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Abstract

Programming is a very useful skill nowadays. Programming contests give people the
opportunity to increase their programming skills. By solving programming contest
problems contestants can increase not only their programming skills but also their
mathematical and algorithmic knowledge. The competitive programming problems
are presented in problem statements. Sometimes they are presented in the form
of a story or sometimes directly. To solve the problem contestants must read the
problem statement carefully. The problems can be of many categories. We have tried
to classify number theory and graph theory problems. At first, we collected data
from competitive programming problem statements. Then we used different machine
learning algorithms such as fully connected neural network, naive bayes classifier,
support vector machine on the data to predict if the category of the problem is
either number theory or graph theory. With such machine learning approaches we
achieved test accuracy of about 72%, 75% and 74%.

Keywords: Competitive Programming; Number Theory; Graph Theory; Neural
Network; Naive Bayes Classifier; Support Vector Machine
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The next list describes several symbols & abbreviation that will be later used within
the body of the document
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CFMC10 Codeforces Multiclass-10

CFMC5 Codeforces Multiclass-5

CFML10 Codeforces Multilabel-10

CFML20 Codeforces Multilabel-20

CNN Convolutional Neural Network

CSV Comma Separated Value

HTML HyperText Markup Language

LCM Least Common Multiple

MLP Multilayer Perceptron

ReLU Rectified Linear Unit

SVM Support Vector Machine

TF − IDF Term Frequency - Inverse Document Frequency

URL Uniform Resource Locator
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Chapter 1

Introduction

1.1 Introduction

In competitive programming contestants are given a set of mathematical and algo-
rithmic problems to solve. The problems can sometimes be presented as a story or
sometimes they can be presented directly. Contestants have to carefully read the
problem statement and gather information from it to understand the problem prop-
erly then they need to write code to solve the problem. These solutions need to be
efficient so that they can be executed within a certain time limit and memory limit.
The contestants have to generate the right output using their solutions. Usually,
problems on topics from simple to high mathematical concepts, algorithms, data
structures are given in these competitions. We used different machine learning algo-
rithms to determine the category of a given problem. In order to classify competitive
programming problems we used machine learning algorithms on the problem state-
ment to build our classifier. We classified the competitive programming problems
into two classes. One class is Number Theory and the other class is Graph Theory.
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1.2 Problem Statement

Programming contest problems can be very challenging. Problem authors try to
make the problems challenging for the contestants in many clever ways. The prob-
lem statement is very important for contestants. Contestants must read the problem
statement carefully and use the information and hints given by the authors. Contes-
tants use those information and hints to develop a solution for the problems. Then
they write code according to that solution. The category of the problems can be of
many types. Some categories are number theory, graph theory, geometry, advanced
algorithms such as segment tree. Understanding the category of a problems is very
important to solve that problem. Depending on the category the techniques and
algorithms that need to be used can be very different. We have tried to determine
if a category of a problem is number theory of graph theory using machine learning
algorithms.
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1.3 Research Objective

Our goal is to use machine learning algorithms to predict if the category of a compet-
itive programming problem is either number theory or graph theory. Determining
the category of a problem is very important for contestants in competitive program-
ming. Problem authors try to make the problems challenging for the contestants.
It can be challenging just to determine the category of a competitive programming
problem. So, if someone tries to solve competitive programming problems they
need to spend a lot of time in thinking about the problem and also reading and
understanding the problem statement. Our objective is to simplify the process of
determining the category of a problem by using machine learning algorithms. We
have tried to determine if the category of a problem is either number theory or
graph theory by using the problem statements written by the problem authors. We
tried to extract relevant information from the problem statement and format that
information in such a way so that we can use machine learning models to classify the
problem into number theory and graph theory. We created a database by collecting
number theory and graph theory problems. Then we used different machine learning
algorithms to determine the problem.
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Chapter 2

Literature Review

We found two papers where work on classifying programming contest problem was
done. In [3] Athavale et al. used different algorithms on problem statements. In [2]
Subramanian et al. classified programming contest problems by using CNN on the
solution code of users that solved the problem. In both papers the data was collected
from the online judge codeforces. Because of the difference in the type of data that
was used in the papers there were different advantages and disadvantages for the
authors. The datasets used in the papers had different features and the authors
used different algorithms to use these features. Athavale et al. used algorithms that
used the information given in the problem statements. Information in the problem
statements can be given in a format that uses a story or in a format where problem
statements can be short and information is given directly.

Subramanian et al. used the solution code of the people that have solved the prob-
lems already. There can be some similarity in the logic of the solution code written
by different users. So, these similarities can be used in machine learning algorithms.
Sometimes a competitive programming problem can be solved using different tech-
niques. So, for the same problem there can be difference in logic in the solution code
of different users

Athavale et al. created four datasets that had different types of competitive program-
ming problems. They created two multilabel datasets and two multiclass datasets.
The multilabel datasets had data that had data with multiple labels. There were
10 classes in one multilabel dataset. The other multilabel dataset had 20 classes.
One multiclass dataset had 5 classes and another one had 10 classes. The data in
the multiclass datasets had only one label.

At first, Athavale et al collected their data. After data collection they filtered
the dataset and removed any unwanted data. Initially they created a dataset that
had 4300 problems from codeforces. After that they removed problem sets with
incomplete problem statements, problem sets that had no tags and also the problem
sets that did not have any tags for algorithms. There were 4019 problems left after
this filtering process. Now the problems in this filtered dataset had 35 different
tags. In order to create the two multilabel dataset they created a list of tags with
decreasing frequency. They created a dataset with problems that had the top 20
tags from the tag list. This dataset with 3960 problems was named Codeforces
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Multilabel-20 (CFML20). This dataset is a multilabel dataset with 20 classes. With
similar method the Codeforces Multilabel-10 (CFML10) dataset was created with
the top 10 tags from the tag list. In order to create the multiclass datasets, they took
problems from the CFML20 dataset. These problems had only 1 tag. Then they took
problems with the 10 most common tags and created the Codeforces Multiclass-10
(CFMC10) dataset. This dataset had 1159 problems. Similarly, another multiclass
dataset called Codeforces Multiclass-5 (CFMC5) was created by using the 5 most
common tags. CFMC5 had 550 problems.

Athavale et al. used different algorithms on the four datasets. Some of the algo-
rithms that they used were Convolutional Neural Network (CNN), CNN ensemble,
Multilayer Perceptron (MLP). Athavale et al. achieved an accuracy of 62.7 % ac-
curacy on CFMC5 dataset by using CNN Ensemble. On the CFMC10 dataset they
achieved and accuracy of 54.7 % by using CNN. On the CFML10 dataset they were
able to achieve F1 micro score of 45.32 and F1 macro score of 38 by using CNN
Ensemble.
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Chapter 3

Some Common Algorithms Used
in Document Classification

Here are some common algorithms that are used in document classification.

3.1 Bag of Words and TF-IDF

Bag of words technique is used to select features from a text. Using bag of words
technique, the selected features from a text can be formatted in a way that the data
from the text can be used in machine learning models. At first, the bag of words
technique creates a vocabulary consisting of known words. Then a score or value is
set for each word. This value or score for a word can be set according the presence
of the word in the text. The vocabulary can be built by using the unique words
that appear in the text of the dataset. When processing each sentence, we can set
a value for the words in the vocabulary to indicate if it is present in the sentence
or not. To set the value a very simple binary scoring method can be used. A value
of 0 can be used to represent the absence of a word in a sentence and a value of
1 can be used to represent the presence of a word in a sentence [4]. Using this
representation, we can create vocabulary vectors. There will be a vector for each
sentence that will represent the absence or presence of the words in the vocabulary.
The values can be set using other methods as well. Another scoring method to
set the values for the words can be used by using the frequency of a word relative
to other words in the text. However, using frequency to set the values can create
some problems. There can be some words that are common but do not contain
relevant information. These words can appear more than other words that contain
useful information. This problem can be solved using the TF-IDF (Term Frequency
– Inverse Document Frequency) technique. This technique penalizes the frequent
common words that do not have useful information by rescaling the values of the
words.
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3.2 Multilayer Perceptron (MLP)

Data that can be linearly separated can be classified using perceptron [9]. Perceptron
faces limitations on the datasets that cannot be linearly separated. Data that cannot
be linearly separated can be classified using multilayer perceptron. MLP can have 1
input layer, 1 output layer and multiple hidden layers. Each layer can have multiple
nodes.

Below we can see a figure of a multilayer perceptron with 1 input layer, 1 hidden
layer and 1 output layer. The input layer has 2 nodes, the hidden layer has 3 nodes,
the output layer has 1 node.

Figure 3.1: Multilayer Perceptron
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We can see that there are connections between the nodes of one layer and the
next layer. Each node in a layer is connected to all nodes in the next layer. The
connections between the nodes have a weight value. At first, a dot product is
calculated with the values from the input layer and the values of the weights between
the input layer and the hidden layer. After that, the dot product is passed on to the
hidden layer. The hidden layer nodes passes those values into an activation function.
Another dot product value is generated between the values we get after using the
activation function and the weights between the hidden layer and the output layer.
Then that dot product value is sent to the output layer. The output layer uses the
dot product values with an activation function and generates output value. Now
the output value can be sent back through the neural network and the full process
is repeated using backpropagation until the optimal output is generated. There are

many activation functions that can be used in the hidden layers and the output
layer. ReLU (Rectified Linear Unit) and sigmoid are such functions. Formula for
the sigmoid function is given below.

f(x) =
1

1 + e−x
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3.3 Bayes Theorem and Naive Bayes

Bayes theorem is one of the most important formula in calculating conditional prob-
ability. It can be used to classify data. The formula for bayes theorem is:

P (A|B) =
P (A)× P (B|A)

P (B)

From the equation given above we can see that we can calculate the probability of
event A happening given that event B has already happened if we already know
P(A) which the probability of event A happening independent of any other
variables,P(B|A) the probability of event B happening given that event A has already
happened, P(B) probability of event B happening independent of any other variables.
Here,

P(A|B) is called the posterior.
P(A) is called prior.
P(B|A) is called likelihood.

Naive bayes simplifies Bayes theorem. Given the value of the class variable naive
bayes assumes there is conditional independence between every pair of features [5].
So, if probability of event A happening depends on multiple variables then the Bayes
theorem equation would look like the following:

P (A|B1, B2, B3...Bn) =
P (A)× (B1, B2, B3...Bn|A)

P (B1, B2, B3...Bn)

Now naive bayes simplifies the equation into the following:

P (A|B1, B2, B3...Bn) = P (A)× (B1, B2, B3...Bn|A)

Because of this simplified form it is possible to use the naive bayes formula to
classify big datasets with many features. Naive bayes works very well in document
classification. The algorithm works very fast.

9



3.4 Support Vector Machine (SVM)

Support vector machine is a very useful machine learning algorithm. It can be
used for both regression and classification task [8]. SVM can represent multiple
classes in multidimensional space using a hyperlane. Hyperplane is the space that
is divided between the objects that are in different classes. Support vectors are
those data points that are closest to the hyperplane. In order to minimize errors the
hyperlanes are generated in iterations by support vector machine. Support vector
machine tries to find a maximum marginal hyperplane by dividing the datasets into
classes.

Support vector machine can transform a low dimensional input space into a high
dimensional input space by using kernel. The process of transforming a low dimen-
sional input space into a high dimensional input space is called kernel trick. By using
kernel trick support vector machine can transform problems that were not separable
into separable problems. The ability to perform kernel trick makes support vector
machine a very strong and useful machine learning algorithm.
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Chapter 4

Work Sequence

At first, we collected data consisting of problem name, problem statements and
category of number theory and graph theory problems. Our dataset had 1056 data
points. After collecting our data we discovered that we could not use the numerical
values and mathematical symbols that were present in the problem statements of
the data points. So we had to do some data cleaning.

To perform our data cleaning we removed all numerical values and mathematical
symbols from the problem statements of our dataset. We used the label 0 for number
theory problems and label 1 for graph theory problems.

Then we selected and extracted our required features from the dataset and split the
dataset for training and testing. We used about 70% of the dataset for training and
30% for testing.

Then we used the dataset to train different machine learning models. We used a
fully connected neural network with 1 input layer, 5 hidden layers, 1 output layer,
a naive bayes classifier and support vector machine.

We tested the machine learning models on the part of the dataset that we reserved
for testing and got test accuracy score.

With the neural network we achieved about 72% test accuracy score. With the naive
bayes classifer we achieved about 75% test accuracy score and with support vector
machine we achieved about 74% accuracy score.
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Below a figure is given that shows the sequence of the work we have done. The
figure provides a clear overview of our work.

Figure 4.1: Work Sequence
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Chapter 5

Dataset Collection and Processing

5.1 Problem Statement Structure

A programming contest’s questions all follow some general pattern [10]. The follow-
ing are a few of them:

(a) Problem name: To begin with, each problem has its own name. This
name was chosen by the problem creators. They try to make it one-of-a-
kind and relevant to the problem

(b) limit and memory limit: The time complexity and space complexity of
the algorithms that must be preserved in order to pass this question are
discussed in this section.

(c) Problem statement: This is the most important aspect of a question.
The problem is listed here. In general, problem solvers tell a story to
reflect the problem in order to make it more interesting. They often use
graphs and often state the problem explicitly. To build the solution, the
contestants read the problem statements and extract the main concept.

(d) Input: To begin, the contestants gather information and process it in
order to arrive at a solution. That is why, for each question in the input
segment, the format of input is defined so that contestants can better
interpret it. In general, they will state what the maximum and minimum
values are. Additionally, they discuss the datatype. It has been observed
that they sometimes provide special instructions to deal with unusual
situations.

(e) Output: This segment is also about format, but this time the output
format is discussed. In a programming competition, a solution is accepted
if the outcome is identical. For example, suppose the desired answer is 1.5,
but someone submits a solution that yields a 1.50. The solution would
then fail. As a result, each contestant must also preserve the performance
format.

13



(f) Sample Input: We can see that they provide guidance about the format
of the input in the input segment. They include the actual values in the
sample input portion. So that the contestant can verify whether or not
this solution is taking the feedback in the correct format. Furthermore,
some contestants are unable to comprehend the input format.In that
case, sample input can be extremely beneficial to contestants because it
provides them with the real value with which to evaluate their solution.

(g) Sample Output: The sample output section, like the sample input section,
shows the actual values that the correct algorithms would generate. This
is extremely helpful since the contestants will measure whether or not the
solution works.

5.2 Verdict Information

Let’s speak about the verdict now, since it determines the outcome of a programming
competition. First and foremost, one contestant must understand how the decision
is made. Generally, the problem setters produce multiple or all possible test cases
and their answers for each question. The responses are then saved in text files.As
a result, when a contestant submits a solution, the test cases generated earlier are
used to generate the output. Finally, the method, also known as an online judge,
compares two outputs: one generated by the contestant and another generated by
the problem setters or judges. One solution may be appropriate for a variety of
verdicts [7].

The following are a few of them:

(a) Wrong Answer: When a contestant’s solution does not fit the correct
answer, the solution is labeled the ”wrong answer.”

(b) Time limit exceeded: When a contestant’s solution fails to complete
within the problem’s time limit, a time limit exceeded judgment is given.

(c) Memory limit exceeded: As with the time limit, if a solution fails to
execute within the memory allocated for that query, it is considered to
have exceeded the memory limit.

(d) Run time error: The online judge will offer a runtime error if a solution
compiles perfectly but throws errors during execution. Creating an array
with a short length is a typical example of a run-time error. As a result, it
functions perfectly during compile time but fails when the code attempts
to allocate values to an index that is larger than the array’s length.

(e) Presentation error: A presentation error is another intriguing conclusion.
This verdict is given when the contestant’s solution produces correct an-
swer but not in the appropriate format.

(f) Accepted: This decision is straightforward. If a solution meets all of the
conditions, the verdict is said to be accepted.

14



5.3 Web Scraping

Dataset is the fuel in the age of Machine Learning. Furthermore, people devote 90
% of their attention to a dataset. As a result, selecting the appropriate dataset is a
critical component of our study. We needed a high-quality dataset after we decided
on this subject. We were unable to locate a ready-to-use dataset, however. As a
result, we’ve chosen to use codeforces.com to gather the info. We used the codeforces
problem tag “number theory” to get number theory problems and problem tag “dfs
and similar” to get graph theory problems.

Listing 5.1: Python Web Scraping Code

1 from urllib.request import urlopen

2 from bs4 import BeautifulSoup

3 import ssl

4 import csv

5
6 # Ignore SSL certificate errors

7 ctx = ssl.create_default_context ()

8 ctx.check_hostname = False

9 ctx.verify_mode = ssl.CERT_NONE

10
11 # connecting url and parsing lxml

12 url = input(’Enter - ’)

13 html = urlopen(url , context=ctx).read()

14 soup = BeautifulSoup(html , "lxml")

15
16 # creating CSV file

17 file_name = input(’Enter File name:’) + ’.csv’

18 csv_file = open(file_name , ’w’)

19 csv_writer = csv.writer(csv_file)

20 csv_writer.writerow ([’problem_statement ’, ’problem_categorey ’])

21
22 # Main Part

23 for problem in soup.find_all(’td’,class_=’id’):

24 tags = problem(’a’)

25 for tag in tags:

26 n_url = tag.get(’href’, None)

27 n_link = f’https :// codeforces.com/{ n_url}’

28 n_html = urlopen(n_link , context=ctx).read()

29 n_soup = BeautifulSoup(n_html , "lxml")

30
31 # extracting problem statement variable

32 prob_con = n_soup.find("div",class_="problem -statement")

33
34 # getting problem category

35 sidebar_tag = n_soup.find(’div’, style=’padding: 0.5em;’)

36 catagory_list = []

37 for sidetag in sidebar_tag.find_all(’span’, class_=’tag -box’):

38 sdtag = sidetag.text.strip ()

39 sdtag_list = sdtag.split ()

40 for content in sdtag_list:

41 if content in catagory_list:

42 continue

43 else:

44 catagory_list.append(content)

45 problem_categorey = ’ ’.join([str(elem) for elem in

catagory_list ])
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46
47 # Assign problem statement

48 problem_text = prob_con.text

49 problem_text_list = problem_text.split("Input")

50 m = problem_text_list [0]

51 problem_statement = m

52
53
54 print(problem_statement)

55 print(problem_categorey)

56
57
58 csv_writer.writerow ([ problem_statement ,problem_categorey ])

59 csv_file.close ()

Python libraries: Here we have used urlopen to face data using url. We also have
used BeautifulSoup as a web scraping tool. and finally used ssl and csv modules.

Listing 5.2: Python libraries

1 from urllib.request import urlopen

2 from bs4 import BeautifulSoup

3 import ssl

4 import csv

Taking URL: connecting url and parsing lxml: Here we are taking the url from
the user then connecting the url using urlopen and finally grabbing data using
BeautifulSoup [11].

Listing 5.3: URl manage

1 url = input(’Enter - ’)

2 html = urlopen(url , context=ctx).read()

3 soup = BeautifulSoup(html , "lxml")

Creating CSV file: In this section, we have created a CSV file to store our dataset.
Here we are taking input file from the user to assign the CSV file name.

Listing 5.4: Creating CSV file

1 file_name = input(’Enter File name:’) + ’.csv’

2 csv_file = open(file_name , ’w’)

3 csv_writer = csv.writer(csv_file)

4 csv_writer.writerow ([’problem_statement ’, ’problem_categorey ’])
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Main Part: Our main is done here. At first, using a nested loop we went through
every section of a HTML page. Depending on the class name, id name and others
unique names grab the info. After that, data filtration is done where some info is
removed which is not necessary for the model.

Listing 5.5: Main Part

1 # getting problem url

2 for problem in soup.find_all(’td’,class_=’id’):

3 tags = problem(’a’)

4 for tag in tags:

5 n_url = tag.get(’href’, None)

6 n_link = f’https ://c... content -available -to -author -only ...s.com

/{ n_url}’

7 n_html = urlopen(n_link , context=ctx).read()

8 n_soup = BeautifulSoup(n_html , "lxml")

9
10 # extracting problem statement variable

11 prob_con = n_soup.find("div",class_="problem -statement")

12
13 # getting problem category

14 sidebar_tag = n_soup.find(’div’, style=’padding: 0.5em;’)

15 catagory_list = []

16 for sidetag in sidebar_tag.find_all(’span’, class_=’tag -box’):

17 sdtag = sidetag.text.strip ()

18 sdtag_list = sdtag.split ()

19 for content in sdtag_list:

20 if content in catagory_list:

21 continue

22 else:

23 catagory_list.append(content)

24 problem_categorey = ’ ’.join([str(elem) for elem in

catagory_list ])

Assign Problem Statement: Last but not least, we populate the dataset. Finally,
the dataset is written in CSV format and closes the file.

Listing 5.6: Assign Problem Statement

1 # Assign problem statement

2 problem_text = prob_con.text

3 problem_text_list = problem_text.split("Input")

4 m = problem_text_list [0]

5 problem_statement = m

6
7
8 print(problem_statement)

9 print(problem_categorey)

10
11
12 csv_writer.writerow ([ problem_statement ,problem_categorey ])

13 csv_file.close ()
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5.4 Initial Data Processing

Data Processing: We have only taken English letters using regular expressions [6].
Furthermore, set category for number theory as 0 (zero) and for graph theory as 1
(one).

Listing 5.7: Data Processing

1 f_num[’problem_text ’] = f_num[’problem_text ’]. replace(’[^a-zA-Z ]’,

’ ’, regex=True).str.lower ()

2 f_num[’problem_text ’] = (f_num[’problem_text ’].str.split ()).str.

join(’ ’)

3 cat = {’number theory ’: 0,’graph theory ’: 1}

4 f_num.category = [gender[item] for item in f_num.category]

The raw dataset that we collect using web scraping is shown below: Finally after

Figure 5.1: Dataset before cleaning

cleaning the dataset that looks like this one given below:

Figure 5.2: Dataset after cleaning

We saved the dataset in a file named “dataset.csv”. There are 955 data points in
our dataset.
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5.5 Feature Selection and Extraction

From the dataset we will use the columns “problem text” and “category”. The
problem text column is for problem statement and the category column is for the
label of the data point. We need to select and extract our features from the dataset.
For this we selected some common words and terms used in number theory and
graph theory problems.

For example, in number theory problems we may see the words such as factor, prime,
remainder etc used more than in graph theory problems. Similarly in graph theory
problems we may see words such as edge, connect etc used more than in number
theory problems. We selected 19 words and terms. Some words and terms have the
same meaning.

We converted those 19 words and terms into 16 features. Then counted how many
times each word and term appear in the problem text of each data point and used
the count as the values for the features.

The python code used to select and extract features is given below.

1 import pandas as pd

2
3 feature_map = {"number": 0, "factor": 1, "prime": 2, "mod": 3, "

remainder": 4, "gcd": 5, "greatest common divisor": 5, "divisor"

: 6, "lcm": 7, "least common multiple": 7, "vertex": 8, "

vertices": 8, "edge": 9, "connect": 10, "city": 11, "road": 12,

"graph": 13, "node": 14, "root": 15}

4
5 feature = []

6
7 df1 = pd.read_csv(r’dataset.csv’)

8 problems = df1[’problem_text ’]

9 label = list(df1[’category ’])

10
11
12 for a in problems:

13 counter = [0] * 16

14
15 for k in feature_map:

16 counter[feature_map[k]]+=a.count(k)

17
18 feature.append(counter)

19
20 df2 = pd.DataFrame(feature)

21 df2.to_csv(’dataset_feature.csv’, index=False)

22 df2 = pd.DataFrame(label)

23 df2.to_csv(’datset_label.csv’, index=False)
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On line 1 we import the pandas library.

1 import pandas as pd

In the code given below we create a python dictionary of word and terms that we
can find frequently in number theory and graph theory problems. Here for each
word and term a number is assigned. For each data point we will create a list.
The number that is assigned in the dictionary represents the index for that word
or term in the list. We will use the index of a word to assign how many times that
word or term has appeared in a particular data point. Some words and terms in
the dictionary have the same index. This is because terms like “lcm” and “least
common multiple” have the same meaning so they point to the same index.

1 feature_map = {"number": 0, "factor": 1, "prime": 2, "mod": 3, "

remainder": 4, "gcd": 5, "greatest common divisor": 5, "divisor"

: 6, "lcm": 7, "least common multiple": 7, "vertex": 8, "

vertices": 8, "edge": 9, "connect": 10, "city": 11, "road": 12,

"graph": 13, "node": 14, "root": 15}

Using the code given below we create an empty list named feature and we load the
dataset as pandas dataframe into a variable named df1. Then from the dataset we
take the the problem texts as a list in the variable named problems and we store
the labels as a list in the variable named label.

1 feature = []

2
3 df1 = pd.read_excel(r’dataset.csv’)

4 problems = df[’problem_text ’]

5 label = list(df[’category ’])

In the section of code given below we count how many times each word and term in
the feature map appear in the problem text for each data point. Then we add that
count in to a list named counter using the values in feature map. Then we append
that list to the list named feature that we created before.

1 for a in problems:

2 counter = [0] * 16

3
4 for k in feature_map:

5 counter[feature_map[k]]+=a.count(k)

6
7 feature.append(counter)
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Using the code below we use the variable named df2 and save the feature list and
label list in files named dataset feature.csv and dataset label.csv.

1 df2 = pd.DataFrame(feature)

2 df2.to_csv(’dataset_feature.csv’, index=False)

3 df2 = pd.DataFrame(label)

4 df2.to_csv(’dataset_label.csv’, index=False)
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Chapter 6

Experiments We Have Done

6.1 Experiment With Neural Network

We have used multilayer perceptron to classify our dataset. Multilayer perceptron
is a fully connected neural network. The python code is given below.

1 import pandas as pd

2 from keras.models import Sequential

3 from keras.layers import Dense

4
5 feature_df = pd.read_csv(r’dataset_feature.csv’)

6 label_df = pd.read_csv(r’dataset_label.csv’)

7
8 feature = []

9
10 for i in range(len(feature_df)):

11 feature.append(list(feature_df.loc[i,:]))

12
13 label = list(label_df[’0’])

14
15 feature_train = feature [:668]

16 label_train = label [:668]

17 feature_test = feature [668:]

18 label_test = label [668:]

19
20 classifier = Sequential ()

21 classifier.add(Dense (25, input_dim = 16, activation = ’relu’))

22 classifier.add(Dense (20, activation = ’relu’))

23 classifier.add(Dense (15, activation = ’relu’))

24 classifier.add(Dense (10, activation = ’relu’))

25 classifier.add(Dense(5, activation = ’relu’))

26 classifier.add(Dense(1, activation = ’sigmoid ’))

27
28 classifier.compile(loss=’binary_crossentropy ’, optimizer=’adam’,

metrics =[’accuracy ’])

29 classifier.fit(feature_train , label_train , epochs =500, batch_size

=5)

30 _, accuracy = classifier.evaluate(feature_train , label_train)

31
32 print(’Train Accuracy: %.2f %%’ %( accuracy *100))

33
34 test_results = classifier.predict_classes(feature_test)

35
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36 counter = 0

37 for a, b in zip(test_results , label_test):

38 if a==b:

39 counter +=1

40
41 print(’Test Accuracy: %.2f %%’ %(( counter/len(label_test))*100))

From line 1 to 3 we import the necessary pandas and keras libraries.

On line 5 and 6 we load the dataset features in a pandas dataframe named feature df
and labels in a pandas dataframe named label df.

From line 8 to 13 the data in the dataframes features df and label df are converted
to python lists and stored in a variables named feature and label.

From line 15 to 18 we split the dataset into training and testing dataset. About 70%
of the data is used in training and the remaining 30% is used in testing. The lists
feature train and label train hold the features and labels of the data points that are
used in training and feature test and label test hold the features and labels of the
data points that are used in testing

From line 20 to 26 we create a neural network with an input layer, hidden layers,
output layer. The input layer has 16 nodes and the output layer has 1 node. There
are 5 hidden layers.
The first hidden layer has 25 nodes, second hidden layer has 20 nodes, third hidden
layer has 15 nodes, fourth hidden layer has 10 nodes, fifth hidden layer has 5 nodes.
The hidden layers have ReLU (Rectified Linear Unit) function as their activation
function and the output layer has sigmoid function as it’s activation function.

From line 28 to 32 we selected binary cross-entropy as our loss function and adam
as our optimization algorithm. Then we train the neural network using the data
points in feature train and label train. The neural network will run for 500 epochs.
We get training accuracy score of about 82%.

On line 34 we test our neural network using the data points in feature test and store
the test results in a variable named test results.

From line 36 to 41 we calculate the testing accuracy using test results and label test
and print the test accuracy score.

We get train accuracy score of about 82%.
We get test accuracy score of about 72%.
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6.2 Experiment With Naive Bayes Classifier

We have used naive bayes classifier to classify our dataset. The python code is given
below.

1 import pandas as pd

2 import nltk

3
4 feature_df = pd.read_csv(r’dataset_feature.csv’)

5 label_df = pd.read_csv(r’dataset_label.csv’)

6
7 label = list(label_df[’0’])

8 data = []

9 for a in range(len(label)):

10 t = list(feature_df.loc[a,])

11 feature_map = {}

12 for idx , b in enumerate(t):

13 if b>0:

14 feature_map[idx] = True

15 else:

16 feature_map[idx] = False

17
18 data.append (( feature_map , label[a]))

19
20 train_data = data [:668]

21 test_data = data [668:]

22
23 classifier = nltk.NaiveBayesClassifier.train(train_data)

24
25
26 print("Train Accuracy: %.2f %%" %(nltk.classify.accuracy(classifier

, train_data)*100))

27 print("Test Accuracy: %.2f %%" %(nltk.classify.accuracy(classifier ,

test_data)*100))

Here from on line 1 and 2 we are importing pandas and nltk library.

On line 4 and 5 we are loading data on the pandas dataframe variables named
feature df, and label df.

On line 7 the labels in the label df dataframe in converted into a python list and
stored in the variable named label.

On line 8 an empty list variable named data is declared. To use the naive bayes
classifier from the nltk library we need to input the data points in the form of a list
containing a tuple for each data point. The tuple will have two elements, the first
one is a python dictionary and the second one is the label value for that data point.
The dictionary will be a dictionary of features of the dataset. For each feature in
the dictionary there can be one of two values, True of False. If a feature is found in
a data point then we set the value of that feature to True otherwise we have to set
it to False. So, for each data point there will be a tuple in the list. The tuples will
have a python dictionary and a label. From line 8 to 18 we create that list.
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On line 20 and 21 we divide the data into training data and testing data.
70% of the data is used in training and the remaining 30% of the data is used in
testing.

On line 23 we create a variable named classifier that stores the naive bayes classifier
after training.

On line 26 and 27 we calculate and print the train accuracy and test accuracy.

We get train accuracy score of about 78%.
We get test accuracy score of about 75%.
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6.3 Experiment With Support Vector Machine

We used support vector machine (SVM) with linear kernel to predict classes for our
dataset. The python code is given below.

1 import pandas as pd

2 from sklearn import svm

3 from sklearn import metrics

4 import numpy as np

5
6 feature_df = pd.read_csv(r’dataset_feature.csv’)

7 label_df = pd.read_csv(r’dataset_label.csv’)

8
9 feature = []

10 label = list(label_df[’0’])

11
12 for i in range(len(label)):

13 feature.append(list(feature_df.loc[i,]))

14
15 feature_train = np.array(feature [:668])

16 label_train = np.array(label [:668])

17 feature_test = np.array(feature [668:])

18 label_test = np.array(label [668:])

19
20 classifier = svm.SVC(kernel=’linear ’)

21 train_accuracy = classifier.fit(feature_train , label_train).score(

feature_train , label_train)

22 test_results = classifier.predict(feature_test)

23 test_accuracy = metrics.accuracy_score(label_test , test_results)

24
25 print("Train Accuracy: %.2f %%" %( train_accuracy *100))

26 print("Test Accuracy: %.2f %%" %( test_accuracy *100))

From line 1 to 4 we import the pandas, scikit-learn [1], and numpy libraries.

On line 6 and 7 we load the dataset. We load the features of the dataset into the
pandas dataframe named feature df and we load the labels of the dataset into the
pandas dataframe named label df.

On line 9 we create an empty python list named feature and on line 10 we convert
the label values into a list and store it in a variable named label.

On line 12 and 13 we store the values of the feature df dataframe into a python list
by adding the features of each datapoint into the list named feature.

From the 15 to 18 we split the dataset into training data and testing data. 70%
of the data will be used for training and 30% of the data will be used for testing.
The feature train variable holds the features of the datapoints that will be used for
testing and label train variable holds the labels of the datapoints that will be used
to training. The feature test variable holds the features of the data points that will
be used for testing and label test variable holds the labels of the datapoints that
will be used for testing.
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On line 20 we create a SVM classifier with linear kernel. On line 21 we train the
classifier using the data in the variables feature train and feature label and store
the train accuracy score in the variable named train accuracy. On line 22 we test
the classifier using variable feature test and store the results in a variable named
test results. On line 23 we calculate the test accuracy of the classifier using label test
and test results and store the accuracy score in a variable named test accuracy.

On line 25 and line 26 we print the train and test accuracy scores.

We get train accuracy score of about 79%.
We get test accuracy score of about 74%.
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6.4 Results

Algorithm Train Accuracy Test Accuracy

Neural Network (MLP) 82% 72%

Naive Bayes 78% 75%

Support Vector Machine 79% 74%

Table 6.1: Result Comparison of Different Algorithms

We can see that we get the highest test accuracy with the naive bayes algorithm
and the lowest test accuracy with the neural network.
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Chapter 7

Conclusion and Future Work

We can see that we get about 72-75% test accuracy with the algorithms we used. For
the neural network we get about 72% test accuracy, for the naive bayes algorithm
we get about 75% test accuracy and with support vector machine we get about 74%
test accuracy. Difference in test accuracy is not very big.

In future we can try get a bigger dataset. With more careful feature selection
and extraction, hyperparameter tuning and different algorithms we may get better
results. In future we can try to classify competitive programming problems for more
than two classes.
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