
ii Page

SIMILARITY SEARCH FOR BANGLA

A Thesis

Submitted to the Department of Computer Science and Engineering of

BRAC University

by

Mahbub Morshed

Student ID: 09201023

Shahid Md . Shahed

Student ID : 07101007

In Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

April 2011

BRAC University, Dhaka, Bangladesh

21 Page

Declaration

I hereby declare that this thesis is based on the results found by myself.

Materials of work found by other researcher are mentioned by reference.
This Thesis, neither in whole nor in part , has been previously submitted for

any degree.

Signature of Si nature of

Supervisor Author

Signature of

Author

31 Page

Acknowledgments

We would like to thank my thesis supervisor, Mr. Matin Saad Abdullah for

his guidance and ever helpful comments on my work. We also thank our

teachers at BRAC University, our families and friends.

41 Page

Abstract

Due to typos and misspelling search engines cannot provide users with

proper information. Large search engines like Google provides suggestion

tab "did you mean". But such options are not included in most of the open

source search engines. Our goal was to find a way to implement an

exhaustive similarity search in an efficient way and develop such

option for Bangla search engine . We used Solr for that. And configured Solr

with Lavenstine distance and Jaro Winkler algorithm to provide "Did you

mean" for English. But to implement this for Bangla we needed a Stemmer

for Bangla and that was not present in SoIr. In order to build a efficient

stemmer we need to tag the tokens properly according to their parts of

speech as the stemming process for different parts of speech is different.

There are different approaches to the problem of assigning a part of

speech (POS) tag to each word of a natural language sentence. We have

used NLTK toolkit to develop a Regular expression tagger for Bangla verbs

using the common suffixes(1 i r) found in Bangla grammar. Then

we analyzed its performance on main verbs extracted from a 100K token

51 Page

tagged-corpus. In this thesis we also compare the performance of a few

POS tagging techniques for Bangla language, e.g. statistical approach (n-

gram) and transformation based approach (Brill's tagger). A supervised

POS tagging approach requires a large amount of annotated training

corpus to tag properly. We used the 100K token hand tagged corpus

developed by Microsoft India to implement these techniques.

61 Page

Table of Contents

Introduction .. 7

Apache Nutch & Apache Solr :.. 9

Stemming and Lemmatization : ... 12...........

Parts of s peech Ta gg ing
14

Methodology
17

Unigram Tagger ...18

Bigram Tagger ...18

Bri l l's Tagger ..19

Regex Tagger ...19

Corpora ... 21

Untagged Data .. 22

Previous Work ... 24

Result .. 27

Future Work .. 28

Reference .. 29

List of tags ... 30

71 Page

Introduction

Similarity search has become a very important tool for search engines.

Nowadays, we depend a great deal on this feature while searching. Google

and other search engines have "Did you mean?" where they give us

suggestions if our searched word has no good matches. But, these search

engines only support English language. Complex languages like Bangla

have greater need of this feature as the grammar is very complex compare

to English and there is more possibility of spelling mistakes.

This thesis discusses some open source search engine implementation for

similarity search as well as comparison between different taggers for 100k

corpus for Bangla language . It concludes with an implementation of a

custom tagger which can tag out words, especially verb so that analyzing

the query gets easier and a better result can be obtained.

Similarity search for Bangla

All modern search engines attempt to detect and correct spelling errors in

users' search queries. Google, for example, was one of the first to offer

such a facility, and today we barely notice when we are asked "Did you

mean x?" after a slip on the keyboard . But these search engines do not

support any other languages except English. For a more complex language

like Bangla , this feature is a mandatory as the possibility of spelling

mistakes is much more. If we search ' ^ instead of ' ' we will not

get any results although these two words sound the same. So, to make a

Bangla search engine fly , we need to implement the "Did You Mean?"

feature.

We started out with Apache Nutch and than moved to Solr. We were able

to implement similarity search in SoIr for English. But to implement this for

Bangla we needed a Stemmer for Bangla and that was not present in

Solr.In order to build a efficient stemmer we need to tag the tokens properly

according to their parts of speech as the stemming process for different

parts of speech is different.

91 Page

Apache Nutch & Apache Solr:

Nutch is open source web-search software. It builds on Lucene and

Solr, adding web-specifics, such as a crawler, a link-graph database,

parsers for HTML and other document formats, etc. Nutch can run on a

single machine, but gains a lot of its strength from running in a Hadoop

cluster. Using Nutch, we implemented a full scale search engine. It can be

configured to give search results for Bangla words as well as English

words. But, to implement "Did You Mean?" even for English is very

inefficient as Nutch uses Lucene under it's belt and the spell check

suggestion for Lucene gives poor result.

Soir is the popular, blazing fast open source enterprise search

platform from the Apache Lucene project. Its major features include

powerful full-text search, hit highlighting, faceted search, dynamic

clustering, database integration, rich document (e.g., Word, PDF) handling,

and geospatial search. Solr is highly scalable, providing distributed search

and index replication, and it powers the search and navigation features of

many of the world's largest internet sites.

SoIr is written in Java and runs as a standalone full-text search server

within a servlet container such as Tomcat. SoIr uses the Lucene Java

101 P a g e

search library at its core for full-text indexing and search, and has REST-

like HTTP/XML and JSON APIs that make it easy to use from virtually any

programming language . Solr's powerful external configuration allows it to

be tailored to almost any type of application without Java coding, and it has

an extensive plugin architecture when more advanced customization is

required. With Solr we were able to implement spell check suggestion for

English words. But, for Bangla words, we need a proper analyzer so that

Solr can analyze the queried word properly. For that, we need a stemmer.

In the next page, there is a screenshot of our implementation of "Did You

Mean?" for English word in SoIr. Here, we searched with "sol" and it gave

us the suggestion of "solr" which was indexed.

111 P a g e

..4 Salrtutorial (version 3,©.d.2910.07.L, Solr admen page http // oca[host:...tcheck.buiid=true x

This XML file does not appear to have any style information associated with it. The document tree is shown belo-^

- <response>
- <Ist name=" responseHeader">

<int name="status"> O</int>

< int name= "QTime">239</int>

</Ist>

<str name=°'command">build</str>

<result name="response" numFound=" O" start="O"P

- <1st name="spellcheck

- <Ist name=" s">
- <1st n

<intr -" ound">1</int>

< int name="startOffset"> O</int>

<int name= "endOffset"> 3</int>

- <arr ggestion'5

</a:

</Ist>

</1st>

</Ist>

</response>

Figure - Similarity Search For English in Solr

12I Page

Stemming and Lemmatization:

For grammatical reasons, documents are going to use different forms of a
word, such as organize, organizes, and organizing. Additionally, there are
families of derivationally related words with similar meanings, such as
democracy, democratic, and democratization. In many situations, it seems
as if it would be useful for a search for one of these words to return
documents that contain another word in the set.

The goal of both stemming and lemmatization is to reduce inflectional
forms and sometimes derivationally related forms of a word to a common

base form. For instance:

am, are, is be

car, cars, car's, cars' car

The result of this mapping of text will be something like:

the boy's cars are different colors

the boy car be differ color

However, the two words differ in their flavor. Stemming usually refers to a
crude heuristic process that chops off the ends of words in the hope of
achieving this goal correctly most of the time, and often includes the
removal of derivational affixes. Lemmatization usually refers to doing things
properly with the use of a vocabulary and morphological analysis of words,
normally aiming to remove inflectional endings only and to return the base
or dictionary form of a word, which is known as the lemma . If confronted
with the token saw, stemming might return just s, whereas lemmatization
would attempt to return either see or saw depending on whether the use of
the token was as a verb or a noun. The two may also differ in that

131 P age

stemming most commonly collapses derivationally related words, whereas
lemmatization commonly only collapses the different inflectional forms of a
lemma. Linguistic processing for stemming or lemmatization is often done
by an additional plug-in component to the indexing process, and a number
of such components exist, both commercial and open-source.

The most common algorithm for stemming English, and one that has
repeatedly been shown to be empirically very effective, is Porter's
algorithm. The entire algorithm is too long and intricate to present here, but
we will indicate its general nature. Porter's algorithm consists of 5 phases
of word reductions, applied sequentially. Within each phase there are
various conventions to select rules, such as selecting the rule from each
rule group that applies to the longest suffix. In the first phase, this
convention is used with the following rule group:

For Bangla words , specially verbs we need to stem properly to get a better

search result . If an user searchs with the word " ' and that word

is not indexed then the search engine should give a suggestion . Here, if the

indexed word is "' then it should suggest this word as the main root for

the word " ' is "". So we need to stem the input correctly to

decrease the edit distance, otherwise it may give us some other
suggestion. That is why we need a good stemmer . In order to do so, we

need to tag different parts of speech . Because stemming process for

different parts of speech is not the same. For example , if we extract "Ci'

from " v a', the word will be properly stemmed . But for a verb " C f(', if

we extract "c ' then we will get "CT' which is not the root word . So, we need

to tag the words properly so that we can stem properly.

14I Page

Parts of speech Tagging

In corpus linguistics, part-of-speech tagging (POS tagging or POST), also

called grammatical tagging or word-category disambiguation, is the process

of marking up the words in a text (corpus) as corresponding to a particular

part of speech, based on both its definition, as well as its context -i.e.

relationship with adjacent and related words in a phrase, sentence, or

paragraph. A simplified form of this is commonly taught to school-age

children, in the identification of words as nouns, verbs, adjectives, adverbs,

etc.

Once performed by hand, POS tagging is now done in the context of

computational linguistics, using algorithms which associate discrete terms,

as well as hidden parts of speech, in accordance with a set of descriptive

tags. [1]

Parts of speech (POS) tagging means assigning grammatical classes i.e.

appropriate parts of speech tags to each word in a natural language

sentence. Assigning a POS tag to each word of an unannotated text by

15IPage

hand is very time consuming, which results in the existence of various

approaches to automate the job. So automated POS tagging is a technique

to automate the annotation process of lexical categories. The process

takes a word or a sentence as input, assigns a POS tag to the word or to

each word in the sentence, and

produces the tagged text as output.[2]

In the following sections, we start by giving a overview of some of the

widely used POS tagging models.

Classification

There are different approaches for POS tagging. The following figure

demonstrates different POS tagging models.

161 P a g e

Rule Based

Unsupervised I

Stochastic Ne.i al RuleBased11

Maximum
Likelihood

PPS Tagging

Stochastic

Brill

Hidden Markov i Baum-Welch
Model Algorithm

Neural

Figure 1: Classification of POS tagging models

17IPage

Methodology

We implemented and tested the following methods using NLTK tagger.

Unigram Tagger

Bigram Tagger

Brill's tagger

Regex tagger

18IPage

Unigram Tagger

The Unigram tagger (n-gram, n = 1) is a simple statistical tagging

algorithm. For each token, it assigns the tag that is most likely for that

token. For example, it will assign the tag `adj' to any occurrence of the word

`frequent', since `frequent' is used as an adjective (e.g. a frequent word)

more often than it is used as a verb (e.g. I frequent this cafe).

To use a unigram tagger it must be trained using a corpus. The default

taggers assigns 'NC' to unknown words.

Bigram Tagger
The Bigram tagger works in exactly the same way as the Unigram Tagger,

the only difference is that it considers the context when assigning a tag to

the current word. When training, it creates a frequency distribution

describing the frequencies with which, each word is tagged in different

contexts. The context consists of the word to be tagged and the tag of the

previous word. When tagging, the tagger uses the frequency distribution to

tag words by assigning each word, the tag with the maximum frequency

given the context. For our case, when a context is encountered for which

no data has been learnt, the tagger backs off to the Unigram tagger.

19IPage

Brill's Tagger
The general idea of the tagger is very simple. It uses a set of rules to tag

data. Then it checks the tagged data for potential errors and corrects those.

In the same time it may learn some new rules. Then it uses these new rules

to again tag the corrected data. This process continues until a threshold in

improvement in each pass has been reached.

The Brill tagging model works in two phases. In the first phase, the tagger

tags the input tokens with their most likely tag. This is usually done using a

Unigram tagging model.

Then in the second phase, a set of transformation rules are applied to the

tagged data

Regex Tagger

We also implemented a regex tagger that uses Regular expression to find

verbs . In first pass the tagger finds the big suffixes like "- ' and

201 P age

directly assigns it as a verb.

In the second pass the tagger finds the small suffixes and compares it with

a verb root. Example of verb roots-

IZTI^01115 -4"

(^} (^) (^^^°^) ()

a 1 Vtt ct - 'T - -"n - T

-19

9 a First Pass
1 ^

' a ! -ten -ate -T a
b. I First Pass First Pass {

211 P a g e

Corpora
Corpus size
Bangla - Manually annotated 7168 sentences (102933 words)

Tag Example

Example:

79TP\JJ.n.n I\NC.0.0.n.n -\PU iI\JJ.n.n -nWOJJ.n.n

i\NC.0.0.n.n ,\PU

The tag follows the word separated by a '\' (back slash) immediately after

the word. There are no blank

spaces in between. After the whole POS tag there should be at least one

blank (white space) before the

next word or a sentinel. In the above example, the first string of 2 to 4

uppercase characters denotes the

Category and Type. For example, in the above sentence the word I5 is

marked as NC which stands for

Noun Common (N denotes Category Noun and C denotes type Common).

221 P age

The attributes are denoted as numbers or letters, as the case may be, after

the tag for the lexical category

separated by '.' (dot). The order of the attributes is fixed and cannot be

arbitrarily swapped . To illustrate

this, consider the category proper noun (NC) whose attribute set is

{Number , Case-marker , Definiteness,

and Emphatic}. Number can take values from the set {Singular (sg), Plural

(pl), Not-applicable (0));

Case-marker can take values from the set {Accusative (acc), Genitive

(gen), Locative (loc), Notapplicable

(0)); Definiteness can take values from {yes(y) and no(n)} and Emphatic

can take values from

{ yes(y) and no(n)}. Therefore, for the Common Noun Iq, in the above

example sentence, which is

singular, not-applicable, non-definite and non-emphatic, the comple tag

should be:

Untagged Data

Example Sentence . F1 3Wff r, N vmE7f 3 r aa. pT{ I

-q,I i\JJ.n.n NzMNC.O.O.n.n -1PU MJJ.n.n 3\CCD.n 311'\JJ.n.n

\NC.O.O.n.n \PU

\!AiR \NC.O.O.n.n \PU T3E7ANC.O.O.n.n 3\CCD.n T1ThNC.O.O.n.n

.ia,\CCD.n -1t \NC.O.O.n.n I\PU

241 Page

Previous Work
CRBLP has done some previous work on a small scale. Fahim Mohammad

Hasan has worked with 4484 tokens and the results of his comparison is

shown below.

Tokens

Unigram

Accurac
y

Brill

Accurac
y

0 0 0

60 51.2 50.4

104 51.1 44.6

503 60.7 56.3

1011 64.2 62.6

2023 69.1 67.8

3016 70.1 70.9

4484 71.2 71.3

Table 1: Performance of POS Taggers for Bangla [Test data: 85 sentences,
1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 1 Tagset (14

Tags)]

25I P a g e

Tokens

Unigram

Accuracy

Brill

Accuracy

0 0 0

60 17.2 38.7

104 17.4 26.2

503 26.1 46.1

1011 30 51.1

2023 36.7 49.4

3016 39.1 51.9

4484 42.2 54.9

Table 1: Performance of POS Taggers for Bangla [Test data: 85 sentences,
1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 2 Tagset (41

Tags)]

Test data : 340 sentences , 5029 tokens

Sentences Tokens

HMM

Accuracy

Unigram

Accuracy

Bigram

Accuracy

Brill

Accuracy

1785 25426 92.9 74 .4 73.2 83

Table 3: Performance of POS Taggers for Bangla on merged training an
testing data [Test data and Tagset source: [41]]

261 Page

According to Fahim Muhammad Hasan, "For Bangla, we did not have any

annotated corpus available, and the reason of very low performance of

Bangla on our cases is mostly due to the small corpus size"[2]

So in our research we tried out with a large corpus to see that whether

performance actually improves or not.

27IPage

Result
We compared Unigram, Bigram, Trigram and Brill's Tagger using 47,000

token as training data and another 47,000 token as test data. And the result

was-

Tokens Unigram
Accuracy

Bigram
Accuracy

Trigram
Accuracy

Brill's Tagger
Accuracy

47,000 83.2% 84.2% 83.8% 83.9%

Result of Regex Tagger -

Total First Pass Second Total Accuracy Verb Root
Verbs Pass Verbs

Found

10518 4492 4986 9478 91.10% 377

28IPage

Future Work
The tagger that we have built can be further used as a proper stemmer for

Bangla language . We need some more efficiency on the stemmer so that

our search result can give better output. Then we can implement that into

our search engine and make that a good search engine producing similarity

search.

29I Page

Reference

[1] http://en . wikipedia . org/wiki/Part-of-speech tagging

[2] COMPARISON OF DIFFERENT POS TAGGING TECHNIQUES FOR

SOME SOUTH ASIAN LANGUAGES BY FAHIM MOHAMMAD HASAN

[3]http://streamhacker .com/2008 /1 1/10/part-of-speech -tagqinq-with-nltk-

ap rt-2/

[4] Himanshu Agrawal and Anirudh Mani, "Part of Speech Tagging and

Chunking with Conditional Random Fields", In Proceedings of the NLPAI

Machine Learning 2006 Competition.

[5] http://nutch.apache.org

[6] Atro Voutilainen , "Does tagging help parsing ? A Case Study On Finite

State Parsing ", University of Helsinki , Finland.

[7] Linda Van Guilder, "Automated Part of Speech Tagging: A Brief

Overview", Handout for LING361, Fall 1995, Georgetown University.

[8] http://Iucene.apache .or /c/solr/

[9] http://Iucene.apache.org/lava/docs/index.html

301 P age

List of tags

CATEGORY Attributes

C om mon

NOUN Proper

Verbal
Spatio-temporal

VERB Main
Aux i$i ary

Pronominal

PRONOUN Reflexive

Reciprocal

Relative
Wh

NOMINAL MODIFIER Adjective

Quantifier

DEMONSTRATIVE Absolute

Relative
Wh

ADVERB Manner

Location

PARTICIPLE
Verbal jAdverbia l)

Conditional

PARTICLE -Coordinating
Subordinating

Classifier

Inter jection
Others

Punctuation

RESIDUAL Foreign word

Spmtmi

Others

311 P age

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31

