LSTM Based Content Prediction for Edge Caching
Using Federated Learning Approach

by

Shafkat Ahmed Mazumder
17101093
Piash Paul
17101040
DIN MOHAMMAD ZUBAIR
17101168
Maksudul Haque
17101084
Jidni Mayukh
17101139

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
June 2021

(©) 2015. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

A rno é Maksudvl Haque

Shafkat Ahmed Mazumder Maksudul Haque
17101093 17101084
)
JIDNI MAYUKH piash
Jidni Mayukh Piash Paul
17101139 17101040

M Z_ubacr

DIN MOHAMMAD ZUBAIR
17101168

Approval

The thesis titled “LSTM Based Content Prediction for Edge Caching Using Feder-
ated Learning Approach” submitted by

1. Shafkat Ahmed Mazumder (17101093)

2. Piash Paul (17101040)

3. DIN MOHAMMAD ZUBAIR (17101168)
4. Maksudul Haque (17101084)

5. Jidni Mayukh (17101139)

Of Spring, 2021 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on June 6, 2021.

Examining Committee:

Supervisor:
(Member)

Md. Golam Rabiul Alam, PhD
Associate Professor
Department of Computer Science and Engineering
Brac University

Head of Department: .
(Chair) %’”_

Sadia Hamid Kazi
Chairperson and Associate Professor
Department of Computer Science and Engineering
Brac University

i

skazi@bracu.ac.bd
Signature

Abstract

With rapid expansion and worldwide penetration of internet usage, there has been
a rapid growth and development in the field of communication technology. To meet
a never ending demand of excellence in quality and computation, a relatively new
and effective computation theory called Edge computing is making its mark. Edge
computing basically means the computing which is done at or near the data source
instead of relying on the cloud to do all the work which enhances network perfor-
mance by reducing latency. With Edge computing and Edge caching we seek to
integrate federated learning approach by training the model across multiple edge
nodes that have thier own local environment, without exchanging them which will
eventually turn into Edge Intelligence by increasing system level optimization mak-
ing content delivery faster than before. In a whole in this research topic we aim to
investigate service provisioning in edge computing which will make our daily used
devices more efficient in terms of performance and keep our personal data secured
with the help of federated learning approach. Accurate content prediction combined
with optimized caching promises to be a future-proof solution. We adopt a hierar-
chy based three layer system architecture in which we integrate federated learning
with LSTM for predicting content based on view count. With our FedPredict algo-
rithm we intend to maximize cache hit so that the network flow remains optimized.
Lastly, we look into potential optimization our algorithm and address some areas of
improvement regarding distributed learning systems.

Keywords: Federated Learning; Edge Computing; Edge Caching; Content Predic-
tion; Long Short Term Memory; Decentralized Learning System; Cache-Hit Ratio

il

Dedication

We would like to dedicate our thesis to our beloved parents and respected faculty
members for whom we are able to successfully comeup with the idea and imple-
mentation of our research work in the field of technology through the knowledge of
Computer Science and Engineering.

v

Acknowledgement

We would like to sincerely thank our honorable thesis supervisor Dr. Md. Golam
Rabiul Alam who constantly supported us and guided us through a challenging
topic. We were able to overcome all obstacles and hurdles faced through his exquisite
recommendations and regular feed backs. Despite an ongoing pandemic, Sir always
managed to spare time for us, even extremely late at times and we will forever be
grateful for the gesture shown to us.

Table of Contents

Declaration

Approval

Ethics Statement

Abstract

Dedication

Acknowledgment

Table of Contents

List of Figures

Nomenclature

1

Introduction

1.1 Edge Caching and Federated Approach Background
1.2 Aims and Objectives
1.3 Thesis Organization

Related Work

2.1 Edge Caching and Content Prediction Best Practices

2.2 Federated Learning and Deep Learning Approach
2.2.1 Conventional Content Prediction Practices
2.2.2 Neural Networks and LSTM
2.2.3 Federated Average L.
2.2.4 Stochastic Gradient Descent

Proposed Model and Methodology

3.1 System Architecture
3.1.1 Federated learning layer 1 (Base Station)
3.1.2 Federated learning layer 2 (Regional Server)
3.1.3 Federated learning layer 3 (Continental Server)

3.2 Flow Diagram

3.3 Model Architecture
3.3.1 Dataset
3.3.2 Data Preparation for LSTM

vi

ii

iii

iii

iv

vi

viii

ix

10
12
13
14

3.3.3 Data Preparation for Federated Learning Simulation
3.3.4 Proposed FedPredict Algorithm

4 Comparative Study
4.1 Optimizer Comparison . .
4.2 Loss Function Comparison

5 Result Analysis

6 Conclusions
6.1 Attempted Approaches and
6.2 Summary and Future Work

Bibliography

Challenges Faced

vil

24

27
27
28

31

List of Figures

1.1
1.2

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
2.3
5.4
2.5

Netflix Popularity On The Rise [1] 2
Brief structure of Federated Learning 3
System Architecture For Proposed Model 15
Flow Diagram of the Proposed Model 18
Architecture of the Proposed Model 19
Input Overview 20
Comparison of Various Optimizers 22
Comparison of Various Loss Functions 23
Training Accuracy and Validation Accuracy Graph 24
Training Loss and Validation Loss Graph 25
Prediction result for continental server 25
Regional server computation round 26
Federated vs Non-Federated Approach 26

viil

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CNN Convolutional Neural Network
FedAvg Federated Averaging
LSTM Long Short Term Memory
NN Neural Network

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

1X

Chapter 1

Introduction

1.1 Edge Caching and Federated Approach Back-
ground

Edge computing has recently risen up the ranks of communication technology as
the usage of internet grows at a phenomenal rate. Edge computing basically means
the computing which is done at or near the data source instead of relying on the
cloud to do all the work which enhances network performance by reducing latency.
With Edge computing and Edge caching we seek to integrate federated learning ap-
proach by training an algorithm across multiple decentralized edge devices or servers
holding local data samples. In a whole in this research topic we aim to investigate
service provisioning in edge computing which will make our daily used devices more
efficient in terms of performance and keep our personal data secured with the help
of federated learning approach.

The internet is filled with content that is consumed by millions of people and based
on the popularity of content, the rush in network flows is often determined. Ac-
curate prediction of content popularity combined with an optimized solution using
edge caching and federated learning, has the potential to maximize user satisfaction
whilst maintaining flawless quality.

Edge caching is a promising solution for various cases where it is necessary to main-
tain a low latency despite extremely vigorous volume in traffic. As the global popu-
lation increases, the number of mobile devices or devices that connect to the internet
are increasing at an exponential rate. Thus, having high traffic is a common occur-
rence in a multitude of cases. As a result, optimizing networks flows and properly
managing this influx of traffic which travels through various data channels and
networks. We can take the example of Vehicular Content Networks (VCN) which
requires very low latency regardless of having high volume of data. Another rele-
vant and recent example would be the streaming industry where it is mandatory
that we ensure fast communication and transmission of large volumes of data in the
form of 4K videos and images. In streaming platforms such as Twitch.tv, real time
transmission of 4k data or high resolution videos is a norm these days. In cases like
this and many others, edge caching has given promising and groundbreaking results
which is why continuous development of this practice is happening day by day.

Netflix Passes
200 Million Milestone

Number of paid Netflix subscribers worldwide
at the end of the respective year

B US. & Canada M International

203.7m

167.1m

139.3m

110.6m

89.1m

2016" 2017 2018 2019 2020

* Until 2016, Canadian subscribers were included in the international segment
Source: Netflix

Figure 1.1: Netflix Popularity On The Rise [1]

If we only take a look at the popular streaming service Netflix’s data, we will see the
the rising demand and increase of monthly active users of such high quality services
is quite apparent. The numbers will continue to grow over time as more people have
access to affordable yet high quality services due to the expansion of internet access
worldwide. So, the necessity and requirement of having uninterrupted and delay
less communication channels are definitely apparent. As previously discussed, edge
caching is one way of handling this problem but there are other methods as well
such as edge computing and software defined networking. Our research primarily
addresses practices related to caching and aims to improve communication flow with
the integration of federated learning or a federated approach. Federated approach is
a completely decentralized way of training Machine Learning Models and provides
security clearance unlike any other.

The concept federated approach was introduced by the tech Giant Google where the
primary idea is that the training of a model is done in a decentralized way where it
happens over a scattered out and distributed learners. The key point to note is that
this is a decentralized inference approach, which largely differs from conventional
centralized approaches in machine learning. In the paper [2], the authors explain
that, what federated learning is trying to do is to optimize the training by keeping
training dataset within its origin or source and perform the learning mechanism in
a local environment in each individual device or learner in the federation. After
learning is achieved in a local environment, instead of passing raw dataset to an
intermediary or aggregating unit, it passes the local model parameters which can
then be utilized to update a larger global model. Eventually, the updated global
model data is fed back to the individual local units which they can later use. Here,
high level of privacy is introduced and maintained as local learners improve their
performance through the global model without accessing each-others private data.

This is done through the intermediary aggregator model. Still if concerns regarding
privacy persists as some form of data may still be shared, the local learners actually
can share encrypted and protected versions of their model to the aggregator which
ensures privacy preservation. This may raise concerns regarding computation power
as encrypted models need to be decrypted but the aggregation algorithm used makes
it possible to process the models without decryption [2]. Figure 1.2 below gives an
illustration of how the entire process functions.

new global
model

(XX

(i) Initial model is received from the server

(i) Training happens on the data available with the
client device

(iii) Model updates are shared with the server

Figure 1.2: Brief structure of Federated Learning

3]

Moreover, they identified that current conventional and pre-existing distributed sys-
tems can be differentiated from federated learning through some key points. In a
decentralized approach such as federated ML, one can easily think that the datasets
of the learners are basically realized through identically distributed (iid) random
variables. In this case that isn’t exactly true. As various learners may observe of
process various parts of the system, the generated data samples aren’t always the
exact distribution of the entire global dataset. So if we consider the example of hu-
man hand written digit recognition, local learners of this task will have samples of
different digits they encountered, each within their own domain. Moreover, in this
approach the datasets are usually unbalanced and unmatching in size. Some parts
of the process may be significantly less impactful than others. If we consider the
digit recognition example, dataset gained from different systems may largely differ
because of the number of digits they encounter. One last interesting differentiation
is that total number of samples in each local environment will be smaller [2].

As discussed earlier Federated Learning in many ways differ from other decentralized
approaches. In this section we take a detailed look at why optimization through this
method is possible.

In generic distributed learning schemes, the aggregator usually organizes localized
data which provide a robust estimation of the parameters that are being taken into

consideration [2]. The collected data is achieved in the form of locally trained mod-
els. So quite evidently, in learning systems like this, local learners are basically data
collectors at the edge and are independent in nature due to the fact that the global
model isn’t giving any feedback to them directly or through the aggregator. If we
look at Wireless or (WSN), each and every single sensor in the network maintains
communication with the locally trained model from it’s own dataset to the global
center. The fusion center then synthesizes the local information to make a seemingly
accurate global estimation of the temperature of the field [2].

Now, another practice in this field is through parallel learning. Which mainly refers
to the scheme where our main objective is to scale up the algorithm in a way that it
accelerates the learning process. In fact, both scaling and acceleration can be done
depending on the requirements. What basically happens in that the entire available
training set at a central or global parameter is divided into subsets and each are
assigned to worker machines on the edge. It is possible that the data-sets that are
assigned to the worker machines have the same distribution. Simultaneously, the
parameters are fed back to the primary server and training is performed in parallel.
This is usually performed in data centers where they have a shared storage, which
results into them having same distribution samples unlike Federated Learning. In
Federated learning, the data is massively and in large scale distributed. However,
in this case, the average samples per worker is increasingly larger than the number
of worker machines in the training process. So in Federated Approach we have a
wide-spread data distribution which is crucial to solve many security challenges.
Another approach is distributed learning which combines multiple learners to make
significant performance boost to the model. Here certain parts of the dataset are
used to train different portions of the models. In this method, what basically hap-
pens is that instead of making improvements to the global model, learning is done
from a mixture of well trained models. [2].

1.2 Aims and Objectives

In this paper, we aim to optimize edge computing even more by implementing the
federated learning approach. Moreover, we aim cache contents with respect to the
popularity based on the regional and sub-regional context.

Merging these two methods we want to achieve:

1) Minimization of latency: Round Trip Time (RTT) Will be significantly lower
than the cloud and delay of offloading tasks will be comparably much lower.

2) Maximization of network capacity: Data offloading as well as context-aware
computation offloading are combinations of technologies that are expected to address
some of the challenges in the field of edge caching. MEC and content caching could
assist the network capacity by caching popular content to the edge and BSs, and by
saving the back-haul bandwidth.

In the proposed scheme we will use Federated Learning on the edge nodes to predict
the most accessed contents based on geographical context and what are the possi-

4

bilities of accessing them within a specific time frame in the particular the area and
lastly, storing the most popular contents.

To predict the most popular contents we will use different parameters tor different
areas to predict the most likely contents accessed in those areas. By implementing
the model, we aim to cache the most popular contents to reduce overhead and data
energy consumption thus minimizing the latency. We also aim to reduce the internet
traffic as the streaming platforms use most of the internet data. By caching them
in local edges the traffic can me reduced significantly Another objective we want
to assure is to provide data security. As the data are stored locally, it is less likely
to face and kind of threat comparing to data that has to perform multiple hops to
reach the user from the cloud.

1.3 Thesis Organization

We have divided our work into a few sections. Intitially, Chapter 2 talks about
the relevant and contemporary reserach relevant to our topic. The chapter is again
sub-divided into two sections, where we first talk about Edge Caching and Content
Prediction best practices and then move onto recent approaches in federated learn-
ing and deep learning.

Afterwards in Chapter 3, we explain our proposed model, the entire flow of the
system and how we prepared the dataset for simulation. Lastly in this chapter we
deep dive into the proposed FedPredict algorithm that we have implemented.

Next, in Chapter 4, we do a comparative study based on the various optimizers and
loss functions that we used. The differentiation is shown via graphical illustration
in this chapter.

Later on, in Chapter 5, we do a analysis of the results that we got from implement-
ing the FedPredict Algorithm combined with the multi-layered proposed system.

Lastly, in Chapter 6, we talk about the challenges we faced and how we maneuvered
around them. We briefly explain how to avoid certain pitfalls and how we got our end
result after multiple iterations of attempts. We end the chapter by giving concluding
remarks and recommending future work in this particular area of research.

Chapter 2

Related Work

In this section we take a loot at some of the recent developments regarding edge
caching and federated learning. We dive deep into best practices, challenges and
notable outcomes of the aforementioned technologies. As research in this field is
considerably new, we went through papers that have the highest impact and rele-
vant to our method.

The research work is divided into two parts. Firstly, we go over conventional prac-
tices regarding edge caching and edge computing. We covers aspects such as where,
how and what to cache, how caching can impact content prediction, how caching
optimization is being done and also go over some limitations of these processes.

In the second part we go over federated learning and it’s application with neural
networks. Federated on it’s own as a decentralized method has it’s perks but when we
combine it with pre-existing industry standard solutions for prediction modelling,
we get insightful findings. We try to dissect how federated learning is different
compared to other distributed computing systems, what impact we get by applying
it with deep learning approaches, significance of Long Short Term Memory and
Neural Networks, how to avoid challenging problems such as vanishing gradient and
lastly some federated learning approaches and algorithms.

2.1 Edge Caching and Content Prediction Best
Practices

In this section we go over some conventional ways of caching and predicting content
popularity.

In the paper [4], the authors have identified how caching usually works in the modern
era. They have also highlighted some relevant examples and benefits of edge caching.
Edge caching is more time efficient and saves up on bandwidth and other resources.
The authors mention benefits such as reduction of latency, optimization and reduc-
tion of network traffic, energy efficiency improvements. As the distance between
content and most frequently accessed content can be reduced the overall speed and
latency can significantly be improved especially for streaming services which takes

up a large chunk of mobile traffic. Moreover, they clarify where, how and what to
cache. We take a look at where caching commonly happens.They highlight that
caching can be done in network edges, in the last devices as well. Moreover, the
edge in wired network and edge in wireless network. This includes caching at UE
or user end devices, caching at base stations which is utilized by smart homes and
smart offices. Edge routers can also be a good option for caching contents.They
duly mentioned that video and image content that are highly revisited must be pri-
oritized when caching. As content can be cached in many ways, the authors point
out the intricacies of proactive and reactive caching. They say that when it comes
to caching, a few things are taken into consideration such as content type, content
popularity, user profiles and these would be updated based on various caching poli-
cies. When it comes to content placement, in order to maximize cache hit-rate it is
extremely important that caching is done consistently. Usually, there is a content
delivery mechanism involved for checking validity if the user request exists or not.
They also mention that cloud processing isn’t ideal when it comes to identification of
fast image processing. This largely happens due to network hops and computation
time. They gave an example of traffic engineering information based networking
increases content delivery speed through prefetching of data and data distribution
[4].

In regards to IoT devices and edge computing, the field has seen significant progress
with various interesting models proposed recently. We go over a few that closely
resonates with our own proposal. At present we can see the extensive up rise of
the population of Internet of Things (IoT) devices, artificial intelligence, industrial
robotics, face recognition, natural language processing and many new real time ser-
vices which are constantly emerging and in order to efficiently use these services
we require faster data transmission and faster computational methods. As these
services are data intensive while [oT and other edge devices have challenges when
it comes to computational power, storage services and of course longevity limita-
tions due to lower battery life. In order to overcome these limitations the concept
of mobile cloud computing (MCC) emerged which supported IoT and other edge
devices by enabling them to offload heavy computing service requests to the cen-
tralized cloud or base stations which also provides huge data storage capabilities
to the services. The authors mention that this architecture enabled higher compu-
tation but as more devices came into fruition, more problems arose [5].To address
these issues the concept of Mobile Edge Computing (MEC) was proposed as the
extension of centralized cloud computing to the edge of the networks. MEC is pro-
posed as a novel paradigm for easing the burden of backbone networks by pushing
the computation or storage resources towards the end user’s edge devices.This ba-
sically reduces the user to base station distance problem and in practice this aims
to maximize efficiency especially for IoT technology. The authors of [5],proposed
a Edge Ai framework where they basically combined mobile edge computing and
federated learning to manage resources better in the entire system.

A survey was recently presented on the use of MEC technology for the realization of
IoT applications [6]. The static and dynamic architecture of an edge cloud network
was accounted for by researchers, thus taking into account the absence and existence
of device mobility [7]. Therefore, they proposed an approach to column generation

to decide the sites on which the cloudlets would be mounted. They then decided
the classification of the BSs to cloudlets. Finally, in deciding the placement of each
VM needed by an end system with regard to its usability conditions and latency
requirements, the researchers discussed the resource allocation issue. Although the
researchers took the cost of deployment of cloudlets into account, the sharing of
VMs among multiple end devices was not taken into account. The question of op-
timum positioning of cloudlets in a network in the metropolitan region, where it
is believed that cloudlets are collocated with Aps are evident in many researches.
The researchers proposed two heuristic solutions, considering the complexity of the
problem. In order to reduce the response time, they have found the users to have
a cloudlet assignment problem, and acknowledged that routing traffic normally to
the nearest cloudlet may not always have a sufficient solution in terms of response
times, so it is important to coordinate the workload between the cloudlets deployed.
Multi-access edge computing (MEC) has recently become a successful model to
provide IoT applications with resource-intensive and latency-sensitive resources by
moving computing capabilities away from the main cloud to the edge of networks [7].

Now we go over more real life applications of the technology. There are many sectors
which are directly being impacted by this and we highlight some authors who have
identified various novelties that are currently being used.

Recently, edge computing is being employed in a variety of sectors, including real-
time data processing, driver-less vehicles, virtual reality, and home automation [8].
Having low latency and high bandwidth enables edge computing to easily address
the issues of delay of data transmission from user devices to the cloud servers [9].
Caching approach solves the problem of latency due to excessive real-time interac-
tion and content delivery in time by the cloud servers. Wu, Luo and Li proposed
a cache prefetching algorithm in their paper which is based on the model of user
classification based on Bayesian network and Markov chain (UCBM) suited for edge
computing and in order to speed up end-user access, it stores the desired files in
the cache of edge servers. Moreover, they a suggested cache replacement method
based on the model of file heat and re-access probability (HFAP)[9]. A collaborative
caching and processing architecture that supports Adaptive Bitrate video streaming
was proposed by Tuyen X. Tran et al. in their paper [10]. Moreover, they also
defined the decision of video variant placement in the cache as an Integer Linear
Problem and suggest efficient methods whether video popularity is available or un-
available [10]. The collaborative caching challenge in terms of reducing the overall
cost paid by content providers were proposed by Ammar Gharaibeh et al. in their
paper [11]. and they defined the problem as an Integer Linear Problem and present
an online caching technique that does not require information of data popularity.
Video caching has been proposed by Jimy George et al. in their paper [12] where
they provide a criterion for selecting videos to cache and a cache replacement algo-
rithm based on the popularity distribution of movies in each cell site. In their work,
active users and user preferences are examined to determine local video popularity.
To compute video popularity, they employ a chance that a certain user requests
videos from each category, and then divide it into two groups based on a threshold
and the process of cache replacement depends greatly on the groups. Shan Zhang
et al. in their research paper [13] studies delay-optimal cooperative edge caching,

in which content placement and cluster size are improved depending on bandwidth
allotment, channel quality, and popularity of given data. Edge computing delivers
computation/storage resources and services to the end users at the network’s edge
which is a special form of cloud computing. To increase the size of edge computing,
prefetching and replacement techniques have been shown to be effective methods
[14]. Wu, Luo and Li showed in their paper [9], the techniques of cache replacement
on the basis of file heat where files with high-heats are replicated and stored in the
distribution nodes and in edge computing, this technique helps to diminish the la-
tency of access. The cache replacement policy’s speed is maintained by maintaining
files with high user access needs during the cache replacement procedure and the
popularity of a file during a given time period may be determined, and the closer
the time, the more current the popularity of the file.

Despite progress and numerous benefits of these methods, certain challenges and
security concerns can be seen as highlighted by various authors. We now go over
some common challenges and obstacles faced when it comes to dealing with cyber
security issues.

The authors of [4] have identified the common security concerns related to content
caching on edge devices. With federated learning combined, many of the security
challenges can be addressed. hey mention exploitation of network edges with denial
of service attacks, wireless jamming and more. The authors then dig deep into the
real of privacy protection and try to identify some real-word practical solutions to
possible attacks. They talk about imminent threats such as cache pollution, mal-
ware attacks and cache deception attacks. These basically prevent services from
going to the user and create resource wastage. They highlight that cache pollution
attacks, which basically means that false contents are inserted into an edge to de-
ceive requesting users, causes remote servers to crash which results in false content
delivery. Common practices are error ridden HTML pages or CSS files or javascript
files. On the other hand, they talk about cache pollution attacks which deals with
balancing issues. This results in caching unpopular content and hit rate of real users
or real popular content goes down. Lastly, they shed light into deception attacks
which basically manipulate users to send request to restricted content which is then
capitalized by the attacker to gain private information of the users [4].

2.2 Federated Learning and Deep Learning Ap-
proach

This section aims to deep dive into common practices of Federated Learning and
Deep Learning for content prediction and caching. We also take a look at some of
the common problems certain authors faced while dealing with implementation. We
also differentiate between other decentralized systems with our federated learning
approach.

In the paper [15] , the authors propose a content prediction model based on deep
learning using only the title of the content. In our case we have used view count but
this provides an overview of how deep learning helps to create prediction models.

Moreover, LSTM was utilized which we use in our research.

They say that, textual content sees a trade-off in consumer interaction, as it can
be shared rapidly but engages attention for only a brief period of time. This makes
naming articles appropriately very important, as that can determine how many con-
sumers’ attention it can grab initially. This phenomenon manifests itself in the form
of click-bait - brief snippets of text that can often be misleading or sensationalized,
whose primary function is to attract clicks. They aptly mentioned that even though
the identification of click-baits is a separate research topic, this paper deals with
the more generalized issue of estimating the demand for online content based solely
on their titles. Estimating the popularity of online content is a complex operation
that hinges on various aspects such as the end user’s social and exterior context,
relevance of the content etc.

A process for online content popularity prediction based on a bidirectional recurrent
neural network called BiLSTM was proposed by their research paper [15]. In con-
trast to the previous approaches, their method gives highly accountable results by
aiming to model intricate correlation between the title of an article and its popular-
ity using novel deep network architecture. Finally the suggested BiLSTM method
outperforms the existing state-of-the-art on two separate datasets with over 40,000
samples, providing a considerable performance improvement in terms of prediction
accuracy over the typical shallow techniques [15].

2.2.1 Conventional Content Prediction Practices

In recent times, the majority of research works in the field of information technology
concentrate on the arrangements of efficient networking along with enhancing the
best possible way to distribute information effectively, attempting to achieve maxi-
mum benefit from social media marketing and networking technology. The analysis
of language effects can be easily predicted with the use of tweet contents that are
used over social media throughout the world. Various technological advancements
have enabled the impact of hashtag duration on hashtag frequency to be analyzed
in the research works. Researches related to Twitter hashtags include use of graph
topology to identify the most trending topics. The study of the contrast between
‘Persistence’ and ‘Stickiness’ which indicates that certain groups are more enduring
than others, explore characteristics inherent in memes, going beyond the most basic
topical dissemination. This says a lot about the trends of interest and prediction of
trending memes or happening events in the Twitter are possible and for the purpose
of accuracy in the analysis, annotators should not be used to categorize hashtags.
Except the uncommon ones, the distribution of popular hashtags are predicted most
often in this field [16].

For movie popularity, technical prediction of popularity is very important. The aim
of popularity prediction is to use knowledge at an early stage to forecast this in-
dicator of public interest. Existing methods for predicting popularity are classified
into four types: analyzing using time series, feature engineering, analyzing using
cascade process, and methods oriented to deep learnings. At an early level, data
relevant to popularity evolution are required by approaches of Time series analysis.

10

To forecast popularity, early experiments used a basic linear function. Assumptions
made by such approaches say that previous popularities have varying or constant
relationships with success. Characterization of popular processes are made using
trends, and thereby render predictions using the most comparable popularity evo-
lution processes. Many recent studies have modeled the distribution of contents as
stochastic methods. Methods focused on feature engineering are mostly concerned
with feature architecture. The relevant works used various information of users for
proper analysis and prediction. Researchers recommend a variety of features to fore-
cast the success of news stories, including surface features (such as publishing time,
subject duration and many other relevant data. Usually, popularity prediction using
methods of cascade process is simulated in a topology of consumers. On the basis
of deep neural network, few prediction methods are used. Although limited to pre-
dicting video popularity, LRCN method extracts functionality from video material,
which are then used to forecast the amount of view counts in coming days. For deep
learnings such as neural networks: DeepHawkes is one of them which considers user
knowledge and cascade direction in-formation. Furthermore, LSTM and GRU are
one of the types of RNN. However, it is believed by RNN that the dependence varies
monotonously in the chain, while in social media, the time period between acts can
be changed. Furthermore, it is difficult to cover the standard RNN for fluctuating
time levels [17].

Video popularity prediction has been an emerging and innovative idea in the re-
search arena of Information Technology. Based on the social news contents and
YouTube video contents, scientists have found out rising growth in the count as
logarithmic curve. According to recent studies, video portals such as YouTube have
substantially different popularity growth characteristics than conventional internet
streaming channel. Contrary to the existing logarithmic model, studies suggest that
improvements in popularity arise in bursts of widely scattered amplitude and time
separation. Certainly such spikes in content interest could be attributed to the so-
cial visibility (trending nature) of a similar subject in the form of the film. The
substantial rise reflects the mutual interest of users and fuels unexpected visibility.
In addition, video categorization has also been flourishing in this sector of research
where attempts to categorize videos using similar tags and comments are widely
seen. [18].

However, despite progress there are numerous drawbacks and content prediction has
various existing drawbacks with some of it’s relevant methods. The Feature-based
method requires much proficient knowledge to execute which is time consuming and
also become complex when features are not relevant. While in the Time series analy-
sis method, it requires only considering time series information and depend on solid
theories of how popularity develops. Some other deep learning based techniques
consider only user information and avoid collaborating various kinds of information
during implementation. [17]

11

2.2.2 Neural Networks and LSTM

Conventional feed-forward neural networks are not the same as recurrent neural
networks. This variation in addition to complexity arrives with the possibility of
unforeseen behaviors that older approaches are unable to provide.

As stated in the paper [19] , the authors refereed RNN learning as a promising solu-
tion to contemporary problems. They said that Recurrent neural networks... have
an internal state that may be used to describe the context. They store knowledge
about previous inputs for a period of time that is determined by the weights and the
input data rather than being defined beforehand. A recurrent net with non-fixed
inputs that form an input sequence may be used to convert an input sequence into
an output sequence while taking contextual information into account in a flexible
manner [19].

In another publication [20] , the authors, mentioned that, Recurrent neural networks
have cycles that feed prior time step network activations as inputs to the network
to impact predictions at the current time step. These responses are recorded in
the network’s internal states, which may theoretically preserve long-term tempo-
ral contextual information. This approach enables RNNs to take advantage of a
dynamically changing contextual window across the history of the input sequence
[20].

LSTMs’ started to develop from their claim to be one of the first tools to surmount
technical challenges and fulfill the promise of recurrent neural networks.

In the paper [21], the authors stated that, Typical RNNs fail to train when there are
more than 5 - 10 discrete time steps between relevant input events and target signals.
The disappearing error problem calls into question if either typical RNNs can truly
outperform time window-based feedforward networks in terms of practical benefits.
This issue does not impact a newer model known as “Long Short-Term Memory”
(LSTM). By imposing continuous error flow-through “constant error carrousels”
(CECs) within special units called cells, LSTM may learn to bridge minimum time
gaps over 1000 discrete time steps [21].

LSTMs solve two technical problems: vanishing gradients and exploding gradients,
both of which are connected to how the network is taught.

In the paper [22], the authors mentioned that, Regrettably, the range of contextual
information that standard RNNs can access is quite limited in practice. The issue
is that the influence of a particular input on the hidden layer, and hence on the
network output, either deteriorates or explodes exponentially as it cycles across the
network’s recurrent connections. This flaw, known as the vanishing gradient prob-
lem in the literature. Long Short-Term Memory (LSTM) is an RNN architecture
that was created particularly to resolve the vanishing gradient problem [22].

Perhaps of going into the mathematics that governs how LSTMs are fitted, an anal-
ogy is a valuable technique for easily understanding how they function. Accordig to
[23], the authors say that, they deploy networks consisting of one input layer, one
hidden layer, and one output layer. Memory cells and related gate units are found
in the (fully) self-connected hidden layer. The internal architecture of each memory

12

cell ensures constant error ow inside the constant error carousel CEC.This is the
foundation for bridging extremely lengthy gaps. Within each memory cell’s CEC,
two gate units learn to open and close error access ow. The multiplicative input
gate protects the CEC from being perturbed by unnecessary inputs. Similarly, the
multiplicative output gate prevents other units from being interrupted by currently
inappropriate memory contents [23].

It’s worth noting that, even after more than two decades, the simple (or vanilla)
LSTM may still be the perfect way to start when implementing the approach.

Again, the authors of [24], say that on many datasets, the most commonly used
LSTM architecture (vanilla LSTM) performs reasonably well. The most important
tunable LSTM hyperparameters are learning rate and network size. This means that
the hyperparameters can be modified separately. The learning rate, in particular,
can be tuned first using a relatively tiny network, saving a significant amount of
trial time [24]. It is important to get a handle on exactly what type of sequence
learning problems that LSTMs are suitable to address.

2.2.3 Federated Average

In recent works, federated averaging has been very much famous and successful.
Generally, the theoretical analysis and the design of federated learning algorithm
might be more difficult when the availability of client’s data along with their distri-
bution substantially fluctuate from one client to the next [25]. Efficiency of commu-
nication is greatly enhanced for federated learning in high scale applications by using
federated averaging approach . On the basis of widely used distributed Stochastic
Gradient Descent (SGD), FedAvg is implemented [26]. Several Stochastic Gradient
Descent (SGD) steps are performed on clients which are arbitrarily chosen on a tiny
scale and then in the central parameter server, the averages of the local models are
made [27]. It has been found in [27], that because of the use of two techniques
which includes involvement of partial client and updates of numerous local SGD,
may result in increased communication efficiency over the distributed SGD using
the FedAvg algorithm. The distributed global model is hosted by the central server
Wt that is trained by the Federated Averaging (FedAvg) algorithm and t represents
number of communication rounds [28]. The authors say that FedAvg has five pa-
rameters which includes the proportion of clients to be trained represented as C,
mini-batch size of local (B), quantity of local epochs (E), rate of learning () and
rate of learning decay (). The algorithm begins the operation by randomizing the
global model’s initialization (W0). During the communication rounds of FedAvg,
subset of clients (St) is chosen by the server St = K.C which is greater or equal to 1
and the recent global model (Wt) is shared to all the clients in the subset (St). In
the shared model, when the local models (wkt) are updated every client divide their
private data into batches of size B and executes epochs of Stochastic Gradient De-
cent (SGD). Moreover, they mention that, At last, the trained local models (wkt+1)
are added to the server which then bring about the new global model (Wt+1) by
calculating the weighted average of all submitted local models. From mathematical
analysis from the paper [28], we find the following expression:

13

_ ng .,k _
Wit1 = ZkGSt no Wit1, TNo = Zk‘ESt Tk

However, there are still risks of user’s data privacy being breached and messages
might be accessed in an unauthorized manner through sophisticated assaults [29].

2.2.4 Stochastic Gradient Descent

For classification methods based on machine learning such as logistic regression and
neural networks, Stochastic Gradient Descent (SGD) is regarded as an efficient and
conventional optimization approach. To overcome the problems of data inconsis-
tency, approach of greedy selection of datasets are applied which are consistent and
have very low variations [30]. It is one of the principal category of Gradient Descent
Algorithms (GDA). Classification is a key approach when dealing with datasets and
neural networks and logistic regression are some popular models of classification.
Accuracy and efficiency of the algorithms for optimization are highly required for
reliable classification of models. By having substantially faster convergence, Stochas-
tic Gradient Descent (SGD) effectively resolves the issue of high computing cost and
it solely differs in the amount of data utilized to calculate the gradient of the re-
quired function. In addition, a compromise is made between the accuracy of weight
updates and the time it takes to make an update, depending on the amount of data
available [30].

14

Chapter 3

Proposed Model and Methodology

This chapter contains in depth explanation of our system architecture, model archi-
tecture, the applied algorithm and relevant approaches that we took.

3.1 System Architecture

=

Cloud

mnn
nn

Continental Server

Base Station Base Station

Figure 3.1: System Architecture For Proposed Model

We propose a multi-layered system to optimize content prediction and caching glob-
ally. Our proposed model primarily consists of three distinct layers which operate
hierarchically. The key entities of our system are the local base stations, the regional
servers and lastly the continental server which is connected to the cloud. All of these
entities are dynamic in nature and have their own instances.

15

Layer 1 is where the base stations are which are the closest connected entities with
the end users. In the 2nd layer we have regional servers where every regional server
will have multiple base stations connected with them. In the final layer we have con-
tinental servers which will have multiple regional servers connected with it. Firstly
in initializing stage, model parameter Wc will be initialized for continental server.
This parameter Wc will be transferred to the regional servers connected to it. So
each of the regional servers will now have the same parameters Wr as the continental
server. Now from each regional server, Wr will be transferred to the base stations
connected to it. As a result each base station will have the same model parameter
Wb as the connected regional server and this is how the initialization phase will
end. After the model parameters for base station being set our prediction model
will start operating from layer 1.

3.1.1 Federated learning layer 1 (Base Station)

The model at it’s basic state consisting the parameters received from the regional
servers does not have useful values, but as time passes and users watch content and
the base station connected to the end user record these movies and after enough
data is collected, the model is fit to this new viewing data. The model trains itself
and sets new model parameters for better prediction and updates Wb and total view
count Vb. After updating base stations transfer their updated model parameters to
the associated regional server.

3.1.2 Federated learning layer 2 (Regional Server)

Weight scaling factor: When the updated weights are sent back to regional server
not all the weights from all the base stations will have equal effect on the Regional
server. In our simulation, we are comparing the amount of data compared to the
total amount of data for each base station (Vb). This ratio will be used as the
weight scaling factor for the base stations.

Scale model weights: The weight scaling factor will be then multiplied with the
weights of the correspondent base station updated model to produce scale model
weight Ws.

Weight Averaging: Scaled model weight Ws from each of the base station is now
used to calculate Wavg. Summation of all the scaled model weights is divided by
the number of base station which gives us Wavg.

Update Wr and predict content: After calculating the Wavg of a particular
regional server that servers Wr will be updated to the calculated Wavg. This weight
will be used to update the prediction model of the regional server to predict contents
for the next timespan and cache contents accordingly.

Transfer Wr and Vr: After updating Wr, the updated Wr will be sent to the con-
nected continental server. Also the total view count of each server Vr will be sent too.

16

3.1.3 Federated learning layer 3 (Continental Server)

Weight scaling factor: Similarly to layer 2 the updated weights from regional
servers are sent back to continental servers and in the same way using total view
count of each regional server (Vr) we calculate the weight scaling factor.

Scale model weights: The weight scaling factor will be then multiplied with the
weights of the correspondent regional server’s updated model to produce scale model
weight Ws.

Weight Averaging: Scaled model weight Ws from each of the regional server will
be used to calculate Wavg. Summation of all the scaled model weights is divided
by the number of regional servers which will produce Wavg.

Update Wc and predict content: After calculating the Wavg of the continental
server, Wc will be updated to the calculated Wavg. This weight will be used to
update the prediction model of the continental server inorder to predict contents for
the next timespan and cache contents accordingly and also to request contents from
the cloud based on the prediction.

3.2 Flow Diagram

Figure 3.2 explains the entire process flow in one diagram. Staring from model
initialization in the Continental server to the Continental server caching loop.

17

Start

Initial a model in
Continental server

Pass model
parameters fo all
regional servers

Update regional
model with sent
parameters and pass
them to base stations

l

Update base stations
models with sent
parameters

lUpdate model at base

stations with new

Cache movies based
on predicted
popularity

user date

Send new weights
and total view-count

to regional server

O

Regional server
collects updated
weights and view
count from all base
stations

Regional server gives

each weight a scaling
factor based on view-
count ratio

Regional server
calculates new weight
W, using fedavg

algorithm

Regional server

updates model with

W,

Regional server

on popularity
prediction

caches movies based

Regional server
sends updated
weights and total
view-count fo

Continental server
collects updated
weights and view
count from all

Regional servers

Continental

gives each weight a
scaling factor based
on view-count ratio

server

algorit!

Continental server
calculates new weight
W, using fedavg

hm

continental server

Continental sarver
updates model with
W,

18

Continent

caches movies based

on popularity
prediction

al server

[

Figure 3.2: Flow Diagram of the Proposed Model

3.3 Model Architecture

(o1 | (o2 | [oo [—— (o) Output

Dense

D1 D2 B D, layer?

Dense

\Ii)‘\ D2 D3 D4 D5 D6 D7 D8 layer1

LSTM LSTM LSTM LSTM LSTM

Gl c2 €3 | e c100 layer3

LSTM LSTM LSTM LSTM LSTM

c1 c2 €3 | e 2 c100 layer2
LSTM LSTM LSTM LSTM

c1 c2 o e — " cio LSTM

layer1

X1 X2 X3 X100 Input

Figure 3.3: Architecture of the Proposed Model

The model we have built for predicting contents in a time series manner is a many
to many type rnn model because we are receiving multiple outputs for multiple
inputs. LSTM is a recurrent neural network model, which means we have to make
our dataset as a series. So, we are using sequences for our model’s input. In our
model we have 3 layers of Lstm with 100 cells each, 2 dense layers in which the first
dense layer includes 8 cells and the second dense layer includes n number of cells
where n derives the number of movies we are using in our dataset. The output would
be a view-count ratio for movies, relative to one another. So the highest watched
movie will have the highest value; the second highest watched movie will have the
second highest value and so on. The summation of all the values will be equal to 1.
Figure 3.3 gives us a breif overview of how the model is structured.

3.3.1 Dataset

The dataset we have used is a Netflix rating records for different movies collected
from Kaggle. But we could not use this data in it’s raw form as we intended to
predict contents in a time series manner using RNN. Thus, we processed it into a
dataset, containing the count of views of the movie got every day. Then it’s all
compiled into a csv file as input, along with the week of the day. For this, we gave

19

each day a value, from 1 to 7, which will later get normalized. For output, we take
a day and give each movie a numeric value based on how much it has been watched.
For the highest viewed content, it’ll be N where N is the number of movies that
can be cached, and the second viewed content will be N-1, and so on. N will be
decided based on the amount of movies that can be cached in the server, and all the
movies out of the range (N) with low view counts will share the value 0. After that,
the values will be divided by N(N+1)/2, so the sum of all the values will be 1. We
can later use a softmax function on the final layer to make sure we can match this
pattern in the prediction.

[[M1(t.100) M2t-100) Mat-100) ... Mijta00) (day of week=1)]
[Myt-s5) Ma(t-99) Majt-99) ... Mine-ss) (day of week=2)]
[Myts8) Mz s Mat-ag) ... Mnesg) (day of week=3)]

[Mat.97) Majro7) Magta7) Minr.a7) (day of week=4)]

[Ml(t) Mz Magy ... Mgy (day of week=d)]]

Figure 3.4: Input Overview

3.3.2 Data Preparation for LSTM

LSTM is a recurrent neural network model, which means we have to make our
dataset as a series. For this, we wrote a function, the makes a queue with capacity
of n previous values. Then we iterate through the rows in the dataset and keep
adding to the queue, and every time we have enough values, we keep adding the
view-counts till time (t) to the X list, and the expected output value for t+1 would
be added to the Y list. Then it’ll all be converted into NumPy arrays and returned.

3.3.3 Data Preparation for Federated Learning Simulation

For this, we take the entire dataset and divide them among the base stations. To
do this, we wrote a function, that takes the dataset and the number of base stations
we are looking for. Then it makes a dictionary of the base stations with it’s own set
of input and output data, and returns the dictionary. The data is then batched for
the model to train with.

3.3.4 Proposed FedPredict Algorithm

This is entire summary of the algorithm we implemented. We are referring it as
the FedPredict Algorithm. At first the variables are initialized and transferred for
further computation.

20

- Initialize W, for Continental Server. Initialize Continental Prediction Model M,
- Transfer W, to Regional Server where W, < W.. Initialize Regional Prediction
Model M,

- Transfer W, to Base station where Wy, < W,. Initialize Base Station Prediction
Model Mb

Base station executes:

1: for each round t = 1,2 do
2: p'™! « Predict (M)

3: Cache (p'™') // Cache movies based on available storage.
4: PassToRegional (W, V})
5: end for

Regional server executes:

6: PassToRegional (W, V;) / / Collect weights and view-counts from BS
7: for each round t = 1,2 do
8: for WbEWbl do

9: Sy < (Vp) / Sum (V})
10: Wbs — Wb * Sb
11: end for

12: W, + Sum (Wy) / Count (Wyy)
13: M, < Update (W,)

14: P'! « Predict (M,)

15: Cache (p')

16: PassToContinental (W,,V}.)

17: end for

Continental server executes:

18: PassToContinental (W,.,V,.) / / Collect weights and view-counts from RS 19:

for each round t =1,2,... do
20: for W,.eW,, do

21: S, < (V;)/Sum (V,)
22: W, «— W5 S,
23: end for

24: W, < Sum (W) / Count (W)
25: M, « Update (W.)

26: P'! « predict (M)

27: Cache (p'!)

28: end for

21

Chapter 4

Comparative Study

In this section we aim to compare various approaches, optimizers and loss functions
that we have utilized. Attempting things multiple ways have given us a better end
result as we have a better overview of how the model performs. We have tried
to optimize performance through utilization of various conventional and available
methods.

4.1 Optimizer Comparison

The ultimate goal of a neural network is to reduce the amount of errors in order
to produce more accurate results. For this objective optimizer in a neural network
model plays a very vital role in producing the best result possible for that particular
model. For our content prediction Istm model we used different types of optimizers
such as Nadam, Adam, Adamax, ftrl and RMSprop and compared the results of
training and validation accuracy to determine which optimizer we should use for
our prediction model.

Optimizer Comparison

N acc
W val acc

Result

Madam Adam Adamax firl RMSprop
Optimizers

Figure 4.1: Comparison of Various Optimizers

For the above comparison shown in the Figure(4.1) we set the learning rate initially

22

to 0.00005 and ran 25 epochs for each optimizer in our prediction model and gener-
ated the training accuracy (acc) and validation accuracy (valacc). From the above
results we can see that RMSprop produces the highest number of validation accu-
racy of 0.7695. As a result we choose RMSprop as the optimizer of our prediction
model.

4.2 Loss Function Comparison

Along with Optimizers, Loss function is a vital part of any neural network model.
Typically we seek to minimize error or loss of any neural network in order to find
a satisfactory result. In our prediction model we used different loss functions like
Huber loss, Mean squared error, Categorical hinge, Mean absolute error, Squared
hinge and compared the results to choose which loss function works best for our
model.

Loss Function Comparison

N |oss
e val_loss
(L5 1
06 -
a
7
o
(4 1
0.2 1
0.0 . o
Huber Mean Categorical Squared Mean
Loss Squared Error Hinge hinge Absoclute Error

Loss Functions

Figure 4.2: Comparison of Various Loss Functions

For the above comparison shown in the Figure(4.2) we used the optimizer as RMS
prop and set the learning rate initially to 0.00005 and ran 25 epochs for each func-
tions using our model for producing both training loss and validation loss. For
Huber loss as we can clearly observe from the fig that the model produced minimum
amount of loss which is 0.0336 training loss and 0.0156 validation loss. As a result
we chose to use Huber loss as the loss function of our prediction model.

23

Chapter 5

Result Analysis

The main objective of our prediction model merged with Fedarated learning was to
predict contents accurately for a particular timespan and pass our model parame-
ters to the next layers without sharing any user data. The prediction results of our
proposed models are satisfactory. According to our system model, the initial weight
generated by the continental server is transferred down to the regional server and
from there to the base stations at the initializing state. Using that generic weight,
our base station prediction model trained and updated itself to predict movies for
time(t+1) at time(t). Using RMSprop as optimizer and huber_loss as loss function,
after 25 epochs our base station prediction model was able to produce 71% valida-
tion accuracy which we can observe from the Figure(5.1) below

0.7 4
0.6
-
E 0.5 A
3
w
&
0.4 -
0.3
—— accuracy
val_accuracy
T T T T T T
0 5 10 15 20 25

epoch

Figure 5.1: Training Accuracy and Validation Accuracy Graph

From the figure(5.2) below we can see that our base station prediction model is
quite accurate and stable as both validation and training accuracy seem to converge
smoothly.

After the base station model is updated, the updated parameters are passed to the
regional servers where the regional server initially using those parameters updates
its own prediction model and after 3 communication rounds for each regional server,

24

those updated parameter models are passed to the Continental Server. With those
parameters generated by the regional servers our continental server predicts movies

for time(t+1) in time(t).

0.040 4

0.035 1

0.030 +

huber_loss
o
o
[o%]
[%)]
1

o

[=]

]

[=]
I

0.015 4

0.010 4

0.005 4

— loss
—— wval_loss

10 15

epoch

20 25

Figure 5.2: Training Loss and Validation Loss Graph

From the figure(5.3) below we can see that our Continental server is able to produce
73.968% global accuracy in just one complete cycle. So it is evident that with
high number of computational cycles and larger and versatile dataset our prediction
model can produce even better results.

[C» Initializing value
Initializing value

comm_round: @ | global_acc:
comm_round: 1 | global acc:
comm_round: 2 | global_acc:

Initializing value
Initializing value

comm_round: @ | global acc:
comm_round: 1 | global_acc:
comm_round: 2 | global acc:

Initializing value
Initializing value

comm_round: @ | global_acc:
comm_round: 1 | global acc:
comm_round: 2 | global_acc:

63.
.588%
76.

76

76.
76.
76.

76.
76.
76.

comm_round: continental server

333%

5a8%

Eas%
5a8%
Eas%

198%

5e8% |

5a8%

| global_loss:
| global loss:
| global_loss:

| global loss:
| global_loss:
| global loss:

| global_loss:
global loss:
| global_loss:

[ax]

a.
a.

a

| global acc: 73.968%

.8112155219539909096
.BBE5T7E5436732872948
.B856281126756221856

.BB57415589600288435
.08653418293222785
.BB50286304740548435

8875396508886524324
Be72185425864560066
.BB53938683595907763
| global loss: ©.825996365364780963

Figure 5.3: Prediction result for continental server

If we take a look at the figure(5.4) below we can see that on average each regional
server computation round has an average accuracy of more than 70

25

Regional Server 1 Regional Server 2
Regional Server 3

Figure 5.4: Regional server computation round

Now to compare our federated approach we ran similar tests in a non-federated
approach. This basically gave us an overview of the entire system. We can see that
without applying federated learning, our global model accuracy is significantly lower
than our previous one. We get around 67% accuraccy whereas previously the global
accuracy stood around 73%.

Comparison of Approaches

75.00%
74.00%
73.00%
72.00%
71.00%
70.00%
69.00%
68.00%
67.00%
66.00%
65.00%
64.00%

Without Federated Approach With Federated Approach

Figure 5.5: Federated vs Non-Federated Approach

26

Chapter 6

Conclusions

6.1 Attempted Approaches and Challenges Faced

While preparing the dataset and implementing our algorithm, we faced multiple
challenges so we made adjustments on the way. We divide our approach into four
separate parts. In each phase we have made a distinct modification to achieve our
target goal. At the end we reached a point where we got satisfactory results amidst
the obstacles faced. We were able to successfully maneuver around the problems
that arose. Further modifications and improvements can be made which is discussed
later on.

At first, we tried to predict the view-count for a movie. Our plan was to at first
make a sequence of view-count for a movie and run that through RNN to predict
how many people will watch the movie at time t+1. But while trying this approach,
we faced a few difficulties. First of all, it’'ll be tough to make one model for each
movie and then try to predict a count for every single movie, it’d take a lot of time
for no good reason. Another big problem that we faced was that, our model was
struggling to predict the extremes in values. And if were to compare the predicted
view count of movies, it was important to be as precise as possible with the predic-
tions, which wasn’t working out as we hoped for.

Failing at approach 1, we decided to try a second approach. For this, we took a
bunch of movies to train and test our theory on. At first, we took the view counts of
the movies for each day, and made a list of lists out of it. The outer list containing
lists in a time series and the inner list containing the view counts. For output, we
used a one-hot vector to predict the most popular movie. Then we make a sequence
of this data using queue and pass it thorough our model. It worked okay, but the
problem remained that we were getting only one movie, and using this approach to
figure out top, most viewed movies would be hard.

So,to deal with this issue, we decided to not use one hot vector and give each movie
a numeric value based on view-count. The highest viewed movie gets the value n,
where n is the number of movies we can cache. The number will slowly get reduced
to 1 as the view-count for the movie decreases, and the last few movies will have
the value 0, as in they won’t get cached. This approach worked pretty well, the
predicted values didn’t quite output an exact zero, but we could just cache the top

27

valued movies from the output.

This is our final approach that we used for our model. For this approach we just
added one extra feature on top of approach 3. We added the day of the week. We fig-
ured, the current day of the week can have an effect on the movie that gets popular,
so we gave each day a numeric value from 1 to 7 and scaled it to stay between 1 and 0.

6.2 Summary and Future Work

The aim of our thesis was to build a complete system model which accurately pre-
dicts contents while ensuring user privacy and determines efficiently what to cache.
Our system model will enable faster content delivery by reducing total network hop
count and maximize cache hit ratio. The structure and approach of our model en-
ables us to reduce computational complexity and communication overhead. Though
there are many aspects that we can improve in future.

e While implementing there were some obstacles that we had to face like scarcity
of time series based content dataset for which we needed to modify the dataset for
our implementation purpose. With better time series based dataset and federated
enabled datasets we can achive greater result for our model.

e We used the Fedavg algorithm for our federated learning purpose. Though Fedavg
algorithm works well in practice but it is not perfect. There are very recent upgrades
to this algorithm like g-FedAvg and FedProx which if intigrated in our system might
produce better results.

28

Bibliography

1]

[11]

[12]

[13]

F. Richter, Infographic: Netfliz passes 200 million milestone, Jan. 2021. [On-
line]. Available: https://www.statista.com/chart/3153/netflix-subscribers/.

S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless
communications: Motivation, opportunities, and challenges,” IEFEE Commu-
nications Magazine, vol. 58, no. 6, pp. 46-51, 2020.

Fedmd: Heterogeneous federated learning via model distillation. [Online]. Avail-
able: https://towardsdatascience.com/tagged/privacy-preserving.

J. Ni, K. Zhang, and A. V. Vasilakos, “Security and privacy for mobile edge
caching: Challenges and solutions,” IEEE Wireless Communications, 2020.

X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge ai:
Intelligentizing mobile edge computing, caching and communication by feder-
ated learning,” IEEE Network, vol. 33, no. 5, pp. 156-165, 2019.

P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Sur-
vey on multi-access edge computing for internet of things realization,” IEFE
Communications Surveys € Tutorials, vol. 20, no. 4, pp. 2961-2991, 2018.

A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network design opti-
mization,” IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1818—
1831, 2017.

C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment for
performance evaluation of edge computing systems,” Transactions on Emerg-
ing Telecommunications Technologies, vol. 29, no. 11, 3493, 2018.

H. Wu, Y. Luo, and C. Li, “Optimization of heat-based cache replacement in
edge computing system,” The Journal of Supercomputing, pp. 1-34, 2020.

T. X. Tran and D. Pompili, “Adaptive bitrate video caching and processing in
mobile-edge computing networks,” IEEFE Transactions on Mobile Computing,
vol. 18, no. 9, pp. 1965-1978, 2018.

A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably efficient on-
line collaborative caching algorithm for multicell-coordinated systems,” IEFEFE
Transactions on Mobile Computing, vol. 15, no. 8, pp. 1863-1876, 2015.

J. George and S. Sebastian, “Cooperative caching strategy for video streaming
in mobile networks,” in 2016 International Conference on Emerging Techno-
logical Trends (ICETT), IEEE, 2016, pp. 1-7.

S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative edge
caching in user-centric clustered mobile networks,” IEEE Transactions on Mo-
bile Computing, vol. 17, no. 8, pp. 1791-1805, 2017.

29

[14]

[15]

[16]

[23]

[24]

[25]

[20]

[27]

C. Li, J. Tang, H. Tang, and Y. Luo, “Collaborative cache allocation and task
scheduling for data-intensive applications in edge computing environment,”
Future Generation Computer Systems, vol. 95, pp. 249-264, 2019.

W. Stokowiec, T. Trzcinski, K. Wolk, K. Marasek, and P. Rokita, “Shallow
reading with deep learning: Predicting popularity of online content using only

its title,” in International Symposium on Methodologies for Intelligent Systems,
Springer, 2017, pp. 136-145.

O. Tsur and A. Rappoport, “What’s in a hashtag? content based prediction of
the spread of ideas in microblogging communities,” in Proceedings of the fifth
ACM international conference on Web search and data mining, 2012, pp. 643—
652.

G. Chen, Q. Kong, N. Xu, and W. Mao, “Npp: A neural popularity prediction
model for social media content,” Neurocomputing, vol. 333, pp. 221-230, 2019.

S. D. Roy, T. Mei, W. Zeng, and S. Li, “Towards cross-domain learning for
social video popularity prediction,” IEEFE Transactions on multimedia, vol. 15,
no. 6, pp. 1255-1267, 2013.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEFEE transactions on neural networks, vol. 5,
no. 2, pp. 157-166, 1994.

H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” 2014.

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with Istm,” Neural computation, vol. 12, no. 10, pp. 2451-2471,
2000.

A. Graves, M. Liwicki, S. Ferndndez, R. Bertolami, H. Bunke, and J. Schmid-
huber, “A novel connectionist system for unconstrained handwriting recogni-
tion,” IEFE transactions on pattern analysis and machine intelligence, vol. 31,
no. 5, pp. 855-868, 2008.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735-1780, 1997.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber,
“Lstm: A search space odyssey,” IEFEE transactions on neural networks and
learning systems, vol. 28, no. 10, pp. 22222232, 2016.

J.-H. Ahn, O. Simeone, and J. Kang, “Wireless federated distillation for dis-
tributed edge learning with heterogeneous data,” in 2019 IEEE 30th Annual

International Symposium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC), IEEE, 2019, pp. 1-6.

M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, “Parallelized stochastic
gradient descent.,” in NIPS, Citeseer, vol. 4, 2010, p. 4.

Y. Li, T.-H. Chang, and C.-Y. Chi, “Secure federated averaging algorithm with
differential privacy,” in 2020 IEEE 30th International Workshop on Machine
Learning for Signal Processing (MLSP), IEEE, 2020, pp. 1-6.

30

28]

[29]

[30]

A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A perfor-
mance evaluation of federated learning algorithms,” in Proceedings of the Sec-

ond Workshop on Distributed Infrastructures for Deep Learning, 2018, pp. 1—
8.

C. Dwork, A. Roth, et al., “The algorithmic foundations of differential pri-
vacy.,” Foundations and Trends in Theoretical Computer Science, vol. 9, no. 3-
4, pp. 211407, 2014.

A. Sharma, “Guided stochastic gradient descent algorithm for inconsistent
datasets,” Applied Soft Computing, vol. 73, pp. 1068-1080, 2018.

31

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Edge Caching and Federated Approach Background
	Aims and Objectives
	Thesis Organization

	Related Work
	Edge Caching and Content Prediction Best Practices
	Federated Learning and Deep Learning Approach
	Conventional Content Prediction Practices
	Neural Networks and LSTM
	Federated Average
	Stochastic Gradient Descent

	Proposed Model and Methodology
	System Architecture
	Federated learning layer 1 (Base Station)
	Federated learning layer 2 (Regional Server)
	Federated learning layer 3 (Continental Server)

	Flow Diagram
	Model Architecture
	Dataset
	Data Preparation for LSTM
	Data Preparation for Federated Learning Simulation
	Proposed FedPredict Algorithm

	Comparative Study
	Optimizer Comparison
	Loss Function Comparison

	Result Analysis
	Conclusions
	Attempted Approaches and Challenges Faced
	Summary and Future Work

	Bibliography

