
Feature and Performance Based Comparative Study on
Serverless Framework among AWS, GCP, Azure and Fission

by

Sabiha Nasrin
20141043

T I M Fahim Sahryer
20141044

Partha Pratim Mazumder
16301141

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

June 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Sabiha Nasrin
20141043

T.I.M. Fahim Sahryer
20141044

Partha Pratim Mazumder
16301141

i

Approval

The thesis/project titled “Feature and Performance Based Comparative Study on
Serverless Framework among AWS, GCP, Azure and Fission” submitted by

1. Sabiha Nasrin (20141043)

2. T.I.M. Fahim Sahryer (20141044)

3. Partha Pratim Mazumder (16301141)

Of Spring, 2021 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on June 06, 2021.

Examining Committee:

Supervisor:
(Member)

Jannatun Noor
Senior Lecturer

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

skazi@bracu.ac.bd
Signature

Abstract

Cloud computing is one of the most flourishing technologies in today’s internet based
world and the upcoming trend for the future. It has roughly been a decade of the
development on this field. The first initiative had been taken by the world class
companies like Amazon, IBM, Microsoft, Google etc. And in a matter of time the
average companies, brands and enterprises has adopted this revolutionary technol-
ogy by building their own cloud platform. One of the very recent technology of cloud
is the serverless technology. Here the server side management is conducted by the
cloud providers and the clients’ only need to deploy their codes once in the server.
This system prevents a great deal of unessential consumption of power and is a Pay-
as-you-go service. This technology has added a great impact on the software and
application development. But the major obstacle to this development field is that
there are not enough documentation on how the big companies provide this facility
and how their architecture is build. However many developers can not decide suit-
able platform for their required application. Also documentation on privately built
serverless architecture is not available. This can be done through massive documen-
tation on comparison and evaluation on the existing cloud platforms on which the
companies can run their own serverless applications and embrace the hybrid world.
Therefore, our research purpose is to focus on the serverless architecture of the ex-
isting platforms. A comparative study with necessary measures can be effective and
efficient to use for further serverless implementation. So, we and others can follow
our research for understanding the technical complexity. We will emphasize on the
actual characteristics of serverless throughout our work. Furthermore, our goal is
to come up with effective analogy on how different serverless platforms behaves in
different Use cases.

Keywords: Serverless, Docker, Virtual Machine, AWS Lambda, GCP, Azure, Ku-
bernetes, Fission, Comparison analysis, Load balancing, elasticity.

iii

Dedication

We want to dedicate our thesis work to our parents, without whom, it wouldn’t
have been possible to come to this verge of graduation neither could we achieve
anything. We also want to dedicate our work to the doctors and people who have
fought tremendously in this time of pandemic to safe the life of others.

iv

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption.
Secondly, to our Advisor Jannatun Noor miss for her kind support and advice in
our work. She helped us whenever we needed help.
And finally to our parents and families without their throughout sup-port it may
not be possible. With their kind support and prayer we are now on the verge of our
graduation.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables xi

Nomenclature xii

1 Introduction 1
1.1 Background Study . 1
1.2 Problem Description . 2
1.3 Aim of the study . 2
1.4 Motivation . 2
1.5 Contribution . 2
1.6 Limitation of the study . 3
1.7 Overview of the Thesis . 3

2 Related Work 4

3 Theoretical Framework 9
3.1 Basics of Cloud Computing . 9

3.1.1 Definition . 9
3.1.2 Cloud Services . 9
3.1.3 Cloud Deployment type . 10

3.2 Basics of Serverless Architecture . 12
3.2.1 About Serverless . 12
3.2.2 Definition . 12
3.2.3 Serverless Components . 13

3.3 Container & Virtual Machine . 13
3.4 Kubernetes . 14

vi

3.5 Fission . 17
3.6 Amazon AWS . 18
3.7 Google Cloud Platform . 21
3.8 Microsoft Azure . 23

4 Methodology 26
4.1 Goal of Analysis . 26
4.2 Selected comparative cloud features 27
4.3 Comparative feature for Program Execution 28
4.4 Proposed Model . 29

5 Experimental Setup 31
5.1 Amazon Seb Service . 31
5.2 Google Cloud Platform . 31
5.3 Microsoft Azure . 31
5.4 Fission . 32

6 Experimental Results and Findings 33
6.1 Result of Feature Analysis . 33

6.1.1 Comparative Study of the selected Features 33
6.1.2 Tabular form of comparison study 38

6.2 Result of Practical Experiment . 38
6.2.1 Recursive Function execution comparison 38
6.2.2 Image Processing Execution comparison 41

6.3 Findings . 45
6.3.1 Findings on Feature Comparison 45
6.3.2 Findings on practical Implementation 45

7 Future work and Conclusion 47
7.1 Conclusion . 47
7.2 Future work . 47

Bibliography 50

Appendix A 51

A Setting up Cloud Platform and Practical Implementation Proce-
dures 51
A.1 Microsoft Azure . 51
A.2 Amazon AWS: . 54
A.3 Fission: . 75
A.4 GCP: . 83

vii

List of Figures

3.1 Structural Architecture of Kubernetes 15
3.2 Structural Architecture of Fission . 18
3.3 Structural Architecture of Amazon AWS 20
3.4 Structural Architecture of Google App Engine 22
3.5 Structural Architecture of GKE . 23
3.6 Components of Microsoft Azure . 24

4.1 Overview of the Proposed Model of Serverless Architecture) 30

6.1 Execution Time Comparison between AWS, GCP, Fission 42
6.2 Memory usage comparison between AWS and GCP 42
6.3 Comparison Between AWS and GCP for Image Processing Execution

Time . 43
6.4 Memory usage comparison between AWS and GCP 44
6.5 Average memory usage comparison between AWS and GCP 44

A.1 Microsoft Azure Portal (Dashboard) 52
A.2 Azure Serverless Function creation 52
A.3 Deploying Serverless Function app using Microsoft code studio 53
A.4 Detailed Function testing in Azure 53
A.5 Function app public HTTP trigger in Azure 53
A.6 Live function log of Azure function 54
A.7 Amazon AWS Management Console 55
A.8 Lambda function for Java runtime and editor 55
A.9 Java Maven project for Lambda function in IDE 56
A.10 pom.xml file for Lambda dependencies and plugings 57
A.11 Lambda inline code editor for Python environment 58
A.12 Lambda function logs with details . 59
A.13 Graphical view of Lambda function execution 59
A.14 Workflow diagram of Image Processing in Lambda function 60
A.15 Layer directory for openCV . 61
A.16 Installation of pip3 . 62
A.17 Installing openCV in directory . 62
A.18 Lambda layer size limitation . 63
A.19 Lambda layer from S3 bucket object 64
A.20 Adding customized layer in the Lambda function 64
A.21 Failed to import library from customized layer in Lambda 65
A.22 Ubuntu20.04 server EC2 instance details 65

viii

A.23 Taking over control of EC2 instance with IP .pem key in host machine
terminal . 66

A.24 Setting role in S3 bucket for permission 67
A.25 Role creation for EC2 instance . 68
A.26 Uploading layer package from EC2 instance to S3 bucket 68
A.27 Downloading library image for Python3.8 from Docker repository . . 68
A.28 Installing library in our directory with bash command 69
A.29 Setting S3 permission role in Lambda function 70
A.30 Setting Lambda function execution policies in S3 bucket role 70
A.31 Source code of image processing in the Lambda function 71
A.32 Time limit error for initialize duration 71
A.33 Success log for image processing function execution 72
A.34 Gray-Scale images processed by the Lambda function 72
A.35 Input Color Image . 73
A.36 Output Gray-scale Image . 73
A.37 Various type of trigger options in Lambda function 74
A.38 Adding Kubectl repository and Installation 75
A.39 Verifying Kubectl cluster information 76
A.40 Adding Minikube repository and Installation 76
A.41 Downloading dependent components for starting Minikube 77
A.42 Interacting with the cluster . 77
A.43 Kubernetes (or Minikube) local host dashboard 78
A.44 Starting specific Kubernetes version 78
A.45 Checking and verifying the Kubectl version 78
A.46 Checking the cluster and NodePort IP 79
A.47 Adding repository and installation of Helm 79
A.48 Exporting and Creating NameSpace for Fission 80
A.49 Adding repository and installation of Fission CLI 80
A.50 Error for function name structure miss match 81
A.51 Successfully running a serverless Python function in Fission 81
A.52 Recursive function and Execution time measurement function code

for Fission . 82
A.53 Execution time value for multiple time execution of the recursive func-

tion . 82
A.54 Function error calculating 40th Fibonacci number 83
A.55 Google Cloud Platform Console (Dashboard) 83
A.56 Google Cloud Functions’ in line code editor 84
A.57 Deploying the recursive function in Google Cloud Functions 85
A.58 Log for running the recursive function in Google Cloud Functions . . 85
A.59 Function details with graphical overview 86
A.60 Workflow of Image Processing in Google Cloud Functions 86
A.61 Bucket details with our input color image 86
A.62 Default bucket roles . 87
A.63 Deployment error for miss matched library function for Python 87
A.64 Requirement library files for image processing with specific version . . 88
A.65 Image processing function code for Google Cloud Functions 89
A.66 Finding processed gray-scale image in the bucket 89

ix

A.67 Successfully running the image processing function in Google Cloud
Functions . 90

x

List of Tables

6.1 Feature comparison of Cloud platforms 40
6.2 (AWS) Execution time for different Fibonacci numbers in 41
6.3 (GCP) Execution time for different Fibonacci numbers in 41
6.4 (Fission) Execution time for different Fibonacci numbers in 41
6.5 (AWS) RAM usage for each iteration 43
6.6 (GCP) RAM usage for each iteration 44

xi

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AWS Amazon AWS Cloud Service

Azure Microsoft Azure

FaaS Function as a Service

GAE Google App Engine

GCE Google Compute Engine

GCF Google Cloud Function

GCP Google Cloud Platform

GCR Google Cloud Run

GKE Google Kubernetes Engine

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

xii

Chapter 1

Introduction

1.1 Background Study

In the advancement of modern age we are now more driven in the data centric
technology in our day to day activities. We prefer more of a predictive world and
expect more accuracy from the technologies than ever before.The more we dive into
a data centric technology the more we require space, compatibility of hardware
and security for our data. This act of demand has given birth to a new era of
technology, that is the Cloud. Storage, server, compatibility, network, database,
intelligence, sophisticated economy, scalability putting all this together creates a
Cloud platform. The more we are advancing towards web based applications and
online on demand services, the more small, private and independent companies
or organizations are entering into the techno industry. In order to suffice the on
demand need of the audiences, the companies need to provide a spontaneous service
through their platform. For small or medium companies, it is unreasonable to
own a Cloud server. Vendors can rent cloud properties from simple storage to
database, networking, computation, processing power for machine learning, artificial
intelligence to natural language processing and everything that does not require any
hardware or physical presence close to the server. From the client side, they only
need to subscribe to a Cloud provider for renting access and using the instances
provided by the cloud providers and paying a usage or subscription charge for the
service.
With the growth of the cloud service industry, there has been a lot of variety and new
opportunities provided by the leading cloud providers. But for the lack of guidance
and documentations of the versatile cloud dimension, potential customers often fails
to see the optimal option for their desired application. As a result, the metaphor of
the Cloud service remains hidden behind closed doors. Hence, we tried to deliver
a comparison based study on the most demanding Public cloud provider namely
Amazon Web Service, Google Cloud Platform and Microsoft Azure. Additionally
we introduced a new comparison with the open source Fission serverless platform
to enhance the paradigm of the study [17]. According to our study, we also have
designed a serverless architecture. This study will guide the potential users to help
choosing the right Cloud provider for their work.

1

1.2 Problem Description

Today’s Cloud platforms are providing numerous facilities and advancement in terms
of compute, storage, mechanism, capabilities, pricing method, security system, data
storage advancement and so on. The cloud computing features are upgrading and
updating time to time, for which there are not much documentation on the updated
facilities. Moreover, the advancement is too fast that potential users can not keep
track with the growing industry [27]. For which, they are not able to understand
which will be the better solution to choose. Even in cases, there is one provider
who might be well efficient in Machine Learning computation but not well enough
in back-end API management. There are such cases, which varies over providers to
providers.
Most of the recent studies are focused on the theoretical comparison of the lead-
ing cloud servers but very few actually showed any practical implementation. For
which, there is no way to understand which platform will perform better in what
environment and data. Again, no research conducted any implementation on any
kind of open source cloud platform. Therefore opportunities for development in
open source platforms are not highlighted in most cases.

1.3 Aim of the study

Our work is to help developers to choose among the popular three cloud providers
based on feature analysis. Our work will also guide them to choose between given
two serverless use cases that we have showed in the practical experiment. This
study also opens up new development opportunity for the new developers in an
open source platform. Our serverless architecture can provide a powerful and event
driven efficiency in terms of serverless computing.

1.4 Motivation

Cloud Platform is now a days the new fashion in techno industry. Companies are
diving in this new wave of technology. But unfortunately, there are not much re-
search done in this field. Big and small companies around the world have already
shifted to this new platform. Our work will open up opportunities for new develop-
ers to choose their work space among the three chosen platforms and will also help
them make new development.
Most of the new developers like us are mostly unaware of the technological advance-
ment of serverless cloud computing. But as we studied through the features, compo-
nents and applications that can be deployed through serverless, we have come to the
conclusion that, serverless can be the next revolution in the technological industry.
The young developers like ourselves should not lag behind from this revolution.

1.5 Contribution

In brief, following are our contribution with this paper:

1. We have provided a fair feature based comparison study between top three
popular cloud provider.

2

2. We made comparison with this new open source platform Fission which has
never been mentioned in any research work before. This will open a new
paradigm in the serverless cloud computing.

3. We have designed a new serverless architecture prototype which is a futuristic
architecture and will add a new illustration in serverless cloud computing.

1.6 Limitation of the study

We have conducted our work on only three public cloud provides and practically
implemented only on two of them. Although there are some other public cloud
providers who are very popular in the industry. There are a bunch of use cases for
serverless, but we could only execute for two. That is because, the other services
are paid ones and this is not favorable for students like us. As we are not provided
any fund by any organizations.
For the world wide pandemic situation, we had to work remotely. We did not get
access of our lab and server, where we needed a lot of resource. For which we
could not implement some features of our design. Specially the proposed model of
serverless, which needed access to our university server.

1.7 Overview of the Thesis

Our thesis work consists of seven chapters. Chapter One is for Introduction of
our thesis work, Chapter Two is the literature review of previous work and related
research, Chapter Thee consists of the necessary theoretical framework and their
details, Chapter Four outlines the methodologies that we used for comparison anal-
ysis, Chapter Five show all the experimental setups that we needed to conduct out
experiment, Chapter Fix consists of all the results and discussion of our experiment
and finally Chapter Seven concludes our thesis work with the future opportunities
that this study hold.

3

Chapter 2

Related Work

The study [22] presents the newest envision of cloud computing, the Serverless ar-
chitecture based on Amazon Lambda and discussed a working principle of serverless
computing. In this paper cloud computing is presented as an on demand com-
pute power consumption process for both the web applications and IT resources.
Serverless has the ability in enhancing the dispatch on provisioning resources while
minimizing the client size management. This paper noted the increment of hyper
scale data centers from 338 to 628 by 2021 which is about 53 percent of all existing
data centers these days. Hyper scaling the data centers for faster, more reliable and
automated systems is the current goal. Serverless computing has been signified as
a pool of virtual machines which bestows resources such as hardware, software, OS,
runtime environment. It provides the function as a service (FaaS), where developers
can trigger their events through API and record actions. The author emphasized on
lighgh waited applications which are basically stateless applications that are trigger
based. The paper discussed some use cases that are now shifting towards serverless
for better performance. Such as multimedia processing which are now using event
trigger computing for doing watermarking, transcoding, data fetch etc. The types of
files that are processed here are text file, image and video. Then comes the broad-
casting of live video, which harmonizes audio and video streams received from one
end to another. The computation is done through function and delivered through
Content Delivery Network (CDN). Thirdly the Iot data, received form various digi-
tal devices, processed through event based computer architecture and finally carried
to other nodes of data storages. Lastly, the shared delivery process, an event based
proclamation advertises notifications of the owner company to the nearest outlet.
One Lambda function appended with an AWS EC2 instance is triggered that creates
a snapshot, proclamation of the success of the instance creation. Lastly they talked
about the Deviceless Edge Computing, that is the non cloud leading serverless sys-
tem.

The research [25] presented an architecture in their paper that conducts an experi-
ment that identifies the problems of stateful microservices of serverless in terms of
kubernetes and proposed a solution that will use a state controller to enrich kuber-
netes for the state replication and automation of the application towards a healthy
node or entity. This operation undergoes secondary label management. Their pro-
posed solution has increased the recovery time upto 55-99%. Here, microservices
basically defines the serverless functions while kubernetes is a local host platform

4

and an orchestration tool for deploying private serverless functions through contain-
ers. Stateless microservices are often considered the most suitable for deployment
and replication as they do not preserve state and can be interchanged among the
pods or instances. But this is not the case for stateful microservices as the state can
not be elastrated without synchronization. This research work has illustrated their
survey on finding the limit of resource in kubernetes for stateful microservice and
the effect of state controller for stateful microservice. They have deployed a state-
ful microservice with stateful set controller and deployment controller. They have
achieved automatic redirection of applications towards healthy instances for stateful
microservices with a significantly lesser amount of time and they have figured that
the redirection of pods takes lesser time then restarting of a pod.

The author in his paper[1] evaluated AWS and Microsoft Azure, which are two of the
most popular cloud systems. They concentrated their research on three key cloud
features: storage, cloud type, and computing service supplied and they compared
these features in depth. They presented their findings in a table containing all of the
elements listed, as well as some user case studies and recommendations. They came
to the conclusion that Amazon RDS is paid on a per-use basis. The deployment
technique used in here is standard.

Author conducted a study in which they compared AWS, Microsoft Azure, and
Rackspace [3]. They concentrated their comparison on the price and performance
of these platforms. They showed cost-benefit analysis on small, medium, and large
computations using memory and CPU. From their analysis they revealed that AWS
had the superior cost plans in case of small and medium scale computing, while
Microsoft is less costly in case of big scale computing. Rackspace was determined to
be more expensive across all three situations. They considered AWS as more cost
effective solution.

Author Aljamal conducted a survey on the high performance computing (HPC) of
four prominent cloud platforms, including Microsoft Azure, Amazon, Google, and
Oracle [12]. To assist consumers of HPC apps, they analyzed the services on offer
as well as the comparative benefits of each of the selected cloud platforms. Cloud-
based high-performance computing (HPC) is one of most popular study topic. It’s
a low-cost solution for performing high performance computing and eliminates the
need for a dedicated cluster. They included feature like migration tools, developer
tools, and management tools for comparison. This research revealed that while not
all cloud platforms may meet consumers’ requirements, the majority of them offer
a wide range of services and amenities to maintain and entice new and existing
consumers. According to popularity and market share, Microsoft and Microsoft has
more popularity and user rather than any other provider.

Author Dutta [19] investigated the top three most popular cloud platforms, which
were AWS, Microsoft, and Google. Their research concentrated on the storage, com-
putation, and management features that these platforms offered. Before picking the
finest Cloud Service Provider, a firm should define its particular requirements with
context to IaaS, SaaS & PaaS. According to their findings, even if AWS has a larger
market share, it would be incorrect to believe it provides the better services because

5

Microsoft and Google are increasing their facilities.

In this study author Dordevic compared two popular cloud computing systems, Mi-
crosoft Azure and Amazon Web Services based on the computing performance and
service of both platforms. Ubuntu Linux Server 14.04 LTS 64-bit on same virtual
machine is used for performing the test based on researcher’s specified parameters
which included price per hour, CPU cores, disk space, and RAM [2]. The findings of
their compression indicated that both systems are relatively equivalent in terms of
performance. If only CPU and storage space are considered, Microsoft Azure gives
tiny advantage over AWS.

Serverless technology is quite a new practice in the modern era and the development
of the work has not yet spread with the developers. And the topic we have chosen to
work with is a completely new serverless platform. First off, containers were intro-
duced to intact the necessary requirement to run an application and bundle them up
for easy portability among domains. Then to give it a form in the cloud sector and
to overcome its shortcomings, developers introduced serverless architecture which
took part in the wider range of business administrations. It has been only about five
years in this field and there is very little research so far recorded. Therefore, we lack
resources while doing research in this field and more importantly container based
serverless systems have not been introduced widely before. Therefore our research
is comparatively new. Yet we have analyzed some documents in the serverless and
container basics to understand more details of the architecture.

Serverless computing is rising as a new and incredible paradigm for the arrangement
of cloud applications because of the recent shift of enterprise application architec-
tures to containers and micro services. More precisely, the State of the Cloud 2018
report shows a very impressive growth rate of serverless, picking up to 667 per-
cent. This means that the expanding consideration that serverless architecture has
gathered in industry expos, meetups, web journals, and the developer community.
Containerization evolved resource-sharing further through OS-level virtualization
[14]. Containerization is a standard unit of software that packages up code and all
dependencies. Containers hold all the components that configure the actual code,
the runtime engine and dependencies packaged in a software unit which is called
docker and this is necessary to run a specific software program and a minimal sub-
set of an OS.

Virtualization and Containerization introduced provisioning speeds and efficiencies
but further improvements are limited by the management of underlying infrastruc-
tural components, in this case, servers. Reference [6] defines serverless computing as
“a software architecture where an application is decomposed into ‘triggers’ (events)
and ‘actions’ (functions), and there is a platform that provides a seamless host-
ing and execution environment.” Serverless processing visualizes a model of figuring
whereby successfully all assets are pooled including hardware, operating systems
and runtime environments.In serverless architecture simplified programing models
are used by engineers for building cloud applications that abstract away most. It
brings down the expense of sending cloud code by charging for execution time as
opposed to asset assignment and a stage for quickly conveying little bits of cloud

6

code that reacts to events.

From the point of view of a cloud supplier, there is an extra chance to control the
whole advancement stack, diminish operational expenses by efficient improvement
and the board of cloud assets by using serverless architecture. This architecture
supports the utilization of extra administrations in their environment, and lowers
the exertion required to create and oversee cloud-scale applications.

Characteristics: There are a number of characteristics of serverless architecture:

• Cost: Typically, in serverless functions users are allowed to pay for the time
and resources used by them. How much every time you are utilizing that much
amount of money you have to pay that is why people thought that serverless
architecture was the best fit. This is a key benefit of serverless architecture.

• Programming languages: Serverless services support a so many programming
languages including Javascript, Java, Python, Go, C# and Swift. Most plat-
forms support more than one programming language.

• Deployment: Developers just need to provide a file with the function source
code.

• Security and accounting: This is multi-occupant and must hide the execution
of capacities among clients. Serverless function give detail about what user
have to pay

• Performance and limits: In serverless architecture limits can be set. Limit
depends on the runtime resource requirements of serverless code, maximum
memory and available CPU resources .Limits and performance are increased
or decreased depending on the user’s need.

Benefits: Application developers need to think about the cost of codes in Server-
less architecture. User and service provider both are benefited by the serverless
paradigm .Developers no need to think about managing servers and VMs and no
need to pay more. For providers it’s easy to get control over the software stack by
using a stateless programming model .Provider can transparently deliver security
patches and optimize the platform.

In another paper of microservice based architecture, the authors tried to make a new
architecture which assures the availability of state-full microservices and identifies
problems. Here they mentioned that micro-service availability is high in Stateless
microservices but in State-full it is different [22]. That is why they use Kuber-
netes with a State Controller which replicated and automatic service redirection to
the healthy entries through the management of secondary labels. Here they also
compared the Default configuration of Kubernetes with the other architectures for
availability perspective such as OpenSAF. In the containerization concept the micro-
services mainly focuses on the IOT based systems which are Stateless, whereas the
containers are isolated. That means the containers are separated from each other.
So for this process it needs to deploy and manage by orchestration platform. Which
handle the deployment, scaling and management of the applications. In this con-
tainerization concept availability is a non-functional and very important things. But

7

in Docker it is not that much reliable as for cloud computing availability is a must
needed thing. For this problem Kubernetes make it better by increasing the avail-
ability 55% to 99%. For this here OpenSAF middleware is used for implementation
Availability Management Framework. They also observed that the node failure
handling is improved by changing the Kubernetes configuration parameters to 22%
better.

In the paper, there is analysis on a container based serverless architecture and how
docker can be best suited for the system. Serverless features are nothing but whole-
some of some IaaS (Infrastructure as a Service) and this can be provisioned through
the virtual machines in the traditional cloud system. But for the easy portability
and compatibility of the Docker images, Dockers are more suited for this applica-
tion. Amazon also offers their CMP as a service and this makes it easier to explore
[15]. The AWS Lambda also provisions the trigger functions executed in the runtime
through the container like lambdas depending on the requests. The AWS Lambda
process is less complex processing and a large sum of parallelism is being used in
the processing. But the execution of a general application is a little difficult in this
case. But with the image processing and Docker Hub support the difficulty can
be minimized in the serverless platform. The cost reduction and response time of
AWS Lambda has been recorded to be 70% better than the other approaches in the
serverless and by introducing the high throughput computing programming model
the parallel paradigm can be emerged to a larger scale. Docker image can bring this
new paradigm.

8

Chapter 3

Theoretical Framework

3.1 Basics of Cloud Computing

Our field of research is based on cloud computing. Thus, we present the study of
Cloud Computing from the very scratch.

3.1.1 Definition

Cloud is a kind of infrastructure containing heavy high end servers for storage which
requires a heavy cooling system. Also for operating the inner system and hardware
maintenance, it requires experienced developers and engineers in both hardware and
software. Leading cloud vendors in present time are Amazon web service (AWS),
Google cloud, Microsoft Azure, IBM and the rest large organizations have their own
cloud server such as facebook, youtube, tweeter etc. Cloud platforms have become
so popular in our daily life that people in general don’t even know when they are
using it and for how long they are spending time on it. Our regular activities for
instance email, dropbox and drive, social activity, online applications starting from
grocery to share market, business and every other possible things are all created
based on some kind of cloud platform. With this advancement, the small startups
and personal web applications become more handy. More developers are motivated
to work on new business ideas and design new forms of service applications. The
cloud platform therefore was getting more popular until it reached a new prototype.
This has become so handy for the advancement of some big cloud companies to lease
their servers and services to the other seeking companies. Cloud is an open source
paradigm which is available for anyone who wants to build their own private or
public cloud and use it. In this way a company can ensure more security and reduce
any third-party involvement in their sensitive data and the process has become more
secure.

3.1.2 Cloud Services

The traditional cloud services falls upon two categories of cloud services: Infrastruc-
ture as a service (IaaS), Software as a service (SaaS), Platform as a service (PaaS).
After many developments in cloud service, there came this Function as a service
(FaaS) which basically is the base service provided in the serverless architecture.
This is the upgraded version of Platform as a service and provides a whole new

9

dimension to cloud computing. Here are the cloud services described below:

Infrastructure as a service (IaaS) : The most basic type of cloud service is in-
frastructure as a service. This is the idea of virtualized compute space where clients
need not think about hardware resources as the cloud provider will provide a virtual
work environment which will act as a physical machine. Companies or organizations
only need to subscribe for the number of Virtual cloud workspaces with their spec-
ification and thus the cost is reduced to minimum. Security, scalability, reliability,
database management all these features are managed by the cloud providers.

Software as a service (SaaS): This is another type of cloud service that provides
access to software that is used in a wider range but needs to be maintained centrally
or some that need a lot of access over time. Cloud providers offer this kind of appli-
cations using privilege with a subscription charge or pay as you go basis. This helps
the organizations and specially business by no provisioning of data synchronization
or software maintenance.

Platform as a service (PaaS): In this category of service, both infrastructure
and software service are provided to the client, that is a working environment is
provided. Clients can manipulate it by making their own applications and deploy-
ing it by using these resources. It provides a platform where clients can both enjoy
the cloud services and also work their way out. Load balancing and scalability are
automated, so the end users need not think about that.

Function as a service (FaaS): FaaS provides services like PaaS but instead of
a wider work space, it gives a trigger based service which adds a whole new layer in
the PaaS. It provides an segregated workspace where developers are unaware of the
computing platform and everything except for the code. This infrastructure is built
upon containers in most cases. The code or application is deployed through forms
of functions which are mostly stateless and type of the functions are microservice
based applications. The block events are triggered into the system and are only
activated when the function triggers. The service only charges for the amount of
resources used and the time of execution.

3.1.3 Cloud Deployment type

Based on the purpose of the operation, type and range of application, security patch
required for the application and many other features like this, Cloud computing is
divided into four major types of service. All of these have different features and are
defined to achieve different purposes from the system. The types of cloud deploy-
ment and their pros and cons are described below:

Public Cloud: Public cloud has a wide range spread across general purpose com-
puting and it provides both Software as a Service (SaaS) and Infrastructure as a
Service (IaaS). It is offered by Amazon, Google Cloud and Microsoft. For software
development and test cases, public clouds are often used. After verification, those
software are moved into other cloud platforms. The space availability in the public
cloud is unlimited.

10

The billing process follows pay as you go theory which includes IT and development
cost as well. As public cloud spreads a vast area in the internet world, the scalability
is also very simple and quick. As it can merge with other available clouds to handle
outbound traffic. Security patches are not as strong in public clouds than that of
public or other cloud platforms. The system management and operating systems
are all under control of the service provider. Therefore it is difficult to change in the
default set ups and apply personalized systems, environment and Operating system.
The secret credentials and datas are often shared with one or many third parties
outside of the organization. This makes the security even more vulnerable.

Private Cloud: These are pre-purchased cloud platforms owned by a single orga-
nization. The availability scale is not as huge as private cloud but it is very strict
and well maintained. Only authorized customers can use the private cloud. Apart
from the authorized users, access is restricted for any one else. These clouds are
usually dedicated to significant companies and the company can do whatever they
want within the cloud.
Security is very strictly maintained in private clouds and secret credentials and data
are not accessible without authentication. As there is no outsider involvement in
this platform, companies can modify, change, share or move their data however they
want to. They can arrange and customize their data and application of their choice.
No security risk unlike public cloud. But as the association is limited within single
company ownership, the owners have to carry all the costs for hardware and software
and are responsible for both maintenance. And for scalability, private cloud is not
as flexible as private cloud because not having the versatility. For load balancing or
scaling, more servers and hardware needs to be added. Private clouds are protected
with firewalls.

Hybrid Cloud: This is the mixture of both the public and private cloud. To facil-
itate customers with both opportunity and to minimize the lakings of private cloud,
this hybrid platform was built. It has the scalability of public cloud and security
advantages of private cloud together. Hybrid clouds are broadly being used by Data
mining companies, who work with sophisticated and sensitive data. The credentials
are securely kept in a private cloud and are delivered secretly to the private cloud
when needed. Serverless functions run more like a hybrid cloud platform. It is cost
effective and also firewall protected [11]. Has versatility in data management and
offers a great deal and resources in data manipulation.

Community Cloud: This type of infrastructures are not so common as these are
used by companies with similar infrastructural backgrounds. It is a type of private
cloud with public cloud functions. The users preferences are similar about the secu-
rity and management, as the users might reside in the same field or expertise. The
security management is done privately and the functions run publicly but within
the community and not outside that. Thus transection with public cloud and com-
munity cloud is easy.
The cost of community cloud is carried out by the companies and it is reasonable
when companies share them. But when few collaborators share one community
cloud, it brings security threads for the valuable datas. And also scalability can be
a problem as the cloud is not so large to accommodate big change in the traffic.

11

3.2 Basics of Serverless Architecture

Serverless is a service provided by the cloud platforms, which is basically Function
as a Service, the newest invention in the field of cloud computing. The whole service
is described in sections below.

3.2.1 About Serverless

Serverless runtime as it is called was first introduced in 2014 with some prominent
significance in cloud technology. The norm of serverless is not about reducing or
eliminating servers rather it comprehends that you need to think of servers less. Un-
like traditional technology, serverless does not require operating systems or servers
to maintain, easy and efficient scalability, high availability with no specialized in-
frastructure, fault tolerance, no ideal capacity needs to be specified rather you pay
for the period that your code runs in the system. For these features the use of server-
less architecture has widened among the developers and mostly in the small startup
software application developers. Usually the execution time is being calculated in
milliseconds.

3.2.2 Definition

Serverless is an event driven architecture and with its extraordinary elasticity it can
serve a high performance of computing. It helps developers to focus more on the
development of the application and less on the server maintenance. One of the very
famous serverless architectures is Amazon Lambda, first introduced in November
2014, which helps its clients to compute services without managing or provisioning
any server side management. Most of the applications these days are developed
in this platform as it is offering high performance, availability and very much cost
reduction. But at the same time, for highly sensitive data, having a third-party
involvement can make the security more vulnerable.
The concept of serverless architecture first arrived form the ideology of Infrastruc-
ture as a service (IaaS) but with some major changes to provide the best fit system
which focuses on decreasing the cost and increasing efficiency. The model servers
the purpose of deployment of code in the cloud by only charging for the time the
code is executed rather than the code allocation memory and so. Also, the services
offer an ecosystem that makes it easier for the development of the services as well
as the scalability and operational cost. Serverless optimizes the operational cost
by provisioning the resources and by giving the authority of fault tolerance, moni-
toring, scalability, and maintenance directly to the cloud provides, which makes it
easier for the cloud providers to use the service without much hassle. Although the
infrastructure is quite similar to that of the Platform as a service (PaaS) but here
the developers get the privilege of using the prepackaged application and are not re-
stricted to write arbitrary codes. This use of deploying functions in serverless is the
ideology of Function as a service (FaaS). This adds a new paradigm in the serverless
platform by writing microservices and some famous providers of the cloud also make
those microservices available as open source [9]. Thus the developers only need to
worry about the deployment and execution of the codes or services and provisioning
the virtual machines or hardware. The developers also have control over the codes
they deploy which must be in the stateless form but they need not worry about the

12

scalability of fault tolerance. The users will only be charged for the time being when
the codes are executed in the server.

This paradigm of serverless has been evaluated form many theories and concepts
from the past to its current state. There are similarities between Mobile Backend as
a Service (MBaaS) and Parse Cloud Code of Facebook with the concept of server-
less. Software as a service (SaaS) may have the functionality of executing server-side
applications but it has limitations over the application domain. The codes in SaaS
are invoked through API calls which have a similar feature like serverless.

3.2.3 Serverless Components

To architecture the serverless some constraints need to be present there, which are
the cost-efficiency, auto scalability, and fault tolerance. The services need to be
directed and redirected according to the workload. Events are stored in the event
queues and based on the availability of the queue. Based on the capacity of the
status, other events are triggered. The status of the queue invokes the arrival of
the events by scheduling their execution, assigning, and managing the events and
also retrieving the resources when the functions are done with execution. Also, the
profound cloud providers provide the flexibility of using any language, because they
create a basic structure for the functions and it provides a framework where any
code is composed to a docker and that is invoked via an API and as long as the
language supports this, it is good to do go. Some programming modes are such that
it executes a dictionary in terms of an input dictionary which allows the platform to
trigger events. There may not be any state between the executions of the functions,
which increases the scalability. The framework logically groups the functions which
save more time and make the system efficient while deploying and updating. While
the function workload and control over operation and cost function defines the likely
use of serverless.
There are always some advantages and drawbacks to the platform. The developer
side advantage is that they no longer need to take the hassle of maintaining the
VMs and containers, provisioning the servers, managing the platforms, etc. and
only focus on the codes and services. This is all because the cloud developers are
offering the basic computational building block of a distributed system as well as
the security patch along with a stateless programming model. But there are also
some disadvantages for both the client and cloud providers, which is sometimes
the structure is too abstract for the client developers and that may not support
various new versions and may fail to achieve the proper application mechanism for
implementing their function which will meet the capacity of the platform.

3.3 Container & Virtual Machine

The concept of container and virtual machine was the pre-requisite of this work.
Without the knowledge of this two, the research work on this field is impossible. As
we have worked on docker container and VM in our pre-thesis (II) elaborately and
in this paper, we have worked in advance level with these concepts. Therefore, we

13

have given a brief idea about container and virtual machine in this section.

Container: Containers have been shown to be a viable lightweight technique for
virtualizing programs, particularly for handling cloud-based applications. A docker
container is a standard unit of software that is lightweight, independent, packages
up code, files, system libraries, tools and all other required things to run desired
application so that the application can be moved from one computing environment
to another [29] . Without the use of virtual machines, containers rely on virtual
isolation to install and run programs that access a shared operating system kernel.

Virtual Machine: When a virtual environment that functions similarly to a com-
puter within a computer this is called a virtual machine (VM). Virtual machines
(VMs) are made feasible by virtualization technology. It operates on a separate
partition of the host computer, with its own CPU, RAM, operating system (such as
Windows, Linux, or macOS), and other resources. The real machine is referred to
as the host, while the virtual machines that operate on it are referred to as guests.
Hypervisor is the name of software which manages this operation from the host to
guest. Hypervisor also used to virtualize and distribute host resources.

3.4 Kubernetes

While visualizing a private serverless we have encountered Kubernetes, which is an
orchestration tool for containers or microservices that enhances the scope of manag-
ing the stateless and stateless serverless applications. The platform of Kubernetes is
open source and is an infrastructure like any other serverless platform. Kubernetes
was developed by google which consists of the property of autoscaling, elasticity,
auto restart, replication of clusters with a zero downtime.

• The advantage of using Kubernetes is that it gives an easy load balancing
paradigme by distributing traffic.

• Display of cluster containers is done using IP address or DNS name.

• Automatically escalates to different kinds of storage systems as per need.

• It makes it easier to do automatic switches between actions like deleting con-
tainers, cloning, creating new, and shifting data and resources to a new cluster
when an existing cluster is being damaged or destroyed.

• Designing container clusters with desired RAM and CPU is done with no
hassle.

• Kubernetes provides a Secret field for storing sensitive information such as
password, SSH key etc. in the configuration file without exposing it.

The architecture of Kubernetes in figure: 3.1 is built with some components. We
give a brief description of those components.

14

Figure 3.1: Structural Architecture of Kubernetes

15

Pods: A pod is one or more containers enclosed with instructions over a specific
application and it’s configuration such as resources, storage, variable components,
status, network ID etc. Pods are the application container that basically carries out
the function that needs to be deployed. Pods are no static entities, thus they may
not contain physical ID and can be destroyed when the application processing is
being done [24].

Service: Service serves as a set of pods that are logically set to perform as a gateway
to the other pod instances so that they can communicate with the service without
bothering the physical identity of the pod.

Volume: Volume preserves the data of the pods outside of the kubernetes cluster
and it is an extension from the cluster. If any pod gets restarted or destroyed, the
datas is being sent to the local machine or remote cluster that is the volume.

Namespace: It is a virtual grouping of the clusters which itself is another cluster.
Based on different criterias and operation objectives, namespaces are being made
with a number of specific pods. One namespace can not use resources from another
namespace. They are anomalous to each other.

Deployment: This manages the replication of pods as per need. If there are less
number of pods than required then it will create new by replication. And if the
replicas are more than the required, then it will delete the extra.

The orchestration model is divided into two components : master node and slave
node. This is to follow a client and server modeling. Master node is the controller
node for managing the cluster while slave nodes are the working nodes. The master
node components are described as follows:

Etcd: This is the cluster that stores information of all other clusters and nodes,
such as namespace, changes in cluster, state of the clusters, pods created in each
cluster etc. It also notifies the cluster on configuration change through API requests.

Kube-API server: This communicates with the Etcd cluster and does the central
management of all the processes that requests for cluster relocation, pod modifi-
cation, service discovery, change configuration etc. It monitors the data storage
agreement of the pods that are being deployed.

Kube control manager: This synchronizes the controller management process
with the credence of any primitive cloud service. All node management such as
request query, set up route, load balancing, illustration or node transmission to new
state are controlled by this component.

Kube scheduler: Scheduler allocates and schedules pods in different nodes by do-
ing a comparison study on the operational precondition of the pods. This benefits
in terms of maximum utilization of the resources. The scheduler is called every time
there is a status change in the pod requirements and it needs to be relocated or if
any new pod joins the cluster.

16

Following are the worker node components in brief:

Kubelet: This component takes care of the status of a pod and notifies the master
node about it. It monitors if the pods and containers are stable and are operating
in the described configuration.

Kube proxy: It works on host subnetting on each worker node so that the correct
request reaches the correct pod from the vast network.

Kubectl: It is a command line tool for communicating with the Kube-API server
and calls upon the master node through API call.

Helm: Helm is Kubernetes packet manager. Helm maintains the YAML mainfestes
of kubernetes requests. It is equivalent to apt or yum. With Helm installed, we can
install ready softwares like MySQL, MongoDB and use it in our application. Helm
chart is like a packaged application for the clusters we create in kubernetes.

Minikube:One of the most common forms of Kubernetes for local hosts is Minikube.
The features of Kubernetes are difficult for starter or reguler cloud developers as it
requires resources, time consuming and has version variation. In order to smoothen
this experience, minikube was developed which basically runs the same kubernetes
cluster in a local host with more efficiency and less time complexity for a deployment
is required. It helps developers to test their application first hand before deploying
it globally. Like Kubernetes, minikube has the same components such as Pods,
Service, Master node, Worker node and requires kubectl for cluster communication.
We have worked with minikube in our thesis.

3.5 Fission

Fission is a framework of Kubernetes that created a platform for running serverless
functions on a larger scale. Fission is open source and is suitable for running in any
cloud platform be it Kubernetes, local host or any other public, private or hybrid
cloud. It helps to manage serverless functions with any language and runtime and
helps scaling the application. All the management of kubernetes are auto handled
by Fission and pre-built containers are provided, so no need to worry about provi-
sioning. It provides a function as a service for kubernetes in figure: 3.2.
The framework runs on top of kubernetes and facilitates the faster convergence of
deployment of functions while also featuring all the advantages of serverless. The
function calls are HTTP trigger based.

Following are some use cases of fission:
Event driven system: Fission can identify different events based on the charac-
teristics of activity and thus can execute the required function.

Augmentation of web applications: Fission expands base web applications while
keeping the original application intact. The deployment is automated.

17

Figure 3.2: Structural Architecture of Fission

Backend management: With Fission platform, it is easier to build API backend
for web applications for mobile or any operating system as there is no hassle of
managing the kubernetes components. Only the functions need to be mapped in
the HTTP route.

Edge data processing: With Fission it is easier to fetch and filter data. Nor-
malizing data for various uses and storage is important which can be done easily
through Fission.

Mainframe function modernize: The expansion of mainframe applications that
may benefit the conversion of data or convert resource type so that the mainframe
is upgraded, these all can be done easily through Fission.

3.6 Amazon AWS

Amazon AWS service is one of the leading cloud architectures available. As a server-
less architecture AWS Lambda provides the opportunity to deploy stateless microser-
vices without having to worry about managing or provisioning the code. The server
side management for a microservice such as administration of server and resource,
scalability, elasticity, operating system provisioning, language environment, security
etc all services are managed by the cloud provider. Lambda provides a platform
where clients need not to worry about the serverside and only need to focus on the
part of the code. The functions will only be executed when they are triggered and
will consume the state only for the time being when the execution is being pro-
ceeded. Furthermore, the billing of the service will only depend on the amount of
time and resources that will be consumed during the execution, which is in other
hand called Pay-as-you-go service.
Aws lambda supports multiple programming languages through a runtime environ-
ment. The supported languages and versions are Node.js10, 12, 14, Python 2.7, 3.6,
3.7, 3.8, Ruby 2.5, 2.7, Java 8, 11, Go 1.x, .Net Core2.1, 3.1 with specific runtime

18

environment for each language. When a version of any language reaches the end
of life in any certain time while the security updates for that version are no longer
available for the runtime, as per the runtime support policy of lambda, the runtime
of that version is then deprecated. Which states, lambda will no longer provision
nor give security support, update, technical support to that version while only the
existing functions can be updated. And after about a month or so, lambda prohibits
the use and creation of any function that uses the runtime. Only the existing func-
tion created earlier with that runtime can be used as events. For container image,
defined as functions in Lambda can appoint any runtime environment and linux
distribution while the container is being created. When a lambda function is being
invoked, the system strives to use any previous runtime environment that had been
used earlier for limiler kind of function. This reduces the execution cost by saving
resources, connectivity with the database and execution time . In figure: 3.3 the
architecture is shown.
Aws lambda is a serverless compute service which allows users to run application
code without having to manage EC2 instances. AWS will thereby take the respon-
sibility and administration of maintaining the EC2 instance for the client. AWS
charges the computer power per 100 ms of use only for the compute power when a
lambda function is in use in addition to the number of times any function runs.
There are four steps in deploying a lambda function. First the function code needs
to be uploaded in the lambda or needs to be written within the code code editor
provided by lambda. The language options are Node.js, Java, C#, Python, Go,
PowerShall and Ruby. Next the lambda function needs to be configured to execute
upon the right trigger from any supported event source [26]. After that, if the trigger
initiates successfully, the lambda function will run and will use the compute power
as mentioned. While this execution is in process, AWS will record the compute time
in milliseconds and the quantity of lambda function running time which determines
the cost of the service. AWS also shows a statistic of the Lambda function with
respect to the running time, CPU usage, trigger, errors and success rate and other
parameters in various scales.

The components of AWS lambda are as follows:
Lambda function: The lambda function is compiled of the code that the user
wants to trigger. This allows the user to deploy their code through triggers without
provisioning any server maintenance. It is simple to deploy functions in lambda
which can be done through any language or container, that will be zipped and up-
loaded. And according to the resource allocation, lambda will automatically allocate
the function in the compute space. Also the scaling and triggers will be done auto-
matically.

EC2 instances: EC2 instance refers to the Elasticity feature of Amazon web ser-
vice that provides scalability to AWS Lambda by resizing the compute capacity
of the cloud. This whole process with computing resources and configuring capac-
ity is provided for the users to use without having to worry about the rest. EC2
also offers a cloud platform with the availability of choosing the storage system,
operating system, processor, network and other latest features. AWS provides 400
Gbps of ethernet networking with the availability of AMD, supports macOS, In-
tel and Arm-based processors with workload for graphics, powerful GPU instances

19

for ML training, SAP, HPC and many more. About 400 EC2 instances are provided.

S3 Bucket: This virtual bucket is like a file container, where one can store files,
remove files etc. which is going to be triggered by the lambda function. The type
of files that needs input to be given for showing an output requires S3 bucket for
them to carry this to the function. Such files are image and video files, database
and so on. Once the file is uploaded, then the handler function triggers the function
as it contains the details of the event. Then the lambda collects the input from the
bucket and processes the file for an output.

Elastic Block Storage: EBS is the block storage area of the data that contains an
independence and existence away from the instances. This is a virtual data storage
that stores the data which can be fetched even after the instance is destroyed. This
component is mainly used when there needs to be data storage, raw storage or file
storage. There can be an API network connected to the EBS if necessary. Therefore
it can be attached and used with an ongoing running lambda EC2 instance [28].
IAM role: IAM role provides an IAM identity that administers an instance with

Figure 3.3: Structural Architecture of Amazon AWS

an AWS identity if attached to it. But instead of giving a permanent and unique
security credential, it conducts with a temporary security credential for managing
role sessions. Therefore, anyone with the role key can use it when needed and so the
sessions are conducted in such. The roles can be created when there is a demand and
can be designed to however users are allowed to use it. Users may need to access the
resources and sharing keys within the instance will bring leakage to security. With
the IAM role, one can create, manage, change and delete roles within the application.

Event source: Event sources are AWS lambda services that are used to invoke the
lambda function when the event occurs. This is kind of a configuration mapping
for the lambda function. Some regular event sources of AWS are: Amazon API
gateway, DynamoDB streams, CloudWatch event, CloudWatch log, Event bridge,
S3, SNS, Amazon Kinesis data streams, SQS and Amazon Step function.

20

Downstream resources: These are the resources that are required during the
execution of the code.

Log streams: This helps in the troubleshooting and identity issues with the se-
quence of lambda events when triggered. Now we know that in AWS the event
source is a service that produces the event that the lambda function responds to
by invoking. The event sources can be of 2 types, poll or push based. Poll based
services are the ones that look for specific events associated with the function and
invoke them when it can find a match. The Push based services are the ones that
push a model event that is required to invoke the lambda function. In order to
link the event source with the lambda function, the source mapping configuration
is used.

3.7 Google Cloud Platform

Google introduced Google cloud platform (GCP) in 2011. GCP designed and de-
veloped by Google To provide cloud service on the same world class infrastructure
and that is used by google for its product. Google is a tech giant which has most
advanced computer technology . GCP is becoming more popular to developers for
its infrastructure that is highly scalable and dependable .Developer can easily build,
test, deploy, and monitor application by using these infrastructure in google cloud
platform. Google provide highly efficient server energy efficient data center, industry
level efficiency. Google Cloud gives unlimited access to user of data from any com-
puter with a web browser. These hardware advancement helps Google to reduce the
cost on operation and which is beneficial for customer to save the cost. Customer
has to pay bill for computational processes depending on the amount of time spent
computing by the customer. The architecture is shown in figure: 3.4. This is the
main reason of being less expensive provider rather than other cloud providers for
GCP , so aBeside hardware advancement Google has added some cloud services .
These services include Compute Engine, App engine, Container Engine, Kubernetes
engine, Cloud Storage, Data store, BigQuery, Google API, etc..
Google Compute Engine (GCE): Compute Engine is an infrastructure as-a-
service (IaaS) product [5].Developer can launce scalable and high performance vir-
tual machine by using it. Also developer can create and run specialized architecture
having feature like load balancing and auto scaling. Developer use it to deploy a
Docker container host and deploy containers.

Google App Engine (GAE): App Engine is mainly a platform as a service prod-
uct. Developer can easily build and run web-scale, autoscaling applications by using
google framework and a comprehensive collection of libraries . So without the need
for costly database acquisition and maintenance since the database is maintained by
Google. That’s why App engine is becoming developer friendly and also targeted to
developer [20]. The objective of GAE development is to boost the online presence
by allowing several users create apps for the web. It does not charge anything to
get started, charges are made based on the use of storage and bandwidth by a user
at an affordable price range.

21

Figure 3.4: Structural Architecture of Google App Engine

Google Kubernetes Engine (GKE): Kubernetes is the industry’s most popular
and most advanced container orchestration platform which is developed by google
.Google Kubernetes Engine (GKE) provides a managed environment for deploying,
managing, and scaling your containerized applications using Google infrastructure.
The GKE environment consists of multiple machines (specifically, Compute Engine
instances) grouped together to form a cluster [30]. Developers uses GKE for the
management of Container Orchestrator which helps to develop, manage and scaling
of micro service based containerized application .It’s a fully automated container or-
chestration which deploys , manages application and monitor the status of deployed
application and cluster with features like node auto-scaling, upgrading, repairing by
using the Kubernetes APIs and commands. Google Kubernetes Engine in figure:
3.5 consists of a cluster that has at least one master and multiple worker machines
known as nodes. The orchestration of the Kubernetes system runs with the help of
master and node machines.

Google Cloud Run (GCR): Google Cloud Run is a stateless container runtime
service which helps user to run and execute highly scalable containerized applica-
tions . Its serverless, flexible, and straightforward. Auto scalling is another feature
of clou run . P. To deploy our containerized applications to Cloud Run, all we need
to do is point Cloud Run to our Docker image and Cloud Run will pull the image
and run it When more resources are required, Cloud Run can automatically scale the
execution of application. GCR is user friendly because its simple and easy to deploy
stateless application. Cloud run is serverless so it don’t need any management effort
.Which is One of the most powerful characteristics of cloud run. No language barrier
and pricing model are key features of Cloud run. Cloud run allow any language and
it also offer pay per use for service. By using Cloud run vDeveloper can develop and
deploy any public or private microservices.

Google Cloud Function (GCF): Cloud function is a function as a service. GCF

22

Figure 3.5: Structural Architecture of GKE

allows developer to write code in their preferred language (JavaScript, Python, and
Go are supported) and deploy it in the cloud. By using GCF, Creating infrastruc-
ture as code and developing event-driven serverless cloud platforms is very much
easy for its user. GCF helps developer to deploy their code with zero server man-
agement. There are no servers to manage, upgrade, or provision.Scale automatically
dependent on the load. GCF has a developer friendly Environment which makes
developer experience simple and their efficiency better. It’s a pay as you go service
so user only billed for function execution time. Hybrid and multi-cloud systems
require key networking features which is one of the key feature of GCF [30].

Google APIs: Applications can consume both Cloud Platform product APIs (for
example Google Storage) and Google products APIs (for example Google Maps).
This book includes an example of using the Translate API to translate content
among 90 pairs of human languages.

3.8 Microsoft Azure

Microsoft azure is one of the industry leading cloud provider. Microsoft launched
azure in 2010 to provide cloud service. Azure provide all kinds of tools and plat-
forms to developer for developing, operating, and executing web applications. High
performance, flexibility, and low service cost are main feature of Azure. Microsoft
Windows Azure is built on Windows Server and allowed to use all identical service,
software and feature of platform.

Compute: This feature allows the development and implementation of applications
and services on the Windows Azure platform. By using Windows Server foundation,

23

Figure 3.6: Components of Microsoft Azure

24

Azure computing service develop and executes application . Developers can utilize
Visual Studio for executing application and technologies including PHP,ASP.NET
are also available [16]. Web roles is used for implementing web-based programs, the
Worker Role is intended to allow user to execute a wide range of code. and virtual
machines for migrating programs from Windows servers to Azure shown in figure:
3.6.

Storage: To store any amounts of data for an extended period of time is allowed
by the Azure Storage. Blobs, table and queues are the three form of storage.
Blobs(Binary Large Object) are often used For storing the large amount of data
which are not organized and binary items. Tables enable programs to operate in
fine-grained order. Tables enable programs to operate in an orderly fashion. Queues
enable web-based applications to communicate with user-implemented code by in-
teracting between web role and worker role.

SQL Azure: It provides storage capabilities equivalent to Amazon S3. It allows
relational queries to be performed against data in storage that can be organized,
semi-organized, or disorganized, enabling users to connect in a variety of ways such
as ADO.NET, PHP, and Open Database Connectivity [20].

FABRIC CONTROLLER: Fabric controller works as kernel of the Azure oper-
ating system. By provisioning, storing, delivering, monitoring, it manages servers,
VMs. Fabric controller also coordinates the development of Microsoft Windows
Azure application.

25

Chapter 4

Methodology

4.1 Goal of Analysis

We have selected some features from the analysis of different cloud computing and
their complexity. Some of the features were from the facts that we faced upon doing
practical work in the selected framework. And some of them were extracted from the
analysis that we made of the cloud features. All of them affect the whole paradigm
of a framework in terms of different technological perspectives. Our study is not
about finding the best and worst of the platforms, instead, we are trying to find an
analogy of different features to understand what kind of application will be suited in
which platform. For differences in application and environment, different platforms
of cloud will act differently. That is why we wanted to bring all three of them under
a fair scale and compare the features thereby. We have done this through theoretical
analysis of the features and practical implementation of the cases. Our goal of this
paper is to regulate a comparison study among the Cloud service providers to have
a deeper knowledge of those paradigms. This comparison will further help us with
development of serverless platforms on a private scale. We have reached on the
following:

• Theoretical comparison of the existing Cloud platforms in terms of serverless
infrastructure, it’s components and performance. Those are AWS Lambda,
Google Cloud Provider (GCP) and Microsoft Azure.

• Implementation of different cloud services and its complexity measurement.

• Implementation of some serverless use cases in AWS Lambda, GCP and their
performance comparison.

• Implementing the same use cases in Fission and recording the differences.

We have used the following platforms for hour experiment. Cloud platforms for
feature comparison: Amazon AWS, Google Cloud Platform (GCP), Microsoft Azure.
Cloud Platforms for Practical experiment: Amazon AWS, Google Cloud Platform
(GCP), Fission.

26

4.2 Selected comparative cloud features

In this section, we have proposed the following features of cloud computing which
features a cloud platform and can define the performance of the working complexity.
Following are the features:

1. Cloud Service: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),
and Software-as-a-Service (SaaS) are the main three service models of cloud
computing. Which service mode is provided by the selected cloud platform
will be shown by this feature. Some cloud platforms offer their users all three
service models.

2. Cloud Storage: Storing users data is very important for any cloud provider.
Users need easy access to their data from anywhere on any device. It plays a
significant role in choosing any cloud provider.

3. Security factor: Security measurement of different cloud platforms provides
security to the client’s private credentials and data security within the cluster.
Security instances of a cloud platform, also regulates the data traffic, controls
the role and follows the event description.

4. Language variation: All programming languages are not supported in every
cloud platform. This will depict the programming languages supported by
cloud platforms. From many different programming languages which may be
useful to developers in any platform.

5. Virtualization Technique: Virtual machine is virtualization of a computer
system which will provide functionality like a computer in a computer. Base3d
on computer architecture, virtual machines allow two or more operating sys-
tems on a single machine. It is a commonly used idea in cloud computing to
save energy and power on physical hardware [23].

6. Implementation complexity: Different cloud platforms work differently in
terms of implementation of the functions. Also specific clouds act differently
in terms of different languages.

7. User Interface: The variety of interfaces that varies for developers and end
users for different applications are noticeable for different cloud platforms. The
variation can come from database, web application, API etc.

8. Container Orchestration: Container Orchestration is an important factor
for any cloud provider. Such as Kubernetes is a container orchestration plat-
form designed by google. It is used for developing and managing containerized
applications in various cloud platforms [13].

9. Networking service: Different cloud providers support different types of
networking service. Networking service is the one main factor for choosing a
cloud platform. A lot of other aspects are directly related to the networking
service.

10. Database Support: Different cloud providers support different types of
databases . This provides support for handling different kind of database such
as relational, SQL, No SQL, Data warehouse, in-built memory cache [17].

27

11. Pricing methodology: The pricing methods of all cloud platforms are pretty
much the same, as all of the methods are based on pay as you go. That is
the customer only needs to pay for the amount of resource they have used for
what specific time frame.

12. Load balancing and scaling: Serverless provides an extensive scaling based
on the traffic load. Clients do not need to provision load balancing and scaling.
This management is done within the internal processing.

13. Backend logic processing: Each serverless platform works on a unit logic
process that orchestrates and manages the events and requests. For different
cloud platforms, the logical units varies. Based on the serverless application it
creates workspace clusters, and integrates the events into it. The main process
proceeds with the function invocation.

14. Concurrent execution: Concurrent Execution refers to the number of exe-
cution, executed over a unit period of time. This is a measuring standard in
the serverless cloud platforms that defines the time of per application execu-
tion and thus defines how faster the serverless applications are executed over
different platforms [7]. It is measured for different cloud platforms in standard
unit.

15. Server Distribution: These three cloud providers have a number of servers
around the world. Depending on the demand on the computing platform,
servers being distributed in regions. The subdivision of regions are the zones.
One noticeable thing is that, the closer to the server a client can be, the
faster convergence and data traffic they will get. The cloud and networking
distributions are therefore provided based on the closest region.

4.3 Comparative feature for Program Execution

Aws, GCP and Azure are the industry leading public cloud service provider. Devel-
oper can easily develop and execute the application easily. Cloud providers offers
specific amount of CPU, memory for executing any program . For the infrastructure
and other features, computing efficiency and memory usage can be different for dif-
ferent cloud platform. Practical comparison study between popular cloud platforms
is very important for any developer in spite of providing various kind of features.
Based on this comparison, developer can easily choose any platform for executing
application. So practical comparison has great importance. The conducted practical
comparison study based on the following two parameters:

1. Programme Execution Time

2. Memory Usage

1. Programme Execution Time: Computation time is very important for ex-
ecuting any programme. Based on computation efficiency execution time can be
different. Some application needs to be executed in least execution time. Some-
times Least computation time can be developer’s main requirement. So based on
execution time comparison developer can choose appropriate cloud platform. For

28

conducting the comparison study, we chose to run Recursive function and Image
processing programme. We ran the Fibonacci programme on AWS, GCP and Fis-
sion successfully. After that, we executed image processing programme on AWS and
GCP.

2. Memory Usage: Calculating memory for executing any programme in cloud
platform is most essential feature for conducting any comparison study. For less
memory usage, developer can get better productivity and system can use memory
for more efficient system distribution. Ram Test can help any developer to consider
any platform before choosing. So, we conduct Ram Test for Recursive function and
Image processing programme on AWS and GCP.

Fission platform: Fission is an open source Kubernetes native serverless frame-
work. Although this is an open source platform and not a public cloud, still there is
a big room for development in fission. We could not find any dedicated development
work in fission as the platform is very latest. No paper has been published under
this framework neither any research work or comparison study has been conducted
upon this platform. Fission exposes a whole new dimension for local host users,
where they can provision their code without having much knowledge of Kubernetes.
The function construction time in Fission are very impressive, without even having
resources like the on demand cloud platforms.
Although it is offering such platform for serverless work, yet the infrastructure is
still very fragile. We faced many difficulties while provisioning it and making com-
parison with other works. As fission works in the Command Line Interface and does
not have a visual console or dashboard. Therefore, bringing out execution results
were quite challenging.

4.4 Proposed Model

We design a performance-oriented serverless computing platform to study serverless
implementation considerations. Our designed architecture comprises two segments:
one is web services and another is a worker service. Web service will uncover the
platform and finds accessible worker service via a messaging layer and worker ser-
vice oversees and implements containers. We design a messaging layer to control the
interaction among the web and worker service. Elasticity is one of the main factors
which influences the performance of microservice deployed to serverless computing
platforms. So for leveraging elastic serverless computing infrastructure for microser-
vice hosting us use a cold queue and warm stack in messaging layers of our proposed
architecture [10]. Execution request is done by the user and the webserver respond
to the request and try to process a free container in the worker service to implement
the execution request. Worker service can start a container when the worker has
free memory for the container and the message in the cold queue represent the free
memory of worker service.
In this process, some of the function containers are existing but which are not dealing
with the execution request and the message of warm stack represents those existing
containers. The worker service works based on the warm stack and cold queue.
First of all, when a web service gets a new request from a user it lookup on the
warm stack and tries to extract a message from a warm stack so that it could get

29

the information of those existing function containers [4]. If there is no message in
a warm stack than the web service looks up on cold queue and tries to deque a
message from the cold queue to know the current status of worker service to assign
a new container to the function. If no message is found from the cold queue that
means all the workers are occupied with running function containers. When both
warm stack and cold queue is empty, that represent the unavailable container to
execute the request and HTTP service unavailability will be sent by the system 4.1.
Once any message is dequeued from cold queue, an HTTP request will be sent to
worker service by web service to open a container which will execute the function.
After the execution, the worker will return the output of that function to the web
service. Container allocation management is an important fact for any microservice
architecture.

Figure 4.1: Overview of the Proposed Model of Serverless Architecture)

Here, every worker service has contained a bunch of free memory to manage the
function container. Every message of the cold queue has a unique identity. Each
message has a specific amount of memory F Fig: Overview of our proposed model
reservation in worker service. When a message is dequeued then a container is gen-
erated with a unique name that represents its unique identity and reserved memory
of that particular container in worker service. For removing containers we follow two
criteria. First of all, if any function is deleted, the work service will automatically
remove that warm stack of function.
As a result, worker service will also remove the container which was allocated for
that function and retrieves memory. Secondly, if any container idles for a certain
period of 20 minutes, that container will be removed and retrieves memory. For
container orchestration we use Kubernetes which is developed by Kubernetes. Blob
storage are used for storage. There is a concept of trigger based docker that we
are going to use in our model such that we can extract the feature of serverless
trigger based action to invoke a function just like serverless. We are going to put
this whole thing in Kubernetes to orchestrate our container. This will give bring out
the elasticity and scalability feature of our serverless platform. We use Linux based
container because of its useful operation and support for serverless computing.

30

Chapter 5

Experimental Setup

For our analysis of features and practical experiment of the serverless use cases, we
have worked with some renowned cloud platforms. All the necessary steps and codes
from setting up this platforms and implementing the features are distributed in the
Appendix: A part.Following are the short description to those platforms:

5.1 Amazon Seb Service

Amazon AWS is one of the leading cloud architectures available. AWS Lambda is
the serverless platform of Amazon. Amazon launched Amazon Web Service in 2006
and it is enriched with resources. Lambda is a trigger based Function as a Service
(FaaS), which is executed based on trigger events. In order to use the serverless
feature of AWS we had to set up the components such as Lambda, Ec2 instance, S3
Bucket, Elastic block storage, IAM role, Event source, Downstream resources, Log
streams etc.

5.2 Google Cloud Platform

Google introduced Google cloud platform (GCP)in 2011. GCP designed and devel-
oped by Google to provide cloud service on the same world class infrastructure and
that is used by google for its product. Developer can easily build, test, deploy, and
monitor application by using this infrastructure in google cloud platform. Google
provide highly efficient server energy efficient data centre, industry level efficiency.
Google Cloud gives unlimited access to user of data from any computer with a
web browser. Compute Engine, App engine, Container Engine, Kubernetes engine,
Cloud run, Cloud function, Storage, Data store, BigQuery, Google API, etc. were
the products that we had to setup for using the serverless feature in GCP.

5.3 Microsoft Azure

Microsoft azure is one of the industry leading cloud provider. Microsoft launched
Azure in 2010 to provide cloud service. Azure provides all kinds of tools and plat-
forms to developer for developing, operating, and executing web applications. High
performance, flexibility, and low service cost are main feature of Azure. We im-
plemented some of the services like Azure AI, Azure Analytics, AZURE Internet of

31

Things (IoT), Azure Storage, Azure DevOps, Azure Virtual Machines (VMs), Azure
Container Service, Azure Content Delivery Network (CDN) etc.

5.4 Fission

Fission is a framework of Kubernetes that created a platform for running server-
less functions on a larger scale. Fission is open source and is suitable for running
in any cloud platform be it Kubernetes, local host or any other public, private or
hybrid cloud. It helps to manage serverless functions with any language and run-
time and helps scaling the application. All the management of kubernetes are auto
handled by Fission and pre-built containers are provided, so no need to worry about
provisioning. It provides a function as a service for kubernetes
The framework runs on top of kubernetes and facilitates the faster convergence of
deployment of functions while also featuring all the advantages of serverless. The
function calls are HTTP trigger based.

32

Chapter 6

Experimental Results and
Findings

6.1 Result of Feature Analysis

The different part of the result, feature analysis results and experimental results are
shown in different sections below.

6.1.1 Comparative Study of the selected Features

Based on our implementation knowledge and research related to the selected Cloud
providers, we have come up with a comparative study among the Cloud platforms.
These leading Cloud platforms are vast in it’s service. Therefore, in this comparison
study we have only focused on the serverless related features and services. Here, we
made a detailed comparison study followed by a brief table of comparison for better
understanding.

1. Cloud Service: This shows the type of cloud service are provided by the
selected cloud platform for users.

• AWS: Provides all three service types IAAS,PAAS,SAAS. It is well-known
throughout the world for its excellent Infrastructure as a Service solution.
Elastic Beanstalk used for PAAS service.

• GCP: GCP also offers IAAS,PAAS,SAAS. App engines mostly provides
platform as a service This distinguishes it from others provider. Gmail,drive
are SAAS.

• Azure: Offers all three service IAAS ,PAAS, SAAS. Virtual machines,
web hosting is IAAS. Email, calendars and Microsoft tools are SAAS

2. Cloud Storage: This explains the type of available storage service provided
by the cloud service for the users.

• AWS: Aws offers simple storage for big data storage , backup for storing
data to users. Elastic block storage used for Nosql database,.Rds.Snowmobile
for database migration service,Snowball for redshift,Elastic filw system
for dyanamodb.Storage gateway for elastic cache.

33

• GCP: allows user with many option for storage like Cloud storage for
cloud sql, persistant disk for cloud bigtable,Transfer appliance for cloud
spanner,Transfer service for cloud datastore.

• Azure: Provides various option for simple storage Blob storage for SQL
database,Queue storage for database for MYSQL,File storage for Postgre
SQL ,Disk storage for data warehouse,Data lake store for cosmos DB,data
factory,table storage.

3. Security factor: Here are the security factors, used in the cloud platform
that we have selected, to secure the users credentials on private data.

• AWS: For the management for securing service and resource access, ama-
zon uses IAM Security(Amazon identity and access management). Cloud
WatchDog monitors the cloud health on demand system. Unauthen-
ticated traffic is secured by AWS security Hub. In serverless Lambda
architecture, AWS GuardDuty is used for managing security threats. Ap-
plication analysis and thread detection is done by AWS Inspector. DDos
attacks are handled through AWS shields. CloudHSM for protecting key
value credentials. Protection Firewall for the resources management is
done by AWS Firewall management. Private key protection is done by
AWS Key management service. Apartform all this, AWS provides secu-
rity service in all aspects for security client data and privacy [21]. Some
other services dedicated for internal and external resources are AWS Cog-
nito, AWS directory service, AWS network firewall etc.

• GCP: Google Binary Authorization is a security product that manages
the verification of container deployment in the kubernetes engine. Cloud
Asset Inventory does all the inventory management, monitors and ana-
lyzes inventory and produces real time notifications on changes. Cloud
Data Loss Prevention prevents unauthorized data from trafficking, insects
sensitive data and covers them from any harm. Cloud Key Management
manages the encrypted keys and exports them securely to the require-
ment. Firewalls are used to safeguard the entire google platform. Some
of the other security products are Secret manager, Shield VMs, Identity
aware proxy, Identity platform and so on.

• Azure: Azur has a number of security service products such as Azure In-
formation Protection for secure sensitive data which are exposed outside
the organization. Azure DDoS Protection to manage security threads.
Application Gateway to protect from common application threads by
building firewalls. Key Vault to protect cryptographic security keys that
are used in the cloud platform. Apart from all this, there are Security
Center, Microsoft Azure Attestation and Microsoft Azure Confidential
Ledger.

4. Language Variation: This depicts the programming languages that are sup-
ported by the cloud platforms that have been chosen for a developer.

• AWS: It works with any language. This distinguishes AWS as a standout
for developers.

• GCP: It supports .Net,Go,Java,Nodejs,Php,Python,Ruby.

34

• Azure: It supports C#, Java, Python, PHP, JavaScript.

5. Virtualization Technique: This depicts the virtualization process possible
in the cloud platforms chosen.

• AWS: Amazon Elastic compute uses Kernel- based Virtual machine (KVM).

• GCP: Google compute engine uses Kernel- based Virtual machine (KVM).

• Azure: To construct a virtual computer, the Hyper-V hypervisor is used.

6. Implementation complexity: There are different implementation tech-
niques for different platforms with different complexity levels.

• AWS: Lambda acts differently in terms of environment and language.
Serverless functions are needed to be deployed directly in the console
and can not be edited on the web. In the case of java, deployment of
functions needs to be done within a project. The project will consist of
dependencies, and the serverless code. The project will be a jar file of
a zip file. The project will be uploaded as a serverless function. Also
the deployment can be done through container images. AWS lambda
supports a variety of languages and environments.

• GCP: Google Cloud supports a number of languages but less than AWS
lambda. All the language code can be deployed in the console and also
codes can be edited in the console. GCP also supports container images
[18].

• Azure: Serverless function deployment in Azure is very different from the
other two platforms. Although Azure supports a number of languages,
any serverless function in any language needs to be deployed through an
app in Azure. An app consists of dependencies, code and is edited with
microsoft visual studio, microsoft visual studio code or any other IDE.
In microsoft visual codes, we need to install some plugins for instance:
Azure functions. Then the app is directly uploaded in the console.

7. User Interface: Different Cloud platform offering different Graphical User
Interface (GUI) for customer flexibility. Customer comfort and flexibility solely
depends on the customer demand.

• AWS: Provides a web console, which shows all the variety of Amazon ap-
plications, customers can choose among them. Accessible from any smart
device. Serverless functions have different sections, that is Lambda, where
there are different kinds of deployment methods provided in different envi-
ronments and languages. The GUI is pretty much used friendly specially
for beginners. Amazon has a lot of official documentation, although the
development is going through a constant change. Lambda UI is faster
than GCP as the deployment and processing does not take a longer time
[2].

• GCP: It provides a web based user interface through application program
interface (API) console. Google provides the Google function for deploy-
ing serverless functions. The UI is a bit more scattered than AWS and
Azure as one needs to discover a lot of variants before in the console.

35

Documentations are provided in the console but the overall GUI is not
user friendly for beginners. Deployment and processing in GCP takes
comparatively longer time.

• Azure: The console is a web based interface through application program
interface (API) console. For serverless functions the name of the service is
called Function App. The GUI is very much user friendly but deployment
of serverless functions is very different from AWS and GCP.

8. Container Orchestration: This shows vsrious container Orchestration ser-
vice provided by different cloud platform.

• AWS: Amazon lambda platform is built upon containers as a serverless
platform. EC2 container service and Kubernetes(EKS) provides con-
tainer sevice.

• GCP: Google cloud platform is structured from Kubernetes platform, this
gives an orchestration platform with the docker container. Kubernetes
engine, Container engine used for container service.

• Azure: Azure infrastructure is built with basic containerization. Uses
Container Service.

9. Networking Service: It shows the different networking service provided by
the different cloud platform.

• AWS: uses Virtual private cloud used for isolated and private cloud net-
working, Route 53 for manage DNS, Cloud front for content delivery,API
Gateway for cross premises connectivity,Elastic load balancing for Load
balancing configuration.

• GCP: uses Virtual private cloud used for isolated and private cloud net-
working, Google cloud DNS for manage DNS ,Cloud interconnect and
Cloud CDN for content delivery, Cloud VPN for cross premises connec-
tivity ,Cloud load balancing for Load balancing configuration.

• Azure: uses Virtual network used for isolated and private cloud network-
ing, Azure DNS, Traffic manager for manage DNS ,Content delivery net-
work for content delivery, VPN gateway for cross premises connectivity,
Load balancer and application Gateway for Load balancing configuration.

10. Database Support: This describes the types of database choices made avail-
able to a user by the specified cloud platforms. It is typically divided into two
types: relational databases and non-relational databases.

• AWS: Users may access a variety of databases, including Aurora, RDS,
Elastic Cache, Dynamo DB, Neptune, Redshift and Database migration
system.

• GCP: GCP provides Cloud SQL, Cloud Spanner, Cloud Datastore and
Cloud Bigtable which supports SQL and NOSQL.

• Azure: Users may access databases that are mainly SQL-compatible, such
as SQL, MySQL, PostreSQL, Data Warehouse, Table, and CosmoDB.

36

11. Pricing methodology: This describes the pricing technique of the different
platforms. Pricing is based on subscription charge, usage charge, software and
storage charge etc.

• AWS: AWS provides a number of services for free. One can use an account
from any email and the 1st trial of one year is free for new users but not
for all instances. For example: Only Ubuntu EC2 instances are free but
other EC2 instances will be charged. Their pricing methodology is based
on pay per use. The application is ideal until there is a trigger calling
the event. The billing process is based on per millisecond.

• GCP: GCP pricing methodology is also pay as you go. GCP provides a
300$ credit for 90days trial for new users. Within this credit, one can use
any feature. GCP charges for use per millisecond.

• Azure: Microsoft Azure provides a free trial version for students only if
they hold a microsoft student account or email id. For free trial they
provide a 100$ credit for year time, and any service can be credited from
there. The pricing is pay as you go per millisecond.

12. Load balancing and scaling: Load balancing and scaling is a major com-
ponent in serverless architecture. The methodology is described here.

• AWS: Lambda has an elastic load balancing with an automatic load bal-
ancing methodology. Application Load Balancer (ALBs) supports the
incoming and outgoing traffic and function configuration management of
AWS lambda. The management of requests from clients are managed
with an HTTPS request by ALBs.

• GCP: GCP uses instance grouping for load balancing.. Google Cloud
Load Balancer (GCLB) is the distributed system of google cloud which
manages the cloud load balancers. It does not require warm ups and can
handle upto 1million cloud requests in each second. There is another
distributer system for Google Cloud network balancing and distribution
that is Maglev.

• Azure: Azure follows an automatic load balancing system for it’s traf-
fic. For traffic balancing and management Azure uses Traffic Manager.
There are other two types of load balancer in Azure that are Azure Load
Balancer (ALB) and Internal Load Balancer (ILB) for managing inter-
nal loads for both inbound and outbound traffic. Azure load balancer
is a layer4, TCP and UDP application with lower latency and higher
throughput [8].

13. Backend logic processing: This section states what logical base are there
platforms structured upon.

• AWS: The backend logic that integrates events in AWS lambda is the
Lambda function. The backend logic is hosted in lambda when the func-
tion is being invoked.

• GCP: Cloud Function is the backend logical process for Google cloud
services as it interacts with the necessary components like real time pro-
cessing, database etc. for function deployment.

37

• Azure: Azure Event Grid initiates invocation for serverless function data
processing and event handling. It manages the logical workflow for de-
ploying a serverless function.

14. Concurrent Execution: The different execution time of the cloud platforms
are stated here.

• AWS: For AWS lambda the concurrent execution limit is 1000 parallel
execution. Also the maximum execution time for a lambda function is 15
minutes/execution.

• GCP: Google Cloud can handle as many parallel executions for a cloud
function. The concurrency of requests can be handled through Google
Cloud Run by selecting the maximum scaling of concurrency in Google
function.

• Azure: The concurrency on Azure is based on the app. The number is
unlimited but downscaling or limiting concurrency is possible in Azure
through Event Hub service.

15. Server Distribution: The geographical distribution of the regions for data-
center distributions are as follows.

• AWS: Aws is the 1st cloud provider among these three platforms, there-
fore it is spread in a wide range of the graphica region. There are 25 re-
gions with 80 zones throughout the globe. Later in 2020 they announced
25 more regions and 18 zones available in Asia, United Arab Emirates
and some parts of the United Kingdom.

• textitGCP: Although Google Cloud is the latest, it’s spread across the
world is nothing less than Amazon cloud. The branches of Google cloud
have reached 25 regions with over 76 zones. In 2020 they have proposed
7 more regions in North America, Doha and Las Vegas.

• Azure: The distribution of Azure is not well documented but they have
a huge number of data centers. Azure more than 54 regions by 2018 and
16 more available.

6.1.2 Tabular form of comparison study

Here in table: 6.1 we have shown the tabular form of the comparison study conducted
above:

6.2 Result of Practical Experiment

The results of practical implementations of the use cases, Backend API and Data
processing are described in different sections below:

6.2.1 Recursive Function execution comparison

We have considered one of the most commonly used use cases for complexity mea-
surement of function that is recursive function. We have seen that the widely used

38

Feature AWS GCP Azure
1.Cloud
Service

IAAS, SAAS, PAAS IAAS, SAAS, PAAS IAAS, SAAS, PAAS

2.Cloud
Storage

Elastic Block stor-
age, simple storage,
Elastic File System,
Storage Gateway,
Snowmobile, Snow-
ball

Cloud storage, Per-
sistent disk, Trans-
fer appliance, Trans-
fer service

Simple storage, Blob
storage, Queue stor-
age, File storage,
Disk storage, Data
lake storage

3.Security
Factor

IAM, Cloud watch-
Dog, AWS Security
Hub, AWS Guard
Duty,, AWS shields,
AWS key manage-
ment, CloudHSM,
Protection Fire-
wall, AWS Firewall
management, AWS
Cognito, AWS Di-
rectory service, AWS
network firewall

Google Binary Au-
thorization, Cloud
Asset Inventory,
Cloud Data Loss
Prevention, Cloud
Key Management,
Firewalls, Secret
manager, Shield
VMs, Identity
aware proxy,Identity
platform

Azure Information
Protection, Azure
DDoS Protection,
Application Gate-
way, Key Vault,
Security Center,
Microsoft Azure At-
testation, Microsoft
Azure Confidential
Ledger

4.Language
variation

All possible pro-
gramming languages

.Net, go, Java,
Python, Ruby, PHP

C#, Java, PHP,
Python, JS

5.Virtualiza–
tion Tech-
nique

KVM KVM Hyper-V

6.Implementa–
tion com-
plexity

Serverless func-
tion code, project,
container image

Serverless function
Code(Can be edited
in console)

App, Project

7.User In-
terface

Web based console
Web based API con-
sole

Web based API con-
sole

8.Container
orchestra-
tion

EC2, EKS
Kubernetes engine,
Container engine

Container service

9.Network
Service

Virtual private
cloud, API gateway,
Route 53, Cloud
front, Elastic Cloud
balancing

Virtual Private
Cloud, Google
Cloud DNS, Cloud
Interconnect, Cloud
CDN, Cloud VPN,
Cloud load balanc-
ing

Virtual network,
Azure DNS, Content
delivery network,
VPN gateway, Load
balancer

39

Feature AWS GCP Azure

10.Database
Support

Aurora, RDS, Elas-
tic cache, Dynamo
DB, Neptune, Red-
shift, Database mi-
gration system

Cloud SQL, Cloud
Spanner, Cloud
Bigtable

SQL, MySQL,
PostreSQL, Data
warehouse, Cos-
moDB, Table

11.Pricing
methodol-
ogy

Pay per use, free
trial 12months for
some instances

Pay per use, Free
trial 3months with a
credit of 300$

Pay per use, free
trial for 12months
with a credit of 100$

12.Load
balancing
and scaling

Application Load
Balancer (ALBs)

Google Cloud Load
Balancer (GCLB),
Maglev

Traffic Manager,
Azure Load Bal-
ancer (ALB), Inter-
nal Load Balancer
(ILB)

13.Backend
logic pro-
cessing

Lambda Function Cloud Function Azure Event Grid

14.Concurrent
execution:

1000 parallel execu-
tion

Unlimited parallel
execution

Unlimited parallel
execution per app

15.Server
distribution

25 regions 6 new
available announced,
80 zones and 18 new
available announced

25 regions, 76 zones
54 regions and 16
available

Table 6.1: Feature comparison of Cloud platforms

use cases of serverless functions are backend API which requires a lot of code com-
plexity. For having a better idea on how these cloud platforms behave with the
gradually increasing operational complexity, we have run a recursive function in
AWS, GCP, Fission and collected data on execution time and memory usage.
As a recursive function, we have used Fibonacci for this experiment, as this is one
of the strongest recursive functions which has greater deviation with each increment
of number.

Fibonacci Execution:
To have a fair comparison, we have taken all three platforms with the same con-
figuration. For the Fission cluster that we have created by using minikube in our
pc, it was configured with 2GB RAM, 2 core CPU from our host machine. Same
configuration was customized in AWS and GCP for this experiment.

Execution Time Comparison
AWS: We run the Fibonacci programme on AWS. For numbers 30,35,38 and 40 we
execute the programme successfully. Here we show the execution time for AWS in
the Table 6.2.
GCP: We run the Fibonacci programme on GCP. For numbers 30,35,38 and 40 we
execute the programme successfully. Here we show the execution time for GCP in
the Table 6.3.
Fission: We run the Fibonacci programme on Fission. For numbers 30,35,38 we

40

Fibonacci Number Execution time(ms)
30 324.29ms
35 3539.54ms
38 15096ms
40 39576ms

Table 6.2: (AWS) Execution time for different Fibonacci numbers in

Fibonacci Number Execution time(ms)
30 695.39ms
35 4240ms
38 18300ms
40 46300ms

Table 6.3: (GCP) Execution time for different Fibonacci numbers in

execute the programme successfully. But for Number 40 it couldn’t execute the
programme. Here we show the execution time for Fission in the Table 6.4.

Fibonacci Number Execution time(ms)
30 405.5ms
35 4372.63ms
38 18404.68ms
40 Could not run

Table 6.4: (Fission) Execution time for different Fibonacci numbers in

Memory usage Comparison
AWS: We also run the Ram test on AWS for Fibonacci Programme. For AWS, we
got Smallest Memory Request is 47.6837 MB, Max Memory Request is 48.6374 MB
and Average Memory Used is 47.781 MB.
GCP: We also run the Ram test on GCP for Fibonacci Programme. For GCP, we
got Smallest Memory Request is 59.8533 MB, Max Memory Request is 63.8973 MB
and Average Memory Used is 61.8755 MB.

6.2.2 Image Processing Execution comparison

Another popular use case of serverless function is data processing, which is widely
used in functions. To test this case, we have taken image processing function, as it
is a perfect example of data pre-processing. Image processing deals with a lots of
data at a time and affects both space and time complexity of a function. Therefore,
we have chosen this as our test case.
We have run an image processing function that is converting color image to gray
scale image in AWS and GCP platform. We have recorded significant differences in
the execution time and memory utilization of this two platform.

Color to gray scale image:
For both platform, we have selected South Asia as regional server and Mumbai as
zone. This is the closest server from our geographical region. As we now, this has

41

Figure 6.1: Execution Time Comparison between AWS, GCP, Fission

Figure 6.2: Memory usage comparison between AWS and GCP

42

a greater impact on the latency of accessing the function. The more server is away
from the source, the less the latency is.
For this experiment for both the platform, we have chosen the configuration of
128mb of RAM.

Execution Time Comparison
AWS: We execute Image Processing using Numpy and OpenCV library .We also
used BOTO3 library to get the image from Bucket. For executing these image
processing, Maximum Duration is 3005 milliseconds, Minimum Duration is 2724
Milliseconds and Average duration for AWS is 2890 milliseconds.
GCP: We execute Image Processing using Numpy and OpenCV library. We also
used Wand for reading the image, after reading the image we use Google cloud
storage for accessing the image from Google bucket and we also used Google Cloud
Version Library for completing the process. For completing 50% of process execution
GCP took 16030milliseconds and for 95% it took 16570 milliseconds. For Total
processing GCP took 16610 milliseconds.

Figure 6.3: Comparison Between AWS and GCP for Image Processing Execution
Time

Memory usage Comparison
AWS: For executing this image processing Programme AWS needs average 113 MB
of memory. The iterative memory execution is shown in Table: 6.5.

Iteration No. RAM usage(mb)
1 111
2 114
3 115
4 112

Table 6.5: (AWS) RAM usage for each iteration

GCP: For Total processing GCP took 16610 milliseconds. For executing this image
processing Programme GCP needs average 120 MB of memory.The iterative memory
execution is shown in Table: 6.6.

43

Iteration No. RAM usage(mb)
1 123
2 118
3 120
4 119

Table 6.6: (GCP) RAM usage for each iteration

Figure 6.4: Memory usage comparison between AWS and GCP

Figure 6.5: Average memory usage comparison between AWS and GCP

44

6.3 Findings

The analytical findings from the feature analysis and practical experimental section
are described in following sections:

6.3.1 Findings on Feature Comparison

After the analysis of most of the features, the result shows that three of the cloud
platform provides all three cloud services IaaS, PaaS, SaaS. For database storage
they use their own cloud storage service. Among the three, Google security factor
is the most strongest. But other provides are also providing better security service.
All three providers are giving many language support but Amazon AWS is giving
support for all possible programming language. In terms of virtualization AWS and
GCP are the best as they are using KVM. The most user friendly implementation
environment was given in GCP. Based on user interface, Azure has the top notch UI
design. GCP is workable for any container based orchestration. This is why GCP
is most efficient.
Google has plenty of their own networking service, for which their network service
is rich among all. For database support, all three platforms are provides SQL based
database system. Among them, Azure has the most variety of database but AWS
is the most reliable one. GCP follows most simple pricing methodology, and low
cost service. For load balancing, AWS performs best among all three. For back-end
logic processing, Google Cloud Functions provide best performance. Concurrent
execution is more flexible in GCP and Azure rather than AWS. AWS has the most
distributed server among all three. Then there is Azure which has so many server
in so many different regions.

6.3.2 Findings on practical Implementation

Recursive Function
In recursive function experiment, AWS performed better in both execution time
and memory usage. GCP performance was slight lower than AWS but the overall
performance was good. Execution time complexity of Fission was almost close to
GCP.
We can see that in Fission, firstly it is performing worse as the Fibonacci number
increased from 30 and secondly it was unable to run for Fibonacci number 40. The
first case can happen as fission is running in our local host machine and host machine
processor clock speed is lower then that of the AWS and GCP server processor,
therefore it’s execution time is increasing. Although the exicution time is quite
remarkable in-spite of running from local host. The second possible case is that,
although we have prepared all the three platform with same configuration and run
the same code, Fission was unable to execute when the number increased to 40. The
possible reason for this is, Fission was unable to make memory utilization as AWS
or GCP.
We could not calculate memory usage in Fission because, it does not have any
profound visual dashboard like AWS or GCP. For using fission, we installed Fis-
sion CLI, a commend line interface for editing the functions and deploying from
command prompt, as Fission does not have any Graphical User Interface and log
functions of the execution. The Fission CLI works as an API. So the features like

45

memory utilization and processor are not available like other cloud platforms. Only
execution time is returned in the CLI.

Image Processing
We can see a noticeable difference between the execution time on GCP compared to
the execution time of AWS in terms of the image processing. We have come up with
some possible conclusions to this matter. Firstly, GCP fatches the data or in this
case image from the bucket, deploy it to the Numpy library which then processes it to
a Numpy array, return it to openCV then after processing openCV returns the image
or data to the bucket and bucket again delivers the data. This process of fetching
and delivering in GCP takes significantly a larger amount of time compared to AWS.
Secondly, GCP works in such a way that, for any program execution, the dependent
libraries are given in the Requirement.txt file which executes at the time of function
execution. For AWS, the libraries are added in the layers. Upon deployment of the
function, AWS layers install the libraries from some accessible nearby cash which
is very much time efficient. But for GCP, the libraries in requiremen.txt file are
directly installed from the internet which requires nearly manual library installation
time which is very much greater than the AWS. Therefore the overall time complexity
of GCP function is much greater than AWS.
Usually in AWS, an entire serverless function execution takes a few seconds, or
we can scale it as less than 1 minute of time. On the other hand, for GCP, an
entire function deployment takes about 3 minutes or more, like a range from 3 to 7
minutes. But there is an advantage of GCP, that is, it can take unlimited library
function input in the requirement.txt file which may or may not be used in the
serverless function execution. But in the AWS layer, the addition of layers has
been limited to 5. So, in terms of complex functions, we will need to add multiple
libraries in one layer which will perform slowly or may become more complex. But
in GCP, unlimited dependency can be added all together. Therefore we predict
form our experiment that, even though AWS performance is better for small and
less complex functions than that of GCP, for more complex functions, GCP might
perform better than AWS.
Here fission was not used for image processing comparison. As fission is not a com-
plete serverless platform but an open source Kubernetes native serverless framework.
Unlike AWS and GCP, Fission does not have any storage system. For AWS we have
S3 bucket and for GCP we have google bucket to carry our data, specially in this
case, carrying the image we want to process. Therefore, taking input image for
function is impossible in fission.
Necessary libraries for image processing just like numpy and openCV were not pos-
sible to import in fission. For GCP there is a file called Requirement.txt, a text file
which has mentions of all necessary libraries. And for AWS we have layers to add
necessary libraries for a function. But in fission, there are no such clusters for adding
libraries or we can say no proper documentation on how to add such things. Again
in Fission, adding versions of different environments are mismatched. As there are
specific versions of the openCv library for specific versions of language. Even though
the AWS and GCP works fine with it, Fission does not work accordingly. For all
this above, we did not add fission to the image processing experiment.

46

Chapter 7

Future work and Conclusion

7.1 Conclusion

As the revolution of the paperless world is the new progression and necessity, where
we collectively gather our data in a more organized manner. Hence the urge of this
field of technology cannot be denied. In our work we have compared three leading
customer based public services which are Amazon AWS, Google Cloud Platform
and Microsoft Azure. From hour research in the practical and technological field,
we have come to state the point that, Amazon AWS is enriched with more resources
then the other. Developers are more into Amazon than any other. Therefore, it has
a large developer community. As this was the first Cloud based platform, they have
vast resources and documentation in almost all aspects.On the other hand, Google
has a lot more open source service and a huge development prospect. GCP is the
most cost effective platform rather than AWS and Azure. With this platform, user
have the advantage of accessing all Google products. For Azure, they are providing
a huge opportunity for windows user and windows user community is the largest in
the globe. So, Azure is more startup friendly. We hope our research will come as a
little contribution in the serverless field and also will help us learn the related fields
more practically. Hopefully our research work will help others to distinguish among
the public cloud platforms. Our designed serverless architecture can hopefully make
a significant impact in serverless computing. We have tried to bring all related
resources under one roof so that we can have a more precise look on this topic and
utilize the other studies.

7.2 Future work

For our theoretical comparisons, we only selected three cloud providers. In future,
we want to bring out the other cloud providers in this comparison. For our practical
work, we showed two use cases of serverless function. Serverless function can be used
in few more different cases like Integration of 3rd party services, internal tooling,
chatbot and IoT. We want to work in all these use cases and bring those work in
our comparison and experiment. Fission is very new in this platform. As a prior
future work, want to install Fission in a real server and develop this to take it to the
comparison with other cloud platforms. We will implement our designed prototype
serverless architecture and make more development on that design, so that that we
can have a working serverless like the other Public serverless platforms.

47

Bibliography

[1] B. Rajeev, V. Baliga, et al., “A comparative study of amazon web service
and windows azure,” International Journal of Advanced Computer Research,
vol. 3, no. 3, p. 80, 2013.

[2] B. S. Dordević, S. P. Jovanović, and V. V. Timčenko, “Cloud computing
in amazon and microsoft azure platforms: Performance and service compari-
son,” in 2014 22nd Telecommunications Forum Telfor (TELFOR), IEEE, 2014,
pp. 931–934.

[3] I. Bari, S. Babu, M. M. Iqbal, Y. Saleem, and Z. A. Masood, “Cost and
performance based comparative study of top cloud service providers,” Inter-
national Journal of Computer Science and Information Security (IJCSIS),
vol. 13, no. 12, 2015.

[4] M. Copeland, J. Soh, A. Puca, M. Manning, and D. Gollob, “Microsoft azure,”
Apress: New York, NY, USA, 2015.

[5] S. Krishnan and J. L. U. Gonzalez, Building your next big thing with google
cloud platform: A guide for developers and enterprise architects. Springer,
2015.

[6] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge computing: Extending
serverless computing to the edge of the network,” in Proceedings of the 10th
ACM International Systems and Storage Conference, 2017, pp. 1–1.

[7] L. N. Hyseni and A. Ibrahimi, “Comparison of the cloud computing platforms
provided by amazon and google,” in 2017 Computing Conference, IEEE, 2017,
pp. 236–243.

[8] T. Islam and M. S. Hasan, “A performance comparison of load balancing
algorithms for cloud computing,” in 2017 International Conference on the
Frontiers and Advances in Data Science (FADS), IEEE, 2017, pp. 130–135.

[9] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary review
of enterprise serverless cloud computing (function-as-a-service) platforms,” in
2017 IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), IEEE, 2017, pp. 162–169.

[10] G. McGrath and P. R. Brenner, “Serverless computing: Design, implemen-
tation, and performance,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW), IEEE, 2017, pp. 405–
410.

[11] T. I. Tanni and M. S. Hasan, “A performance analysis of a typical server
running on a cloud,” in 2017 20th International Conference of Computer and
Information Technology (ICCIT), IEEE, 2017, pp. 1–6.

48

[12] R. Aljamal, A. El-Mousa, and F. Jubair, “A comparative review of high-
performance computing major cloud service providers,” in 2018 9th Inter-
national Conference on Information and Communication Systems (ICICS),
IEEE, 2018, pp. 181–186.

[13] C. Kotas, T. Naughton, and N. Imam, “A comparison of amazon web services
and microsoft azure cloud platforms for high performance computing,” in 2018
IEEE International Conference on Consumer Electronics (ICCE), IEEE, 2018,
pp. 1–4.

[14] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless
computing: An investigation of factors influencing microservice performance,”
in 2018 IEEE International Conference on Cloud Engineering (IC2E), IEEE,
2018, pp. 159–169.

[15] A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “Serverless computing for
container-based architectures,” Future Generation Computer Systems, vol. 83,
pp. 50–59, 2018.

[16] K. Tajane, S. Dave, P. Jahagirdar, A. Ghadge, and A. Musale, “Ai based chat-
bot using azure cognitive services,” in 2018 Fourth International Conference
on Computing Communication Control and Automation (ICCUBEA), IEEE,
2018, pp. 1–4.

[17] A. Wahid and M. T. Banday, “Machine type comparative of leading cloud
players based on performance & pricing,” in 2018 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), IEEE,
2018, pp. 2364–2368.

[18] E. Bisong, Building Machine Learning and Deep Learning Models on Google
Cloud Platform: A Comprehensive Guide for Beginners. Apress, 2019.

[19] P. Dutta and P. Dutta, “Comparative study of cloud services offered by ama-
zon, microsoft & google,” International Journal of Trend in Scientific Research
and Development, vol. 3, no. 3, pp. 981–985, 2019.

[20] D. M. Laxmaiah, D. Sharma, Y. Kumar, et al., “A comparative study on
google app engine amazon web services and microsoft windows azure,” 2019.

[21] P. Pierleoni, R. Concetti, A. Belli, and L. Palma, “Amazon, google and mi-
crosoft solutions for iot: Architectures and a performance comparison,” IEEE
Access, vol. 8, pp. 5455–5470, 2019.

[22] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Microservice based
architecture: Towards high-availability for stateful applications with kuber-
netes,” in 2019 IEEE 19th International Conference on Software Quality, Re-
liability and Security (QRS), IEEE, 2019, pp. 176–185.

[23] H. Martins, F. Araujo, and P. R. da Cunha, “Benchmarking serverless com-
puting platforms,” Journal of Grid Computing, vol. 18, no. 4, pp. 691–709,
2020.

[24] K. Nakanishi, F. Suzuki, S. Ohzahata, R. Yamamoto, and T. Kato, “A container-
based content delivery method for edge cloud over wide area network,” in 2020
International Conference on Information Networking (ICOIN), IEEE, 2020,
pp. 568–573.

49

[25] R. A. P. Rajan, “A review on serverless architectures-function as a service
(faas) in cloud computing,” TELKOMNIKA, vol. 18, no. 1, pp. 530–537, 2020.

[26] V. Sharma, V. Nigam, and A. K. Sharma, “Cognitive analysis of deploying web
applications on microsoft windows azure and amazon web services in global
scenario,” Materials Today: Proceedings, 2020.

[27] B. Gupta, P. Mittal, and T. Mufti, “A review on amazon web service (aws),
microsoft azure & google cloud platform (gcp) services,” 2021.

[28] L. Amazon, Aws lambda-serverless compute-amazon web services.

[29] M. Deploy, S. Containerized, and S. Ifrah, “Getting started with containers in
google cloud platform,”

[30] N. Sabharwal and P. Pandey, “Pro google kubernetes engine,”

50

Appendix A

Setting up Cloud Platform and
Practical Implementation
Procedures

Our analysis is based on the comparison of different leading cloud platforms in
terms of their working principle and complexity.We tried to capture Microsoft Azure,
Google cloud, Amazon AWS and fission in the same scale and record their behavior
and complexity.

A.1 Microsoft Azure

For the azure account, we needed a student account of windows but our university
provides us g-suite email, with that g-suite email Microsoft does not give us the free
trial of azure. So we get a Microsoft student email from other university friends.
Using that account we got a 100 USD for 12months. Form that credit within the
time we can spend all the money in any service of Azure and we did not need any
VISA or Master Card for activating the trial. Here we wanted to run two kinds of
serverless functions. First of all, we wanted to familiarize ourselves with the AWS
console how to use and run a serverless function. Shown in figure: A.1 and figure:
A.2 respectively.
But here in Azure, there is no way to write a function with a built-in editor. We
need to install Microsoft studio or Microsoft studio code to build an app then we
have to upload that app with all the dependencies and others in Azure. Shown in
figure: A.3.
That means we need to upload an app directly with serverless. Shown in figure:
A.4.
We were able to run the function withs test and also with the HTTP trigger. Shown
in figure: A.5 and figure: A.6 respectively.
But when we tried to change any of this code and upload it then the HTTP trigger
did not work, we tried different ways to make it work but there was no solution to
make it works for us. So this platform is not user friendly for beginners like students
but is more likely for experienced full-stack developers. But the Azure console is
more organized compared to the other cloud providers. Here we can also select our
host operating systems from Windows or Linux. Then we move forward with other
cloud providers.

51

Figure A.1: Microsoft Azure Portal (Dashboard)

Figure A.2: Azure Serverless Function creation

52

Figure A.3: Deploying Serverless Function app using Microsoft code studio

Figure A.4: Detailed Function testing in Azure

Figure A.5: Function app public HTTP trigger in Azure

53

Figure A.6: Live function log of Azure function

A.2 Amazon AWS:

In AWS they provide free 12 months of tier account. For the free tier account, we
need to give them a VISA or Master Card number so that if we exceed the limit of
the specific service then we will charge us from that card. In that free services, the
serverless function which is called Lambda function in AWS was included with a four
million execution number and four million seconds. After that, we familiar with the
AWS console. We noticed that here in AWS there are more features comparative to
others but we only needed the Lamda, EC2 instance(Linux), and S3 bucket for our
work.
In 2021 we can create functions from the four following options.

• Author from scratch: Here we get a simple hello world code to run.

• Use a blueprint: Here we can build functions with simple code and configu-
rations preset for common use cases like Microservice HTTP endpoint, Dy-
namodb process stram, slack eco command python etc.

• Container image: This feature is very useful for the developers using this
we can deploy a container image directly into Lamda so we don’t need to
worry about dependencies or library import problem and version mismatched
problem.

• Browse serverless app repository: In AWS Lamda Application Repository
there are 684 apps we can choose any of the Lamda applications from there.

First of all, we tried to write a Lambda function using java but in AWS there is no
way to write code directly in their editor or console for JAVA. Shown in figure: A.7
and figure: A.8.
So for writing any Lambda function in java we need to use JAVA IDE. We need to
make a Maven project so that the Lamda function dependencies and plugins can be
installed in the zip or JDK file. Shown in figure: A.9.

54

Figure A.7: Amazon AWS Management Console

Figure A.8: Lambda function for Java runtime and editor

55

Figure A.9: Java Maven project for Lambda function in IDE

56

Here in the Maven project is a pom.xml file where we need to add dependencies
and plugins from AWS websites then the IDE will download the dependencies and
plugins from the internet. Shown in figure: A.10.

Figure A.10: pom.xml file for Lambda dependencies and plugings

After downloading the plugins and dependencies we could import the necessary
library for the Lamda function. At first, we were getting many errors importing
the libraries but after downloading the error gone. After writing a simple code in
the main Java file we run the project as a Maven project. After running it makes
a zip file name of the project. Then upload it in AWS but after 1st test run, we
got errors. To solve the error we need to change of codes in our IDE and build the
project again and upload it to the AWS and there is also a limitation of the zip file
size of 10MB. For that, we tried to build a new project and changed our codes and
tried several times but did not work. So we moved forward for python. The good
thing about python in Lambda is we can edit our code in the AWS console’s editor.
Shown in figure: A.11.
We can select python 2.7, 3.6, 3.7 and 3.8 for the python runtime. After creating
a function from scratch we first able to run our hello world code as a Lambda
function. Then we tried to implement a simple calculator there and able to run
it our calculator can only do the basic operations. After analyzing the code we
understand that for any serverless function it first looks for the handler method to
run def lambda handler(event, context): and it takes event and context as
parameters. So to confirm we changed the handler function and also removed that
but after doing that the function did not work at all. And the handler function
returns a not other than string only. If we tried to return other data types it will
give an error. We wanted to test two types of serverless functions here which is
simple recursive function and data processing. For the recursive function, we chose
to calculate a Fibonacci number recursively. Our logic for choosing this function is
to push the limit or test the AWS hosting servers capability to efficiently handle the
function. And in website or app backend API there are many recursive functions is
used and we know recursive functions are CPU and ram intensive.

57

Figure A.11: Lambda inline code editor for Python environment

import json

def lambda_handler(event, context):

TODO

nth_fibo = Fibonacci(40)

return {

’statusCode’: 200,

’body’: json.dumps(’Hello from Lambda!’)

}

def Fibonacci(pos):

if pos <= 1 :

return 0

if pos == 2:

return 1

n_1 = Fibonacci(pos-1)

n_2 = Fibonacci(pos-2)

n = n_1 + n_2

return n

We use this code for calculating the Fibonacci numbers and took the value of finding
the time to calculate the various Fibonacci number to compare with another cloud
platform. Shown in figure: A.12 and figure: A.13.
After doing this we moved for data processing using the Lambda function. Shown
in figure: A.14.
For this, we get into many problems with the external library importation in the
lambda function. Like our python code editor, we cannot import any kind of library
in Lambda. For image processing, we must need NumPy and OpenCV library to do
that. For the libraries, Lamda provided Layer options. Layer gives us the ability to
make a library for use in lambda functions. We can add a maximum of 250MB of
total layer size and a maximum of five layers in a single function. But the same layer
can be used in an unlimited number of functions. For making a layer AWS provide

58

Figure A.12: Lambda function logs with details

Figure A.13: Graphical view of Lambda function execution

59

Figure A.14: Workflow diagram of Image Processing in Lambda function

the directory for making a layer. For layer, we have to use a specific directory and
name for the layer and zip it and upload it in the layer. In AWS documentation they
give us this directory python/lib/python3.8/site-packages(site directories).
Then we tried this in our Linux machine Ubuntu 20.04. Shown in figure: A.15.
Before all else, we installed “pip3” for downloading the libraries of Python3.++.
Shown in figure: A.16.
After that, we needed AWS CLI to directly upload or deploy anything in our com-
puter to AWS. Now, we need the directory where the libraries will be downloaded.
Shown in figure: A.17.
After downloading we zipped the folder and tried to upload the zip file in a layer
but in the layer, we can upload a maximum of 50MB size of the library. Shown in
figure: A.18.
But our zipped folder size was more than 60MB, so we uploaded this in an S3 Bucket
and then made the layer with that bucket object file. Shown in figure: A.19 and
figure: A.20.
Then we created a function and add that layer made by us and import cv2 but we
got the error that says “no modules named cv2”. Shown in figure: A.21.
We thought this might be a version mismatch with the Linux version so we created
an EC2 instance using 15GB of disk space and 2GB of ram which was included in
the free tier of AWS. Shown in figure: A.22.
They price Ubuntu 20.04 LTS server to access that instance we have to take that
instance terminal using any of our computers we cloud to do that with Linux ter-
minal, MacOS terminal and windows command prompt also. For accessing that
instance AWS provide a public IP of that instance and while creating the instance
they provide a key which extension in “ .pem”. The key is to login into the instance
without providing the AWS email and password. After accessing the instance we
did the same thing as our ubuntu 20.04. Shown in figure: A.23.
After making the zip we can upload that from our instance to the S3 bucket for
that we have to give permissions for both S3 and EC2 instance to do it otherwise

60

Figure A.15: Layer directory for openCV

61

Figure A.16: Installation of pip3

Figure A.17: Installing openCV in directory

62

Figure A.18: Lambda layer size limitation

63

Figure A.19: Lambda layer from S3 bucket object

Figure A.20: Adding customized layer in the Lambda function

64

Figure A.21: Failed to import library from customized layer in Lambda

Figure A.22: Ubuntu20.04 server EC2 instance details

65

Figure A.23: Taking over control of EC2 instance with IP .pem key in host machine
terminal

66

AWS will block any kind of read or write permissions. That’s why there is “I AM
ROLE” with the help of that we can give permissions to read or write. Shown in
figure: A.24 and figure: A.25.

Figure A.24: Setting role in S3 bucket for permission

When the permission-giving is finished then we can upload that zip file directly to
the S3 bucket using this upload command. Shown in figure: A.26.
Then we made a layer from that file but that didn’t work at all and we tried for all
the python versions. Finally, we moved to the containerized process. As we know
that for the problem of version mismatch docker container has been invented. So one
of the DevOps engineers from social media helps us to solve this layering problem.
In the first place, we checked our docker version to confirm that we have Docker
installed in our ubuntu Host machine. As we worked with Docker in pre-thesis 2
docker was installed. Then we made a directory /tmp/mylayer and in that direc-
tory, we made a requirement.txt file where we wrote OpenCV version 4.4.0.42 and
wrote a bash command to download/pull the docker image labci/lambda:build-
python3.8 from docker repository. Shown in figure: A.27.
After pulling those image we run some bash commands mentioned in the screenshot.
Shown in figure: A.28.
After completing all those things finally we got a zip folder named my layer than
from that we made that layer and it worked.
Next, we started working on the image processing part. We wanted to make a simple
image processing which is a colour image to greyscale image conversion. For this, we
imported cv2 from our layer and NumPy from an already existing layer of AWS we
also needed boto3 which is a library from AWS to accessing the s3 bucket. Here we
imported an image from our bucket for importing that bucket we had to make an I

67

Figure A.25: Role creation for EC2 instance

Figure A.26: Uploading layer package from EC2 instance to S3 bucket

Figure A.27: Downloading library image for Python3.8 from Docker repository

68

Figure A.28: Installing library in our directory with bash command

am role to accessing the s3 bucket. We had to set the role in our Lambda function
for accessing the s3bucket. Shown in figure: A.29.
We have to make roles for the s3 bucket also. We can add policies in the role. Shown
in figure: A.30.
After adding the policies in the role and adding the role in the functions we can
proceed with the code. Shown in figure: A.31.
Using boto3 we get an object from our bucket that we created and the image name
was “color” with jpg extension then we read the file object and put it into a NumPy
array and decoded that array in OpenCV image. Then we converted the image to
grayscale using OpenCV. After conversion, we saved that image in python temporary
writable directory(/tmp/). From that writeable directory, we put that image into
the s3 bucket using boto3. Then we execute the function initially it failed to execute
because our function had a time limit of 3 seconds which mean our function will
automatically stop after 3 seconds. So all work in the code must be done within 3
seconds. On the first try, the is a init duration it takes for initializing the code for
our case it takes 1129.41ms. Shown in figure: A.32.
After 1st try our function executes successfully and takes a total of 2751.43ms in the
2nd run it does not require the initialization time. So it was under 3 second. Now
we can check our s3 bucket for the gray scaled image and we found that. Shown in
figure: A.33 and figure: A.34.
Then we downloaded the image to see that. Shown in figure: A.35 and figure: A.36.
We execute the same function 5 times and took the values for the total execution
time. Moreover, we can connect API getaway or any trigger to Lambda functions.
Shown in figure: A.37.

69

Figure A.29: Setting S3 permission role in Lambda function

Figure A.30: Setting Lambda function execution policies in S3 bucket role

70

Figure A.31: Source code of image processing in the Lambda function

Figure A.32: Time limit error for initialize duration

71

Figure A.33: Success log for image processing function execution

Figure A.34: Gray-Scale images processed by the Lambda function

72

Figure A.35: Input Color Image

Figure A.36: Output Gray-scale Image

73

Figure A.37: Various type of trigger options in Lambda function

74

A.3 Fission:

For working in fission we need to have detailed knowledge of virtualization, docker
container, Kubernetes and other tools like kubectl and helm. This part is most
important in our thesis work because we had to know about Kubernetes in details.
In the first place, we installed Kubernetes and we knew that Kubernetes is mainly
working with Docker container what Kubernetes does is Kubernetes manages the
docker container automatically. To make it work in our host Linux machine we
needed a command-line tool which is called Kubectl tor Kubernetes to work with.
For Kubectl we add the repository from where we can download the tool with the
curl command. Then we install it from that repository with root access. Shown in
figure: A.38.

Figure A.38: Adding Kubectl repository and Installation

After installing Kubectl will make a cluster and we can see the cluster information
with a simple command mention in the screenshot. Shown in figure: A.39.
For running the Kubernetes in our local host we used Minikube. And we also add
the repository for Minikube in our Ubuntu app repository and installed it from
there. Shown in figure: A.40.
We started our Minikube using the minikube start command. Then we can see
the version of Minikube version and which driver it is using in which profile. Also
it started contol palne node of minikube in cluser minkube. Then it updated the
running kernel virtual machine 2 and its virtual machine which named “minikube”.
Then it prepares Kubertes(latest stable version) base on Docker (latest stable ver-
sion). After those it verified Kubernetes components it enabled two addons storage-
provisioner, default-storageclass. Shown in figure: A.41.
After that, we need to interact with Minikube with our cluster using two Kubectl
command kubectl get po -A and minikube kubectl - - get po –A. By default,
the cluster created with 2GB ram and 2cores of CPU. Shown in figure: A.42.
Now finishing interaction with the cluster finally it open into our browser. Shown
in figure: A.43.
Here we can see the Kubernetes user interface. We can also start Minikube with
specific Kubernetes versions. Shown in figure: A.44.
Now it’s time to install fission because we had done the prerequisites. To begin with
we need to check our Kubectls version. And our Kubectl seems fine with the unique
gitCommit ID, compiler name, server version and clean GitTreeState which means
we proceed next steps. Shown in figure: A.45.

75

Figure A.39: Verifying Kubectl cluster information

Figure A.40: Adding Minikube repository and Installation

76

Figure A.41: Downloading dependent components for starting Minikube

Figure A.42: Interacting with the cluster

77

Figure A.43: Kubernetes (or Minikube) local host dashboard

Figure A.44: Starting specific Kubernetes version

Figure A.45: Checking and verifying the Kubectl version

78

In Minikube it does not support LoadBlancer that’s why instead of LoadBalancer
we will be using NodePort. We checked the NodePort with this kubectl get svc
command. Here we can see the cluster IP and port with others. Shown in figure:
A.46.

Figure A.46: Checking the cluster and NodePort IP

Now we need to export the Fission namespace then create that same namespace with
Kubectl. For the next step, we need Helm which is a Kubernetes package manager.
To install Helm like Kubectl we need to add the repository to our apt package with
the curl command and add the key there. Next, we download the list of helm from
there we will install like a normal software in Ubuntu with sudo apt-get install
command. Shown in figure: A.47.

Figure A.47: Adding repository and installation of Helm

After installing we had to start our Minikube engine otherwise, it will give a connec-
tion refused error. So after starting Minikube, we created namespaces with Kibectl
shown in figure: A.48 and with help of Helm we installed helm from the GitHub
repository. But in our screen shoot, there is already an existing error that arrived
because we did that before with our taking screenshots.
To continue we need to install Fission-CLI to make fission work with the command
in the terminal. Shown in figure: A.49.
We are successfully done installing fission and make it useable in our Linux machine.
To run any code first of all we need to make an environment for these languages
NodeJS, Python, Ruby, Go, PHP, Bash, and any Linux executable with the function
name and the function name must be all small or lowercase letter. Shown in figure:
A.50 and figure: A.51.
As an example we made a python environment named “hellot” and the .py file name
was helloT. After making the environment with the code. Finally, we could test the
function with fission function test –name hellot. To update the code we can make
changes in the .py file and update that code in the Fission function. Shown in figure:
A.52.

79

Figure A.48: Exporting and Creating NameSpace for Fission

Figure A.49: Adding repository and installation of Fission CLI

In fission, we cannot run our conventional python codes. It always looks for the
main method of the code with the return type of string and it prints the return
value. Our python was.

def main():

return "Hello, Thesis Defense"

After successfully running the sample code we move forward to test our Fission
framework with the same recursive function which was finding the nth Fibonacci
number.

Here in our code we measure the time with time library to find the execution time
of the function and measured those value for our comparison. We test one function
5 times to make an accurate result shown in figure: A.53.

We get the value for finding the 30th, 35th and 38th Fibonacci number but we get
an error to find the 40th Fibonacci number shown in figure: A.54.

Maybe Fission cannot utilize the memory properly.

80

Figure A.50: Error for function name structure miss match

Figure A.51: Successfully running a serverless Python function in Fission

81

Figure A.52: Recursive function and Execution time measurement function code for
Fission

Figure A.53: Execution time value for multiple time execution of the recursive
function

82

Figure A.54: Function error calculating 40th Fibonacci number

A.4 GCP:

We got 300USD credit for 3month for the Google Cloud Platform. For that, we had
to give them a VISA card number for further billing and they mentioned they will
not auto-charge after the trial period is finished. For authentication, they verify the
card with a deduction of 1USD. After going throw the GPC console we realized that
there is less feature than the AWS and Azure. But there are specific engines for
machine Learning ad Artificial Intelligence work. Shown in figure: A.55.

Figure A.55: Google Cloud Platform Console (Dashboard)

But for our work only needed the Serverless Functions feature which is called Cloud
Functions in GCP. Here in the GCP function, only a few languages are supported
compared to the other two provers but the good thing is we can use an inline code
editor for all these programming languages and also from the zipped file. Shown in
figure: A.56.

83

Figure A.56: Google Cloud Functions’ in line code editor

For the comparison of a recursive function, we write a code for finding the Fibonacci
number and measured the time of finding nth Fibonacci number same as we did in
AWS Lambda. Shown in figure: A.57.
Here in Cloud Functions, it looks for the entry point method for running the code
which is the main method here and that method return a string. After writing the
code here we test the function and collect the result for finding the 30th, 35th, 38th
and 40th Fibonacci number. Shown in figure: A.58.
In the metric tab, we can find the graph for various thing like memory utilization,
execution time etc. Shown in figure: A.59.
Now it’s time to run the image processing part. For doing that we needed a bucket
from where the function can read the colourful image. Shown in figure: A.60.
First of all, we made a bucket in GCP storage and upload the colourful image.
Shown in figure: A.61.
Then we need to set the roles or permissions to access the Cloud Functions. But
after going in the permissions tab we can see the roles are already set maybe it good
for a developer to save their time but it can be a security risk because from other
functions the data for the bucket can be accessed. Shown in figure: A.62.
To continue, we created a function for image processing. To do that we needed
NumPy, OpenCV, wand(for image reading), google-cloud-storage(for accessing the
file from the bucket) and google-cloud-version libraries. On our first try, we were
getting error for version mismatching of OpenCV and NumPy. Shown in figure:
A.63.
In GCP there is no hassle of Layer we can write the library name with the specific
version in the requirement.txt file. While deploying the function GCP automatically
downloads the libraries so this is a very helpful feature in GPC comparing with AWS.
Shown in figure: A.64.
Without any dependency or library mismatch error, we could deploy our function
successfully after several tries. Then we wrote our code in the inline editor. Forsake

84

Figure A.57: Deploying the recursive function in Google Cloud Functions

Figure A.58: Log for running the recursive function in Google Cloud Functions

85

Figure A.59: Function details with graphical overview

Figure A.60: Workflow of Image Processing in Google Cloud Functions

Figure A.61: Bucket details with our input color image

86

Figure A.62: Default bucket roles

Figure A.63: Deployment error for miss matched library function for Python

87

Figure A.64: Requirement library files for image processing with specific version

or good view we are showing it in the spider code editor. Shown in figure: A.65.
First of all, we imported everything that we need. Then declare the storage and
get the storage client and image annotator. Then put the image in a NumPy array
and processed the image in gray scale and upload it to the bucket. Shown in figure:
A.66.
After going into the bucket we can find our grascale.jpg image file. GPC takes more
than 2minutes to deploy a function with dependencies so we deleted the image ran
it over again sometimes and collect the execution time. Shown in figure: A.67.

88

Figure A.65: Image processing function code for Google Cloud Functions

Figure A.66: Finding processed gray-scale image in the bucket

89

Figure A.67: Successfully running the image processing function in Google Cloud
Functions

90

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background Study
	Problem Description
	Aim of the study
	Motivation
	Contribution
	Limitation of the study
	Overview of the Thesis

	Related Work
	Theoretical Framework
	Basics of Cloud Computing
	Definition
	Cloud Services
	Cloud Deployment type

	Basics of Serverless Architecture
	About Serverless
	Definition
	Serverless Components

	Container & Virtual Machine
	Kubernetes
	Fission
	Amazon AWS
	Google Cloud Platform
	Microsoft Azure

	Methodology
	Goal of Analysis
	Selected comparative cloud features
	Comparative feature for Program Execution
	Proposed Model

	Experimental Setup
	Amazon Seb Service
	Google Cloud Platform
	Microsoft Azure
	Fission

	Experimental Results and Findings
	Result of Feature Analysis
	Comparative Study of the selected Features
	Tabular form of comparison study

	Result of Practical Experiment
	Recursive Function execution comparison
	Image Processing Execution comparison

	Findings
	Findings on Feature Comparison
	Findings on practical Implementation

	Future work and Conclusion
	Conclusion
	Future work

	Bibliography
	Appendix A
	Setting up Cloud Platform and Practical Implementation Procedures
	Microsoft Azure
	Amazon AWS:
	Fission:
	GCP:

