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Abstract 

At present, intelligent virtual assistants (IVA) are not only about delivering the functionalities 

and increasing their performances; they also need a socially interactive personality. As human 

conversational styles are measured by our sense of humor, personalities, tone of voice, these 

qualities have become essential for conversational intelligent virtual assistants. Our proposed 

system is an anthropomorphic intelligent system that can hold a proper human-like 

conversation with emotion and personality. It can also be able to imitate any person's voice 

given; voice audio data is available. Initially, the temporal audio wave data will be converted 

to frequency domain data (Mel-Spectrogram), which contains distinct patterns for audio 

features like the notes, pitch, rhythm, and melody. A parallel CNN, Transformer-Encoder, is 

used to predict the emotion from 7 different audio data classes. This audio is also fed to the 

deep-speech, an RNN model that consists of 5 hidden layers. From the spectrogram, it 

generates the text transcription. Then the transcript text is transferred to the multi-domain 

conversation agent, using blended skill talk and transformer-based retrieve-and-generate 

generation strategy and beam-search decoding an appropriate textual response is generated, 

which in turn gets synthesized to audio using WaveGlow that is based on WaveNet and Glow. 

It learns an invertible mapping of data to a latent space that can be manipulated and generates 

a Mel-spectrogram frame based on previous Mel-spectrogram frames. Finally, from the 

generated spectrogram, the waveform is generated using WaveGlow. A fine-tuned system can 

be used in the following but not limited to applications like dubbing, voice assistant, re-creating 

new movies with old actors. 

Keywords: IVA; NLP; SER; Emotion; Audio-Emotion; Personal-Assistant 



v 
  

Acknowledgment 

We are grateful to our supervisor, Dr. Md. Golam Rabiul Alam for guiding us throughout the 

process of conducting this thesis. Without his direct supervision, it would not have been 

possible to carry on such research and submit a comprehensive thesis. 

We want to express our gratitude to the unmet peoples on the internet for their selfless help and 

guidance throughout the research period. It would not have been easy to accomplish such a 

task without their help 

We are also grateful to our family and friends who have contributed a lot in accomplishing this 

task.  

Lastly, We would like to thank all our institute's teachers who have helped us gain valuable 

knowledge and insights throughout the four years of our under-graduation life.    

 

 

  



vi 
  

Table of Content 

 
Declaration................................................................................................................................ ii 

Approval ................................................................................................................................. iii 

Abstract .................................................................................................................................... iv 

Acknowledgment ...................................................................................................................... v 

Table of Content ...................................................................................................................... vi 

List of Tables ........................................................................................................................... ix 

List of Figures ........................................................................................................................... x 

List of Acronyms ..................................................................................................................... xi 

Chapter 1 Introduction............................................................................................................ 1 

1.1 Introduction .............................................................................................................. 1 

1.2 Problem Statement ................................................................................................... 2 

1.3 Research Objectives ................................................................................................. 4 

Chapter 2 Literature Review .................................................................................................. 5 

Chapter 3 Dataset Description .............................................................................................. 12 

3.1 RAVDESS ............................................................................................................. 12 

3.2 SAVEE ................................................................................................................... 12 

3.3 TESS ...................................................................................................................... 13 

3.4 CREMA-D ............................................................................................................. 13 

3.5 Indic TTS ............................................................................................................... 14 



vii 
  

3.6 LJ speech ................................................................................................................ 14 

3.7 Libri TTS ............................................................................................................... 15 

Chapter 4  Features & Augmentation .................................................................................. 16 

4.1 Features .................................................................................................................. 16 

4.1.1 Short-Time Fourier Transform (STFT) .................................................................. 16 

4.1.2 Mel-Spectrogram .................................................................................................... 16 

4.1.3 Mel-Frequency Cepstral Coefficients (MFCC) ...................................................... 17 

4.1.4 Delta ........................................................................................................................ 19 

4.2 Augmentation ......................................................................................................... 20 

4.2.1 Add noise ................................................................................................................ 20 

4.2.2 Signal Loss .............................................................................................................. 21 

4.2.3 Change volume ....................................................................................................... 21 

4.2.4 Spec Augmentation ................................................................................................. 22 

Chapter 5 Methodology ......................................................................................................... 23 

Chapter 6 Model Architecture .............................................................................................. 26 

6.1 2D Parallel CNN and Transformer-Encoders ........................................................ 26 

6.2 DeepSpeech: End-To-End RNN ............................................................................ 28 

6.3 Multi-domain conversational agent ....................................................................... 30 

6.4 Autoregressive Flow-based Generative Network for TTS Synthesis .................... 34 

Chapter 7 Implementation Result ........................................................................................ 37 

7.1 Measurements ........................................................................................................ 37 



viii 
  

7.1.1 Word Error Rate (WER) ......................................................................................... 37 

7.1.2 F1- Score ................................................................................................................. 37 

7.1.3 Mean Opinion Score ............................................................................................... 37 

7.2 Model Implementation ........................................................................................... 38 

7.2.1 Sequential 1D CNN ................................................................................................ 38 

7.2.2 Sequential 2D CNN ................................................................................................ 39 

7.2.3 CNN-LSTM ............................................................................................................ 41 

7.2.4 XResnet Models (Transfer Learning) ..................................................................... 42 

7.2.5 VGG19 (Transfer Learning) ................................................................................... 44 

7.2.6 Parallel 2D CNN with Transformer-Encoder ......................................................... 45 

Chapter 8 Conclusion & Future Work ................................................................................ 47 

Bibliography ........................................................................................................................... 48 

 

 

 

  



ix 
  

List of Tables 

Table 1: Comparison of 1D models ......................................................................................... 39 

Table 2: Comparison of 2D CNN models................................................................................ 41 

Table 3: Accuracy comparison of various  xResNet models ................................................... 43 

Table 4:Accuracy comparison of VGG19 models ................................................................... 44 

Table 5: Accuracy of Parallel 2D CNN with Transformer Encoder model ............................. 45 

Table 6: DeepSpeech accuracy improvement .......................................................................... 46 

 

 

  



x 
  

List of Figures 

Figure 1: Mel-Spectrogram (Sad, Angry) ................................................................................ 17 

Figure 2: MFCC (Excited, Neutral) ......................................................................................... 18 

Figure 3: Delta Features (Angry, Fear) .................................................................................... 19 

Figure 4: Noiseless audio ......................................................................................................... 20 

Figure 5: Audio with Gaussian noise. ...................................................................................... 21 

Figure 6: Augmented Spectrogram .......................................................................................... 22 

Figure 7: System's Flow Diagram ............................................................................................ 25 

Figure 8: Architecture of 2D Parallel CNN & Transformer-Encoder ..................................... 27 

Figure 9: Structure of DeepSpeech's RNN model and notation .............................................. 30 

Figure 10:  The Poly-encoder[57] Transformer architecture for retrieval encodes global 

features of the context using multiple representations (codes) ........................................ 31 

Figure 11: Retrieve and Refine architecture. ........................................................................... 33 

Figure 12: Flowtron Network[59]. Text and speaker embeddings are channel-wise 

concatenated. A 0-values vector is concatenated with x in the time dimension. ..................... 36 

Figure 13: Best 1D CNN loss graph ........................................................................................ 38 

Figure 14: Best 1D CNN accuracy .......................................................................................... 39 

Figure 15: Best 2D CNN accuracy .......................................................................................... 40 

Figure 16: Best 2D CNN loss graph ........................................................................................ 40 

Figure 17: CNN-LSTM best accuracy ..................................................................................... 42 

Figure 18: Unstable loss graph of CNN-LSTM ....................................................................... 42 

 

  



xi 
  

List of Acronyms 

IVA Intelligent Virtual Assistant 

SER Speech Emotion Recognition 

CNN Convolutional Neural Network 

GAN Generative Adversarial Network 

   

  

  

  

 

  



 

 

Chapter 1 

Introduction 

1.1 Introduction 

Lately, we are witnessing a race between several researchers and tech companies worldwide 

trying to improve and innovate in the field of artificially intelligent anthropomorphic personal 

assistants. They are more commonly referred to as Intelligent Virtual Assistant, IVA for short. 

From IBM Shoebox to Google Assistant, IVA technology has come a long way. Despite the 

best effort, IVA still falls short in many areas that are innate to human interaction, especially 

emotions and empathy. Strives are being made to clear the boundary between humans and IVA.  
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1.2 Problem Statement  

Although IVA has been out to the public for some time now, it is still very premature if 

compared with a human. Most contrasting characteristics with humans are: not getting the full 

context of the speech, lack of emotional recognition of the speaker, and no presence of 

personality. Current IVA can hold short conversations like asking, "what is the weather?", "do 

I have meetings?", "send an email", etc. Unfortunately, it is not yet possible to hold a 

meaningful, deep conversation. We will dissect three major limitations of current generation 

IVA: context, emotion, and personality. 

Firstly, current IVA technology disregards context, voice tone, etc. It cannot understand if a 

question is serious, sarcasm, or a joke. An infamous incident1 took place in 2012, a man 1 killed 

his friend and allegedly asked "SIRI" (a commercial IVA developed by Apple) where to hide 

the body. SIRI answered, not getting the full context, and surely enough, the murderer followed 

the instruction. However, after the incident, Apple, Siri's maker, disabled this conversation, 

and now Siri only responds with an apology. To add to that, these sophisticated virtual agents 

do not know anything about languages. When we say "Alexa (a commercial IVA developed by 

Amazon), what is the weather today," her voice-recognition model converts speech to text 

based on models of digitized sounds. The reason why we get desired results is that the sentence 

"what is the weather today" has words like "weather" and "what," which are classified as known 

intent for weather report searching. If we ask, "Alexa, I do not want to know about the weather 

today," the response will not be an expected one. 

Secondly, another area where IVA is severely lacking is emotion. As humans are driven by 

emotion, it creates a huge communication gap when communicating with IVA. This becomes 

more serious when it turns into a mental health issue. For some time now, all public-facing 

 
1 https://nypost.com/2014/08/13/accused-killer-asked-siri-where-to-hide-roommates-body 
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commercial IVA has been hard-coded to detect some trigger word. For example, if a user says, 

"I want to kill myself," to IVA, it will show suicide helpline and prompt them to get help. But, 

if we rephrase the sentence in a different way, like "I don't want to wake up tomorrow," IVA 

will not show help; it will try to cancel tomorrow's schedule or do a simple search. This happens 

because the tone of voice is a big indicator of emotion. Without an emotional context, that 

sentence can mean many things, from killing oneself to sleeping on the weekend morning. An 

emotionally aware IVA can help a lot of people who are suffering from mental health issues. 

Lastly, current generation IVA does not have a personality. It is easier for humans to relate and 

connect with others if they have similar personalities[1]. All of the current IVA has two 

significant challenges to meet: How to transmit both effective and personalized qualities in the 

form of a consistent and realistic speech when embedded in a computational framework [2]. 

The IVA needs to adapt its speech to different interaction types that users might use [3]. The 

benefit of having a personality in an IVA is that it can continue a proper conversation with 

human beings. The character of IVAs must be natural and believable and must reflect moods, 

personality, and expressions [4]. That is why an added personality will make a significant 

change in how we interact with the IVAs now, which will give us the feeling of having a 

companion. 

The issues mentioned above are very complex, and no one simple solution exists to fix those 

problems. Researchers are trying to come up with solutions that address those lacking. 

The issues mentioned above are very complex, and no one simple solution exists to fix those 

problems. Researchers are trying to come up with solutions that address those lacking. 
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1.3 Research Objectives 

There are many different ways IVAs from the current generation can be improved. 

Nevertheless, our research's objective is more specific. To develop a novel, emotion aware IVA 

that can impersonate any person's voice traits given, we feed the person's sufficient audio voice. 

The primary objectives of our research will be: 

● Processing raw audio and extract features that are co-related to emotion. 

● With the extracted audio features, classifying the proper emotions. 

● Generate proper emotional conversation responses. 

● Generating proper emotional tones/cues in the generated voice. 

● Mimicking voice with limited audio data. 
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Chapter 2 

Literature Review 

Speech Emotion Recognition is not a new research interest. We can find a conference paper 

[5] dated back to 1996, which tries to incorporate emotion with speech using statistical pattern 

recognition. Even though research interest in software emotion recognition has not changed for 

decays, its methodology certainly did. 

The traditional approach of recognizing emotion from speech comprises Modeling, 

Annotation, Audio Features, and Textual Features [6]–[9]. In classical modeling, two methods 

are commonly used. One is called discrete classes, and the other one is the two axes arousal, 

both suggested by H. Gune et al. [10]. Well, according to L. Devillers et al., after a model, the 

most important thing is to gather the proper emotional audio dataset that is not only properly 

labelled, but also suited to a model that focuses on the representation of emotions. [11]. In 

automatic emotion recognition, the Observer Rating may be an appropriate label that focuses 

on what emotion the speaker gave to the dataset rather than what emotion the speaker felt as 

B. W. Schuller et al. has been mentioned in his paper [12]. To avoid the rating annotations, 

acting or targeted elicitation was used in many previous works. While having the data labeled, 

one needs to extract the features of the audio data as well as the kind of emotional words in the 

audio transcript before experimenting with it in different algorithms. 

Because of the traditional approach's limitation, scientists and researchers are transitioning 

towards more modern techniques like Deep Learning. However, some of the inherent 

limitations of traditional SER are still present in the new methodology. Before we start, we 

have to discuss those challenges of SER and how researchers tried to overcome those issues. 

There are mainly three challenges we will face. 
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First of all, for robust emotional recognition, a holistic speaker model is needed, taking into 

account vocal attributes such as tone, pitch, volume, speech speed, voice condition. For 

example, the acoustic environment, tiredness, intoxication, hoarse voice due to having a cold, 

and many other factors may significantly impact the speaker's tone. Mismatch of those states 

and traits are shown to degrade the performance[13][14] of the models. Several DNN 

approaches have been proposed to address this issue. Glorot et al., in their paper [14], have 

demonstrated that Stacked Denoising Auto-Encoders can extract audio features without any 

labeled data or human supervision. This is made possible with the help of a small rectifier unit. 

Moreover, their approach has improved generalization over the baseline significantly. 

Similarly, Deng et al., in their paper[15], address the situation where training and test corpora 

are from different datasets. They proposed a "shared hidden-layer autoencoder" approach to 

reduce the discrepancy and extract common features caused by different states, e.g., speakers, 

environment, language. Experiment results showed it had an imposing result compared with 

other domain adaptation models. 

Second, efficient data collection is the key to an emotional recognition system. There have 

been fewer audio speech data available since the beginning, which are properly labeled with 

the emotional states that the audio speech expresses. Efforts have been made in the recent past 

to gather or generate and properly label audio speech data [7][13][14]. To combat this data 

scarcity, weakly supervised and semi-supervised approaches are introduced. Semi-supervised 

learning approaches could successfully label the rest of the dataset after training a model 

initially [16], [17]. To keep the data quality up, we just cannot rely on machine-generated 

labels. It is better to keep humans somewhat involved in the labeling process.  This hand-to-

hand cooperation of human labeling with a machine (Semi-supervised learning) is called 

Active Learning. 
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On the other hand, anyone can generate linguistically and emotionally matched speech audio 

data and compare it to the original reference audio speech in order to filter out less similar ones 

[12]. Generating audio speech and comparing it with the original reference audio are also done 

using generative adversarial networks. It's done with the help of two neural networks. The first 

neural network is trying to generate audio speech. At the same time, the second neural network 

attempts to calculate the difference and to identify which sample is original and which sample 

is generated [18]. Moreover, dissimilarity between generated and original speeches can be 

mitigated by transfer learning. Transfer learning has been successful to fully transfer sentiment 

from text to image[19]. We believe the same method can be used in SER. One of the recent 

developments in the Transfer learning field was bought by Google on their paper. The proposed 

system contains a speaker encoder network, Tacotron 2 based seq-to-seq synthesis network, 

and an autoregressive Wavenet based vocoder network. The authors modified their Tacotron's 

text encoder by removing the batch normalization. Instead, they went with instance 

normalization. They used neural network with decoder functionality which discarded 

Tacotrons key features which includes two layers called Prenet and Postnet. Attention 

mechanism based on tanh was mentioned the Singing Voice Synthesis Paper[20] was used. 

According to the authors, they used a speech synthesis model called Flowtron which generated 

speech audio samples. The generated samples were quite similar with the reference audios 

which is proved by the mean opinion score. The value was quite familiar with other state of the 

art speech synthesis models. Scenarios where no annotated data, no emotional speech 

synthesizer found, Deep Belief Network (unsupervised learning) can be used[21, p. 20] as it 

does not require explicit knowledge of emotion. If there is no speech data available, a rule-

based approach that exploits the knowledge existing in the literature is used. 

Finally, the last issue is the Naturalness of Generated Emotion. Due to vagueness and intrinsic 

complexity, generating emotion remains an ongoing challenge. However, not a lot has been 
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done in this direction. There are a few papers that try to address the challenge. Lee et al., in 

their paper[22], introduce a speech synthesizer based on end-to-end mode with context vector 

and residual connection at recurrent neural networks that can generate emotion given emotion 

labels. Another notable work[23] is done by Akuzawa et al., where they use VoiceLoop, an 

autoregressive SS model, with Variational Autoencoder (VAE) and overcome the lack of 

global characteristics of speech limitation. With this improved method, higher quality speech 

can be generated compared to VoiceLoop without label and control speech expression. Despite 

all the effort, voice generation is far from natural due to the inherent complexity and non-linear 

nature of emotion. Generative adversarial networks have shown promise[24], [25] regarding 

generating samples more understandable to humans. 

However, we would like to emphasize the importance of the Generative Adversarial Network 

(GAN) in this study. Since the first inception of GAN[26] in 2014 by Goodfellow et al., many 

GAN variations have been proposed by different researchers and have been successful in many 

real-life scenarios. From a publicly curated list2, there are more than 500 variants of GAN 

already available. In Image manipulation, GAN has achieved unprecedented success. Not as 

many, but some attempt has been made to incorporate GAN with audio synthesis and 

generation. Pascual et al., in their paper[27], propose a generative adversarial framework with 

an end-to-end speech enhancement method, which is an effective alternative to the current 

approach that works on spectral-domain and exploits some higher-level features. Due to the 

model's encoder-decoder fully-convolutional structure, it can operate fast on denoising 

waveform chunks. WaveGAN[28] is a raw audio synthesizer in an unsupervised setting.  It can 

generate text transcription from speech audios as well as generate audios from other sources 

like musical instrument, animals [28]. Another model named VoiceGAN[29], a novel neural 

 
2

 https://github.com/hindupuravinash/the-gan-zoo 
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network model for speeches which can generate human likely vocal audios. It trains to imitate 

the target speakers’ vocal attributes rather than focusing on what the speaker is saying and 

generate mel-spectrograms. Then, the spectrograms are converted using the Griffin-Lim 

method into time domain for speech audios. Oord et al., proposes WaveNet[30], which converts 

mel-spectrograms in to time domain audio waves that we hear as speeches. In the paper of 

Parallel WaveGAN[31], they proposed a method of generating audio waves with the 

mechanism of generative adversarial network. In this method, WaveNet is trained in which 

current mel-spectrograms do not depend on its previous time slice. Also, adversarial losses are 

minimized along with the training. In the field of text to speech model, one of google's papers 

proposed "Tacotron," which synthesizes speech directly from characters[32]. This model is an 

end-to-end generative text-to-speech model. 

Moreover, in another paper[31], researchers from google proposes a system that uses recurrent 

neural network that predicts the next feature according the previous features and context as 

well generates Mel-spectrograms with respect to the character embeddings. These Mel-

spectrograms are converted to a time-domain waveform via vocoder, a modified wavenet[33]. 

Combination of these two mechanisms generates good quality audio speeches from text 

transcriptions,which is also known as "Tacotron 2". Lastly, MelGAN[28] overcame the 

previous limitation of models by introducing architectural changes and simplifying training 

techniques. This model does not predict Mel-spectrogram based on previous Mel-spectrograms 

and also it follows convolutional approach which leads to fewer parameters than other fully 

connected neural networks like the competing models. One of the most advantages of this 

model is the fast-training speed compared to competing models. 

The next thing that comes up is learning features from the labeled data. All the basic features 

like happiness, sadness, anger, fear, and many more should be optimally fitted to the labeled 
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data. After that, the unquantifiable features like acoustic environment, tiredness, etc., should 

be learned. There are two popular ways of learning feature representation. The first one is 

"speech to words," which focuses on  phonetic level features of the audio and maps them to the 

text transcriptions [34]. The other way is "audio-word re-tagging" of hierarchical clustering—

for instance, parts of speech tagging in textual word handling. In recent past, we have seen a 

new model architecture that has been able to generate great performance in the field of speech 

emotion recognition by utilizing convolutional neural network approach with long short term 

recurrent neural network added at the last layer [7]. 

On the other hand, proposes  Glow [35], which uses an invertible 1 x 1 convolution to generate 

a simple type of generative flow. By the use of this convolution, they have shown improvement 

in "log-likelihood" of any data on standard benchmarks, which will further be used in speech-

generating models like WaveGlow[36], which is intended to generate high-quality speeches 

from Mel-spectrograms. WaveGlow provides high-quality audio waves by merging model 

architectures both from WaveNet [30] and Glow [35].  

In early 2020, google presented an open-domain chatbot  Meena [37], which is an enormous 

2.6B parameter neural network model. The researchers have found a way to show human-level 

rationality by boosting the probability of the next token on huge conversational data mined 

from social media. In the Facebook AI's recently published paper [38], they have presented 

different versions of conversational agents with big amounts of parameters. These models 

blend the attributes that a natural human-like conversation might have liked having a 

personality, giving proper time to the writer, having knowledge as well as empathy, raising 

different points to continue a healthy conversation etc.  

The confidence measures are an integral part of emotion recognition engines. Learning 

emotion, along with human agreement side by side, can be an effective way of measuring 
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confidence. It means that the model does not classify emotions directly. Rather, the model will 

classify how many people agreed on which emotion the audio was, and will eventually give us 

the standard deviations of the prediction from the reference labels. [12]. Another way could be 

training a compression auto-encoder which takes all the features into consideration and tries to 

differ between what was given into the model and what label was generated. The variations in 

the difference represents the confidence in speech emotion recognition results. Estimating 

acoustic degradation or word error rate is another means of confidence measure. 

The reliability of the SER system is known by looking through the papers where researches 

mentioned about the obstacles, they faced in the related domain lately. However, lack of 

properly labeled data and various perceptions about the same labeled data are creating barriers 

to get desired accuracy in speech emotion recognition domain. 
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Chapter 3 

Dataset Description 

We used multiple datasets to get well-rounded data for our models. Some of the data were 

created professionally, and some were crowdsourced. We were careful not to introduce any 

bias in our model, so we tried to balance every data with an equivalent counterpart. For 

example, SAVEE had only male actors, so to compensate, we have added a TESS dataset that 

contains only female actors. To ensure we get an accurate representation of the real world, we 

have added the CREMA-D dataset, which is very diverse and contains audio with different 

accents and quality. We have added a summary of the datasets we have used below. 

3.1 RAVDESS 

RAVDESS[39] is the short form of "Ryerson Audio-Visual Database of Emotional Speech and 

Song." Although the full dataset contains speech and song, audio, and video, we will be only 

using the speech audio-only files (16bit, 48kHz .wav) for our purpose. This speech audio 

dataset consists of 1440 files (60 Trial x 24 Actors), which were done by professional actors 

(12 female and 12 male) vocalizing two lexically similar statements in a North American 

accent. The speech dataset includes neutral, calm, happy, sad, angry, fearful, surprise, and 

disgust expressions with two levels (normal, strong) of emotional intensity. 

3.2 SAVEE 

The full meaning of SAVEE[40] is Surrey Audio-Visual Expressed Emotion. This dataset has 

high-quality audio of only male voices. There are four native English male speakers who are 

from the University of Surrey. The use of this male-only dataset will create biases in the models 

that will be trained. That is why it is advised to use this dataset with other datasets with more 

females (in our case, we used TESS) speakers. There are seven emotional categories of data in 

this dataset: anger, disgust, fear, happiness, sadness, surprise, and neutral. The age of the male 
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voices was from 27 to 31 years. The text material consists of 15 TIMIT sentences for each 

emotion. For one emotion, there are three common, two emotion-specific, and ten generic 

sentences that were different for each emotion and phonetically balanced. The three common 

and 12 emotion-specific sentences were recorded as neural to give 30 neutral sentences. In 

Total, there are 120 utterances per speaker.  

3.3 TESS 

TESS[41] is the short form of Toronto Emotional Speech Set. This dataset consists of the voices 

of two actresses aged 26 and 64. As a whole, there are a set of 200 target words that were 

spoken in this dataset. The audio recordings resemble each of the seven emotions: anger, 

disgust, fear, happiness, pleasant surprise, sadness, and neutral. There are 2800 audio files of 

the wav format in which the two actresses uttered 200 target words with respective emotions. 

It is recommended to use this dataset with male-only datasets to avoid biases in the generated 

model.  

3.4 CREMA-D 

CREMA-D[42] stands for "Crowd-sourced Emotional Multimodal Actors Dataset." This is a 

dataset of 7442 audio clips from 48 male and 43 female actors between the age of 20 and 74. 

The actors come from different races and ethnicities like African American, Asian, Caucasian, 

Hispanic, and Unspecified. This is the most diverse dataset of all the datasets we have included 

in this paper. The actors are assigned to speak from a selection of 12 sentences using one of six 

emotion categories. The emotion categories were Anger, Disgust, Fear, Happy, Neutral, and 

Sad. They had four levels of intensity (Low, Medium, High, and Unspecified). The participants 

rated the emotion and emotion level judging from audio-only, video only, and audiovisual 

presentation. The process was crowdsourced, and a total of 2443 participants each rated 90 
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unique clips consisting of 30 audio, 30 visual, and 30 audio-visuals. 95% of the clips have more 

than seven ratings. 

3.5 Indic TTS 

Indic TTS [43] is a project that uses a consortium of a high-quality corpus for building text to 

speech synthesis systems for 13 major Indian languages [44], which includes Bengali too. The 

dataset includes audio speeches along with text transcriptions. For each primary language, there 

is a male and a female speaker who utter the lines from various domains such as newspapers, 

fiction, science, etc. Moreover, audio speeches are recorded in a quiet and echo-less 

environment. The sampling rate of the recorded audio signals is 48KHz. The recorded audio 

data uttering English sentences in Bengali accent and Hindi accent of both male and female is 

15.23 hours and 15.75 hours. This speech corpus [44]  is intended to create various speech 

synthesis systems in the Indian language and English, where the systems will work better for 

the Indian accent.  

3.6 LJ speech 

LJ speech [45] is a dataset created by Keith Ito and Linda Johnson. This is an entirely public 

domain dataset. One speaker who is Linda Johnson herself uttered 13100 short audio clips from 

7 non-fiction books. The total length of audio clips is almost 24 hours. English transcription is 

created for each audio clip. Also, the audio clips are not fixed in length, varying from 1 second 

to 10 seconds. The dataset authors manually matched text transcription to the audio, and a QA 

was passed to prove that the transcripted words correctly matched with the audio speeches. 
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3.7 Libri TTS 

LibriTTS [46] is an extensive dataset totaling 585 hours of audio speeches of the English 

language. This multi-speaker English Corpus is created for building Text-to-Speech models 

and further research in this field. The audio signals sampling rate is 24kHz for this dataset. This 

dataset is generated from another corpus called LibriSpeech [47], changing the original 

dataset's different characteristics. The changes include changing the sampling rate to 24kHz, 

adding contextual information, excluding background noises, and including original and 

normalized texts in the dataset. 
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Chapter 4  

Features & Augmentation 

4.1 Features 

Different data cleaning procedures like noise removal, making the audios of equal lengths, and 

equally padded with silence at the beginning and end of the audio clips have been done with 

our datasets. We need the correct data and a good representation of our data for classification 

and predictive models, which we call features. We have identified multiple features of our 

audio data that we used to feed different models to experiment and get better results. 

4.1.1 Short-Time Fourier Transform (STFT) 

Short-Time Fourier Transform (STFT) is the baseline of all the features that we are going to 

discuss. STFT divides the audio waves into different equal segments, which are short and 

overlapping.  After that, the Fourier transform of each segment is used to generate power 

spectrograms. The goal of making power spectrograms is to identify resonant frequencies in 

the waveforms. The advantage we get from doing an STFT is that it identifies the changes in 

the audio signals in time series data. 

4.1.2 Mel-Spectrogram 

The Mel-spectrogram is a Mel-scale representation of frequencies created by fast Fourier 

transformation. The audio wave signals are converted from the time domain to the frequency 

domain by short-time Fourier transform using short and overlapping segments over the audio 

signals, and this is called the spectrogram.  The spectrogram's frequency axis is then converted 

into a log-scale as we humans have a minimal range of recognition of frequencies and 

amplitudes. Also, the color dimension is converted to decibels. Finally, the frequency axis is 

mapped on the non-linear Mel Scale to generate a Mel-spectrogram. Mel-spectrograms are 



17 
  

simplified analog representations of the power spectrograms in the Mel-frequency scale. This 

is another feature that can be used in different classification models. 

 

Figure 1: Mel-Spectrogram (Sad, Angry) 

4.1.3 Mel-Frequency Cepstral Coefficients (MFCC) 

Mel-frequency cepstral coefficients identify the changes in the pitch of audio signals. It is a 

mathematical function to transform power spectrograms of an audio signal generated by STFT 

into a small number of coefficients, representing the power of that audio signal in the frequency 

domain. There are some mathematical procedures that are done one after another for this 

transformation. First, STFT is used to generate audio power spectrums. Then, frequency bins 

are generated by applying triangular, overlapping window functions to the power spectrograms 

and taking the sum of each window's energy. After that, the frequencies of the audio signal's 

power spectrograms are mapped in the Mel Scale. 
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This mapping helps to finalize the number and position of window functions and the width of 

the frequency bins. The reason for using Mel Scale is that humans hear the audio pitches based 

on frequency ratios, and it is a non-linear pitch scale that represents the audio pitches in "mels" 

of audio in terms of its frequency. Window functions and frequency bins altogether are called 

mel filterbanks. Then, the log of the sum of audio signals power spectrogram, also known as 

cepstrum, is taken for each filterbank. Finally, for each filterbank, discrete cosine transform 

(DCT) is applied to the log of the sum of the power spectrograms to decorrelate them since 

there are correlations between filterbank energies. The benefit of using a discrete cosine 

transform is that it generates coefficients so that the audio signal is fairly represented by only 

the top few coefficients. So, the amplitudes of the discrete cosine transform of the log of the 

sum of the filterbank powers with respect to time are mel-frequency cepstral coefficients. 

MFCC paves us the way to deconvolutionize audio signals to identify resonant frequencies. 

 

Figure 2: MFCC (Excited, Neutral) 
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4.1.4 Delta 

Delta is the derivative of coefficients. In other words, Delta gives us an overview of the changes 

in coefficients. It helps us to identify the audio speeches better. With respect to time, the Delta 

of MFCC will represent a better understanding of the dynamics of power spectrums of audio 

signals. We will be using MFCC with the Delta of MFC coefficients combinedly as a feature 

for our models. 

 

Figure 3: Delta Features (Angry, Fear) 
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4.2 Augmentation 

4.2.1 Add noise 

Adding noise to the audio signal data can help the machine learning models to generalize the 

function better. For audio emotion recognition models, adding noise to the dataset can give the 

model an edge for better accuracy. Let us see how a typical audio speech sample looks after 

plotting the signal: 

 

Figure 4: Noiseless audio 

After adding noise such as Additive White Gaussian Noise with a sample audio speech, here 

is what the plot looks like: 
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Figure 5: Audio with Gaussian noise. 

4.2.2 Signal Loss 

Recording audio can suffer from loss of signals in the natural environment due to different 

hardware and latency issues. Most of the audio datasets are created in a noise-free environment 

for the clarity of the data. The machine learning models need to perform better in natural 

environments too. That is why the dataset it is training on should resemble characteristics of 

the natural environment. Hence, signal loss is applied to audio signals for augmentation.  

4.2.3 Change volume 

Generally, well-curated audio speech datasets maintain a steady level of volume. The people 

who create audio datasets are given proper rest to lessen their fatigue from long hours of audio 

sessions to maintain the same level of tone throughout the recording sessions. On a real-life 

environment, people do not talk like we trained actors with the systems. Sometimes they talk 

loudly. If the machine learning system is not robust to the loudness of the speech or 
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environment, it can perform inaccurately. That is why for augmentation, we seldom change the 

volume of some data just for the machine learning model's generalization purpose.  

4.2.4 Spec Augmentation  

Google has introduced a new augmentation method called SpecAugment [48] for automatic 

speech recognition. Conventional augmentation procedures are done over the audio signals. 

Googles SpecAugmentation applies the augmentation process on the spectrogram of the audio 

which is an image representation of the signal. This method does not cause any additional 

computational cost or data like other augmentation methods. After creating the spectrograms, 

SpecAugment distorts the spectrograms in horizontal and vertical axis which are respectively 

Mel-frequency channels and time steps. This augmentation technique gives the neural network 

models generalization above loss of information in the speech signals. 

 

Figure 6: Augmented Spectrogram 
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Chapter 5 

Methodology 

In the beginning, speech audio signals are taken as input from the user, which can be any 

command or conversational speech. The system analyzes the audio signals and extracts various 

useful features like Mel-spectrogram, Mel-frequency cepstral coefficients (MFCC), Delta of 

coefficients. These features work as a direct input to different models of our systems, which 

generates expected results. 

After that, the system uses the Parallel CNN and Transformer-Encoders [49] model taking Mel-

spectrograms as features to classify the audio signal's seven emotional states of the user's 

speech, i.e., anger, happiness, disgust, sadness. The emotional state will help further models to 

get the context of the speech.  

Then, the spectrograms of speech audios are fed into an RNN based speech-to-text model 

DeepSpeech [50], to generate an English text transcript. The default DeepSpeech model does 

not produce expected transcription well for the south east Asian accent for the English 

language. We get the word error rate (WER) of 0.44. That is why we tuned the DeepSpeech 

model on a consortium of a high-quality corpus of 13 major Indian languages [44], which 

achieved a WER of 0.18.  

At this moment, our system knows the "emotional state" of the user's speech and a transcription 

of what the user says to the system. These two attributes will be used by a multi-domain 

conversational agent[38] to generate contextual reply text for the user. The reply texts of the 

conversational agents will further be used for text-to-speech models.  

Furthermore, After getting reply texts from the conversational agent, the system will feed them 

into Flowtron [51] which will not only generate Mel-spectrograms for speech synthesis from 

text but also control different aspects of speech synthesis such as pitch, tone, speech rate, 
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accent. This will make the synthesized speech as human likely as possible. Also, emotional 

states can be added with these synthesized voices by transferring styles of given data. For 

example, if we want to generate an angry state of the synthesized voice, we will give angry 

emotional audio clips to the trained model function, and it will manipulate the synthesized 

speech to generate an angry version. Mel-spectrograms generated by Flowtron will be used by 

another model called WaveGlow [36] to generate speech audio signals. Thus, the user will hear 

conversational agents' reply with proper human-like voice along with human-like emotional 

states poured into the synthesized voice. 
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Figure 7: System's Flow Diagram 
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Chapter 6 

Model Architecture 

6.1 2D Parallel CNN and Transformer-Encoders 

To take advantage of CNN's image classification and feature representation capacity, we need 

to represent our extracted audio features like MFCC, the Mel Spectrogram graph as an image. 

Each value of the MFCC/Mel Spectrogram is the amplitude of the audio at a given Mel 

frequency range at a given time. Transformers are particularly good at predicting future 

frames/data. Since this is time-series information, we can use the Transformer to find the 

temporal relationship between pitch change and predict the future frequency distribution of 

particular emotions. This approach is the successor to the LSTM-RNN model that we tried 

earlier in our experiment. We use Mel spectrogram as our experimental feature for this model. 

Like all previous ones, this classification has seven emotional groups and four emotional 

datasets. Not all data is distributed proportionally. We need to divide them into train, test, 

validation data while preserving proportionality. 

Utilizing the wisdom of previous CNN papers' findings, the proposed model was 

developed[49]. Conv, Pool, Conv, Pool, FC layer pattern was implemented in the architecture 

of LeNet. AlexNet presents the idea of increasing the sophistication of features by channel 

expansion using stacked CNNs.  Parallelization was inspired by GoogLeNet [52] and 

Inception, which lets us diversify the features we learn from the data. The idea of using a 

smaller size kernel comes from VGGNet, which replaces AlexNets (11 x 11), stride 5 with (3 

x 3) kernel, and gains significant improvement over it.  
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Figure 8: Architecture of 2D Parallel CNN & Transformer-Encoder 

 

CNN with 2D Conv layers is the de facto methodology for image processing. For our case, we 

have to imagine the Mel-Spectrogram plot as a single channel black and white image. There 

are two primary reasons for using two stacked filters: feature sophistication and efficiency. If 

we stack three layers of (3 x 3) kernels, in the second stack, the kernel will sell (5 x 5) view, 

and the third stack will see (7 x 7) view of the original input. On the other hand, If we used a 

single (7 x 7) layer, it would have performed only a linear transformation. Moreover, we have 

been able to minimize excessive computation by using a stacked kernel. If we take the channel 

as constant, then for (3 x 3) kernel, we will have 27C^2 parameters, whereas (7 x 7) kernel will 

have 49C^2 parameters. In summary, using smaller stacked kernels, we are getting more 

intricate features and making the model more efficient. The sequential expansion of filter 

complexity and reduction in feature maps will give us the best hierarchical features with the 

lowest possible computation cost. 

The motivation for the transformer encoder is to learn the temporal features and hope that it 

will be able to learn the frequency distribution of different emotions according to the global 
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structure of the Mel-spectrogram of each emotion. RNN-LSTM was a possible candidate for 

this job, but it would have learned to predict the frequency changes according to time steps. 

The nature of the Transformer allows it to look at multiple different timestamps using a multi-

head self-attention layer, which will, in turn, let us predict the next. As the transformers are 

very good at generating sequential data, the author expected it to perform well by looking at 

the entire sequence of frequencies, not just one timestamp. Max-Pooling the input Mel-

Spectrogram map to the Transformer dramatically reduces the complexity and number of 

parameters. 

Initially, "Adam" optimizer was used because it usually works decently out-of-the-box. But 

due to the fact that better performance is achievable by the good old SGD, the author changed 

the optimizer later with the highest momentum leading to convergence and acceptably long 

training time.  

 

6.2 DeepSpeech: End-To-End RNN 

At Silicon Valley AI Lab, Baidu researchers have made a well-optimized end-to-end RNN 

speech training system called "Deep Speech" with novel data synthesis techniques to obtain 

ample amounts of varied data for training achieving a 19.1% error rate on noisy speech dataset 

produced by them. [50]  

The system takes spectrograms of speech audios and generates the text transcription in English. 

The training set that is arranged for this system is, 𝑋 = {(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(𝑦)), . . . }where x 

is a single utterance and y is denoted as a label. A single utterance 𝑥(𝑖)is a collective of vectors 

of audio features in a time-series of length 𝑇(𝑖), 𝑥(𝑖)
𝑡
;  𝑡 =  1,2, . . . , 𝑇(𝑖). The objective of the 

RNN is to convert an input sequence 𝑥 into a character probability sequence for the text 

transcription ŷ𝑡 = ℙ(𝑐𝑡 | 𝑥); 𝑐𝑡  ∈  {𝑎, . . , 𝑧, 𝑠𝑝𝑎𝑐𝑒, 𝑏𝑙𝑎𝑛𝑘, 𝑎𝑝𝑜𝑠𝑡𝑟𝑜𝑝ℎ𝑒}[50].  
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The RNN model comprises five hidden layers. The units of the hidden layer are denoted as 

ℎ(𝑙);  𝑙 represents each layer. Among the hidden layers, the first three layers are non-recurrent. 

The fourth layer is a bi-directional recurrent layer [53]. The fifth hidden layer unites both 

forward and backward units of bi-directional recurrent layers.  

At first, the first layer takes spectrogram frame 𝑥𝑡   ;  𝑡 =  𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑖𝑐𝑒 as well as a context 

of 𝐶 frames. For each time step 𝑡, the second and third non-recurrent layers work by taking 

independent data. The computational function of the first three layers is: 

ℎ(𝑙)
𝑡 = 𝑔(𝑊(𝑙)ℎ(𝑙−1)

𝑡  +  𝑏(𝑙)); 𝑊(𝑙) = 𝑤𝑒𝑖𝑔ℎ𝑡, 𝑏(𝑙) =  𝑏𝑖𝑎𝑠, 𝑙 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟 

 

where 𝑔(𝑥) = 𝑚𝑖𝑛{𝑚𝑎𝑥{0, 𝑥},20}is a rectified-liner (ReLu) activation [54] function. After 

that, the fourth bi-directional layer is created by two hidden units: forward recurrence ℎ(𝑓)and 

backward recurrence ℎ(𝑏). The computational function of both units is:  

ℎ(𝑓)
𝑡 = 𝑔(𝑊(4)ℎ𝑡

(3) + 𝑊(𝑓)
𝑟 ℎ(𝑓)

𝑡−1 + 𝑏(4)) 

ℎ(𝑏)
𝑡 = 𝑔(𝑊(4)ℎ𝑡

(3)
+ 𝑊(𝑏)

𝑟 ℎ(𝑏)
𝑡−1 + 𝑏(4)) 

In the case of forwarding recurrence, for each utterance 𝑖, ℎ(𝑓)is computed sequentially 𝑡 = 1to 

𝑡 =  𝑇(𝑖). On the other hand, for backward recurrence ℎ(𝑏)is computed sequentially in reverse 

order, 𝑡 = 𝑇(𝑖)to  𝑡 = 1. Both forward and backward hidden layers are combined and fed into 

the fifth layer. The computational function of the fifth layer, which is not recurrent, is:  

𝑔(𝑊(5)ℎ𝑡
(4) + 𝑏(5)) ; ℎ𝑡

(4) = ℎ(𝑓)
𝑡 +  ℎ(𝑏)

𝑡 

Finally, the output layer predicts the character probabilities with the help of the standard 

SoftMax function: 

ℎ(6)
𝑡,𝑘 =  ŷ𝑡,𝑘 ≡  ℙ(𝑐𝑡 = 𝑘 | 𝑥) = 𝑒𝑥𝑝(𝑊𝑘

(6)ℎ𝑡
(5) + 𝑏𝑘

(6))  ∕  𝛴𝑗𝑒𝑥𝑝(𝑊𝑗
(6)ℎ𝑡

(5) + 𝑏𝑗
(6)
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𝑊𝑘
(6) =  𝑘𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥, 𝑏𝑘

(6)  =  𝑘𝑡ℎ 𝑏𝑖𝑎𝑠  [50] 

 

Figure 9: Structure of DeepSpeech's RNN model and notation 

6.3 Multi-domain conversational agent 

To have a neutral conversation, an agent must have several skills, such as engaging, 

knowledgeable, and empathetic, while sticking to the personality. Many prior approaches 

sought to acquire these abilities in isolation, but the actual human-like conversation goal was 

not accomplished. A team of Facebook researchers showed that these skills could be taught to 

a broad number of models if we provide adequate training data and generation strategy. 

Recently published, Blended Skill Talk[55] (BST) offers conversational context and training 

data that can be used to train multi-domain human-like conversational agents.  

The generation algorithm is also an indispensable part of the process. A model with the same 

accuracy but with a different generation algorithm can produce a completely different result. 

The authors also noted that the length of utterance plays a significant role in human judgment, 

whether it is engaging or not. According to the experiment, a too-short utterance can make the 

human judge perceive the bot as dull and uninterested. On the other hand, too-long utterances 
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make the judge feel the bot is not listening and distracted. Despite the previous report of beam 

searching being inferior to sampling[37], [56], the study shows that by tweaking the minimum 

beam length, control over the dull versus spicy response generation can be achieved. 

In this study, three types of architecture were used: Retriever, Generative, and retrieve-and-

refine models. All of which were derived from the Transformer model. 

 

Figure 10:  The Poly-encoder[57] Transformer architecture for retrieval encodes global 
features of the context using multiple representations 

(codes) 

 

The Retriever model works by scoring the set of possible responses and outputting the highest 

probable one, given we have conversation history as input. The researchers used poly-encoder 

architecture[57] to encode global features of the context using several representations attended 

to by each potential candidate response[58]. The final attention mechanism allows us to achieve 

better performance over a single global vector representation. It generates context embedding 

and dot product it with each response candidate. The embeddings are created in two steps. 

Firstly, the model gets the candidate embedding using a transformer-based encoder and an 



32 
  

aggregator function that takes the classifier embedding output or the token's mean. After that 

model encodes the context using another transformer and performs an "m" attention block. 

Each attention uses the Transformer output as keys and values, and the learned ci code is unique 

for each attention. On top of this embedding, another attention is calculated. The key and values 

are the output from the other attention.  

 

One of the most significant benefits of poly-encoders is that it gives a state-of-the-art 

performance on some dialogue tasks compared to other retrieval methods on ConvAI2 

competition tasks based on human evaluation.  

The generator approach is similar to the seq2seq model proposed in the Transformer [58] paper, 

but the main difference is that it is a lot bigger. For comparison, Google's Meena[37] has 2.7B 

parameters, whereas the blender model has 90M, 2.7B, 9.4B parameter versions.  

Lastly, there is the retrieve and refine the approach. It mixes the previously mentioned two 

models. The retrieval model's output goes as an input of the generative model using a unique 

separator token. Utilizing this method, the authors tried to mitigate the known shortcomings 

like knowledge hallucination, disability to read new and external knowledge, dull and repetitive 

answers. They worked with two types of retrieval models: dialogue retriever and knowledge 

retriever. Dialogue retriever uses dialogue history to generate a response. Knowledge retriever 

gets its information from a large knowledge base. In this scenario, a transformer is trained to 

determine whether a knowledge retriever should be used. 
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Figure 11: Retrieve and Refine architecture. 

For decoding, Beam Search, Top-K-sampling, sample-and-rank-sampling strategies were used. 

There are many different algorithms to decode the final output sequence as our model gives a 

probability distribution over the vocabulary. We need to select one word at a time until we 

reach the end of the statement. We can use greedy algorithms to choose the best word each 

time, but the final result may not be the overall best probable sentence. To mitigate this, we 

predict beam_size (possible sentences). At each step, we predict the next beam_size token for 

each sentence and select the one with the most probable beam_size. We stop if we reach the 

end character (complete "n" sentences) or after t steps. Next comes the Top-K sampling 

algorithm. Here, at each step, the word "i" is chosen by sampling the model distribution from 

the "k" most likely candidates.  

Along with the decoding process, some additional constraints were tested. Minimum length 

forced the model to produce a result with a defined length. Another one was a predictive 

retriever model, which predicts the sentence's length and limits the generation to that length. 
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The last one was beam blocking, where the model was forced not to generate any trigram, a 

group of 3 words, in the next utterance if that is in the input or utterance itself. 

6.4 Autoregressive Flow-based Generative Network for TTS Synthesis 

Text is required for Mel-spectrogram synthesis, which will have non-textual information such 

as tone, accent, pitch. Also, non-textual information needs to follow the style of the given audio 

data. If we give the model some audio data of a particular emotion, such as anger, surprise, 

etc., the synthesized Mel-spectrogram should copy the style we refer to as "Style Transfer." 

NVIDIA researchers have introduced a model called "Flowtron," which does exactly the same 

thing as mentioned above. Flowtron does this by maximizing the probability of training data. 

Flowtron learns an invertible mapping of data to a latent space that can be manipulated to 

control many aspects of speech synthesis[59], including pitch, accent, speech rate, tone, etc. It 

generates a Mel-spectrogram frame based on previous Mel-spectrogram frames. 

The whole sequence of frames is 𝑝(𝑥) =  ∏ 𝑝(𝑥
𝑡

| 𝑥1:𝑡−1) . Two types of distributions, p(z), 

are used to be sampled by the neural network, which is used as a generative model in the 

flowtron. The first distribution is a zero-mean spherical Gaussian, z ∼ N (z; 0; I). The other 

one is a mixture of spherical Gaussian with fixed or learnable parameters. The samples are 

transformed into p(x) from p(z) by going through "affine transformations," which are invertible 

and parameterized transformation. We know that flowtron uses an invertible neural network. 

Invertible neural networks are constructed using coupling layers [35] [60], in this case, affine 

coupling layer [61]. For each input 𝑥𝑡−1a scale, 𝑠 , and a bias is produced. This scale and bias 

affine transforms the next input 𝑥𝑡: 

(𝑙𝑜𝑔 𝑠𝑡, 𝑏𝑡)  =  𝑁𝑁(𝑥1:𝑡−1, 𝑡𝑒𝑥𝑡 , 𝑠𝑝𝑒𝑎𝑘𝑒𝑟) 

𝑥′𝑡  =  𝑠𝑡  ⊙ 𝑥𝑡  +  𝑏𝑡 
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Here, 𝑁𝑁()denotes any autoregressive causal transformation. A zero vector is concatenated 

with other inputs of 𝑁𝑁() to implement this. The 𝑁𝑁()needs not to be invertible, but the affine 

coupling layer preserves the whole network's invertibility. In the autoregressive structure, 

every t-th variable 𝑧′
𝑡depends on its previous timesteps from the star 𝑧1:𝑡−1: [62] 

𝑧′
𝑡=𝑓𝑘(𝑧1:𝑡−1) 

Flowtron is maximizing the data's log-likelihood by utilizing the parameterized affine 

transformation and the autoregressive structure mentioned above. These are possible by using 

the change of variables:  

𝑙𝑜𝑔 𝑝𝜃(𝑥)  =  𝑙𝑜𝑔 𝑝𝜃(𝑧)  + ∑𝑘
𝑖=1

𝑙𝑜𝑔 | 𝑑𝑒𝑡( 𝐽 ( 𝑓𝑖
−1(𝑥))) | 

𝑧 =  𝑓−1
𝑘

○ 𝑓−1
𝑘−1

○ . . . 𝑓−1
0

(𝑥) 

Mel-spectrograms are converted as vectors and run through several affine coupling layers 

conditioned on the text and fixed dummy speaker embedding. Each affine coupling layer is 

called the "flow." Finally, the processed vectors are forwarded to pass through the neural 

network.  

Randomly sampled z values from Gaussian Mixture or spherical Gaussian with fixed or 

flowtron predicted parameters are run through the trained neural network to infer. The inferred 

Mel-spectrograms are decoded into waveforms using a single pre-trained WaveGlow [36]  

model trained on a single speaker. 
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Figure 12: Flowtron Network[59]. Text and speaker embeddings are channel-wise concatenated. A 0-values 

vector is concatenated with x in the time dimension. 
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Chapter 7 

Implementation Result 

7.1 Measurements 

7.1.1 Word Error Rate (WER) 

The word error rate is based on the Levenshtein distance[63]. It is computed by the minimum 

number of operations, i.e., insertion, deletion, substitution, to be performed to generate a text 

hypothesis that is similar to the reference text data. The computational function of WER is:  

 

here 𝑑𝐿(𝑟𝑒𝑓𝑘,𝑟 , ℎ𝑦𝑝𝑘) is the Levenshtein distance from ℎ𝑦𝑝𝑘 to 𝑟𝑒𝑓𝑘,𝑟. 

7.1.2 F1- Score 

F1 score is the weighted average of Precision and Recall. Therefore, this score takes both false 

positives and false negatives into account. It is used to balance precision and recall. F1 score 

is better than accuracy in cases where class distribution is uneven. So, for our case, we took the 

F1 score as our measurement Matic. 

7.1.3 Mean Opinion Score 

Mean opinion score (MOS) is a measure used in the video, audio, and audiovisual, representing 

the overall quality of a stimulus or system. It is the arithmetic mean over all individual "values 

on a predefined scale that a subject assign to his opinion of the performance of a system 

quality." Such ratings are usually gathered in a subjective quality evaluation test, but they can 

also be algorithmically estimated. It is expressed as a single rational number, typically in the 
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range 1–5, where 1 is the lowest perceived quality, and 5 is the highest perceived quality. This 

metric is calculated using the arithmetic mean over a single rating performed by humans.  

 

Here, R is the rating given for the clip, and N is the number of participants. We will compare 

two of our models using this metric to determine which one is better and also provide a real 

demonstration. 

7.2 Model Implementation 

7.2.1 Sequential 1D CNN 

We started our emotion classifier from scratch. To get the feel of the MFCC feature, we used 

the mean value of the feature to determine the class of the emotion using a 1D Convolutional 

Neural Network. The approach was too naive and was not able to produce a good result. We 

removed the gender class (reducing it to 7 from 14) to make it more predictable, but the best 

result we could produce is 50.28% accuracy with 100 Epoch and MFCC value of 13. 

 

Figure 13: Best 1D CNN loss graph 
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Figure 14: Best 1D CNN accuracy 

 

Table 1: Comparison of 1D models 

Model Epoch Optimizer Class Accuracy Parameters Augmentation 

1D_CNN 100 RMSprop 14 42.98% n_mfcc=13 no 

1D_CNN 100 RMSprop 14 49.02% n_mfcc=13 no 

1D_CNN 100 RMSprop 7 50.28% n_mfcc=13 no 

 

After seeing the result, we came to the conclusion that it would not be a very smart idea to 

spend on this approach, so we moved onto the next method. 

7.2.2 Sequential 2D CNN 

Then we used the MFCC values to create an image and use Convolutional Neural Network to 

classify the image. By classifying the image, we were able to classify the emotion as well. The 

first trial gave us a somewhat hopeful result, so we went further with it. We tried different 

parameters and tried to tweak the model. The initial accuracy was 67.08%. Using only the 
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augmented data seemed to reduce the accuracy even more. When we added augmented data 

and real data together and trained the model with it, we got the best result. MFCC coefficient 

also plays a decent role in increasing accuracy as it increases the resolution of the feature. The 

number of epochs also positively influences the accuracy result to a certain degree. After that, 

we get diminishing returns. For 100 epochs, we got an accuracy of 72.26%. After that, we 

increased the epochs value by 50%, making it 150, but the result accuracy was increased by 

0.01%. 

 

Figure 15: Best 2D CNN accuracy 

 

Figure 16: Best 2D CNN loss graph 
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Table 2: Comparison of 2D CNN models 

Model Epoch Optimizer Class Accuracy Parameters Augmentation 

2D_CNN 100 Adam 7 67.08% mean(n_mfcc = 30) no 

2D_CNN 50 Adam 7 67.58% mean(n_mfcc = 30) no 

2D_CNN 35 Adam 7 69.58% mean(n_mfcc = 30) no 

2D_CNN 100 Adam 7 69.42% mean(n_mfcc = 30) yes 

2D_CNN 50 Adam 7 66.95% mean(n_mfcc = 30) yes 

2D_CNN 35 Adam 7 68.07% mean(n_mfcc = 30) yes 

2D_CNN 100 Adam 7 68.33% mean(n_mfcc = 50) no 

2D_CNN 50 Adam 7 68.79% mean(n_mfcc = 50) no 

2D_CNN 35 Adam 7 69.45% mean(n_mfcc = 50) no 

2D_CNN 100 Adam 7 72.26% mean(n_mfcc = 30) yes 

2D_CNN 50 Adam 7 70.84% mean(n_mfcc = 30) yes 

2D_CNN 35 Adam 7 69.79% mean(n_mfcc = 30) yes 

2D_CNN 150 Adam 7 72.27% mean(n_mfcc = 30) yes 

 

7.2.3 CNN-LSTM 

We also tried the CNN-LSTM model. We only ran this model on a RAVDESS dataset, but the 

result it produced was indeed promising, but from model loss graphs, we can get the idea that 

this model is not stable. The first time we ran the model, we got an accuracy of 59.02%, but 

after running the model again, the accuracy jumped to 72.91%. We ran the experiment several 

times but could not make the model stable enough for our use. Thus, we abandoned the method. 
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Figure 17: CNN-LSTM best accuracy 

 

Figure 18: Unstable loss graph of CNN-LSTM 

Table 3: CNN-LSTM Accuracy Result 

Model Epoch Optimizer Class Accuracy Feature Augmentation 

CNN-

LSTM 

100 SGD 8 72.91% Log-mel 

spectrogram 

yes 

 

7.2.4 XResnet Models (Transfer Learning) 

xResnet50[64]  is one of the most popular architectures in computer vision research. We tried 

to experiment with xResnet50 and xResnet18, which are relatively small in size but good in 

terms of training speed and accuracy. We used both heavy and light augmentation for the 
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experiment and observed the performance. The augmentation includes removing silence, the 

addition of white noise, signal loss, changing volume, resize, using different spectrogram-

augmentation [48], which modifies the spectrogram to gain robustness against deformation of 

spectrograms in the time direction. For features, we have chosen MFCC images with delta, 

Mel-Spectrogram with parameters optimized for voice speeches to experiment with. We did 

not get any significant accuracy improvement from these experiments. We also found that 

applying heavy augmentation decreases the accuracy of the models. 

Table 4: Accuracy comparison of various  xResNet models 

Model Feature Data Accuracy Epoch Augment 

xresnet50 MFCC + Delta RAVDESS, 

CREMA-D, 

TESS,  SAVEE 

0.698602  25 RemoveSilence,AddN

oise, SignalLoss, 

ChangeVolume, resize 

xresnet18 MFCC + Delta RAVDESS, 

CREMA-D, 

TESS,  SAVEE 

0.701891 25 AddNoise, resize 

xresnet50 Mel Voice RAVDESS, 

CREMA-D, 

TESS,  SAVEE 

0.715049 15 AddNoise, resize 

xresnet50 Mel Voice RAVDESS, 

CREMA-D, 

TESS,  SAVEE 

0.680921 15 RemoveSilence(Trim), 

Resize, 

MaskTime(size=4), 

MaskFreq(size=10) 
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7.2.5 VGG19 (Transfer Learning) 

VGG19 [65] is another version of the VGG model with 19 layers, including 16 convolution 

layers, three fully connected layers along with five max-pooling layers, and one SoftMax layer. 

This model is a relatively older and simple mode, but still, it is an effective one. That motivated 

us to experiment with this model. The reason behind our experimentation with VGG19 is that 

it is just another decent classification architecture for images that works well despite being very 

simple and transfer learning is possible with this architecture. Just like xresnet models, we used 

MFCC and delta features for VGG19. We also augmented the datasets by removing silence, 

resizing the images, changing volume, adding noise, and signal loss. However, the model did 

not perform up to the mark for the datasets that we used. 

Table 5:Accuracy comparison of VGG19 models 

Model Feature Data Accuracy Epoch Augment 

VGG19 MFCC + Delta RAVDESS, 

CREMA-D, 

TESS,  SAVEE 

0.707237 15 RemoveSilence(Trim), 

AddNoise, SignalLoss, 

ChangeVolume, resize 

VGG19 MFCC + Delta RAVDESS, 

CREMA-D, 

TESS,  SAVEE 

0.685033 15 AddNoise, resize 
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7.2.6 Parallel 2D CNN with Transformer-Encoder 

Parallel 2D CNN has a sequential expansion of filter complexity. It reduces feature maps 

gradually, which gives us high-quality features with better computational performance. 

Moreover, the transformer encoder learns the frequency distribution of different emotional 

categories by focusing on the temporal features. Mel-spectrograms of the audio signals has 

been used as a feature for this model. We have added Gaussian white noise to the data as a 

procedure of augmentation. We have got noticeable accuracy for the respective dataset that we 

used for this model.  

Table 6: Accuracy of Parallel 2D CNN with Transformer Encoder model 

Model Feature Data Accuracy Epoch Augment 

Parallel 2D 

CNN with  

Transformer 

Encoder 

Mel Spec RAVDESS, 

CREMA-D, 

TESS,  SAVEE 

0.8667 400 AddGausian

WhiteNoise 

 

7.2.7 DeepSpeech Tuning 

We have used the DeepSpeech [50] model for the generation of English transcripts from speech 

audio clips. However, the baseline model did not come up with a promising output for input 

data given by us. We assumed that it might happen for our accent as we are from the south east 

Asian region and not native English speakers. That's why we tuned the DeepSpeech model with 

the Indic TTS [43] project. We had to clean the articles from the datasets and prepared them in 

a structure that is suitable for the deep speech model. As per our assumption, the tuned model 

gave a much better result. Better accuracy is possible if we train it more dataset and for a longer 

time. 
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Table 7: DeepSpeech accuracy improvement 

Metric Trained Model Deepspeech Model 

Word Error Rate 0.18 0.44 
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Chapter 8 

Conclusion & Future Work 

We faced different challenges while implementing the models. A lot of things have changed in 

the recent few months. NLP is a fast-evolving domain; it is very hard to keep up with the latest 

and greatest technology. All the tech giants like Google, Facebook, Microsoft, Baidu, Amazon, 

are competing in this area. While we feel excited to read the papers of the industry titans, but 

the pressure to keep apace is equally overwhelming. With Flowtron's pre-trained models, we 

added various style data to further tweak and extend our models. The open-domain 

conversational model worked as hoped it would. We were also very successful with the 

accuracy of the Speech-to-Text model that was tweaked for our sub-continent. Overall, the 

system we build performed way better than we initially thought it would. Unfortunately, there 

are still many paths which were left unexplored. We noticed, there are not any emotion style 

datasets available to the public. We would like to create an emotional style dataset, which will 

be aimed towards audio style transfer. We also think there are ways to tweak the Parallel 2D 

CNN Transformer-Encoder model. We would like to investigate the possible modification of 

the model in the future. We think better accuracy in emotion recognition is very much possible 

by using different audio features, augmentations and tweaking new transformer based models. 
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