builds up the effect of potential
compensations. An invalid factor will cause the agent to think about current prizes,
while a major factor will cause it to accomplish a high long-term reward.

Finally we have these four methods Qlearning, A3C, Pixel RL and Edge detec-
tion methods that work parallely to each other. Like in Q - learning it mainly works
as a reward based system which can be received by reaching at the goal of a func-
tion. A3C is a method or algorithm which handles the functionality of a multi agent
network and see what each of them accomplished in one run.[8] Pixel RL is another
interesting method where it handles each and every pixel with a specific agent and
tries to manipulate each pixel that can be extracted from an image and this im-
proves the visual presentation of an image. And lastly Edge Detector method which
extracts edges or curves of an object from an image. This method is widely used
in the area of image processing. By using this method we get good and accurate
boundaries of an object from a blurred or mis focussed image we used in our data
set. So all through these models we tried to restore an image from some specific
corruption like noise, blurred image and mis focus image. Each model has their own
advantage which combinedly works to create or restore a broken or corrupt image
more efficiently by using reinforcement learning.
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4.5 Result and Analysis

4.5.1 Reward Test results

After we are done with training the model , the output trained model is then run
with respect to the test dataset which contains noisy and blurred images. Let us
first have a look on the extracted data for each 100 episodes upto 1000 episodes
which has been plotted into the following graphs :

Figure 4.5: Reward Test result of 0-200 episode

Figure 4.5 shows reward Test result of 0-100 and 100-200 which shows initial rewards
generated from the training. The initial rewards are not that efficient as they still
lack enough exploration.

Figure 4.6: Reward Test result of 200-400 episode

Figure 4.6 shows reward Test result of 200-300 and 300-400 which shows increase in
rewards. And consistency in increase in exploration
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Figure 4.7: Reward Test result of 400-600 episode

Figure 4.7 shows reward Test result of 400-500 and 500-600 which shows increase in
rewards and consistency in exploration, but the output result needs more develop-
ment

Figure 4.8: Reward Test result of 600-800 episode

Figure 4.8 shows reward test result of 600-700 and 700-800 which shows increase in
rewards and consistency in exploration, and the output is getting better into optimal
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Figure 4.9: Reward Test result of 800-900 and 900-1000 episode

Figure 4.9 shows reward test result of 800-1000 900-1000 which shows dramatic
increase in rewards and consistency in exploration, and the output is fairly recog-
nizable as a developed image
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Figure 4.10: Reward Test result of 1000-3000 episode

Figure 4.10 shows reward test result of 1000-3000 which shows a drop in reward but
the output generated model has become more efficient as the Q map has expanded
and the pixel wise AI agent has explored more of the train dataset iteratively.The
increase in efficiency can be observed in the later part of this work in the section 4.7
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Figure 4.11: Superposition of Reward Test results of 0-1000 episode

Here , as we have shown the breakdown of the result of first 1000 episodes into
gradual development based on the proposed model , we first plotted the first 1000
episode into batch(100 in each) so this generated us 10 subsequent results and he in
this Figure 4.12 we have made a superposition of their performance based on reward
exploration which confirms development ratio of the image . That in other word
means the reward bias is increasing fairly and the efficiency of the model is getting
better with each batch of training episodes . We will have a look on their picture
restoration performance on the later part of the work.
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Figure 4.12: Superposition of Reward Test results of 0-3000 episode

As the batch training goes on the model develops more efficient reward bais and a Q
map. The end result is an optimised model which helps in more efficient recognition
of the high laplacian variance affected areas and noise. Thus also resulting in a more
polished picture as the AI agent for each pixel now knows that previous explorations
of dataset images. We plotted the performance again after 3000 episodes to observe
any dramatic changes as the batch training is stretched further , here in Figurexx
the 11th row represents upto 3000 batch episode results , here the reward bias
drops but the agent itself now can get more satisfactory result because this has
accumulated more accurate data thus the bias drops here and on training further
it will gain the reward bais again. But performance has been recorded high at this
stage. Confirming the development of the reward bias and development of the input
subject images to restored output images we will now move on to our next stage of
image quality confirmation using PSNR test on the batches to ensure the quality of
the grout truth of our work that is the restored images will retain object clarity and
identity in it.
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4.6 PSNR Test results

After carrying out the reward test analysis , just like we ran our PSNR test result in
the data pre-processing and feature analysis chapter , we will be using the PSNR test
again in the output images of the trained models based on batch episodic training.
And observe the changes in PSNR data visualization to come to a conclusion if the
model produced a satisfactory result. We have discussed before that the PSNR is
a ratio(Peak Signal to Noise Ratio) that means the represents the ratio of noise
between a standard noise free image and a noisy image. So we will be comparing
the Input noisy image with output noise reduced image and visualize it in a graph
to observe performance.We have to remember that, less the noise more will be the
result of ratio. That means we had a highest threshold of 15 and we need to observe
a high scale more than that in the test result.

Figure 4.13: PSNR Test results of 0-200 episodes trained model output image

Figure 4.13 shows PSNR Test result of 0-100 100-200 which shows the output im-
ages generated a higher threshold on the PSNR count in comparison to the initial
dataset PSNR count confirming the reduction in noise.
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Figure 4.14: PSNR Test results of 200-400 episodes trained model output image

Figure 4.14 shows PSNR Test result of 200-300 300-400 which shows the output
images generated a similar threshold on the PSNR count in comparison to the
previous PSNR count confirming the continuation of reduction in noise.
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Figure 4.15: PSNR Test results of 400-600 episodes trained model output image

Figure 4.15 shows PSNR Test result of 400-500 500-600 which shows the output
images generated a similar threshold on the PSNR count but the over all limit has
gone up, that means the over all dataset has been developing more than before and
the Pixel wise Ai agents is more efficient now.

Figure 4.16: PSNR Test results of 600-800 episodes trained model output image

Figure 4.16 shows PSNR Test result of 600-700 700-800 which shows the output
images generated a similar threshold on the PSNR count but the over all result of test
dataset has been increasing satisfactorily and the generated images is recognisable
fairly that we will have a look in the later part of the chapter.
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Figure 4.17: PSNR Test results of 800-1000 episodes trained model output image

Figure 4.17 shows PSNR Test result of 800-900 900-1000 which shows the output
images generated a higher threshold on the PSNR count and also over all result of
test dataset has been increasing satisfactorily and the generated images is recognis-
able fairly that we will have a look in the later part of the chapter.

Figure 4.18: PSNR Test results of 1000-3000 episodes trained model output image

Figure 4.18 shows PSNR Test result of 1000-30000 batch which shows the output
images generated a moderate threshold on the PSNR count which is almost similar
to the inherited graphs of the previous performances. But , there is a dramatic
result in the output images. Since the AI agents are more aware of the previous
explorations , even in this similar PSNR threshold the result image generated was
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mostly restored and smoothed out bringing out the identity that satisfies our ground
truth of our work. We will have a look at the generated image on the later part of
this chapter. And conclude if the performance is satisfactory.

Figure 4.19: ACCUMULATED PSNR VALUE 0-1000

Figure 4.19 shows Superpositioned PSNR Test result of 0-1000 batches which shows
the output images generated in a whole was within a higher PSNR threshold which
clarifies that the output images were noise reduced and the gradual development of
the exploration of the agent was stable. Thus it is also clear that for better output
results the agent can be trained further and observed the performance to properly
clarify our ground truth.

Figure 4.20: ACCUMULATED PSNR VALUE 0-3000
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Figure 4.20 shows After superpositioning the PSNR Test result of 0-3000 batches we
can observe consistency but the output result was dramatically changed as we have
mentioned before the pixel agents have exploited the dataset more than before and
the Q maps has expanded dramatically resulting in better model that can generate
efficient output restored images. We will be having looks and analysis on the output
images on the following part of the chapter.
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4.7 Result analysis and Result summary

Figure 4.21: Final Result

shows In the figure 4.21 we have represented an image from the test dataset in the
left side named as the input image. And on the right side we can see the relative out-
put of the image going through the model trained upto N episodes in batches. The
gradual development of the performance is noticeable over each batch of episodes.
And specifically there is a dramatic change in the episode 3000 as the model was well
trained due to the expansion of the Q map and more exploration of the past dataset.
The Pixel wise AI agent has shown remarkable output over time and episode. But
keeping in note that this model generated exponential memory complexity for which
the result was carried out upto 3000 episodes. But within this 3000 episodes the
identity was clearly visible and noise was reduced at a very considerable rate. Also
after arranging the results, the blur edges of the image were restored and smoothed
bringing the identity more clearly visible.

Finally analyzing the facts based on the output image results and all the data
represented in the previous sections of the chapter we can conclude that the ground
truth of our work that is enhancing the object clarity by removing the noise and
blur edges using the proposed model which is deep reinforcement learning which
also utilizes the Q-learning model has considerably enhanced the clarity of images
extracted from single channel image or video source.
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Chapter 5

Conclusion and Future Work

Image clarity enhancing using classical image processing and machine learning has
already been an existing practice. But the limitations of these processes includes
time complexity , efficiency and lack of intelligence on building up identity from dis-
torted images. Classical image processing implements basic mathematical models
that can not stretch the features out of an image.And Machine learning is based
on biased data learning which requires an adequate amount of dataset and classi-
fication. But there are many scenarios where generating that adequate dataset is
critical and predictions need to be made within limited learning. One of these sce-
narios is restoring distorted images from an environment specific dataset. In most
of these cases Machine learning can not predict without pre trained data and there
are limited models to solve specific problems.Moreover the training requires a huge
amount of good dataset.

In these cases the study and implementation of AI based approaches is getting
more emphasis than ever before. So we approached with the initial idea of im-
plementing AI in image processing , to be specific image restoration. Which can
open new possibilities. One such area to solve was restoring single channel night
vision images from cctv footage where crucial data need to be retrieved and in many
cases the identity in an image may need optimization to extract specific events or
identity for various purposes. Starting from criminal identification to accidents and
low vision events. Where image clarity and noise can distort to a great deal of extent.

All these facts and studies inspired us to implement AI agent in image pixel process-
ing so that an agent can be trained in a limited data environment and a Q-map can
be implemented for that particular agent properties which will result in completing
the structure for exploration and exploitation of the dataset.

With all that study and hypothesis we started working with a novel approach,
based on Pixel Reinforcement Learning. Initially we approached a Hierarchical im-
age processing model to build the Deep Reinforcement Learning environment. With
that being implemented we further implemented the Q-Map model and the architec-
ture of generating the trained output model so that it can be tested in future events.

The whole process faced a lot of optimization because the architecture of rein-
forcement learning generated an exponential time and space complexity which was
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further needed to be optimized by tuning the layered architecture.

But after all these there still remained few backlogs due to space complexity. As
we had a limited access to hardware. The theoretical and the practical requirement
for the processing exceeded the limit of memory to allocate 80281600 bytes (total
5234877440 bytes). The processing architecture was based on CUDA and Cudnn.
And the physical architecture uses Nvidia Tensor core or in alternative only the
CUDA core. All the results generated were benchmarked in Nvidia Geforce GTX
1060 with a memory capacity of 6 Gigabyte.

So, we had to train them in batches and compile the results. Moreover the sin-
gle channel images needed to be pre processed from the cctv images to make sure
the agent’s do not learn any false data as the environment is already limited to data
sources.

Starting from the hypothesis to implementation after all the preparations the model
was successful to denoise and develop the image which is noisy and blur.Using the
deep reinforcement learning in single channel night vision images. Moreover after
the optimization of the system the model ran in a considerable amount of memory
complexity.

The major benefit of building up such a model was the AI agents can be trained in
a very limited dataset that in our case is almost as low as 500 images.The system
is faster in predicting. And the learning procedure is carried out by batch episode
of iterating the dataset by the agent. In a whole the model took less time to be
trained. It was fast and robust in case of testing / generating output. The concept
of using the agents to develop the image was successful in all claimed scenarios in
efficient ways.

The results and the approach showed promising outcomes and the future imple-
mentation and research are vast in this field.The limitations need to be optimized
and we worked on the specific fields of cctv images. But we are very optimistic
about implementation of this AI model in dynamic video processing. Video clarity
optimization in specialized scenarios. This model showed such an efficiency that
we assume this model can be further tweaked and implemented in bigger image
processing complexity such as torn/missing image segment restoration , predicting
identity and many more endless opportunities by further research.
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