Classification Technique for Face-Spoof Detection in
Artificial Neural Networks using Concepts of machine
Learning

BRAC

UNIVERSITY
Inspiring Excellence
by

Anika Anjum Una
17201139
Erina Haque
16141012
Nishat Sultana Ritu
17101203
Zarin Tasnim Haque
17101205
Rifat Shahran Opal
16201030

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
June 2021

(©) 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at

BRAC University.

2. The thesis does not contain material previously published or written by a third
party, except where this is appropriately cited through full and accurate ref-

erencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Aniba Anjom Unow

Anika Anjum Una
17201139

.\15.9\‘%

7 s

Nishat Sultana Ritu
17101203

Erina Haque

16141012

N

Zarin Tasnim Haque

17101205

Rifat Shahran Opal

Approval

The thesis titled “Classification Technique for Face-Spoof Detection in Artificial
Neural Networks using Concepts of Machine Learning” submitted by

1. Anika Anjum Una - 17201139
2. Erina Haque - 16141012

3. Nishat Sultana Ritu- 17101203
4. Zarin Tasnim Haque- 17101205

5. Rifat Shahran Opal- 16201030

Of spring, 2021 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on June 10 2021.

Examining Committee:

Yot bl

Moin Mostakim

Lecturer
Department Of Computer Science And Engineering

Brac University

Dr. Md. Golam Rabiul Alam
Associate Professor
Department Of Computer Science And Engineering

Brac University

Dr. Sadia Hamid Kazi

Chairperson and Associate Professor

Department of Computer Science and Engineering

Brac University

i

Ethics Statement

The thesis is carried out in complete compliance with research ethics, policies, regu-
lations and codes set by BRAC University. We have used various information from
different sources in order to pursue the research. To collect data, we read articles,
journals from different websites, etc. The sources we have used here are interpreted
in our own terms and are properly mentioned as a reference. We appreciate and
give credit to every source that helped us to continue our work. Lastly, we declare
that five authors of this paper hold liability if any violation of BRAC University
standard is found.

il

Abstract

In biometric technology, face recognition techniques are considered the most signif-
icant research area. This technology is abundantly used in security services, smart
cards, surveillance, social media, and ID verification. The number of countermea-
sures is gradually increasing, and many systems have been initiated to distinguish
genuine access and fake attacks. In our paper, we propose a Convolutional Neu-
ral Network (CNN), which can obtain fine distinctions and abilities in a supervised
manner. Deep convolutional neural networks have prompted a progression of break-
throughs for image classification. This paper introduces various architectures of
CNN for detecting face spoofing using many convolutional layers. We have used
VGG-16 under Convolutional Neural Networks (CNN) architecture in the proposed
system for learning about the feature classification. Our proposed system has show-
cased an accuracy of 98% for Convolutional Neural Network (CNN), 63% for VGG16,
and 50% for Support Vector Machine (SVM) respectively.

Keywords: Face Spoofing Techniques, Feature Classification, Machine Learn-
ing, Convolutional Neural Network (CNN), VGG-16.

v

Dedication

We would want to dedicate our thesis to our parents, who have helped us get this
far by every means possible. Then, to our respected supervisor, Moin Mostakim sir;
we could not have conducted our research without his instructions and guidelines.
Lastly, with condolence, to all the people who had and still are suffering from loss
of data stealing and identity thieving issues.

Acknowledgement

In the name of Allah, Most Gracious, Most Merciful, Who has given us the strength
and perseverance, we are grateful to our family members, as well as our supervisor,
Moin Mostakim sir, for his consistent guidance and aid in envisioning that this
research is possible. He helped us whenever we needed any sort of assistance and
guided us to improve ourselves.

For our parents’ kind support and prayers, we are now on the verge of completing
the final phase of our thesis. We also appreciate our fellow team members who held
strong and united till the end to successfully complete the work.

Finally, we want to thank our institution and its administration for providing us with
a platform from which we may go one step closer to achieving our main objectives.

vi

Table of Contents

Declaration

Approval

Ethics Statement

Abstract

Dedication

Acknowledgment

Table of Contents

List of Figures

Nomenclature

1

Introduction

1.1 Motivation
1.2 Objectives
1.3 Methodology
1.4 Thesis Overview e

Literature Review
2.1 Related Works

Dataset Analysis

3.1 Data Collection

3.2 Data Labeling and Refining
3.2.1 Training Dataset L.
3.2.2 Validation Dataset

3.3 Testing Dataseto

Model Specification

4.1 Convolutional Neural Network (CNN)
4.1.1 Layersof CNN

4.2 VGGI6. e

4.3 SVM Classifier)

vil

iii

iv

vi

vii

ix

ix

13
13
13
14
14
14

5 Implementation

5.1 Overview
5.2 Loading the data
5.3 Implementation with CNN
5.4 Analyzing Model with Tensorboard
6 Performance Analysis

6.1 CNN- Model 256x3 o
6.2 VGGI6.

6.2.1 Prediction vs. Actual
6.3 SVM Classifier

7 Conclusion

7.1 Future Perspectives

7.2 Conclusion

References

viil

26
26
28
29
29

33
33
37
40
43

46
46
46

46

List of Figures

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
2.3
5.4
2.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

Fake Images 14
Real Images 14
An Image Matrix of dimension 15
Neural network with many convolutional layers 16
Complete CNN architecture 16
Image matrix multiplies kernel or filter matrix 17
Few common filters o 17
Convolutional Nodes 19
Summary of CNN Model 20
VGGI16 Layers 21
VGG16 Overview 22
Training and validation accuracy of VGG16 23
Support Vectors 24
Implementation Flowchart 27
The dense layer without activation added 30
The dense layer after activation added 30
Modified Layers 31
Combinations of different layers of CNN Models 32
Training accuracy and loss in every Epoch 34
Validation Accuracy and Loss 34
The internal Loss in every Epochs 35
The internal Accuracy in every Epochs 35
Confusion Matrix of CNN Model 256x3 36
The internal Accuracy in every Epochs 37
The internal loss in every Epochs 37
Confusion Matrix Predicted Table 38
Actual vs Prediction Result 40
Actual vs Prediction Result 40
Actual vs Prediction Result 41
Actual vs Prediction Result 42
Actual vs Prediction Result 43
Actual vs Prediction Result 43
The internal accuracy in every Epoch 44
The internal loss in every Epoch 44
Confusion Matrix of SVM Classifier 45

1X

Chapter 1

Introduction

It is realized that the vast majority of the current face recognition frameworks are
defenseless against spoofing attacks. A spoofing assault occurs when some- body
attempts to pass a biometric face system by presenting a fake face in front of the
camera. Face-spoofing location normally fills in as a preprocessing step of the face
acknowledgment frameworks to decide whether the face picture is obtained from a
genuine individual or a printed photograph (replay video). Along these lines, face-
spoofing recognition is a twofold grouping issue. It is likewise called face-liveness
discovery. The spoofing assault comprises the utilization of manufactured biometric
attributes to acquire ill-conceived admittance to make sure about assets secured
by a biometric verification framework. It is an immediate assault on the tangible
contribution of a biometric framework, and the assailant doesn’t require past infor-
mation about the acknowledgment calculation. With the brilliant addition of video
and picture databases, there is an unbelievable need for programmed comprehension
and evaluation of data from the savvy framework as physically it is finding the op-
portunity to be surely distant.[l] Thus, the programmed face discovery framework
assumes a significant job in face acknowledgment, outward appearance acknowledg-
ment, head-present assessment, human-PC connection, and so forth.

1.1 Motivation

Face anti-spoofing is drawing increasing attention in academic and industrial fields
as a security measure for face recognition systems. However, due to the diversity of
Face spoofing types, including print-attacks, replay-attacks, mask attacks, Etc., it
is still difficult to distinguish various fake faces. A spoofing assault happens when
somebody attempts to pass a biometric face system by presenting a fake face in
front of the camera. Face spoofing typically fills in as a preprocessing step of the
face acknowledgment frameworks to decide whether the face picture is obtained from
a genuine individual or a printed photograph (replay video). Along these lines, face
spoofing recognition is a twofold grouping issue. It is likewise called face liveness
discovery. The spoofing assault comprises manufactured biometric attributes to ac-
quire ill-conceived admittance to make sure about assets secured by a biometric
verification framework. It is an immediate assault on the tangible contribution of
a biometric framework, and the assailant does not require past information about
the acknowledgment calculation. With the brilliant addition of video and picture
databases, there is an unbelievable need for programmed comprehension and evalu-

ation of data from the savvy framework as physically it is finding the opportunity
to be undoubtedly distant. This way, the programmed face discovery framework
assumes a significant job in face acknowledgment, outward appearance acknowledg-
ment, head-present assessment, human-PC connection, and so forth. In this paper,
we utilize a deep convolutional neural network to work against face spoofing. If we
compare other manually built features like LBP, HOG, LBP-TOP, DoG, then we
will find that features from CNN are more discriminative in nature. The popular-
ity of face recognition systems also resulted in popularity in face spoofing attacks.
Face spoofing detection is now mandatory in every face recognition system since
technologies to clone human faces have gotten very advanced.

1.2 Objectives

In research, most contemporary facial recognition systems are known to be vulner-
able to spoofing attacks. Face anti-spoofing is a safety feature for facial recognition
systems that are gaining popularity in academia and industry. Face spoofing is of-
ten used as a preprocessing step in face recognition frameworks to determine if the
face image is from a real person or a printed photograph. As a result, detecting
face spoofing is a binary classification challenge.[2] Face liveness detection is an-
other name for it, and it was created to combat various sorts of spoofing assaults.
As a result, the spoofing attack uses falsified biometric features to obtain unautho-
rized access to resources protected by biometric authentication. It is a direct attack
on the concrete contribution of a biometric framework, and the adversary does not
need to know the recognition algorithm beforehand. With the exponential growth of
video and picture data, there is an unimaginable need to automatically understand
and assess information from intelligent systems, as doing so manually is becoming
increasingly difficult.

The face is important in social interactions because it conveys an individual’s
identity and feelings. In comparison to robots, humans have a fantastic capacity
to discriminate between distinct faces. As a result, the automatic face detection
system is critical for face recognition, facial expression recognition, head-pose esti-
mation, and human-computer interaction, among other things.[3] However, in this
article, we will detail how to stave against face impersonation by the use of a deep
convolutional neural network (CNN). We are tasked with accomplishing this as our
first mission. Because CNN-learned features, rather than hand-crafted features,
may better identify discriminatory characteristics in data-driven ways, this example
might use CNN-learned features rather than hand-crafted features.[/]

The trials have proven more essential since they show that the more general qual-
ities it acquires, the more versatile the tool may be in generating spoofing in many
formats. Furthermore, we used the feature color and texture. Because the features
indicated earlier might be regarded as changes in the face texture information or
image quality, the facial appearance analysis-based approaches are sometimes re-
ferred to as texture or image quality analysis-based approaches. To conclude, the

researchers studied the use of pre-trained convolutional neural network techniques
(CNN) for FR and classification accuracy by comparing the FR performance of
the CNN with that of transference learning for extraction and classification using
pre-trained CNN.

1.3 Methodology

Our first step was to collect the Real and Fake Face Detection dataset. We use Ten-
sorFlow and Keras; both Tensorflow and Keras is an open-source software library
that delivers interfaces for ANN. This required basically online research work. We
collected all datasets and real, fake images through online research and by ourselves
and then tried to extract certain facial expression parameters using feature extrac-
tion and algorithms of machine learning. For this paper, we are using the Real and
Fake Face Detection dataset. After unzipping the dataset, we will find two direc-
tories: real images and fake images. These images are then converted to a training
dataset.

Firstly, we have to make all the images the same size. The images are reshaped
into similar dimensions. Also, these images are removed from their colors. It is to
be made sure that all images are converted to a size where the image quality is not
compromised. We used CNN along with other algorithms, namely VGG 16. We
then compare the results and accuracy rate of previous works with our work and
try to achieve a better accuracy rate.

1.4 Thesis Overview

In this paper, we first attempt to analyze a thorough study of the related works of our
thesis. The following section thus contains the literature review and a background
on machine learning models and architecture we have used. The undermentioned
literature review entails the research papers we found related to our topic.

In the next chapter, we have the Dataset Analysis section, which comprises the
Dataset collection, labelling and refining sub-sections. A detailed description of the
dataset we collected from Kaggle used in our thesis is made, which incorporates how
the training and testing are performed upon the dataset .

The Model Specification section comes next where the paper discusses the speci-
fications of the models applied in our research.

The subsequent chapter of Implementation describes the implementation proce-
dure of our models.

Next, the section of Performance Analysis analyzes the results obtained and com-
ments on the performance. Furthermore, it goes on to state the best model that we
have received on our given datatset.

Finally, the Conclusion section concludes our thesis and proposes our suggested
future work.

Chapter 2

Literature Review

2.1 Related Works

Many of the researchers have worked on CNN applications in a variety of ways. Many
relevant studies on the issue of face recognition, face spoofing, feature extraction, and
so on have been examined in many research articles. Face anti-spoofing technologies
are used to distinguish between authentic and false faces. It’s one of the most
pressing concerns in today’s biometric applications. We have covered some of the
prior study papers that we have investigated in this section of our report. The
following are some of the prior works:

The authors Asim, Ming, and Javed [5] introduced a revolutionary face anti-
spoofing solution based on a deep CNN architecture. It uses the LBP-TOP de-
scriptor to extract spatiotemporal facts about genuine access and imposter videos
or image sequences. This method differs from the majority of current approaches in
that it does not require preprocessing procedures such as face detection, face refine-
ment, or rescaling. LBP-TOP is based on texture feature analysis. Fake faces, on
the whole, have distinct textural traits than actual ones. In this study, they look at
how time and space may be combined to create a dominating countermeasure for
improving Local Binary Pattern (LBP) picture sequences. To identify edges, the
first layer CNN employs raw pixels. The second layer detects higher-level charac-
teristics such as face shapes by using edges to discern simple shapes and then forms
to identify higher-level elements such as face shapes.

The last three Convolutional layers are chosen in this article since they contain the
greatest information when compared to the first two levels. The suggested technique
is evaluated using two datasets. On the REPLAY-ATTACK, the CASIA dataset
demonstrated complete detection between actual access and imposter attacks and
extremely competitive results. CASIA DB has a total of 50 topics (20 for training
and 30 for the test set). Each resident has twelve sequences: three true access and
nine imposter attacks. Images are collected in three quality levels for each resident.
Three types of spoofing attacks are included in CASIA DB: warped picture assault,
sliced photo attack, and video replay assault. The validation set, on the other hand,
is provided by the REPLAY-ATTACK dataset and findings are expressed in terms
of EER computed on the development set and HTER calculated on the test dataset.
The error rate is measured per video, not per frame, and the final attack or genuine

video score is derived by averaging the scores of all frames chosen from the video.
The final score video is then classed as a real or fake assault based on that.

In another paper [6] written by Boulkenafet, Komulainen and Hadid provided an
innovative and attractive methodology for detecting face spoofing using color texture
analysis in another study. This research investigates how effectively several color
image representations (RGB, HSV, YCbCr) can be utilized to describe the intrinsic
color texture differences of real and false faces, as well as if they give complementary
representations. Texture descriptions were created with gray-scale pictures in mind.
However, by integrating the information retrieved from multiple color channels, it
may be used to color pictures. The color texture of facial photographs is investigated
using five descriptors in this article. Three recent face anti-spoofing databases are
used to evaluate the performance of the proposed anti-spoofing technique: CASIA
Face Anti-Spoofing Database (CASIA FASD), Replay-Attack Database, and MSU
Mobile Face Spoof Database (MSU MFSD). These three datasets contain record-
ings of actual client visits as well as various spoofing attack attempts collected with
various images quality devices such as mobile phones, webcams, and digital system
cameras. Initially, the performance of color texture features will be compared to
their gray-scale counterparts, and then complementary facial color texture represen-
tations will be combined to form the final face description used in the anti-spoofing
method, and its performance will be compared to state-of-the-art algorithms. Fi-
nally, undertake cross-database tests to test the proposed approach’s generalization
capabilities. The encouraging findings of the cross-database examination show that,
compared to gray-scale analogs, facial color texture representation is more reliable
under unknown settings.

Authors Mo, Chen and Luo in paper [7] suggested a CNN-based approach for
detecting faked facial photos. It is created using the most up-to-date approach
and includes comprehensive trial findings that show the suggested approach can
efficiently distinguish between fake and real facial photographs with good visual
quality. GANs (generative adversarial networks) are a popular generative model
that learns the distribution from large amounts of data and generates a new sam-
ple. A GAN usually consists of two parts: a generator and a discriminator. The
discriminator determines if the input data is genuine or fake, while the generator
understands how to make fake data that is indistinguishable from actual data. The
RGB color picture with the size M M 3 is used as the model input. First, use a high
pass filter to convert the input pictures into residuals and then feed the residuals
into three-layer groups. A convolutional layer (3x3 sizes, 1x1 stride) equipped with
LReLu and a max-pooling layer (2x2 sizes, 2x2 strides) are included in each group.
The first convolutional layer’s output feature map number is 32, whereas the follow-
ing convolutional layers’ output feature map numbers are double the corresponding
input feature map numbers. The last group’s output feature maps are then com-
bined and fed into two fully connected layers. Both are equipped with LReLu and
have 1024 and 512 units, respectively. Finally, the output probability is calculated
using the Softmax layer. Finally, while current GAN-based approaches may pro-
duce realistic-looking faces (or other visual objects and sceneries), certain evident
statistical aberrations are necessarily created and can serve as shreds of proof for
fraudulent ones, according to experimental data.

In a paper [3] written by Benlamoudi, Samai, Ouafi, Bekhouche, Taleb-Ahmed
and Hadid suggested an anti-spoofing approach for discriminating between ’live’
and ’fake’ faces in their article. The Fisher Score was utilized to minimize the
histogram by focusing on the LBP overlapping process. The LBP is an image fixer
that transforms a picture into a matrix or a more detailed picture. A 3x3 pixel
picture block was used in the original LBP. To produce a label for the center pixel,
the block’s mean pixel value is thresholded, then multiplied by powers of two, and
finally summed. Because the neighborhood is 8 pixels wide, there are a total of 28
= 256 labels available. Because the neighborhood is made up of 8 pixels, there are a
total of 28 = 256 labels that differ in terms of the relative gray levels of the center and
its surroundings. One of the most prominent approaches for picking characteristics
is the Fisher Score. Fisher scoring is based on the notion of selecting each attribute
individually depending on its score under the Fisher criterion. In comparison to
much previous work, the methodology examined on NUAA Photograph Imposter
and CASIA Face Anti-Spoofing Databases, which contain several genuine and phony
faces, demonstrated encouraging results. They utilized the Viola-Jones method to
detect all of the components of the face photos for the experiment and the Active
Shape Model with Stasm to detect the eyes.

All cropped faces are reduced to 64x64 pixels in size. After that, they partition
the facial picture into three 3 x 3 overlapping sections and apply the LBP operator
to each of them. Each region’s 243 bin histograms are produced and merged to form
a single 2187 bin histogram. The Fisher score is then used to minimize the number
of histogram bins. Finally, they utilize an SVM nonlinear classifier with a radial
basis function kernel to identify whether or not the input image is a living face. A
collection of positive (true faces) and negative (false faces) samples from the data
set are used to train the SVM classifier initially. They obtained an EER of 1% using
the NUAA database, which is the best result among the other research. They found
good results for poor and normal quality (EER = 7) in the CASIA Database (2%
and 8.8%, respectively). Finally, in the case of the textural algorithm, the general
test of their work is superior to the others.

In a paper [9] written by Pitaloka, Wulandari, Basaruddin, and Liliana refined
the CNN algorithm to recognize 6 fundamental emotions and compared several pre-
processing approaches to identify effects in order to demonstrate their performance.
CNN is the place to be. The studies were conducted utilizing data from JAFFE,
CK +, and MUG, which meant that each participant was given instructions from
an expert to display six different emotions. CK + 5 is a popular tool for detecting
emotions and analyzing facial expressions. Has 123 participants, Japanese Female
Facial (deleted) (JAFFE) has 213 photos exhibiting 6 fundamental emotions of 10
Japanese women, and the MUG record contains 86 Caucasian individuals Crop,
Resize, Noise Addiction, and Normalizations. The picture from the preprocessing
stage is fed to the first convolution layer with a core size of 5 x 5 to recognize facial
emotions using CNN. The rectified line unit (ReLu) is used to activate all layers,
with the goal of preserving the qualities of each Output. The CNN model is trained
using the RMSProp software. AdaGrad altered it to enhance speed, particularly
for non-convex configurations, and to modify the gradient to exponential. The er-
ror function is based on cross-entropy. On an NVIDIA GPU version 375.74 from

Nvidia-375, CPU type 16xi7-5960X, 65 GB RAM, and Ubuntu 16.04 as the operat-
ing system, the preprocessing and CNN stage were completed using Python libraries
such as OpenCV and TensorFlow. The accuracy of the preprocessing stages b + f
was the greatest, at 93.14 percent. In terms of accuracy, the Global Contrast Nor-
malizing (GCN) step outperforms previous normalization procedures, although it
falls short of the ROI. Finally, when compared to another preprocessing phase and
raw data, we discovered that face recognition as a single preprocessing phase ob-
tained a substantial result with 86.08 percent accuracy. Combining these strategies,
on the other hand, can raise CNN accuracy to 97.06 percent.

From another research article, we get to know that the authors Shih and Liu [10]
developed a new approach of face identification by merging DFA, face class model-
ing, and SVM, according to another study. By collecting the input picture, its 1-D
Haar Wavelet interpretation, and its frequency estimations, selective feature anal-
ysis generates a feature vector. After that, the face class modeling calculates the
Document of the face class and develops a distribution-based metric for categorizing
faces and non-faces. Finally, SVM distinguishes the structures in input data into
the face or non-face class using the distribution-based metric. Experiments involv-
ing photographs from the MIT-CMU test sets were used to assess the effectiveness
of their novel face recognition technology. The distribution-based measure classifies
the input picture forms into different kinds: face (patterns that are near to the face),
faceless (patterns that are not close to the face), and faceless (patterns that are not
near to the face) (patterns outside the face class) and uncertain class (patterns that
is neither near nor distant from the face). Eventually, an SVM detects faces in the
undetermined class and sends their layouts to the DFA-SVM decision rule, which
categorizes them whether as face or non-face. The SVM is a particular manifes-
tation of statistical learning theory. It refers to a technique called structural risk
reduction, which reduces the functional impact in terms of both scientific risk and
probability value. The DFA-SVM approach uses training samples from the FERET
database, which includes 600 frontal face photos. Images from multiple DFA-SVM
algorithms are included in the MIT-CMU test kits, which provide the test data.
The DFA-SVM approach, which trains on a basic collection of pictures yet operates
on many more complicated pictures, demonstrated high convergence speed in the
experiments. Facial recognition photographs for training an SVM with a linear re-
gression of the second degree. Both face and non-facial pictures are standardized to
a spatial resolution of 16 16 pixels. Our DFA-SVM approach yields a correct image
stabilization rate of 98.2 percent with two error rates using CMU test kits.

The authors’ Neves, Tolosana, Vera-Rodriguez, Lopes and Proenga [I1] in their
paper introduced a new technique. It is based on the GAN fingerprint removal facial
identification system. In their research paper, they considered four different public
databases. They have to use CASTA-WebFace and VGGFace2 for detecting a real
face. CASIA-WebFace consists of 494,414 images from 10,575 actors and actresses
of IMDb. Those images have a random variety of pose and facial expression and
it also contains different resolutions. From 9,131 different data, VggFace2 consists
3,31 million images. Each data has a mean of 363 pictures. Those pictures have a
lot of variations in pose, age, illumination, ethnicity and profession. In this paper,
they have used TPDNE and 100K-Faces for synthetic images. They have collected

unique pictures from the website2. 100K-Faces have consisted of 100,000 synthetic
face images using StyleGAN. From a variety of 69 models, StyleGAN was a trained
network using around 29,000 photos. They have used the PyTorch framework for
all the testing combinations with an NVIDIA Titan X GPU. They divided every
database into two different datasets. The first one is used for the development and
training of the systems (70%). The second one for the final evaluation (30%). They
also divided the development dataset into two separate subsets. They are training
(75%) and validation (25%). In the experimental framework, the same number of
real and synthetic pictures has been considered. For the development part, multiple
users are considered for biasness. Suppose when the picture quality is decreased by
4/7. They have shown that these Outputs contain poor generalization capacity of
state-of-the-art face manipulation identification systems to unknown conditions.

In a research paper by J. Yang et al., [12], a supervised approach is taken to
learn features applying deep convolutional neural network (CNN)—a high discrim-
inative potential- that results in a more than 70% decrease of Half Total Error
Rate (HTER) being achieved. For data preparation, this novel method uses a com-
mon Viola-Jones for face detection in OpenCV. A set of local binary features are
extracted in this step which is used for learning linear regression in each cascade,
obtaining refined face location based on face landmarks. Furthermore, the authors
take the background into account for classification. They mentioned in their paper
that studying the background allows CNN to learn discriminative methods more
effectively than hand-crafted feature extraction methods. In this CNN architecture,
the input images from the datasets used are prepared with five scales; images con-
tain more background with the increase in scale. The data is augmented temporally
besides spatial augmentation. Due to more informative data, better performance
was achieved in most of the scenarios with multiple frames. As they mentioned in
their paper, when the CNN is fed with multiple frames, the CNN can learn both
spatial and temporal features.

Experiments are carried out on REPLAY-ATTACK and CASIA datasets. In
the CASIA dataset, the spoofing images are implemented using attacks of three
categories, i.e., warped photo of the person, cut photo and electronic screen attacks.
In REPLAY-ATTACK, three spoofing types are used, namely, print attack, digital
photo attack, and video attack.

For performance comparison, Half Total Error Rate (HTER) is measured. Intra-
test and Inter-test are conducted on each dataset to evaluate the generalization
ability of the method. Moreover, both datasets are combined to evaluate the perfor-
mance further. Drastic improvements are found in both the dataset results. In the
experiments, it is well-observed that background areas significantly improve anti-
spoofing models’ competency to generalize. On the CASIA dataset, the best scale
was found to be 3, while 5 was the best scale for the REPLAY-ATTACK dataset.
The input data had caused such a difference, as was stated. The authors formed an
argument stating that face-spoofing is not a facial classification concern; rather, on
regions where the fakeness of the face can be identified. While the inter-test pro-
tocol did not show satisfactory results, HTERs lower than 5% were achieved in the

intra-test and combined protocols on two of the datasets, proving to be remarkable
improvements in this area of face-spoof classification.

In another paper, S. B. Rajeswaran et al. [13] proposed a face-spoofing method
using Convolutional Neural Network, based on color features extracted by L*a*b*
color space model. Color features such as luminous intensity and other channel
chroma components are used to distinguish between real and spoof faces. L*a*b*
color space has three parameters- L*, a* and b* for luminosity, green-red component
and blue-yellow color component, respectively. There are two stages in this proposed
system — Face detection in an image and Face Verification of real or spoof face in
an image. The first mentioned step is implemented using two methods:

1. Viola-Jones algorithm by using Haar-Cascade features and AdaBoost tech-
niques 2. Histogram of Oriented Gradients (HOG)

HOG is observed to produce greater accuracy in face detection and is thus used
in the spoof-detection system. Features of local texture and distortion in the image
are found. Subsequently, the extracted features are trained for Face Verification
using VGG7 CNN architecture in two phases: Train-Phase and Test-Phase. The
model is trained with real and spoof face and the weight file is used to classify the
image in the test phase. VGG7 CNN architecture consists of 5 convolutional layers,
3 max-pooling layers after the convolutional layers; they are followed by two fully
connected dense layers and the softmax classifier is used to classify the images. Adam
is used for the optimizer and the loss function sparse categorical entropy is used.
The experiment is carried out in real-time using a hardware system and an external
camera; the OpenCV package is used to support Tensorflow, Torch and Caffe. The
VGGT7 CNN architecture, used in classifying input images, failed to predict the faces
properly under certain improper light conditions, while it produced precise results
for face-spoofing detection under trained constant surrounding light.

Authors Almabdy, S., and Elrefaei, L., [I4] in a paper proposed a CNN based
approach for face recognition and investigated the resulting face Recognition per-
formance through CNN using two approaches, the first one being, application of
Pre-trained CNN AlexNet and Resnet-50 with SVM and the second approach be-
ing, extraction of features and classification through applying transfer learning on
AlexNet Model. Pre-processing was performed, followed by face recognition, and
subsequently, face classification. Tests on various datasets such as FEI face dataset,
ORL dataset, LFW dataset and Youtube dataset were carried out. The different
methods using Pre-trained models and SVM were compared and analyzed, hence-
forth. Finally, accuracy ranging from 94%-100% was obtained on the given datasets.
The suggestion of introducing more datasets was made for future developmental
work in this field so as to train the mentioned CNN models.

Studies on cues by R. Tronci et al. [15] for photo-attack detection in another
paper have given insight and perspective into the real-life problem of spoofing at-
tacks. According to the paper, a face-spoof attack can be generated in three ways:
generating a photograph, reproducing a video, presenting a 3D reproduction of a

10

face, all of a valid user. It is stated that the problem of photo-attack detection can
take place in two complementary directions: static and video analysis, where static
analysis is based on a photo-attack causing a certain loss of information and pecu-
liar noise; video analysis is to detect facial physiological clues like blinks, changes
in facial expressions and mouth movements. In this work, the problem of 2D face-
spoof detection is regarded by the authors as a fusion of multiple clues that result
from examining static and video studies in the respective scenes. This procedure
entails three steps, which are: static feature extraction, video-based feature extrac-
tion and score level fusion. For static analysis, visual features, for instance, color
and edge directivity descriptor, Gabor texture, RGB, are used. For video analysis,
clues such as blink and motion of the foreground mask are taken into account. Us-
ing a weighted sum, fusion is next performed at the score level. The static analysis
implemented in this paper exploits SVM classifiers and different visual features as
mentioned above and, through a dynamic score combination methodology, yields
excellent performance.

Another paper by authors L. Souza et al. [10] presents an extensive analysis of
face-spoof detection research works published in recent times. The analysis is done
based on fundamental parts, i.e., classifiers and descriptors. Descriptors were clas-
sified into motion, color, texture, shape, reflectance and frequency, while classifiers
were categorized into discriminant, distance metric, regression and heuristic. Tak-
ing into consideration of the most significant public datasets in the field, namely
CASIA, MSU-MFSD, Replay-Attack, Print-Attack, etc., the survey brings forth a
comparative performance analysis for a greater understanding of advancement and
future aims in the field. The authors, in their paper, as a result of their survey,
mentioned the following face-spoofing attacks possible: flat printed photo, eye-cut
photo attack, warped photo attack, video playback attack and mask attack.

From the aforementioned descriptors, texture features are the most commonly
used evidence for spoof detection, assuming that printed spoofs contain texture
patterns that are absent in real faces. In this case, LBP is observed as the very first
choice, which is a gray-scale, illumination invariant, texture coding technique that
compares and labels every pixel relative to its neighbor, resulting in a binary number
through concatenation. The texture is then described by a histogram of the final
computed labels generated. Different configurations such as LBPV, multi-scale LBP,
Muvis, etcetera have also been explored. Motion is the second crucial descriptor used
in mainly two ways for this purpose. One way is the detection and description of
intra-face variations such as head rotation, eye blinking and facial expressions. An
alternative path to use motion is through evaluating how consistently a user interacts
in his given external surroundings, wherein motion correlation that lies between the
face of the person and its background are evaluated.

Classifiers, such as discriminant techniques, are most widely used, which dis-
tinguishes different classes by minimizing intra-class and/or maximizing inter-class
variations. SVM is the most common classification technique, which often presents
superior results to the rest. Performance analysis is done based on two types of
errors: number of false acceptance (NFA) and number of false rejection (NFR).

11

Comparing these error rate pairs and showing ROC curve based on their probabil-
ities, it is observed that spoofing attack continues to be a security challenge and
despite the robust methods obtained, they do not favor breakthroughs in the field
since they tend to follow the same recipe. There is seen to be a considerable gap
from research work to real work applications in an efficient way. It is suggested that
further work is focused on more difficult data-sets and unbiased evaluation methods.

12

Chapter 3

Dataset Analysis

In this chapter, we have provided details of the data collection process, data labeling
and refining stage, dataset validation and the test data.

3.1 Data Collection

It is no surprise to us that cybercrime is spiraling in this generation. Companies are
paying loads to machine learning engineers only to explore biometric facial recog-
nition for their security. However, even the best facial recognition techniques have
their flaws. Photos of general people are fed into recognition software for spoofing.

As we are focused on classifying the techniques of face spoof, it is important
that a correct dataset is chosen. In this paper "Real and Fake Face Detection”
dataset is used, which was provided to Kaggle by the Dept. of Computer Science of
Yonsei University. It was created taking into consideration the dangers that come
with a fake identity. The dataset consists of high-quality photoshopped images of
people’s faces. The pictures are blended with different faces where the features are
manipulated extensively.

The images are altered by experts only because the creators kept in mind the
training of the classifier for these images. Inside the dataset, two directories can be
found: (i) training real (1081 files), (ii) training fake (960) files.

3.2 Data Labeling and Refining

The collection of these images is categorized in two folds: real and fake. The fake
images are changed by experts, who successfully merged different features into one.
The real images are taken as candid so that our models can determine results on a
higher level.

13

3.2.1 Training Dataset

We used around 1634 images to fit the model. This is almost 80% of the whole
dataset, including both real and fake images. We fed the images into our models,
and our models were executed on them.

3.2.2 Validation Dataset

Of these 1634 training images, 20% of the data was used to provide an unbiased
evaluation of the training dataset. The evaluation gets more biased as configurations
of the models are integrated with the validation dataset.

Figure 3.2: Real Images

3.3 Testing Dataset

We used 20% of the dataset for testing. This test dataset tells us on which standard
the evaluation of the models is. After training of the dataset is done, the test dataset
is worked upon by the models. Different models of CNN provide different levels of
accuracy. It is to be noted that no testing dataset was used in the training dataset,
and no training dataset was used in the testing dataset.

14

Chapter 4

Model Specification

In this section, we will look at the different convolutional neural network based
models and algorithm of SVM that we have used to determine the results.

4.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is one of the practiced forms of Artificial
Neural Network. Initially, it was used to recognize intricate image patterns with
accurate and precise architecture. CNN is vastly used in neural networks for image
classification and recognition. Basically, CNN will take an input of the image and
look through its pixels (h*w*d)[17][15].

hxwxd

Figure 4.1: An Image Matrix of dimension

For testing and training, images are passed through stacks of convolution lay-
ers with kernels as filters. Layers include pooling padding, moving through fully
connected layers and application of the soft-max function.

15

— CAR
— TRUCK
— VAN

O] — eicycie

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN Py op SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 4.2: Neural network with many convolutional layers

Feature Maps Feature Maps Feature Maps

1, e

%Ll’é 1 1 “‘h_TJ Boat (0.04)
] Ix [JHouse (0.05)
I [Tree (0.9)
EE“*"-H—-.: L _[eatoon

| | g —

Convolution Poaoling Convelution Pooling
+Relu + Relu Fully Connected Layers

Qutput Layer

Figure 4.3: Complete CNN architecture

4.1.1 Layers of CNN

e Convolution Layer

The first layer of CNN is called convolution. It is used to extract the input image.
The convolution layer gains the knowledge of input the image features in order to
protect the image resolution. It is done by using small squares of the image data.
This is fully a mathematical operation that uses two inputs as an image matrix and
one kernel.[15]

16

* An image matrix (volume) of dimension (h x w x d)
o Afilter (fo x fux d)
+ Outputs a volume dimension (h-fn+ 1) x (w-fu+ 1) x 1

Figure 4.4: Image matrix multiplies kernel or filter matrix

Convolution performs different functions using different filters or kernels. Consider
figure 4.5 illustrated on the following page as an example:

Operation Filter Convolved
Image
0o o
Identity D10
D0 D
1 0 -1
o0 o0
=10 1
0 1 0
Edge detection 1 -4 1
o 1 0
[-1 -1 -1]
-1 8 -1
L-1 -1 =1}
[0 1 0]
Sharpen -1 5 -1
L 0 -1 0]
1 11
Box blur 1 111
{normalized) a9
1 11
1 21
Gaussian blur 1
: S I 2 4 2
al ox)
e 121

Figure 4.5: Few common filters

17

e Strides

In CNN, the number of pixels that move over the input matrix is called the
stride. The movement of filters over pixels depends on the stride number.

e Padding

When filters do not fit the image properly, we used padding. It is done by
padding the image with zeros, which is called zero-padding, or by removing the
image segments which did not fit into the kernels, known as valid-padding.

e Non Linearity (ReLU)

To operate the non-linear function, CNN used a Rectified Linear Unit. The
output comes out as f(x) = max(0,x). This operation is essential because it provides
non-linearity to the image input.

e Pooling Layer

When the image input is too large, the padding layer subtracts the parameter
numbers. CNN uses spatial pooling to minimize the measurements of the image,
but this also reserves the principal information. Max-pooling, Average pooling and
Sum pooling are the three types of spatial pooling.

e Fully Connected Layer

The image input matrix is first converted to a vector and inserted into a fully
FC layer. The image below shows the matrix being flattened into a vector and the
fully connected layer turning the vector into a model.[19] [20]

18

RN
“ ;ﬁ“ . !

x1
X2 u rr
s AU
i d-" L.. y2
(\
X3

«,« Vi

N/

9 \ "'r JIN
)
Figure 4.6: Convolutional Nodes

In order to implement the CNN model, we have imported and installed all the
necessary packages in python. These include NumPy, sklearn, TensorFlow and mat-
plotlib. Next, we needed to load the data. The dataset is loaded from the data
directory and then the features are selected by dividing the dataset to dependent
(target) variable, which is represented as y and independent (feature) variables, rep-
resented by X’. Furthermore, the images are all converted to gray-scale and then
resized at width = 150 and height = 150. Our dependent variable comprises two
classes, real and spoof.

Then feature vectors are created for each class and saved.[19] After loading the
data, we needed to divide the dataset into the features and corresponding labels.
Then it is divided into training and test sets using sklearn and subsequently, we per-
formed feature scaling.[21] The model is then formulated, compiled and fit-trained
and is next ready for the testing phase, where it consequently acquires an accuracy

of 98%.

CNN Procedure:
An overall summary of the layers of our CNN model for detecting face-spoof are
given below:

19

Model: "sequential™

Layer (type) Output Shape Param #
convad (ComaD) (Nome, 48, 48, 256) 2560
activation (Activation) (None, 48, 48, 258) e
max_pooling2d (MaxPooling2D) (None, 24, 24, 256) e
conv2d 1 (Conv2D) (None, 22, 22, 258) 508888
activation_1 (Activation) (None, 22, 22, 256) e
max_pooling2d 1 (MaxPooling2 (None, 11, 11, 256) e
conv2d_2 (Conv2D) (None, 9, 9, 256) S5oeese
activation_2 (Activation) {None, 9, 9, 258) e
max_pooling2d 2 (MaxPooling2 (None, 4, 4, 258) e
flatten (Flatten) (None, 4@9%&) e

dense (Dense) {(None, 1} 4297
activation_3 (Activation) (None, 1) e
dense_1 (Dense) {(None, 1} 2
activation_4 (Activation) (None, 1) e

Figure 4.7: Summary of CNN Model

20

4.2 VGG16

VGG16 is another adaptation of the VGG model with 16 convolutional layers. It
works in 3*3 convolutions with many filters. It provides the best extraction of
features from images and is vastly preferred now. Because of having 138 million
parameters, it is a challenge to handle. But, it can be carried out using transfer
learning where the model is previously trained on a dataset and for the best accuracy
these parameters are improved. The values of updated parameters can be used .[22]

VGG16 Layers

Convolution using 64 filters
Convolution using 64 filters + Max
pooling

Convolution using 128 filters
Convolution using 128 filters + Max
pooling

Conwvolution using 256 filters
Convolution using 256 filters
Convolution using 256 filters + Max
pooling

Convolution using 512 filters
Conwvolution using 512 filters
Convolution using 512 filters+Max
pnnling|

Convolution using 512 filters
Convolution using 512 filters
Convolution using 512 filters+Max
pooling

Fully connected with 4096 nodes
Fully connected with 4096 nodes
Output layer with Softmax activation wit
1000 nodes.

Figure 4.8: VGG16 Layers

21

224 %224 x 3 224 % 224 x 6d

NE|= 56 = 206
|38 38 B2 THTx512
1414 %512

-)i :ﬁﬁﬁllf 1x1x4086 1x1 %1000

r:I] convolution4+ ReLl.LT
r] max pooling
fully connected4+HelU

| softmax

Figure 4.9: VGG16 Overview

An RGB Image of fixed size (224*224) is inputted to layer 1 then runs through
stacks of convolutional layers. Filters are used using small sensory receptors of 3*3 to
seize the whole image fully. One of the configurations performs linear transformation
utilizing 1*1 convolution filters. Pixel of 1 is fixed for convolution stride. The
spatial padding is also used here to preserve the resolution after convolution. Five
max-pooling layers implement spatial pooling. Lastly, the 2x2 pixel window is run
through max-pooling with a stride of 2.

Three Fully-Connected layers pass through many convolutional layers where the
first two Fully-Connected layers consist of 4096 channels each, and the third one
executes ILSVRC classification in 1000-way, and each class contains 1000 channels.
The Soft-max layer is the final layer. The configurations of the last three layers
are in the same network. The layers are rectified with a Rectified Linear unit for
non-linearity.[23] [24]

In a recent paper of 2018, VGG16 was implemented over a dataset provided by
the large company State farm, which consisted of 2D dashboard images. There are
more than 20,000 training sets and approximately 80,000 testing sets. The training
was done over Google Cloud Platform with a 32 batch size. Data was augmented
on both models. For both, the models’ accuracy was 75%-77%.[21]

22

09
0B
0.7
0.6
05
0.4
0.3
0.2
01

Accuracy, VGG-16

— -
N =
i
1 2 3 4 3

=g Training Accuracy =ge==\/alidation Accuracy

Figure 4.10: Training and validation accuracy of VGG16

23

4.3 SVM Classifier)

Support Vector Machines (SVM) is a supervised machine learning algorithm com-
monly used to solve problems that involve classification. It tries to find a fine line of
segregation in the dataset and tries to divide the data along a plane known as the
hyperplane. The hyperplane divides the points on an x dimensional space, where x
is the number of features or categories. This helps to categorize the data points in
an organized manner. There can be many possible hyperplanes to split the data, but
we need to find the one that created the greatest distance between the data points.
The distance between the nearest two sample points is known as the margin, and
the points are the support vector.

After using the SVM classifier, we got an accuracy of 50% for the verification of
the input data. The hypothesis function h is determined as:

P
.
.
.
° H /
’ s
. .
LI .
o 4 ® oo o0 ,d
]
°
LN ®e
‘.) N .
hd o . L} ;
A
o* L A A
. 4 A
B . .
© . o AA A QoA
P A 4
s ® . A A
°e o A A a
T A AMA
, ’, A‘A“A
’ . Ay A
0 | . A Ay
| P A
.
.
.
™
7
T T 1
X4

Figure 4.11: Support Vectors

The following hypothesis function h is defined as:

24

N_)+l ifw-z+b>0
ME) =11 ifw-zib<o

Here, the point above the hyperplane or on the hyperplane will be categorized as
class +1, and the point below the hyperplane will be categorized as class -1.

25

Chapter 5

Implementation

5.1 Overview

The implementation is performed with deep learning including high-level API Keras
that is sitting on top of TensorFlow, thus simplifying it. Now, both TensorFlow and
Keras are open-source software libraries that deliver interfaces for Artificial Neural
Networks (ANN).

26

Figure 5.1: Implementation Flowchart

To begin with, the TensorFlow version has been updated to 1.10.0. The model is
built sequentially. This means that a direct order has to be followed without going
backward. The input image needs to be flattened since neural network layers are
flat. Keras has a built-in Flatten layer. This flattened image is the input layer. This
layer will go through hidden layers under a neural network layer called a dense layer.

27

This is also known as a fully connected layer; wherein each node is connected to the
previous and succeeding layer. The dense layer has 128 units within. The activation
operation for this layer is the Rectified Linear Unit (ReLU). Multiple dense layers
can be added as well.

The final layer has 10 nodes where per node provides a single number prediction.
In this case, our activation function is a soft-max function since we are really actu-
ally looking for something more like a probability distribution which, the possible
prediction options that we are passing features through are. Following this, the
model is compiled, and the model is ready to be trained .[25] [20]

For the calculation of the loss metric, Adam optimizer, a default in Keras, is used.
Loss metric is the calculation of any sort of error, as the neural network only aims to
reduce loss. Then the output from the layers is fit into the model. The loss metric
decreases thus improving the accuracy of the model.

5.2 Loading the data

For this paper, we are using the Real and Fake Face Detection dataset. After
unzipping the dataset, we find two directories: real images and fake images. These
images are then converted to a training dataset. The first task here is to make all
the images the same size. The images are reshaped into similar dimensions. Also,
these images are removed from their colors. It is to be made sure that all images
are converted to a size where the image quality is not compromised.

Before training the dataset, some images are kept aside for testing. This can be
done manually on the computer. The test sets are kept in another folder. The
training dataset is created and printed in python. It is important to make sure
the dataset is balanced. Here, balanced means there should be the same number
of samples in each class, and if the dataset is not balanced, we can either trim
the samples of the larger set to match the smaller set or class weights can also be
passed to the model. Balancing is necessary because we do not want the model
to learn to predict a single class right away and then get stuck when newer classes
are introduced. Additionally, the dataset must be shuffled, or else the classifier will
learn to predict patterns.

28

5.3 Implementation with CNN

The convolutional neural network now has the maximum popularity in the field of
face detection

The basic CNN follows this structure: Convolution -; Pooling -; Convolution
-, Pooling -; Fully Connected Layer -; Output The convolution process collects
atomic data and creates a feature map based on that raw data. Pooling is a top-
down example, also called "max-pooling,” in which we select an area and then use
the maximum value of that area which gives a new value for the entire region. The
fully connected layer has all its nodes ”fully connected” like typical neural networks.
However, convolutional layers are not always fully connected. Therefore, each level
of convolution and pooling is also a hidden layer inside CNN. After that, we have a
fully linked layer and then an output layer.[24] [22]

5.4 Analyzing Model with Tensorboard

Tensorboard is an application that provides an outlook of the models. We need
to import Tensorboard into our model. The tensorboard callbacks object from the
trained dataset. This callback is passed through a fit method. The callbacks come
out as a list and other callbacks can be passed through the list as well. The model
is defined using CNN and it goes under all its structures. After the code is run,
the output is saved in a new directory. Using a tensorboard, the results can be
visualized. This is the result we have found without any activation added to the
dense layer:

29

acce

0.650

0.630

0.610

0.590

The result we found after adding an activation function to the dense layer is given

below:

acc

val_ace

0.780
0.740
0.700 .
0.660 -
0.620
0.580

ra
[

0.000 400.0m 800.0m 1.200

3

1.600 2.000

0.000 400.0m 800.0m 1.200

1.600 2.000

0.000 400.0m 800.0m 1.200

nEO
val_loss
0650
0.640
0630
0.620

0610

0.000 400.0m 800.0m 1.200

=

1.600 2.000

1.600 2.000

Figure 5.2: The dense layer without activation added

e

0.000 2.000

=3

0.000 2.000

=3

Figure 5.3: The dense layer

4.000

4.000

6.000

6.000

8.000

2.000

loss

0.000

=3

val_loss

0.200 -

0.700

0.600 -

0.500

0.000

=]

ra
(]

30

after activation added

2.000 4000 6.000 8.000

5.000

Optimizing Models with TensorBoard:

Here, we modified the layers in the architecture. At first we used layers from
figure 5.4 to get a decent result. We made sure to revise the older parameters
while changing the newer ones. None of the rounds in our optimization are similar.
Initially, the models are given different weights. This had an impact on the model,
particularly on the number of epochs.

1-conv-32-nodes-@-dense-1534881353
2-conv-32-nodes-8-dense-1534881383
J-conv-32-nodes-B-dense-1534881383
1-conv-64d-nodes-8-dense-1534581353
Z-conv-bd-nodes-@-dense-1534881353
J-conv-64d-nodes-8-dense-1534881383
1-conv-128-nodes-8-dense-1534881383
Z2-conv-128-nodes-@-dense-1534881383
J-conv-128-nodes-@-dense-1534881383
1-conv-32-nodes-1-dense-1534881383
2-conv-32-nodes-1-dense-1534881383
J-conv-32-nodes-1-dense-1534581353
1-conv-6d-nodes-1-dense-1534881353
2-conv-64d-nodes-1-dense-1534881383
J-conv-64-nodes-1-dense-1534881383
1-conv-128-nodes-1-dense-1534881383
Z-conv-128-nodes-1-dense-1534881383
J-conv-128-nodes-1-dense-15348081383
1-conv-32-nodes-2-dense-1534881383
Z-conv-32-nodes-2-dense-1534581353
J-conv-32-nodes-2-dense-1534881353
1-conv-64-nodes-2-dense-1534881383
2-conv-64-nodes-2-dense-1534881383
J-conv-6d-nodes-2-dense-1534581353
1-conv-128-nodes-2-dense-1534881383
2-conv-128-nodes-2-dense-15348081383
J-conv-128-nodes-2-dense-1534881383

Figure 5.4: Modified Layers

Figure 5.5 below shows the result after a combination of layers from figure 5.4
and activation in the dense layer. We will analyze the performance of the best CNN
model obtained thereby, in our oncoming chapter.

31

acc loss

0.950 | 0600
0.850 |
| 0.400
0.750 |
[0.200
0.650 |
0.550 | 0.00
0000 2.000 4.000 6.000 8.000 0.000 2000 4.000 6.000 8000
i N
val_acc val_loss
1 1.00
0.820
1 0.800
0.780
0.740 | 0.600
0.700 | 0.400
0.620 0.00
0000 2.000 4000 6.000 8000 0.000 2000 4.000 6000 8000
nEE i

Figure 5.5: Combinations of different layers of CNN Models

32

Chapter 6

Performance Analysis

As we have already specified the models and architecture, we effectively ran our
dataset on, we now analyze the performance of each of them. We shall observe how
the performance between each one varies significantly and note the model which
consequently shows the greatest performance amongst all.

6.1 CNN- Model 256x3

From our research, we have come to a conclusion that an increase in the convolutional
layers has resulted in the best performance, as has been acquired. Hence, we have
applied 3 convolutional layers; correspondingly, we have applied 3 activation and
pooling layers, and finally, 2 dense layers in the creation of the model CNN and found
an accuracy of 98.9%. We observed that in comparison to the CNN architecture of
VGG 16, this CNN model took less time to execute.

Figure 6.1 shows the gradual rise in accuracy and fall in loss over every epoch of
the training of the model on the given dataset.

33

Epoch 1/10

12e6/126 [=] - 167s 1s/step - loss: 0.6948 - a
ccuracy: 0.5128 - wal loss: 0.6507 - wal accuracy: 0.6438

Epoch 2/10 B -

126/126 [=] - 1795 1s/step - loss: 0.6621 - a
ccuracy: 0.5983 - wal loss: 0.6103 - wal accuracy: 0.6746

Epoch 3/10 - -

126/126 [=] - 174s 1s/step - loss: 0.6052 - a
ccuracy: 0.677% — wval loss: 0.6054 - wal accuracy: 0.6734

Epoch 4/10 B -

126/126 [=] - 188s 1s/step - loss: 0.5564 - a
ccuracy: 0.7040 - wal loss: 0.5144 - wal accuracy: 0.7478

Epoch 5/10 B -

126/126 [=] - 1835 1s/step — loss: 0.4194 - a
ccuracy: 0.8088 - wal loss: 0.4805 - wval accuracy: 0.7920

Epoch &/10

126/126 [=] - 234s 2s/step - loss: 0.3107 - a
ccuracy: 0.8783 — wal loss: 0.4023 - wal accuracy: 0.8234

Epoch 7/10

126/126 [=] - 350s 3s/step - loss: 0.2008 - a
ccuracy: 0.9263 - wval loss: 0.2723 - wval accuracy: 0.9175

Epoch 8/10

126/126 [=] - 3838s 31s/step - loss: 0.0927 -
accuracy: 0.9783 - wval loss: 0.2094 - wval accuracy: 0.9320

Epoch 9/10

1z26/126 [=] - 1735 1s/step - loss: 0.0534 - a

ccuracy: 0.9880 - wal loss: 0.1975 - wal accuracy: 0.9477

Epoch 10/10

126/126 [=] - 1785 1s/step - loss: 0.0333 - a
ccuracy: 0.9933 - wal loss: 0.1673 - wval accuracy: 0.9564

Figure 6.1: Training accuracy and loss in every Epoch

The following figure shows the accuracy and loss we acquired upon testing on the
given dataset. While this model reached a high accuracy of 98.9%, we acquired an
average validation loss, i.e., 54%.

print(val_loss)
print(val_acc)

36/36 [==============================] - 10s 279ms/step - loss: 8.8544 - accuracy: @.9895
8.8544406108118759735
@.9895470142364582

Figure 6.2: Validation Accuracy and Loss

34

In the figures below, the blue curves show for test/validation over each epoch and
the red curves show for trains in every epoch.

epoch_loss

o1 2 3 4 5 & 7 8 9

Figure 6.3: The internal Loss in every Epochs

epoch_accuracy

o=
%]
(3]
o

|
(su)
(L]

Figure 6.4: The internal Accuracy in every Epochs

35

From the above-mentioned figures, we can see the decrease of loss and increase of
accuracy with every Epoch. The testing accuracy (blue) is slightly less than training
accuracy (red) as epochs increase. This means there might be slight over-fitting. We
kept 10 iterations while fitting the model. We have shown the internal values here.
The performance hereof CNN gave us our best results. This is because CNN can
learn appropriate features from an image at different levels, which is quite similar
to the human brain.

Moreover, the CNN model shares weights. CNN takes less memory. The model
requires less preprocessing. These are the reasons behind the efficient performance
shown by CNN.

Confusion Matrix

500

Real

Tue label

- 200

Spoof 4
- 100

Predicted label

Figure 6.5: Confusion Matrix of CNN Model 256x3

A brief description of the confusion matrix is provided below:

e Correct Real Faces Predictions: 580
e Incorrect Real Faces Predictions: 6
o Correct Fake Faces Predictions: 556

e Incorrect Fake Faces Predictions: 6

36

6.2 VGG16

VGG16 has a 16-layer combination consisting of convolution and fully connected
layers. We have trained our dataset and used it to create the VGG model. We
have trained on 1468 samples and validated 164 samples. Here we got the accuracy
of training 68.39% and accuracy of validation 63.41%. We chose this model in our
research because it has considered being one of the finest vision model architectures,
outperforming every other architecture by miles. The internal accuracy and loss
graph are shown in figure 6.6 and figure 6.7.

train_acc vs val acc
0.75 - ;

0.60 H |-

accuracy

e
wn
(%]

0.45 i i i i
0 10 20 30 40 50
num of Epochs

Figure 6.6: The internal Accuracy in every Epochs

train_loss vs val_loss

loss

1
10 20 30 40 50
num of Epochs

Figure 6.7: The internal loss in every Epochs

37

Here we got a training loss of 58.61% and a validation loss of 71.04%. The increase
of training and testing accuracy and decrease of training and testing loss is noticed
in the above figures with the increased epochs. The distance between training and
the testing graph is too small. So we can say that the model we created was ideal.
VGG16 has a good representation of the functions. It is an efficient architecture for
benchmarking, taking a specific task into consideration.

Confusion Matrix: Actual Test Data- Real Faces[209], Fake Faces[200] Predicted
Data- Real Faces[263], Fake Faces[146]

Figure 6.8 shows the Confusion matrix, without normalization

Confusion Matrix

180
160
Real | 38

140

120

100

True label

Fake | 16

120

Y
o
Predicted label

Figure 6.8: Confusion Matrix Predicted Table

38

A brief description of the confusion matrix is provided below:

Correct Real Faces Predictions: 38

Incorrect Real Faces Predictions: 182

Correct Fake Faces Predictions: 173

Incorrect Fake Faces Predictions: 16

39

6.2.1 Prediction vs. Actual

The figures below show whether the actual input matches the predicted result. Here,
we have taken a fake face as an input and tested to see whether the actual input
matches the predicted result. From Figures 6.9 and 6.10, we can observe that the
actual input matches the predicted.

Probabilities: [[@.07484942 6.92515063]]
Actual: Fake-Face

Prediction: Fake-Face

Figure 6.9: Actual vs Prediction Result

Probabilities: [[8.11156634 8.88843364])
Actual: Fake-Face
Prediction: Fake-Face

Figure 6.10: Actual vs Prediction Result

40

Here, we have taken real face as an input and tested to see whether the input
and output match or not. From Figures 6.11 and 6.12, we can see that the predicted
result matches the input image. Hence, the prediction was right.

Probabilities: [[@.64762366 8.35237637]]
Actual: Real-Face

Prediction: Real-Face

Figure 6.11: Actual vs Prediction Result

41

Probabilities: [[8.7394622 8.26085378]]

Actual: Real-Face
Prediction: Real-Face

100

200

0 50 100 150 200

Figure 6.12: Actual vs Prediction Result

Here, we have taken a real face as input and test to see whether the predicted
result matches the actual input. From Figures 6.13 and 6.14, we can observe that
the actual input does not match the predicted result. Hence, the prediction was
wrong.

42

Probabilities: [[8.27733335 8.7226667]]
Actual: Real-Face
Prediction: Fake-Face

Figure 6.13: Actual vs Prediction Result

Probabilities: [[8.17267576 6.8273243 |]
Actual: Real-Face
Prediction: Fake-Face

Figure 6.14: Actual vs Prediction Result

6.3 SVM Classifier

SVM Classifier showed comparatively poor performance than the rest. We chose
this algorithm since it is known to work well with a clear margin of separation. The
accuracy that we obtained from the classifier was 50%. Even though it was memory-
efficient in our case, it required a long time for training. In the figures mentioned
below, we can see that the decrease of validation loss over every epoch is evident,
while the validation accuracy remains consistent over all the epochs.

43

05022
0.5021 4
0.5020 -
= {rain acc
val acc
0.5019 4
0.5018 4

0.0 05 10 15 20 25 30 35 40

Figure 6.15: The internal accuracy in every Epoch

= train loss
100000 4 val loss
095995 -
095990 4
095985 -
093980 -

0.0 05 10 15 20 25 30 15 40

Figure 6.16: The internal loss in every Epoch

44

Confusion Matnx

500
Real 0
400
T
L
® 300
i
=
- 200
Spoof 0
- 100
Lo
> &

o S
Predicted label

Figure 6.17: Confusion Matrix of SVM Classifier

A brief description of the confusion matrix is provided below: T

45

Chapter 7

Conclusion

7.1 Future Perspectives

In our research, we would like to incorporate future works that can help to address
challenges that need to be resolved, as well as overcome limitations encountered
thus far. We aspire to explore CNN architectures further, thereby including ResNet,
VGG19 and Inception, alongside which we will implement widely-used algorithms
such as: Logistic Regression, k-Nearest Neighbors, Decision Trees, etc. We intend to
create a more realistic as well as difficult dataset that covers greater variations of face
attack-types and lighting conditions so as to train our future models. Furthermore,
our goal shall be to use additional evaluation metrics, namely Half Total Error
Rate (HTER) and Area under Curve (AUC) for a broader analysis of performance
achieved.

7.2 Conclusion

Face-Spoof Detection has been a very challenging endeavor in the past few years.
Spoofing attacks persist in being a security challenge for face biometric systems,
and there has been much effort in the field to find robust methods. Despite all the
popularity it has gained in recent years, this task is yet to be fully controlled. We
believe that residual training of deep neural networks has a much bigger prospect
for face recognition tasks. However, in this paper, we have proposed to use CNN
for image recognition because of its precise result. Upon using the CNN model, we
have tried different data improvement techniques. Moreover, we have used VGG-16
in the proposed system for learning about feature classification. Since CNN works
using layers embedded within by connecting with neurons, adding layers upon layers
for this model has been crucial to analyze the performance accurately. As has been
previously mentioned, the data set used for this model comprises both real and
heavily edited forged facial images. Face-spoofing has been given great importance
in this model and based on this data set, and this model can be said to be successful
in terms of facial verification.

46

Reference

1]

[10]

A. Benlamoudi, D. Samai, A. Ouafi, S. E. Bekhouche, A. Taleb-Ahmed, and A.
Hadid, “Face spoofing detection using local binary patterns and fisher score,”

in 2015 3rd International Conference on Control, Engineering Information
Technology (CEIT), 2015, pp. 1-5. pot: 10.1109/CEIT.2015.7233145.

Boulkenafet, Zinelabidine, Komulainen, Jukka, Hadid, and Abdenour, “Face
spoofing detection using colour texture analysis,” IFEE Transactions on In-
formation Forensics and Security, vol. 11, no. 8, pp. 1818-1830, 2016. DOI:
10.1109/TTFS.2016.2555286.

M. Asim, Z. Ming, and M. Y. Javed, “Cnn based spatio-temporal feature ex-
traction for face anti-spoofing,” 2017 2nd International Conference on Image,
Vision and Computing (ICIVC), pp. 234-238, 2017.

H. Mo, B. Chen, and W. Luo, “Fake faces identification via convolutional
neural network,” Proceedings of the 6th ACM Workshop on Information Hiding
and Multimedia Security, 2018.

M. Asim, Z. Ming, and M. Y. Javed, “Cnn based spatio-temporal feature
extraction for face anti-spoofing,” in 2017 2nd International Conference on
Image, Vision and Computing (ICIVC), IEEE, 2017, pp. 234-238.

Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face spoofing detection using
colour texture analysis,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 8, pp. 1818-1830, 2016.

H. Mo, B. Chen, and W. Luo, “Fake faces identification via convolutional
neural network,” in Proceedings of the 6th ACM Workshop on Information
Hiding and Multimedia Security, 2018, pp. 43-47.

A. Benlamoudi, D. Samai, A. Ouafi, S. E. Bekhouche, A. Taleb-Ahmed, and A.
Hadid, “Face spoofing detection using local binary patterns and fisher score,”

in 2015 3rd International Conference on Control, Engineering € Information
Technology (CEIT), IEEE, 2015, pp. 1-5.

D. A. Pitaloka, A. Wulandari, T. Basaruddin, and D. Y. Liliana, “Enhanc-
ing cnn with preprocessing stage in automatic emotion recognition,” Procedia
computer science, vol. 116, pp. 523-529, 2017.

S. Almabdy and L. Elrefaei, “Deep convolutional neural network-based ap-
proaches for face recognition,” Applied Sciences, vol. 9, p. 4397, Oct. 2019.
DOI: 10.3390/app9204397.

47

https://doi.org/10.1109/CEIT.2015.7233145
https://doi.org/10.1109/TIFS.2016.2555286
https://doi.org/10.3390/app9204397

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, H. Proenca, and J.
Fierrez, “Ganprintr: Improved fakes and evaluation of the state of the art
in face manipulation detection,” IFEE Journal of Selected Topics in Signal
Processing, vol. 14, no. 5, pp. 1038-1048, 2020.

J. Yang, Z. Lei, and S. Li, “Learn convolutional neural network for face anti-
spoofing,” ArXiv, vol. abs/1408.5601, 2014.

Rajeswaran, Shatish, and K. V, “Face-spoof detection system using convolu-
tional neural network,” 2019.

Almabdy, Soad, Elrefaei, and Lamiaa, “Deep convolutional neural network-
based approaches for face recognition,” Applied Sciences, vol. 9, no. 20, 2019,
ISSN: 2076-3417. DOT: 10.3390/app9204397. [Online]. Available: https://www.
mdpi.com/2076-3417/9/20/4397.

R. Tronci, D. Muntoni, G. Fadda, M. Pili, N. Sirena, G. Murgia, M. Ristori, S.
Ricerche, and F. Roli, “Fusion of multiple clues for photo-attack detection in
face recognition systems.,” in IJCB, IEEE Computer Society, 2011, pp. 1-6,
ISBN: 978-1-4577-1358-3. [Online]. Available: http://dblp.uni-trier.de/db/
conf/icb/ijcb2011.html# TronciMFPSMRRR11.

L. Souza, L. Oliveira, M. Pamplona, and J. Papa, “How far did we get in
face spoofing detection?” Engineering Applications of Artificial Intelligence,
vol. 72, pp. 368-381, Jun. 2018, 1sSN: 0952-1976. po1: 10.1016/j.engappai.2018.
04.013. [Online]. Available: http://dx.doi.org/10.1016/j.engappai.2018.04.013.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, Eds., Curran Associates, Inc., 2012, pp. 1097-1105. [Online]. Avail-
able: http://papers.nips.cc/paper /4824-imagenet- classification- with-deep-
convolutional-neural-networks.pdf.

R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep net-
works.,” in NIPS, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds., 2015, pp. 2377-2385. [Online]. Available: http://dblp.uni-
trier.de/db/conf/nips/nips2015.html#SrivastavaGS15.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, Deep networks with
stochastic depth, cite arxiv:1603.09382Comment: first two authors contributed
equally, 2016. [Online]. Available: http://arxiv.org/abs/1603.09382.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“The journal of machine learning research,” vol. 15, pp. 1943-1955, 2014.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735-1780, 1997.

X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolutional
networks for classification and detection.,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 38, no. 10, pp. 1943-1955, 2016. [Online|. Available: http://dblp.
uni-trier.de/db/journals/pami/pami38.html#ZhangZHS16.

48

https://doi.org/10.3390/app9204397
https://www.mdpi.com/2076-3417/9/20/4397
https://www.mdpi.com/2076-3417/9/20/4397
http://dblp.uni-trier.de/db/conf/icb/ijcb2011.html#TronciMFPSMRRR11
http://dblp.uni-trier.de/db/conf/icb/ijcb2011.html#TronciMFPSMRRR11
https://doi.org/10.1016/j.engappai.2018.04.013
https://doi.org/10.1016/j.engappai.2018.04.013
http://dx.doi.org/10.1016/j.engappai.2018.04.013
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#SrivastavaGS15
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#SrivastavaGS15
http://arxiv.org/abs/1603.09382
http://dblp.uni-trier.de/db/journals/pami/pami38.html#ZhangZHS16
http://dblp.uni-trier.de/db/journals/pami/pami38.html#ZhangZHS16

[23]

[24]

R. B. Hadiprakoso, H. Setiawan, and Girinoto, “Face anti-spoofing using cnn
classifier face liveness detection,” in 2020 3rd International Conference on
Information and Communications Technology (ICOIACT), 2020, pp. 143-147.
DoI: 10.1109/ICOIACT50329.2020.9331977.

S. Liu and W. Deng, “Very deep convolutional neural network based im-
age classification using small training sample size.,” in ACPR, IEEE, 2015,
pp. 730-734, 1SBN: 978-1-4799-6100-9. [Online]. Available: http://dblp.uni-
trier.de/db/conf/acpr/acpr2015.html#LiuD15.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-
scale image recognition, cite arxiv:1409.1556, 2014. [Online|. Available: http:
//arxiv.org/abs/1409.1556.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, cite
arxiv:1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842.

49

https://doi.org/10.1109/ICOIACT50329.2020.9331977
http://dblp.uni-trier.de/db/conf/acpr/acpr2015.html#LiuD15
http://dblp.uni-trier.de/db/conf/acpr/acpr2015.html#LiuD15
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Motivation
	Objectives
	Methodology
	Thesis Overview

	Literature Review
	Related Works

	Dataset Analysis
	Data Collection
	Data Labeling and Refining
	Training Dataset
	Validation Dataset

	Testing Dataset

	Model Specification
	Convolutional Neural Network (CNN)
	Layers of CNN

	VGG16
	SVM Classifier)

	Implementation
	Overview
	Loading the data
	Implementation with CNN
	Analyzing Model with Tensorboard

	Performance Analysis
	CNN- Model 256x3
	VGG16
	Prediction vs. Actual

	SVM Classifier

	Conclusion
	Future Perspectives
	Conclusion

	References

