
An Efficient Traffic Management System to Detect Lane Rule
Violation using Real-time Object Detection

by

Faed Ahmed Arnob
17301145

Md. Azmol Fuad
17301154

Abu Tahir Nizam
17101393

Arifin Tanjim Siam
17301123

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University

June 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Faed Ahmed Arnob
17301145

Md. Azmol Fuad
17301154

Abu Tahir Nizam
17101393

Arifin Tanzim Siam
17301123

i

Approval

The thesis titled “An Efficient Traffic Management System to Detect Lane Rule
Violation using Real-time Object Detection” submitted by

1. Faed Ahmed Arnob (17301145)

2. Md. Azmol Fuad (17301154)

3. Abu Tahir Nizam (17101393)

4. Arifin Tanjim Siam (17301123)

Of Spring, 2021 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on .

Examining Committee:

Supervisor:
(Member)

Md. Motaharul Islam, PhD
Professor

Department of Computer Science and Engineering
United International Uniiversity

Co-Supervisor:
(Member)

Jannatun Noor
Lecturer

Department of Computer Science and Engineering
Brac University

Program Cooridinator:
(Member)

Md. Golam Rabiul Alam, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Head of the Department:
(Chair)

Sadia Hamid Kazi
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii

skazi@bracu.ac.bd
Signature

Ethics Statement

We the members, hereby and sincerely declare that this thesis has been done based
on the findings of our extensive research. The materials which have been used, are
properly noted and cited in this report. This research work, neither in full nor any
part has never been submitted by any other person to another university or any
institution for the award of any degree.

iv

Abstract

There has been an upsurge in the number of issues with Bangladesh’s present traffic
control system. Hence, several accidents have occurred frequently. The two primary
causes of a rise in the number of injuries are violations of traffic laws, such as illegal
lane changes and excessive speeding. Here we have presented extensive research with
an intention to resolve the current traffic management system using real-time object
detection. In our proposed system, an edge node will detect the lane-based rule
violation and send the data to the nearest intermediary node. Afterward, License
plates as objects will be detected using YOLO object detection executed in the
intermediary computing device. Finally, extracted license plate images from the
intermediary nodes will be sent to BRTA traffic servers to detect the violator’s
Bangla license plate number using pytesseract. We have built a data set of 1450
images for object detection and achieved an accuracy of 91%. Our system will
assist the traffic control department in identifying those responsible for traffic rule
violations and ensuring that the laws are strictly enforced.

Keywords: Automatic License Plate Recognition (ALPR); Hough Line Transform;
YOLO Object Detection; Fog Computing; Optical Character Recognition (OCR);
Computer Vision.

v

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed with-
out any major interruption in this pandemic situation.

Secondly, We are hugely indebted to our supervisor Professor Md. Motaharul Is-
lam of Department of Computer Science and Engineering at United International
University for providing us with all the necessary guidance for this research. He
always encouraged us to think innovatively and bring out new ideas. He has been a
constant source of encouragement and enthusiasm throughout the time of our thesis.

We would also like to express our sincere gratitude to our co-supervisor Jannatun
Noor, Lecturer of BRAC University, for sharing her ideas and expertise which helped
us to make right choices in the implementation phase.

Thirdly, We want to take a moment to thank our supportive friends who have been
there to give us mental support in the hard times. Also the cooperation and un-
derstanding of our team mates have helped us to finish our thesis without any hassle.

And finally to our parents, without their continuous support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables xi

Nomenclature xiii

1 Introduction 1
1.1 Thoughts behind the Traffic Management

System . 1
1.2 Problem Statement . 1
1.3 Motivation . 2
1.4 Research Aims and Objectives . 2

2 Algorithmic Analysis 4
2.1 Computer Vision . 4

2.1.1 Image Classification . 4
2.1.2 Semantic Segmentation . 7
2.1.3 Image Enhancement . 9
2.1.4 Object Detection . 12
2.1.5 Object Tracking . 15

2.2 Hough Transform . 19
2.2.1 Edge Detection . 19
2.2.2 The Hough Space . 20
2.2.3 Alternative Line Representation 21
2.2.4 Line Detection . 22

2.3 Fog Computing . 23
2.3.1 Background Overview . 24
2.3.2 Architecture of Fog Computing 25

vii

2.4 Optical Character Recognition . 26

3 Literature Review 27
3.1 Previous Researches . 27
3.2 Our Improvements . 32

4 Proposed System with Architecture 33
4.1 Working Procedure . 33
4.2 Published Works . 38

5 Primary Dataset Formation & Implementation 40
5.1 Data Collection . 40
5.2 Data Preprocessing & Augmentation 41
5.3 Data Training . 42

6 Performance Evaluation 44
6.1 mAP . 44
6.2 Confusion Matrix . 45
6.3 Precision . 46
6.4 Recall . 46
6.5 Overall Comparison . 47

7 Conclusion 51
7.1 Conclusion . 51
7.2 Limitations . 51
7.3 Future Works . 52

Bibliography 57

viii

List of Figures

1.1 Traffic Lanes . 2

2.1 Three Stages of KNN . 5
2.2 SVM Procedure . 6
2.3 CNN Framework . 6
2.4 Semantic Segmentation . 7
2.5 Fully Convolutional Network Framework 8
2.6 Weakly Supervised Segmentation Framework 9
2.7 Gamma Correction . 10
2.8 Histogram Equalization . 10
2.9 Canny Edge Detection Process . 11
2.10 Faster R-CNN Working Procedure . 12
2.11 Test-Time Speed of Faster R-CNN 13
2.12 Single Shot Detector Model . 13
2.13 YOLO Network . 14
2.14 YOLO Bounding Box . 14
2.15 YOLO Processing Image . 15
2.16 YOLO Non-max Suppression . 15
2.17 Bottom-Up Method Cycle . 17
2.18 Joint based Method Cycle . 17
2.19 Kalman Filter Cycle . 17
2.20 Particle Filter Cycle . 18
2.21 Correlation Filter . 18
2.22 Reinforcement learning . 18
2.23 Original Image . 19
2.24 Grayscaled Image . 20
2.25 Edge Image . 20
2.26 Line in Parameter Space . 20
2.27 Mapping Edge Points in Hough Space 21
2.28 Polar Coordinate System of Line Representation 21
2.29 New Mapping of Edge Points in Hough Space 22
2.30 Line Detection Process of Hough Space 22
2.31 Hough Line Detection from Given Image 23
2.32 Probabilistic Hough Line Detection 23
2.33 Three Tier Fog Architecture . 24
2.34 Six Layer Fog Architecture . 25
2.35 Optical Character Recognition Process 26

4.1 Architecture of Proposed System . 33

ix

4.2 Work plan for Proposed System . 34
4.3 Traffic Lane . 34
4.4 Test Image of Rule Violation . 35
4.5 Grayscaled Version of Test Image . 35
4.6 Edged Version of Test Image . 36
4.7 Line Detection of Test Image . 36
4.8 HT Line detection Algorithm . 37
4.9 Time Consumption for Plate Recognition 38
4.10 Time Comparison for Plate Recognition 39

5.1 Collection of Data . 40
5.2 Data Annotation using VoTT . 41
5.3 Data Preprocessing - Grayscaling . 41
5.4 Data Preprocessing - Resizing . 42
5.5 Data Augmentation - Zoom . 42
5.6 Data Train Batch Sample . 43

6.1 mAP Accuracy of YOLOv5s Model @0.5 44
6.2 mAP Accuracy of YOLOv5s Model @0.5:0.95 45
6.3 Metric of Confusion Matrix . 45
6.4 Confusion Matrix of YOLOv5s Model 46
6.5 Precision of YOLOv5s Model . 47
6.6 Recall of YOLOv5s Model . 47
6.7 Comparison of Four Variation of YOLOv5 Model 48
6.8 Time Comparison of Four Variation of YOLOv5 Model 49
6.9 Text Extraction using Bangla OCR 50

x

List of Tables

6.1 Training and Testing Time Comparison of YOLOv5 Model 48
6.2 Comparative studys of YOLOv5 and Reviewed Literature 49

xi

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

σ sigma

τ tau

AI Artificial Intelligence

ALPR Automatic License Plate Recognition

BLPRS Bangla License Plate Recognition System

BRTA Bangladesh Road Transport Authority

CCA Connected Component Analysis

CNN Convolutional Neural Network

CV Computer Vision

DCNN Deep Convolutional Neural Network

DtBs Distance to Border

FCN Fully Convolutional Network

HT Hough Transform

IoT Internet of Things

ITS Intelligent Transport System

IV IoT Intelligent Visual Internet of Things

KNN K-Nearest Neighbours

LPR License Plate Recognition

LSO Line Segmentation and Orientation

NAS Network Attached Storage

NCPSRR National Advisory group to Secure Transportation, Streets and Rail-
roads

xii

PBT Pixel Brightness Trasformation

PHT Probabilistic Hough Transform

R− CNN Region-based Convolutional Neural Network

RCNN Recurrent Convolutional Neural Network

RPN Regional Proposal Network

SSD Single Shot Detector

SVM Support Vector Machine

xiii

Chapter 1

Introduction

1.1 Thoughts behind the Traffic Management

System

Traffic Management and Monitoring is one of the most significant issues in many
countries. This concern is growing rapidly due to increasing daily commuters, over-
crowded and narrow roads. Inappropriate or traditional architecture in the signal
system and violation of traffic rules are influencing congestion, accidents, and deaths.
Besides, traffic management often ends up suing the wrong individual for rule viola-
tion due to malfunction. Moreover, accidents are regularly occurring due to various
traffic rule violations such as - illegal lane changes, overspeeding, vehicles without
fitness, etc.

IoT-driven intelligent traffic management systems offer a proper monitoring system
by applying strict punishments for rule violators, automated ticketing systems, smart
signaling systems, etc. Advanced technology applications such as AI, Computer
Vision, IoT, Machine Learning, Complex Computing, Big Data are now providing
real-time solutions for the traffic management system.

1.2 Problem Statement

There’s been an increase in road accidents in countries like Bangladesh despite
having traffic rules stated by the government. If we look at the years of 2014-
16, there’s been an emergence of road accidents and fatalities. According to the
Bangladesh police, more than 2,500 people had died in almost 2,600 road crashes
in 2018. Furthermore, more than 2000 people had died in almost 2500 accidents in
2017 in Bangladesh [1, 2]. In addition, the NCPSRR of Bangladesh had uncovered
the data in a press release that nearly 1,500 people died and more than 3,000 people
had been injured in close to 1,500 road accidents throughout the country in the
first four months of the year of 2019 [2, 3]. If we dive deep into these cases, it
can be found that the main reasons for these road accidents were overspeeding,
unpermitted lane changing. One of the main reasons behind these accidents, which
is often overlooked, is unpermitted lane changing.
In our country, the lane-based traffic rule says, ‘No vehicles can’t cross the solid
marked lanes whatsoever; they can only cross the dotted lane and while changing

1

Figure 1.1: Traffic Lanes

the lane over the dotted line, they must use indicators. So in Figure 1.1, vehicles
can’t cross the straight white and double yellow lines displayed on the right side.
On the left side of Figure 1.1, the lane change rule has been illustrated. To the best
of our knowledge, there are no systems that have been implemented for detecting
lane change rule violations.

In addition, to identify the rule violator, the information of that vehicle is necessary.
This information can be extracted from the Bangla License Plate. So in this regard,
Bangla ALPR becomes another concern of our research. There are various worldwide
sources that supply ALPR solutions. However, these sources do not give support for
the Bangla language. Besides, there are no prominent Bangla License Plate datasets
to develop such ALPR models.

1.3 Motivation

The objective of our research is to minimize the number of accidents which are caused
by the lane-based rule violation. The phenomenon which thrived us to perform this
research is the personal experiences while commuting through the city. Two of our
team members use a motorcycle for their everyday transportation. According to
them the current traffic situation in our country is quite hostile. They faced some
minor accidents and also got a glimpse of some traumatizing major accidents. More-
over, one of our classmates also died recently in a horrifying road accident. These
experiences enabled us to distinguish the significant reasons behind the accidents.
We felt it is high time we should develop an effective and efficient traffic monitoring
system to minimize these unfortunate road accidents. Hence, these problems mo-
tivated us to develop a traffic management system that will help the people of our
country and our team members to have a safe journey.

1.4 Research Aims and Objectives

As previously discussed in the problem statement, The goal of our study is to reduce
the amount of accidents that occur on a regular basis in our environment. The only
way that can be achieved is to have a strict traffic monitoring system and proper
utilization of technologies. In order to do that, we are proposing a complete system
where several algorithms have been used, such as - HT, YOLOv5, OCR, etc. We

2

have learned many new tools and implemented the new learnings to meet our re-
search objectives.

The major aspects and contributions of our research are summarized as follows:

• Novelty: We have implemented the latest variant of YOLO using three tier
system architecture - end device (pi), computation layer (YOLOv5) and BRTA
server (penalization).

• Performance: Compared to other existing BLPRS, we have achieved better
result on License Plate Recognition.

• Accuracy: Our trained model has achieved 91% accuracy on test set of License
Plate which is 5% less than current-state-of-the-art (YOLOv2).

The rest of the paper has been organized in the following manner. Chapter 2
discusses the algorithmic analysis which has been done in our research. Chapter
3 discusses the previous researchers that have been done in this field. Our proposed
method and our previous works have been explained in Chapter 4. Primary dataset
formation and implementation details of our system have been narrated in Chapter
5. After that, we have evaluated our work in different criteria in chapter 6. Finally,
chapter 7 concludes our thesis.

3

Chapter 2

Algorithmic Analysis

2.1 Computer Vision

Computer Vision is one of the emerging technology in the AI environments. It is
considered as an inter-disciplinary area of artificial intelligence which briefly focuses
on developing techniques for computers to gain a high-level understanding from
digital images and video content. It is often denoted as CV. This field of study
basically enables the computers to see and observe digital contents such as images
and videos like the humans do. With the rapid development of this field, many
well accurate techniques of seeing things are also being invented. Soon our whole
world will be full of text and images. Text in a sense, is rather easy to search and
incorporate . On the other hand, images and videos need different types of well
developed algorithms to extract correct information from it. In this section, five
major topics of CV will be discussed.

2.1.1 Image Classification

Image classification is the process in which any smart digital computing devices like
computers or smartphones can identify any sort of object from an image or video.
This is done with the help of image classification and foremostly AI. There are
two techniques of classifying an image. Those are pixel level and the other one is
object level. Pixel-based classification methods only evaluate spectral information
(a pixel’s intensity), while object-based classification methods analyze both pixel
spectral and spatial information [4, 5]. Object-based classification is more reliable
in modern day and the most used one. Image classification follows a structured way
to fulfil its purpose. Classifying an image and detecting objects from it is the very
end goal of image classification. Right after the data is labeled and preprocessed, it
is ready to be fed into the machine learning algorithm. The most commonly used
algorithms are KNN, SVM, CNN.

K-nearest Neighbours

Like most of the algorithms in the machine learning field, KNN can be used both for
classification and regression [6]. KNN is a classification model that classifies data
points based on how close they are to each other. It makes an ”informed guess”
on what an unclassified point should be classified as based on test results. The

4

ease of this model is that it is easy to interpret in terms of output. Moreover, the
algorithms’ calculation time is much more reasonable and the predictive power is
quite good.

Figure 2.1: Three Stages of KNN

For instance in Figure 2.1, the new example marked as yellow square box needs to
be classified . Here, the red star and green triangle are two classes and the question
marked region needs to be identified between the two classes. KNN will give the
prediction in which class the square box will fall. Following the process, first the
distance of the classified points will be calculated from the unclassified one. This
can be done by following two methods - Euclidean distance and Manhattan distance.
Next it ranks the distance between points by increasing distance values. The short-
est distance is considered as the closest neighbour. Finally, vote on the labeled class
begin and the closest to k=1,2,3..N nearest neighbors are declared as the predicted
class.

Support Vector Machine

SVM stands for support vector machine and is a classification and regression algo-
rithm. Its aim is to improve predictive accuracy while avoiding data overfitting. It
is used for applications such as handwriting, face, text and hypertext classification,
bioinformatics etc. To achieve the greatest separation between data points, SVM is
used. Hyperplane is a component of SVM that maximizes data point separation by
increasing line width in iterations [7]. It begins with a line and two parallel lines
that are equidistant. Next, the algorithm chooses a stopping point to avoid entering
an infinite loop, as well as an expanding factor closer to 1. In this case perfect
is 0.99. SVM’s main goal is to find a hyperplane in an N-dimensional space that
clearly classifies data points, where n is the number of features to use.
Although there are many hyperplanes in the support vector algorithm, the hyper-
plane with the greatest margin is the highest. To put it another way, the best
hyperplane is one that offers the greatest distance between data points for both
groups. As a consequence, some reinforcement can occur, allowing potential data
points to be classified with greater confidence.The loss function that helps maximize

5

Figure 2.2: SVM Procedure

the margin is hinge loss. The equation that has been used in this algorithm is:

c(x, y, f(x)) = 1 − y ∗ f(x)

The hinge loss function is equal to 0 when y ∗ f(x) becomes greater or equal 1. De-
spite the fact that the support vector algorithm is extremely useful, it took a long
time to run in Quantopian. Despite its many benefits, we decided not to include it
in our ensemble learning.

Convolutional Neural Network

Making computers see things like humans perceive is the main goal of any super-
vised machine learning algorithm. The advancements in computer vision have come
to existence over one particular algorithm which is CNN [8]. CNN works on a mul-
titude of tasks such as image & video recognition, image analysis & classification,
media recreation, recommendation systems, natural language processing, etc. This
specialized neural network model is designed to work with one-dimensional, two-
dimensional, three-dimensional image data. In our case we are going to work with
two-dimensional image data. This is performed in multiple layers and the operation
here is called convolution. It is a linear operation which consists of multiplication
of a set of weights with the input.

Figure 2.3: CNN Framework

6

Here, for the multiplication a filter or a kernel is used to perform the process.
Meaning multiplication is performed between a two-dimensional array of weights
and an array of input data. A scalar product operation is being done between the
filter-sized patch of the input and the filter. After that it is summed to a single
value. In order to multiply the same filter by the input array multiple times at
different points on the input, the filter size must be kept small. Therefore, the filter
is applied serially to each overlapping part of the input data from left to right and
top to bottom. This powerful idea allows repeated overlapping of the application
to build a feature map. Moreover, a 2D convolution layer in Figure 2.3 is meant
to have the input of three-dimensional operation. Despite having three-dimensional
convolutional operation it is called 2D because the filter run process is done in two
dimensions only.

2.1.2 Semantic Segmentation

Semantic segmentation is a gradual process in the progression from rough to deli-
cate inference, with its origins potentially in classification, which entails making a
prediction for the entire process. The following move is identification or translation,
that includes the classes and other supplementary knowledge about their spatial lo-
cation[9]. Segmentation is a crucial part of our visual comprehension process when
we don’t know the exact identity of all objects in an image and It’s being used to
improve or complement current computer vision techniques. Conventional image
segmentation algorithms rely on clustering, which is also supplemented with infor-
mation from contours and edges. Many older approaches have become outdated as
a result of modern advancements. There are few semantic segmentation methods
are available.

Figure 2.4: Semantic Segmentation

The recent semantic segmentation methods are divided into three groups based on
the main component: Region-based semantic segmentation (R-CNN), Fully Con-
volutional Network (FCN) based semantic segmentation, and Weakly Supervised
Segmentation.

R - CNN

The segmentation utilizing recognition technique, which extracts and recognizes
free-form sections from an image before categorizing them using region-based tech-
niques, is frequently followed by region-based approaches [10]. During the testing
phase, these projections are transformed to pixel estimations, typically by marking

7

a pixel with the highest scoring region that occupies it. Based on the object detec-
tion data, R-CNN performs semantic segmentation. It begins by employing selective
search to extract a huge number of object suggestions, after which it computes CNN
characteristics for each of them. Lastly, each region is classified using class-specific
linear Support vector machines. R-CNN collects two types of characteristics for each
area in image segmentation tasks: full region feature and foreground feature, then
Concatenating them as the region feature has been discovered to boost outcomes.
There are also some drawbacks such as This feature is incompatible with the task of
segmentation. Moreover, It lacks sufficient spatial information to generate precise
boundaries. Lastly, R-CNN proposals are quite time consuming which will affect
the final result.

Fully Convolutional Network

FCN-based approaches are based on the concept of learning a portrayal of pixels to
pixels mapping without taking out area proposals. A version of the regular CNN
network pipeline is the FCN network pipeline. The main idea is to produce the
traditional CNN accepting arbitrary-sized images as input. As FCNs are built up
of convolutional, pooling, and up-sampling layers, and are based on the idea of a
loss function, they may well be end-to-end trainable. DeepLab-CRF [11] provided
an alternative to the de-convolutional layers for increasing output resolution.

Figure 2.5: Fully Convolutional Network Framework

It employed atrous convolution to boost feature resolution before up-sampling the
score map to the original picture resolution with bi-linear interpolation. In FCN
techniques, the output function maps’ resolution is down-sampled by propagating
through several alternating convolutional and pooling layers. As a result, FCN’s di-
rect predictions are usually of low resolution. The object boundary was then refined
using the CRF method.

Weakly Supervised Segmentation

To manually annotate the segmentation is time-consuming, tedious, and financially
costly. As a result, some weakly supervised segmentation methods have suggested
the use of annotated bounding boxes or image-level labels to fulfill the semantic
segmentation. Dai et al. [12] have proposed to use the bounding box annotations
which will act as a supervision to train the system, and Iteratively, the approximation
masks for semantic segmentation were improved.

8

Figure 2.6: Weakly Supervised Segmentation Framework

Papandreou et al. [13] have suggested an expectation–maximization (EM) method
for training semantic segmentation models on data that is weakly annotated, for
example, image-level or bounding box annotation. They also discovered that only
image-level annotation was not sufficient for training a better segmentation model,
Although pixel-level annotation could provide a competitive model, bounding box
annotation could not. The above methods used slightly different networks and
training protocols for semantic segmentation with a view to fit well to the weakly
supervised semantic segmentation challenge. Finally, one of the most major disad-
vantages of adopting image-level supervision is the absence of object localization.

2.1.3 Image Enhancement

The initial and most important step for any image classification or machine learning
model is image enhancement. It is mostly known as image preprocessing. The main
goal of image preprocessing is enhancement of a given image data by removing un-
necessary information and distortions or improving relevant features for further pro-
cessing. Preprocessing techniques can include several work such as - pixel brightness
transformation, image edge detections, image resizing, data augmentations, image
filtering etc. The most common image preprocessing for any classification or ma-
chine learning model are - pixel brightness transformation, image edge detections
and image resizing.

Pixel Brightness Transformation

PBT refers to the correction of brightness, contrast of an image depending on the
image pixel information. It is one of the most extensively used techniques for medical
and image or video applications, text or speech recognition etc. There are two types
of PBT operations - Brightness Correction and Grayscale Transformation [14].

O = (I
255

)γ x 255

Gamma Correction is widely used for brightness correction for individual pixel of an
image. This technique executes an non-linear process on a given image and adjust
saturation of the image as well [15].

For instance, a side by side comparison of Gamma Correction method is given in
Figure 2.7. In the original image, some of the pixels of the image are darker and not

9

visible. Using Gamma Correction i.e, g = 2.0, Most of the objects are visible in the
image.

Figure 2.7: Gamma Correction

Due to its ability to work on almost any type of image, histogram equalization is a
well-known contrast enhancement technique. Histogram equalization is a complex
method for adjusting an image’s dynamic range and contrast by changing the image’s
intensity histogram to the required shapes. Histogram modelling operators can use
non-linear and non-monotonic transfer functions to map between pixel intensity
values in input and output images.

Figure 2.8: Histogram Equalization

Edge Detections

Edge detection refers to the segmentation of image in terms of edge. The concept
of this detection is to locate edges in an image by modifying its intensity. It is
considered as the main instrument in pattern recognition, segmentation, analysis,
feature extraction etc. Edge detection acknowledges the features of an image in
terms of drastic changes in grey area. There are mainly two types of edge detection
operations- Gradient based and Gaussian based.

Canny Edge Detector is one of the most widely used and famous algorithms for edge
detection. It is a Gaussian-based edge operator which was developed by John F.
Canny [16]. This algorithm works on achieving three major goals -

10

• Edge detection with low error rate.

• Accurate localization of edge points.

• One single response for a given edge.

The major advantage of this algorithm is it can extract features without making
major modification in the image. Moreover, this algorithm can provide less false
edge due to less sensitivity to image noise. There are five steps of Canny Edge
algorithm [17].

The procedure starts with Gaussian Filter. As every image contains noise, it can
badly affect in detecting edges [18]. Therefore, applying smoothness to the image
can improve edge detection. Gaussian filter can smooth or blur image by reducing
the evident noises. The equation of Gaussian filter is -

G(x,y) = 1
2πσ2 e

− (x2+y2)
2σ2

Second step is to find the intensity gradient of the image. As an edge can direct to
many point directions, Canny uses four filters to identify 2D edge in the gaussian
blurred image.

G =
√
Gx2 +Gy2

θ = arctan(Gy/Gx)

Third step is to apply edge thinning technique. Gradient magnitude thresholding
or cutting off lower bound threshold can be applied in this case. It helps to find out
the major change of intensity value. However, some edges still get affected by noise
and color variation. Therefore, double threshold is applied to conserve edges with
high gradient value and remove lower gradient value. The final stage is tracking the
edges by hysteresis. An example of the whole process can be illustrated below -

Figure 2.9: Canny Edge Detection Process

11

2.1.4 Object Detection

In Computer Vision technology, there has been a rapid development regarding ob-
ject detection. Due to its quick advancement and versatility, object detection has
become one of the popular techniques among the researchers. Basically, it is an inte-
gration of two procedures - Object Classification and Object Localization. The main
objective of object detection is to determine objects in a given image and categorize
them. Here, detection of the object is known as Object Localization and catego-
rization of the object is known as Object Classification. However, there has been
some conflict of interest in terms of object detection algorithms and classification
algorithms. In object detection, a bounding box is drawn around the object in an
image for localization. But, there may be different types of objects in the image and
several bounding boxes correspond to those objects. And we can not know about
this issue beforehand. If regular classification algorithms such as - CNN, KNN, ANN
etc. are applied in this case, it will create some major issues. The length of output
layer determined by the regular classification algorithms will not be constant. This
happens because the object of interest in the image is not fixed and several bounding
box are drawn around the objects. Moreover, different objects in an image will have
different aspect ratio and locations. Therefore, algorithms like - Faster R-CNN, SSD
and YOLO have been developed to deliver real-time object detection.

Faster R-CNN

Faster R-CNN is the third iteration of R-CNN. The problems with the previous
iterations - R-CNN and Fast R-CNN were; both of the algorithms apply the selective
search approach in order to find the region proposal. Selective search is a algorithm
based on hierarchical grouping of objects with similar regions based on colour, size,
shape of objects. This algorithm uses an over-segmenting method to the given image
and then applies bounding box to the segmented objects. thus the algorithm lists
the regional proposal and group them based on the similarity of objects. However,
this process is very time-consuming considering the performance of the network.

Figure 2.10: Faster R-CNN Working Procedure

12

In this issue, S. Ren et al. [19] have introduced a new object detection algorithm
that removes the selective search approach and uses the Region Proposal Network
(RPN). In RPN, they provide the convolutional features of the full image as well
as the detection network. The RPN can determine the bounding box of object and
objectness in every corner of the image simultaneously using the fully convolutional
network. They have then merged the RPN with Fast R-CNN in order to provide the
high quality region proposal. Thus, avoiding the selective search approach and using
a feature map to identify the region proposals, it become much faster compared to
R-CNN and Faster R-CNN. A side by side comparison between the three algorithms
in terms of test time speed is given below -

Figure 2.11: Test-Time Speed of Faster R-CNN

Single Shot Detector

SSD is the recently developed object detection algorithm introduced by W. Liu et al.
[20] This algorithm uses a single deep neural network to separate the output space
of bounding box from the set of default boxes in terms of various aspect ratios.
After the separation, the algorithm scale the location of object according to feature
map. In order to handle different sizes of different kinds of objects, SSD merges the
prediction output from several feature maps with discrete resolutions.

Figure 2.12: Single Shot Detector Model

The major advantage of using SSD in object detections is that this algorithm re-
moves several stages of network such as- proposal generation, feature re-sampling
etc. and compress the whole computation in one network, hence the name is single
shot detection. Moreover, among all the other algorithms, this is easy to implement
into system for training of any object detection.

13

You Only Look Once

You Only Look Once or renowned as YOLO is one of the most newly developed
and efficient approach for object detection. YOLO is a regression-based algorithm.
This means that, instead of applying classification approach, this method defines the
object detection as a problem of regression and determine the classes and bounding
box around the object in one run. Unlike other algorithms, YOLO network looks the
whole image and predict the classes and bounding boxes of objects. This algorithm
also uses a single neural networks for prediction.

Figure 2.13: YOLO Network

The full YOLO network is consists of 24 convolutional layers continued by 2 fully
connected layers. By applying 1 X 1 reduction layers, it helps to eliminate the
features space of the preceding layers. After that a 3 X 3 convolutional layers is
applied which are pretrained on ImageNet Classification. For the pretrained layer,
the algorithm reduces the input image resolution (224 X 224) and for the detection,
the resolution is doubled (448 X 448) [21]. The full YOLO network is illustrated in
Figure 2.13.

Figure 2.14: YOLO Bounding Box

In YOLO detection model, the input image is cut down in into cells using a S X
S grid. This method is implemented because YOLO does not look for interesting
regions like other models in an image that can have an object potentially. Each cut
down cell is accountable for determining 5 bounding boxes. Here, 5 bounding boxes

14

are used if there is more than one object within that cell. It is very important for
YOLO to determine the bounding box that specify the location of object. In the
YOLO bounding box, there is a center (bx, by), width (bw), height (bh) and a class of
the object (c). YOLO also predict the probability of an object within the bounding
box pc [22].

Figure 2.15: YOLO Processing Image

y = (pc, bx, by, bw, bh, c)

each cell is responsible for detecting all the elements of bounding box. But most of
the time, all cells will not contain the object. Therefore, the pc helps to remove the
cells and bounding box with less probability. Bounding box with highest probability
will be determined as an object. This is called non-max suppression.

Figure 2.16: YOLO Non-max Suppression

In terms of magnitude and real time objection, YOLO is faster than other algorithms
with obtaining detection rate in 45 frames per second. Fast YOLO can detect object
155 frames per second. However, YOLO falls behind in terms of detecting very small
objects in the image.

2.1.5 Object Tracking

The method of following a specific object of interest or several objects is referred to
as object tracking. It has commonly been used in video and real-world encounters

15

where observations are made after initial object detection. According to the observa-
tion model, it can be divided into two groups. One is the generative approach which
is used to explain appearing characteristics by a generative model [23]. Second one
is the discriminative approach which is used to distinguish between the object and
the background. Taking an initial series of object detections such as - an input set
of bounding box coordinates, is the method of object tracking. The bounding box
provides a unique ID for each of the preliminary detections, and then monitors each
object as they pass through frames in a video while preserving the unique ID allo-
cation. Object tracking also allows us to assign a unique ID to each tracked object
as well as to count the number of unique objects in a video. A good object tracking
algorithm uses the object detection process only once [24]. It also deals with the
tracked object ”disappearing” or moving beyond the video frame’s boundaries and
withstand occlusion. The algorithm possesses the ability to reclaim things that have
been ”lost” in between frames. There are several methods for object tracking which
can be classified into four categories.

Feature based Methods

It is one of the most elementary object tracking techniques [25]. In order to identify
objects, properties such as color, texture, and optical flow are extracted first. After
extracting the features, the next step is to use those features to discover the most
similar object in the next image based on some similarity. In terms of color as a
feature, The color histogram illustrates the color distribution in a picture. It displays
the various colors in the image as well as the number of pixels for each color. A
texture is an informational pattern or a consistent structural layout that is repeated
at regular intervals. It can be used in comparison with the color function to define
an image’s contents. Gabor Wavelet filter is one of the most renowned methods for
texture features in object tracking [26]. Gabor Wavelet is a Gaussian modulated
function by a complex sinusoid that can be defined as -

Gx(t, f) =
∫∞
−∞ e

π(τ−t)2e−j2πfτx(τ)dτ

The apparent motion of brightness patterns in an image is known as optical flow.
Lighting adjustments can create the illusion of motion without actually moving
something. The optical flow algorithm measures the brightness pattern displace-
ment from one frame to the next.

Segmentation based Methods

Segmenting foreground items from a video frame is the most critical stage in vi-
sual tracking. Foreground segmentation is used to separate foreground items from
the background scene [27]. Bottom-Up based method and joint based method are
one of the most used object tracking methods where segmentation is examined.
The Bottom-Up based method necessitates the separation of two tasks: foreground
segmentation and object tracking [28]. As shown in Figure 2.17, the foreground
segmentation uses a low-level segmentation algorithm to identify areas across all
frames, after which some characteristics from the foreground areas are recovered
and tracked using those features.
To solve segmentation error in Bottom-Up method, the researchers combined the

16

Figure 2.17: Bottom-Up Method Cycle

foreground segmentation and tracking methods named as joint method, as shown in
Figure 2.18, which improved tracking accuracy [29].

Figure 2.18: Joint based Method Cycle

Estimation based Methods

The tracking problem is transformed into an estimating issue using a state vector
to represent the object using estimation methods. Then the state vector defines a
system’s dynamic action, such as an object’s location and velocity.For the dynamic
mode estimation issue, Bayesian approaches provide a general framework. The
bayesian filter adjusts the target’s location on the coordinate system using the most
recent sensor data. This strategy is exemplified by the Kalman filter and particle
filters. When calculating the position of a linear system with Gaussian errors, the
Kalman filter is utilized [30]. The majority of tracking problems are non-linear.

Figure 2.19: Kalman Filter Cycle

As a result, particle filters have been considered as a solution to such issues. The
particle filter is a recursive Monte Carlo statistical computation model for non-
gaussian noise measurement. The primary goal of a particle filter is to display the
distribution of a set of fragments [31].

17

Figure 2.20: Particle Filter Cycle

Learning based Methods

Tracking is commonly conceived of as a classification problem in which discrimina-
tive trackers isolate the target from the background. Shallow and Deep learning are
the two categories of discriminative learning. Considering shallow learning, when
the object is tested after the preparation, it determines whether it is a target ob-
ject or not. Support vector machines and other classification algorithms can also
be used to extract features from diverse objects. Shallow learning, which has fewer
parameters, predicts the model, but deep learning also has more layers. Another
distinction is that shallow learning allows specialists to extract critical and discrim-
inatory features, while deep learning extracts these features itself. The generative
approach looks for places that are more similar to the object. One example of these
trackers is Correlation filter-based approaches shown in Figure 2.21.

Figure 2.21: Correlation Filter

The correlation filter’s main goal is to find an optimal image filter that will achieve
the best output on the input image [32]. Considering reinforcement learning prob-
lems, we observe in figure 2.22, an agent that learns to choose the best action to
achieve a goal by interacting with the environment through trial and error.

Figure 2.22: Reinforcement learning

18

2.2 Hough Transform

When an image is used in the field of image processing such as - shape or line detec-
tion, object recognition etc. , it is a prerequisite to remove the redundant data from
the images while focusing on the important characteristics. Line detection from
images is a definitive problem in computer vision as well as in image processing. In
terms of real-time applications, line extraction is an essential job.

The Hough transform (HT), introduced by Paul V.C. Hough in 1962, is a systematic
algorithm that detect targeted straight lines [33]. HT can detect straight lines
efficiently from images even if the image contains noise, blurriness, redundant or
missing data. this algorithm works on four systematic steps - Edge detection, Hough
Space, Line representation and finally Line detection. The four steps of HT are
explained below.

2.2.1 Edge Detection

In order to detect lines from an image using HT, the first and most important task
is to detect edges from an image. HT performs its best on binary image. So the
primary task is to grayscale the given image and then mask the image in terms of
edge. The advantage of grayscaling an image is it reduces the model complexity
as well as dimension. RGB images contains three color channels while grayscaled
images are single dimensional image. For instance, we will use the Figure 2.23 as
an experimental image. So according to the primary task, the grayscaled image is
illustrated in Figure 2.24. The next step is edge detection.

Figure 2.23: Original Image

Edge detection algorithm helps to detect edges from an image by finding out the
substantial changes of the image in terms of brightness and intensity. As previously
mentioned in section 2.1, there are several edge detection algorithms such as - Canny
Edge Detector, Sobel Operator, Laplacian Operator etc. However, it is very common
in HT algorithm to use Canny edge detector algorithm in order to to detect edges
from an image. Here is an example of edge image of Figure 2.25.

19

Figure 2.24: Grayscaled Image

Figure 2.25: Edge Image

2.2.2 The Hough Space

If we consider Figure 2.23, we can say that the image is 2D matrix in terms of x and
y coordinates. A straight line from that image parameter space can be represented
in Cartesian coordinate system (a, b) -

y = ax+ b (2.1)

The line from the image parameter space can be illustrated as -

Figure 2.26: Line in Parameter Space

The Hough space is similar to the image space containing a horizontal axis and
vertical axis. The horizontal axis represents the slope and the vertical axis represents
the intercept of a line on the edge image [34]. In the Hough space, a line is denoted

20

by its slope a and intercept point b as shown in equation 2.1. A line from the edged
image can create a point in Hough space which can be defined as edge point (xi, yi).
There are infinite number of lines going though a certain edge point. So, if we
consider two edge points - (x1, y1) and x2, y2 as shown in Figure 2.26, we will find
that the edge points generate lines in the Hough space in form of b = ax1 + y1 and
b = ax2 + y2 respectively. The mapping of the edge points are illustrated in Figure
2.27.

Figure 2.27: Mapping Edge Points in Hough Space

2.2.3 Alternative Line Representation

The Cartesian coordinate system for line presentation has a issue in the Hough
space. By using the line representation in equation 2.1 for HT, the algorithm can
not detect the slope a because the slope is undefined in terms of vertical lines. It
creates unbounded values for all possible values of slope a. Thus, using the equation
2.1 for HT, the algorithm will not be able to detect vertical lines. To avoid this
problem, the line is represented using Polar coordinate system (r, θ). Here, a normal
line is considered that goes through the origin and the normal line is perpendicular
to the previous straight line. the normal line equation can be represented as -

p = xcos(θ) + ysin(θ) (2.2)

Here, p is the perpendicular distance from the origin or the normal line and θ is the
angle between the normal line and the x axis. The equation 2.2 can be illustrated
as follows -

Figure 2.28: Polar Coordinate System of Line Representation

21

Now in the Hough space, θ will represent the horizontal axis and the p will represent
the vertical axis. Now the slope can be calculated using -

m =
(y2 − y1)

(x2 − x1)
(2.3)

The mapping of the two edge points - (x1, y1) and (x2, y2) will be same as previously
shown. This time the edge points will create cosine curve in the Hough Space
as shown in Figure 2.29. Thus this method removes the unbounded values of all
possible values of a while dealing with vertical lines.

Figure 2.29: New Mapping of Edge Points in Hough Space

2.2.4 Line Detection

Now, if we consider all the edge points and map them into the Hough space, they
will generate a lot of cosine curves as shown in Figure 2.30.

Figure 2.30: Line Detection Process of Hough Space

22

If two edge points are situated on the same line, the corresponding cosine curves of
the edge points will intersect each other. These two edge points can be considered a
specific (p, θ) pair. The HT algorithm then finds the (p, θ) pairs that has a number
of intersections larger than a certain threshold and combine them to detect lines.
So if we follow these steps we will have the following results from our experimental
image.

Figure 2.31: Hough Line Detection from Given Image

It is to be mentioned that, there are some redundant lines detected in the Figure
2.31. This can be overcome by using the Probabilistic Hough Transform (PHT)
which has more efficient implementation of the HT algorithm [35]. If PHT is used,
following output of the given image is extracted -

Figure 2.32: Probabilistic Hough Line Detection

2.3 Fog Computing

Cisco came up with the term ”fog computing” to describe distributed cloud infras-
tructures in 2012. The aim was to support IoT scalability, or the ability to manage
a large number of IoT devices and large amounts of data for real-time low-latency

23

applications [36]. It connects terminal nodes and cloud servers to provide process-
ing, analysis, storage, and a variety of other services. Fog takes cloud services closer
to the data-generating nodes. Fog is a dense computational architecture at the net-
work’s edge that provides real-time analytics and enhanced security [37]. A fog node
is a device that is connected to a network and has computing power and storage
space. Switches, routers, servers, security cameras, and so on are all examples of fog
nodes.

2.3.1 Background Overview

A Fog environment is a three-tier architecture. The three individual tiers consist of
the IoT device tier, the Fog tier, and the cloud tier illustrated in Figure 2.33. The
IoT tier consists of different types of IoT devices, sensors, and actuators. The data
generated from the IoT devices through sensors are collected and sent to the fog tier
for further processing. In the fog tier, some data processing is executed in order to
reduce time and latency. The fog tier consists of several intermediate devices known
as fog nodes. These fog nodes are linked to the cloud data centers through cloud
gateways and resend the data to the cloud tier.

Figure 2.33: Three Tier Fog Architecture

The cloud tier is composed of different high-level servers and storage centers. The
storage centers provide high-end processing for the data collected from the IoT de-
vices. Thus the workload is divided into three tiers in order to reduce latency and
bandwidth. The core application of the fog layer is to collect data from edge nodes,
process the data to some extent, store some necessary data and overheads, route
the data to the cloud servers [38]. Traditional heterogeneous network architectures

24

are incapable of handling the massive amounts of data traffic and computational
demands posed by billions of IoT nodes [39]. As a result, fog computing is seen as
a promising architecture for meeting the service requirements of these IoT nodes.
Cloudlets or fog nodes are intermediary devices with plenty of storage, communica-
tion, and computing capabilities. Fog networking, also known as fog computing, is
a concept that uses these tools for the edge nodes to get the cloud closer to the IoT
devices in a decentralized manner.

2.3.2 Architecture of Fog Computing

In terms of layered architecture, fog computing has six layers. Physical and Vir-
tualization layer, Monitoring layer, Pre-processing layer, Temporary storage layer,
Security layer, and Transport layer are the six layers that make up the Fog archi-
tecture [40]. In Figure 2.34, The primary task of the physical and virtualization
layers is to collect data from the edge nodes. The Monitoring layer performs node
monitoring related to various tasks, where fog nodes are checked for power consump-
tion and current state. The pre-processing layer is responsible for data analysis and
redundant data removal. This layer compiles analysis of massive amounts of data
collected from end devices. The temporary storage layer is associated with data
distribution and replication in the short term.

Figure 2.34: Six Layer Fog Architecture

Once the data is uploaded in the cloud, data is removed from this layer. The
integrity, encryption, decryption and privacy is maintained in the Security layer.
This layer ensures the preservation and security of the data collected from the fog
nodes. Lastly, the transport layer securely uploads the final or partial data to the
cloud for permanent storage. Smart gateways are used to refine the data before
uploading to the cloud.

25

2.4 Optical Character Recognition

OCR is a modern day scanner tool which helps to recognize text from any surface
that contains any language in this world. From scanning documents to having your
signature validated by any commercial bank, everything nowadays is done with the
help of OCR. The extracted text from any image or video will be provided in digital
form [41]. This text recognition system used to be quite expensive a few decades
ago but now it is quite in reach to ordinary people. The advancement in the field
of deep learning and machine learning helped this recognition system to flourish.
However, building and deploying an OCR is not an easy task. Every language has
a different set of alphabets and writing styles and it can be handwritten or printed
text. Therefore, building an OCR is a challenging task.

Figure 2.35: Optical Character Recognition Process

Working mechanism of any OCR consists of two basic and necessary steps. First
one is ‘Text detection’. Here, text is being detected inside the image. Second one
is ‘Text recognition’ and in section text is being extracted and shown as the output
of this system. In the Figure 2.35 the steps are shown for text extraction using OCR.

26

Chapter 3

Literature Review

3.1 Previous Researches

Ghosh et al. [42] have explained the format of a Bangla text, and later they have
proposed an ALPR algorithm with three primary stages. The first stage was locat-
ing and extracting the license plate from an input image. The authors have utilized
Sobel filters which had several steps such as - detecting license plates and remov-
ing noise from the input image to extract the region. After that, the authors have
detected the vertical edge, located plate area, detected and corrected the skewed
license plate to get the perfect view. Finally, the stage has been concluded by ex-
tracting the actual license plate by eliminating the extra lines using the Bounding
Box analysis. The second stage was segmenting the characters without sacrificing
any of their characteristics. Each character was separated and segmented under line
segmentation, word segmentation, and character segmentation based on the collec-
tion of good character attributes during this process. The third stage was character
recognition. This phase has determined the precision of character segmentation and
identification work. A neural network has been used to classify each character. It
turned out to be a complicated process due to the license plate occupying a small
part of the whole photograph, the differences in license plate types, and environmen-
tal factors. Finally, the authors have stated that their results showed 84% accuracy
in license plate extraction and 80% accuracy in terms of character recognition.

Baten et al. [43] authors have suggested a method for reading license plates that
uses a function of the Bangla script known as ”Matra”. In the script, words have
been partitioned as independent connected components and identified using tem-
plate matching. Firstly, the authors have reduced noise and converted it to a binary
image from the input image. After that, they have extracted whole words and single
characters from that picture using the CCA method. Later, to detect the number
line (second line in the license plate), the authors have verified the orientation and
height. Moreover, they have compared detected components with previously ar-
ranged database templates to identify numbers. They also have classified numbers
by comparing detected components to previously organized database models by find-
ing the word “Metro”, reading the city name, category name from the components,
inserting hyphens where necessary. Finally, authors have claimed that, by using
Matra’s function in their proposed way, the algorithm’s complexity can be reduced.
Also, their proposed system has performed well for pictures captured under a variety

27

of conditions.

Haque et al. [44] have proposed a method with an algorithm known as the LSO
algorithm to localize Bangla license plates automatically and template matching for
recognizing. They have broken down the overall working procedure into four major
parts - pre-processing, localization, license plate processing, and finally, recognition.
Firstly, in the pre-processing part, the authors have modified the input photo by
resizing. Secondly, for the localization part, they have used the Sobel filter method
for detecting the edge. Along with that, they have also visualized the desired region
and extracted the number plate from the cropped image using image morphology
and connected component analysis. Thirdly, they have skewed and removed the
noises from the extracted license plate in the license plate processing part using
Otsu Method. Finally, in the recognition part, the LSO algorithm has been imple-
mented for segmentation, and template matching has been used for recognition and
extracted the output in text. Authors have claimed that their suggested model is
successful with an 84.87% of classification accuracy. Moreover, the proposed ap-
proach not only be helpful for license plate recognition but also will be useful in
other fields of Bangla optical character recognition.

Rahman et al. [45] have proposed a CNN-based method for the Bangla license plate
recognition system. Besides, authors have claimed that this method can provide
better accuracy and can be applied for various security purposes. They have used
a dataset of 1750 sample images. Their whole system has four parts. The first
part was data acquisition, where the infrared lighting system has been used for data
collection, allowing photographs to be computed at day or night. The next step was
pre-processing, where modification of the image detects the desired region from the
photo, segmenting individual characters. After that, in recognizing parts, CNN has
been used to identify the extracted partitioned characters by comparing and training
their dataset. Besides, their CNN had used one input layer, two convolution layers,
two sub-sampling layers, and a final layer for classification. The last part was the
post-processing phase, where the output was shown in the display device. Authors
have claimed that they have reached a research precision of 88.67% with the highest
amount of training data, which is the highest in this application. Also, they have
claimed that they have developed and published the first and most comprehensive
BLPRS database.

Dhar et al. [46] have explained about ITS, LPR system. They have proposed a
system design for the LPR application of Bangladeshi License Plates where edge
detection and CNN have been utilized. The first step of the method was to identify
the license plate from the input image by using several preprocessing tasks such as
- edge detection, dilation, and extracting the desired region. After that, the verifi-
cation phase has been done with the help of the DtBs vector technique- for getting
better angles, skewness. Later, Character Segmentation methods have been per-
formed to generate the components from the license plate. Lastly, the recognition
phase has been done with the help of CNN through automatic feature extraction.
The authors have concluded by showing their high success rate of 99.6%.

Oz et al. [47] have proposed a system that determines the license plates of vehicles

28

consisting of four steps. The first step of their proposed system was real-time image
acquisition. Secondly, the authors have identified the area of the license plate from
vehicles using an ANN. The third step was Extracting individual characters from li-
cense plates using image processing techniques. Lastly, each character in the license
plate has been identified using a feed-forward ANN, and then the characters have
been compiled. Later, the authors have tested their proposed system in real-time
environments and have claimed that the accuracy rate is 95%. Finally, they have
concluded by claiming that this system should be safe to use in real-time environ-
ments.

Li et al. [48] have proposed a vehicle recognition system based on IVIoT that can
be applied on urban roads and mobile sensing vehicles. Moreover, they have pro-
posed a method that is efficient to deal with the images taken under poor weather
conditions. This proposed system has several steps; firstly, the authors have recog-
nized the license plate and located it. Secondly, they have partitioned individual
characters from the license plate. After that, they have identified the characters
using the classifier of SVM that has two stages - feature extraction and training
and recognition. Finally, they concluded their process by identifying vehicle color
and type to get the Visual Vehicle Tags. According to their proposed system, the
positive tested result consists of an 85.80% accuracy rate under various conditions.
Besides, they have stated both advantages and disadvantages and the corresponding
solutions for their proposed system.

Pavlidis et al. [49] have suggested a method for finding out the number of vehicles
occupying the streets. They have focused on the fusion of near-infrared imaging sig-
nals and a fuzzy neural network classifier that can run on the merged near-infrared
images and have implemented occupant identification and tracking. There are three
facets of the issue that they have found. Firstly, the imaging aspect where the au-
thors have developed a mechanism for providing premium imaging signals to the
HOV system, with the imaging signal performance remaining high even in adverse
weather or at night. Secondly, to detect car occupants in near-infrared imaging,
they have developed and manufactured a fuzzy neural classifier. And lastly, fol-
lowing the previous two study methods, they have developed and implemented a
prototype HOV counting system. They have concluded by mentioning the issue
of not providing accurate face detectors for outdoor conditions, which the authors
claim can be solved using their dual-band system.

Wen et al. [50] have suggested a license plate recognition algorithm based on a
shadow removal approach and the SVM, a character recognition algorithm. Their
proposed system had three steps: The first step was extracting the location and po-
sition of the license plate from the image. The second step was extracting individual
characters from the license plate. The final step was recognizing the characters using
SVM. They have claimed about the overall success rate of the results, which was
93.54%. In the end, they have concluded by saying the restrictions of their proposed
system.

Lin et al. [51] have proposed an LPR system that uses CNN, YOLOv2, and SVM.
Their proposed system consists of four steps. Firstly, they have identified the vehicle

29

from an input image. Then, they have generated the license plate from the identified
vehicle. Moreover, they have segmented individual characters from the license plate
by removing extra areas and filtering out the noises. Finally, they have identified
the characters by using CNN. They have concluded that using CNN, YOLOv2, and
SVM techniques could obtain 99.2% character recognition precision, demonstrating
the superiority of their proposed approach in terms of accuracy and efficiency over
the standard system.

Islam et al. [52] have proposed a method using five consecutive steps. Firstly, they
have detected license plates by using an algorithm in terms of Region of Interest
(ROI) from the input image. They have used a morphological approach in their
proposed method. Secondly, they have extracted the ROI. Here, they have seg-
mented the characters and digits by using horizontal and vertical projections. The
ROI has been extracted from the license plate image using different geometric prop-
erties such as - area, bounding box, and aspect ratio. Thirdly, in terms of character
localization, they have used edge extraction-based methods such as the connected
component-based approach and bounding box technology that are applied to it to
detect Bangla texts. The next step was the extraction of characters, where they
have used vertical edge detection and filtering methods. Previously used connected
component-based approach and bounding box technology can also detect non-text
objects along with text objects. So, to filter out these non-text objects, they have
changed the filtering parameters for different types of license plates. The extracted
characters were resized to 30×30 pixels and labeled as their types, and stored in
different folders named as training and test sets for training and testing the data
set. The HOG process is used to extract features from each of the images. The final
step was the recognition of those extracted characters. Here, the authors have used
an SVM classifier where extracted Histogram of Oriented Gradient (HOG) features
have been used as input for matching. Then they have produced a confusion matrix
to get the accuracy.

Nazmus et al. [53] have proposed a system to recognize the license plates of the vehi-
cles occupying urban areas. Firstly, they have constructed a training section where
the system is trained with their own dataset for Bangla LRP. Their process has been
done in three stages. The three chronological stages are - data acquisition (captur-
ing images), data post-processing (cropping the license plate from ROI), individual
character cropping (slicing the characters from the license plate). After successfully
training the system, their testing samples have been used to assess the testing out-
put using CNN, which consists of an input layer, several alternating convolutions,
and max-pooling layers, as well as one fully connected and classification layer. The
CNN that was introduced has six layers, one of which is completely connected, and
only six and twelve feature maps in two convolution layers, respectively.

Abedin et al. [54] have proposed a Python OpenCV-based framework for an intel-
ligent vehicle management system for the Bangla language. This proposed system
has three steps - First, identifying license plate to recognize the plate region and
crop region of interest (LP) from the input image by implementing several functions
like filtering the image, converting it to binary, detecting and sorting the outlines
to obtain the license plate’s character outlines, tilt adjustment, and extracting the

30

region of interest from the input image. Secondly, The characters from the license
plate have been extracted from the cropped filtered license plate area by the segmen-
tation process. Finally, the character components have been designed and trained
by the convolution layers in the recognition step, identifying the characters using
DCNN. The authors have claimed about their algorithm that they have achieved
good results in poor condition images too, and the performance rates for labeling
the license plate, features extraction, and recognition have been 93%, 98%, and 98%,
respectively. Also, The execution time is very satisfactory - 0.11 seconds, which is
essential for real-time implementation.

Kim et al. [55] have proposed a network layered system that uses Deep Convo-
lutional Neural Network which simultaneously performs the following two stages -
first, a layer for determining whether or not a license plate exists in the input image
and second, a layer for identifying license plate data where the training mechanism
is based on Multi-Task Learning (MTL) method. Later, the authors have stated
that as it gives a better result, the convolutional layer has been put at the bot-
tom of the DCNN. There are three levels of the network. The first level determines
whether or not the license plate exists. The classification of digits is the second level,
and character classification is the third level. Finally, through experimentation with
authentic images, the authors have concluded that the proposed system recognizes
digits and characters more reliably than the DCNN using a traditional layer.

Rastegar et al. [56] have suggested an intelligent vehicle control framework based on
a fast and accurate license plate detection and recognition method. The proposed
system has several steps - Firstly, getting the captured colorful image. The next
step is primary filtering with the introduced satisfactory functional threshold. After
that, the authors have implemented candidate selection using morphological oper-
ators. Following that, the authors also have localized the license plate along with
adjusting the angle and removed shadow, and extracted the license plate. Authors
have completed the binarization process using the Otsu technique, then partitioning
and extracting characters from LP. They have proposed an OCR engine for dilat-
ing the extracted essences, also, resized characters from the input vectors of ANN.
Lastly, Multilayer Perceptron (MLP) has been used to classify the characters. Fi-
nally, they have concluded by saying that the proposed method performs better even
for poor-quality images.

Silva et al. [57] have proposed an ALPR system that uses the SIFT algorithm to
recognize the license plate from the input image. The author has talked about the
steps of the proposed method as follows. The First step is identifying the license
plates from the input image by using the Scale Invariant Feature Transform (SIFT)
algorithm that consists of Scale-space extrema detection, Local extrema detection,
Orientation assignment, and Keypoint description processes. Then, it recognizes
the characters with two stages: character segmentation and recognition by using a
traditional neural network. Finally, the authors have concluded by conducting two
experiments with the suggested method, with the first yielding 414 successes out of
420 characters and the second yielding 370 successes out of 420 characters. They
have claimed that their algorithm has an average time of 6.79 seconds for license
plate recognition, and execution results obtained from their approach gave 88.33%

31

success rates.

3.2 Our Improvements

That being said, while all of the papers have been very useful they provide us
with different approaches to LPR. Unfortunately their work is not linked to any
automated traffic management and penalizing scheme. Since we are not stopping at
LPR, our research differs from theirs. We have implemented YOLOv5 in the existing
research field which has not been done before. Moreover, we are creating our own
datasets for training our YOLOv5 model. Besides, We’re identifying the convicted
driver who is licensed under that license plate and breaking the law. Furthermore,
with the help of our system the monitoring authority will be able to automatically
penalize and control traffic laws.

32

Chapter 4

Proposed System with
Architecture

We have proposed applying three tier architecture for developing the system. The
first tier is the IoT layer. Here, we have used Raspberry Pi as an edge device. A 12
megapixel camera acting as a CCTV camera will be connected with the edge device
to capture the traffic lane rule violation. From the video feed of the traffic, The
edge device will capture the image of the traffic rule violation and send the data to
the overlying tier. The overlying tier i.e, the fog tier will work out the necessary
computation for extracting the license plate and character recognition. The text
extracted from the license plate will be sent to the BRTA cloud server for penalizing
the culprit. A basic architecture of our proposed system is illustrated below -

Figure 4.1: Architecture of Proposed System

4.1 Working Procedure

First, we have developed a workflow for our proposed to system to regulate and
maintain the work process. According to the Figure 4.2, the first task of our proposed
system is detecting traffic lane rule violation.
In order to do that, we have implemented HT to detect the traffic lanes. The
main advantage of HT algorithm is the pixels placed on one line does not have to be
adjacent to the other pixels of the line. Therefore, it is very beneficial for identifying
lines with short breaks in spite of having noise in the image. As previously discussed,
to detect the line from an image we need to detect the edges from the image. In

33

Figure 4.2: Work plan for Proposed System

our case, we have detected the edges of the traffic lanes. Figure 4.3 shows the traffic
lanes which will be detected using HT algorithm. For testing the traffic lane rule
violation, we have provided a test image as shown in Figure 4.4.

Figure 4.3: Traffic Lane

We have used Canny Edge detection for extracting the edges of the traffic lanes.
We chose this algorithm for edge detection as it has low error rate in terms of edge
detection. Moreover, this algorithm gives accurate localization of edge center for a
detected edge points. Therefore, Canny Edge detector is suitable for detecting the
traffic edge. Besides, we have also grayscaled our test image as HT algorithm works
best on binary image. The grayscaled version and edged version of our test image
illustrated in Figure 4.5 and 4.6 respectively.

34

Figure 4.4: Test Image of Rule Violation

Figure 4.5: Grayscaled Version of Test Image

After detecting the edges of the traffic lanes, we can trace the edges and map them
into Hough space. They will return couple of cosine curves. The HT algorithm will
find the edge pairs with larger number of intersection and combine them to detect
lines. In Figure 4.6, we have traced the edge pairs of the yellow line for detecting
the traffic lane. Here in the edged image, we are considering 0 as black threshold
value for any kind of object and 1 as white threshold value for detecting edge points
of the yellow traffic lane.

35

Figure 4.6: Edged Version of Test Image

If any object such as vehicle crosses the yellow traffic lane, there will be disruption
in reading the traffic lane by the HT algorithm. In that moment, our modified
algorithm in the HT process will capture the image and send it to the Network
Attached Storage (NAS) server to store the image. We can see in Figure 4.6 that,
as the motocycle was crossing the lane, there was disruption in tracking the edges
of the traffic lane. At that moment, the original image which was shown in Figure
4.4 has been sent to NAS server. The output of line detection process from the HT
algorithm is shown in Figure 4.7.

Figure 4.7: Line Detection of Test Image

The whole HT algorithm process has been fulfilled using python OpenCV platform.
Moreover, python and pip3 were updated for package management system to install
and manage software packages written in python version 3. Futhermore, Some extra
dependencies for OpenCV and camera have been installed also in our raspberry pi
4. Here algorithm 1 as shown in Figure 4.8 has been followed to detect the traffic
lanes and send images to the server.

36

Figure 4.8: HT Line detection Algorithm

After sending the image file to NAS server, the main process starts. NAS server
acts as an file level storage service for our edge device. NAS is one of the three
main storage service. NAS server acts as an intermediate layer between edge de-
vice and BRTA server. In our proposed system, BRTA acts as a cloud tier service
as it contains all the necessary information related to vehicles’ license plates such
as - owner name, address, registration date etc. The NAS server will provide the
necessary computational processing for extracting the license plate from the im-
age. Here we have implemented YOLOv5 to extract the license plate. YOLO is
the most renowned algorithm among all other learning models for object detection.
The YOLOv5 model process images in real-time at 140 frames per second. In our
case, we will be using license plate as an object in order to extract the license plate.
The NAS server will compute the license plate extraction using YOLOv5s version
of YOLOv5 as it is the smallest and fastest version among other four variations.
Besides, we are extracting only one object from the image which is license plate.
Therefore, we are using the smallest version of YOLOv5.

After successful extraction of the license plate, we have implemented the newly de-
veloped ”Bangla” OCR to extract the text from the license plate. Here, we are not
using the default pytesseract OCR - ”bengali” as it is not fully compatible with
our Bangla characters such as several juktakkhor etc. Besides the default OCR
have been developed using Indian Bengali characters. Therefore, we have used the
”Bangla” OCR which has been developed using Bangladeshi Bangla characters.

37

Finally , the extracted text from the license plate using OCR will be forward to
BRTA server to match the text with BRTA license plate server. Thus, the necessary
information about the rule violator will be extracted and penalyzed for rule violation.

4.2 Published Works

We have been fortunate to publish some of our previous research works regarding
the issue - an Conference and a Journal. A small overview of our conference paper
and journal paper is described below -

IEEE Conference

In the International Conference on Advances in The Emerging Computing Tech-
nologies hosted by IEEE we published our first work [58] regarding traffic mishaps.
The idea of the paper was to complete all the necessary computation in the remote
device which was Raspberry pi model 3B+ in our case. The road lane detection
was still done with the help of HT. However, the plate detection and extraction was
done with the help of Computer Vision. The whole process was based on English
License Plates. So, KNN classification was used to extract the characters from the
plates and contour detection technology was used to cut-out license plates from the
scene. The accuracy of the proposed model was 78.83% which was good for starters.
Accuracy percentage was poor because KNN detected the logo of a brand as a plate
However, by doing all the computation on a single SoC it made the process slower
and poorer. It took on an average of 10-12 seconds to complete the whole process
for one scene.

Figure 4.9: Time Consumption for Plate Recognition

AETiC Journal

A research article on the Annals of Emerging Technologies in Computing (AETiC)
was published [59] and that was the continuation from the conference paper. After
the new version release of the raspberry pi we shifted our whole system to pi 4

38

from previous model 3B. In this paper we did achieve the accuracy of 80% as the
integrated CPU performance of pi-4 was better than 3B. Average time consumption
decreased drastically while using pi-4 which dropped to less than 10 seconds for each
successful process. However, there were few more advancements, like we proposed a
central server to process and save final extracted data.

Figure 4.10: Time Comparison for Plate Recognition

However, above discussed materials have been already published, this thesis is an
extensive research work in order to overcome the previous limitations for license
plate detection.

39

Chapter 5

Primary Dataset Formation &
Implementation

5.1 Data Collection

Our proposed system has been trained properly In order to accurately detect and
comprehend the data from license plates. Unfortunately, there is no publicly avail-
able data set of Bengali license plates. As a result, we had to make a dataset on
our own for our research. We have ridden through the city with a motorcycle while
taking pictures of license plates for our dataset. We had taken almost 1450 pictures
of license plates from both private and commercial vehicles. The pictures were taken
from different angles with a view to properly train our system. As we had taken the
pictures from other moving vehicles many pictures were unusable. As a result, we
had to ride through the city for several days to collect the pictures of license plates.
Later, we processed the collected images accordingly for our proposed system. Fi-
nally, we were able to assemble almost 1450 pictures of license plates taken from
different angles for our research. Here is a sample preview of our collected dataset -

Figure 5.1: Collection of Data

40

5.2 Data Preprocessing & Augmentation

In order to train our model, the dataset needs to be preprocessed and augmented.
Firstly, we annotated our dataset by applying bounding boxes. As we have proposed
of using YOLOv5 model, we annotated every image with a bounding box of the
object. Our class of object is license plate. Therefore, we have drawn the bounding
boxes around each license plate of the images in the dataset. We have used Virtual
Object Tracking Tool (VoTT) for the annotation. Figure 5.2 shows the sample
preview of our annotation.

Figure 5.2: Data Annotation using VoTT

After that, we have preprocessed our images. In this stage, we grayscaled our images
and applied Gaussian Blur filter in the images. Grayscaling and Blurring an image
helps to eliminate the unnecessary and redundant informations from the image. A
sample preview of our grayscaled image is given below -

Figure 5.3: Data Preprocessing - Grayscaling

We have also rescaled our images. In this case, we have stretched the images to 416
X 416 size. Resizing an image helps the model to learn faster about the object in
the bounding box. A sample of the resized image is shown in Figure 5.4. We have
also rotated some of our images so that the model can have variation in the learning
phase.

41

Figure 5.4: Data Preprocessing - Resizing

Finally, in the augmentation stage, we have applied 30% zoom to the images so
that any distant image can be zoomed by the model to learn about the license
plate. We have also incremented the quantity of images in the dataset through data
augmentation. A sample of zoomed images is shown in Figure 5.5.

Figure 5.5: Data Augmentation - Zoom

5.3 Data Training

For training, we have installed all the dependencies for the YOLOv5 model. We
have using PyTorch in this case and created the dataset format according to the
Pytorch. We have also used the GPU model - Tesla T4 for training purposes. We
have chosen YOLOv5s model as it is the fastest and smallest base model. In our
training command, we have provided these following options -

img was the input image size which is 416 X 416 format. We have used batch size
of 32. batch is the number of training model used in each iteration. Sample batch
images from our training model is given below -
Then we have used epoch level of 100. epoch refers to the number of complete
passes of the training dataset. our 100 epochs have been completed in 0.36 hours.
Then, data is the path to our yaml formatted dataset and cfg is the model con-
figuration. We have provided our custom YOLOv5s model configuration where the

42

Figure 5.6: Data Train Batch Sample

nc is the number of classes. As we have only one class which is license plate, we
have used nc=1. Our training of the whole model for license plate recognition took
approximately 22 mins.

43

Chapter 6

Performance Evaluation

In this chapter, we have discussed about the evaluation of the trained model’s per-
formance. In order to evaluate our trained model, we have set four main parameters
- mAP, confusion matrix, precision and recall. We have also discussed about the
side by side comparison of the four variations of the YOLOv5 model.

6.1 mAP

Firstly, we have used mean average precision (mAP) parameter for the evaluation
of the trained model. The mAP differentiates between the ground truth bounding
box and detected bounding box and then returns a value. The higher the value, the
more accurate the model is.

Figure 6.1: mAP Accuracy of YOLOv5s Model @0.5

In our case, we have achieved an accuracy of 91% in mAP@0.5 threshold. This
means that, our model has been successful with the accuracy of 91% in detect-
ing the bounding box around the license plate. The illustration of the accuracy of
mAP@0.5 is given in Figure 6.1.

We have also achieved an accuracy of 55% in mAP@0.5:0.95 threshold. The accuracy
has been illustrated in Figure 6.2.

44

Figure 6.2: mAP Accuracy of YOLOv5s Model @0.5:0.95

6.2 Confusion Matrix

Secondly, we have evaluated our model using confusion matrix for binary classifica-
tion. In this parameter, we have defined two classes for the ground truth bounding
box and the predicted bounding box - positive and negative. In the confusion ma-
trix, there are four metrics - True Positive (Tp), True Negative (Tn), False Positive
(Fp) and False Negative (Fn).

Figure 6.3: Metric of Confusion Matrix

First is True Positive, which represents the correct classification of a positive license
plate. Second is True Negative, which refers to the correct classification of a negative
license plate. This means that the model correctly predicted no license plate in the
input image. Third is False Positive, which represents the incorrectly classified of
the negative license plate. This means that the model has detected a license plate
but the image does not contain any license plate. Last one is False Negative, that
refers to the incorrectly classified of the positive license plate. This means that the
model did not detect any license plate while the image contained a license plate.

45

Finally, in our confusion matrix illustrated in Figure 6.4, we have gained True Pos-
itive = 0.91, True Negative = 0, False Positive = 0.09 and False Negative = 1.0.

Figure 6.4: Confusion Matrix of YOLOv5s Model

6.3 Precision

Precision is defined as the ratio of the number of True Positive (Tp) and the total
number of True Positive (Tp) and False Positive (Fp). We have used the precision
parameter to find out the reliability of our model in terms of detecting license plate.
the equation of precision is -

Precision =
Tp

(Tp + Fp)
(6.1)

In Figure 6.5, we can see that our model has obtained 98% precision and reliability
in terms of the license plate detection.

6.4 Recall

We have also used recall parameter. Recall is measured in order to detect the ability
of the model in detecting any positive object. The parameter is calculated using
equation 6.2 -

Recall =
Tp

(Tp + Fn)
(6.2)

In our license plate detection process, our model has achieved 89% ability to detect
positive license plates in input images. The recall parameter for our case is illustrated
in Figure 6.6.

46

Figure 6.5: Precision of YOLOv5s Model

Figure 6.6: Recall of YOLOv5s Model

6.5 Overall Comparison

Moreover, we have compared our trained YOLOv5s model with the other variations
of YOLOv5 model. There are mainly four variations of YOLOv5 model - YOLOv5s,
YOLOv5m, YOLOv5l, YOLOv5x.
Figure 6.7 illustrates the comparison of four variation of YOLOv5 models. From the
Figure 6.7, we can clearly say that, YOLOv5s is the fastest model in terms of license
plate detection with obtaining an accuracy of 91%. We have used all the previous
parameters - mAP, precision and recall for this comparison. We have also calculated
the time required for the training of each variation of the YOLOv5 model. In our
training YOLOv5s model took 21mins 55s. The other three variations - YOLOv5m,
YOLOv5l, YOLOv5x took 12mins 19s, 20mins 39s and 37 mins 12s respectively. We
have also calculated the time for testing our trained model. In testing, our trained
YOLOv5s model provided real-time license plate detection of 0.36s. Though the
model was the smallest variation among the four and took longer time for training,
it was able to deliver real-time license plate detection. The other three variants -

47

Figure 6.7: Comparison of Four Variation of YOLOv5 Model

YOLOv5m, YOLOv5l, YOLOv5x took 0.42s, 0.51s and 0.61s respectively. A side
by side comparison of time consumption in testing the models is given in Figure 6.8.
Table 6.1 describe the side by side comparison of time consumption for each variation
of the YOLOv5 model in terms of training and testing.

YOLOv5 Model Training Time Testing Time
YOLOv5s 21mins 55s 0.358s
YOLOv5m 12mins 19s 0.421s
YOLOv5l 20mins 39s 0.510s
YOLOv5x 37mins 12s 0.609s

Table 6.1: Training and Testing Time Comparison of YOLOv5 Model

Moreover, we have compared our trained model with the existing works on Bangla
License Plate Detection [42–45, 60]. We have provided a side by side comparison of
our trained with the existing works in terms of dataset size, license plate recognition,
character recognition and time consumption in Table 6.2.

48

Figure 6.8: Time Comparison of Four Variation of YOLOv5 Model

Paper Cita-
tion

Dataset
Size

LP Recog-
nition

Character
Recognition

Test Time

Ghosh et al
[42]

Test:300 80% 84% Not Provided

R.A. Baten et
al[43]

Not Provided Not Provided Not Provided 1.3s

M.R. Haque
et al[44]

Test:119 84.9% 95.8% Not Provided

M.Rahman et
al[45]

Train:1650
Test:350

Not Provided 88.7% Not Provided

M.M.A.
Joarder et
al[60]

Not Provided 84.2% 92.1% 1.2s

Our
YOLOv5s
Model

Train:1200
Test:250

91% 97% 0.35s

Table 6.2: Comparative studys of YOLOv5 and Reviewed Literature

From the comparative analysis of Table 6.2, we can say that, our model has outper-
formed the other existing works on the Bangla License Plate Detection and Char-
acter Recognition.

Finally, we have implemented pytesseract OCR for the character recognition of
the detected license plate. Initially, we have used the default built-in OCR for
Bangla text extraction. As the default Bangla OCR is developed using the ”Indian
Bengali” characters, it sometimes has given negative results. Moreover, it was not
able to detect ”Bangla Juktakkhor” such as - Metro, Chotro etc. Therefore, we have
used newly developed ”Bangla” OCR which is fully developed using Bangladeshi
alphabets. Using the ”Bangla” OCR, we have achieved an accuracy of 97% for
character recognition. In Figure 6.9, a sample result has been shown using ”Bangla”

49

OCR.

Figure 6.9: Text Extraction using Bangla OCR

50

Chapter 7

Conclusion

In this chapter we will conclude the paper by discussing the limitations of our work
and the possible outcomes of our extensive research. At long last, we will also discuss
the possible development sectors of our work.

7.1 Conclusion

Throughout our research we have tried to solve a problem with the help of tech-
nology and yes, we did achieve some good results. We have selected this sector as
our preferred research field as this is not a volatile topic and needed some serious
attention. In this thesis, We have contributed in the field of traffic management
systems to detect lane rule violations properly. We have successfully implemented
YOLOv5 to detect license plates from scenes which is the current most advanced
object detection method. The implementation of intermediary computing devices
makes our system more efficient and obtains an accuracy of 91% in terms of license
plate detection. Moreover, the use of trained pytesseract Bangla OCR helped us
to successfully extract the characters from the Bangladeshi license plates. Further-
more, we have also created a primary dataset of Bangladeshi license plates, which
play an important role in the research community as there are no free and enriched
datasets available.

7.2 Limitations

Like every other research work, we also faced many challenges and we overcame
many of that. This whole thesis was done under the pandemic situation without
any sort of access to the university research lab. The situations were unreal and
two of our team members were tested positive for covid-19 also. On the other hand,
during the implementation period, we faced the absence of a proper Bangla license
plate dataset. We overcame this by creating our very own primary dataset from the
streets. Taking pictures in Dhaka road conditions is not everyone’s piece of cake
but we did it somehow and created one. Moreover, YOLO is definitely a fast model
to detect objects but, for being a single network it misses some small objects in the
images. If the objects are really small, the bounding boxes become even smaller
resulting in no object detection.

51

7.3 Future Works

We have done our level best in this research work but still, there are some scope
for improvements. The one we definitely want to develop is an OCR specially to
detect Bangladeshi characters from any surface. The accuracy of our model may
increase if there is any newer version of YOLO which can be the new state-of-the-
art. Lastly, we want to enrich our dataset by importing more photos into it. Till
now, we have included the license plates of Dhaka city only. In the near future,
we aim to collect plates from other mega cities like Chittagong, Rajshahi etc. As
per the feedback received during our defense, we should consider motion parallax
for detecting moving objects as fast moving vehicles can get away from camera
viewing frame. Our model should have filtering process for emergency vehicles like
Ambulances, Police Cars and Fire Trucks etc.

52

Bibliography

[1] “NCPSRR: 1,212 killed in road accidents in three months”. In: Dhaka Tribune
Bangladesh Nation (2019). url: https://www.dhakatribune.com/bangladesh/
nation/2019/04/02/ncpsrr-1-212-killed-in-road-accidents-in-three-months.

[2] T. S. Adhikary. “Road crashes on rise despite govt measures”. In: The Daily
Star (2019). url: https : / / www . thedailystar . net / frontpage / news / road -
crashes-rise-despite-govt-measures-1717696.

[3] “Road Accidents: ‘1,552 killed, 3,039 hurt in four months”. In: The Daily Star
(2019). url: https://www.thedailystar.net/frontpage/news/road-accidents-
1552-killed-3039-hurt-four-months-1742266.

[4] Taru Jain. “Basics of Image Classification Techniques in Machine Learning”.
In: Opengenus.org (2019). url: https://iq.opengenus.org/basics-of-machine-
learning-image-classification-techniques/.

[5] I. Kanellopoulos and G. G. Wilkinson. “Strategies and best practice for neu-
ral network image classification”. In: International Journal of Remote Sens-
ing 18.4 (1997), pp. 711–725. doi: 10.1080/014311697218719. eprint: https:
/ / doi . org / 10 . 1080 / 014311697218719. url: https : / / doi . org / 10 . 1080 /
014311697218719.

[6] Avinash Navlani. “KNN Classification using Scikit-learn”. In: Datacamp (2018).
url: https://www.datacamp.com/community/tutorials/k-nearest-neighbor-
classification-scikit-learn.

[7] Theodoros Evgeniou and Massimiliano Pontil. “Support Vector Machines:
Theory and Applications”. In: vol. 2049. Jan. 2001, pp. 249–257. doi: 10 .
1007/3-540-44673-7 12.

[8] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of
a convolutional neural network”. In: 2017 International Conference on Engi-
neering and Technology (ICET). 2017, pp. 1–6. doi: 10.1109/ICEngTechnol.
2017.8308186.

[9] Yanming Guo et al. “A review of semantic segmentation using deep neural
networks”. In: International Journal of Multimedia Information Retrieval 7
(June 2018). doi: 10.1007/s13735-017-0141-z.

[10] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. “Region-Based Semantic
Segmentation with End-to-End Training”. In: Computer Vision – ECCV 2016.
Ed. by Bastian Leibe et al. Cham: Springer International Publishing, 2016,
pp. 381–397. isbn: 978-3-319-46448-0.

53

https://www.dhakatribune.com/bangladesh/nation/2019/04/02/ncpsrr-1-212-killed-in-road-accidents-in-three-months
https://www.dhakatribune.com/bangladesh/nation/2019/04/02/ncpsrr-1-212-killed-in-road-accidents-in-three-months
https://www.thedailystar.net/frontpage/news/road-crashes-rise-despite-govt-measures-1717696
https://www.thedailystar.net/frontpage/news/road-crashes-rise-despite-govt-measures-1717696
https://www.thedailystar.net/frontpage/news/road-accidents-1552-killed-3039-hurt-four-months-1742266
https://www.thedailystar.net/frontpage/news/road-accidents-1552-killed-3039-hurt-four-months-1742266
https://iq.opengenus.org/basics-of-machine-learning-image-classification-techniques/
https://iq.opengenus.org/basics-of-machine-learning-image-classification-techniques/
https://doi.org/10.1080/014311697218719
https://doi.org/10.1080/014311697218719
https://doi.org/10.1080/014311697218719
https://doi.org/10.1080/014311697218719
https://doi.org/10.1080/014311697218719
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn
https://doi.org/10.1007/3-540-44673-7_12
https://doi.org/10.1007/3-540-44673-7_12
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1007/s13735-017-0141-z

[11] Liang-Chieh Chen et al. “DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 40.4 (2018),
pp. 834–848. doi: 10.1109/TPAMI.2017.2699184.

[12] Jifeng Dai, Kaiming He, and Jian Sun. “BoxSup: Exploiting Bounding Boxes
to Supervise Convolutional Networks for Semantic Segmentation”. In: CoRR
abs/1503.01640 (2015). arXiv: 1503.01640. url: http://arxiv.org/abs/1503.
01640.

[13] George Papandreou et al. “Weakly-and Semi-Supervised Learning of a Deep
Convolutional Network for Semantic Image Segmentation”. In: 2015 IEEE
International Conference on Computer Vision (ICCV). 2015, pp. 1742–1750.
doi: 10.1109/ICCV.2015.203.

[14] Shanto Rahman et al. “An adaptive gamma correction for image enhance-
ment”. In: EURASIP Journal on Image and Video Processing 35 (Oct. 2016).
doi: 10.1186/s13640-016-0138-1.

[15] Marcelo Bertalmı́o. “Chapter 5 - Brightness perception and encoding curves”.
In: Vision Models for High Dynamic Range and Wide Colour Gamut Imaging.
Ed. by Marcelo Bertalmı́o. Computer Vision and Pattern Recognition. Aca-
demic Press, 2020, pp. 95–129. isbn: 978-0-12-813894-6. doi: https://doi.org/
10.1016/B978-0-12-813894-6.00010-7. url: https://www.sciencedirect.com/
science/article/pii/B9780128138946000107.

[16] John Canny. “A Computational Approach to Edge Detection”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986),
pp. 679–698. doi: 10.1109/TPAMI.1986.4767851.

[17] Ehsan Akbari Sekehravani, Eduard Babulak, and Mehdi Masoodi. “Imple-
menting canny edge detection algorithm for noisy image”. In: Bulletin of
Electrical Engineering and Informatics 9 (Aug. 2020), pp. 1404–1410. doi:
10.11591/eei.v9i4.1837.

[18] Pyushi Singhal, Akhilesh Verma, and Akash Garg. “A study in finding ef-
fectiveness of Gaussian blur filter over bilateral filter in natural scenes for
graph based image segmentation”. In: 2017 4th International Conference on
Advanced Computing and Communication Systems (ICACCS). 2017, pp. 1–6.
doi: 10.1109/ICACCS.2017.8014612.

[19] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: CoRR abs/1506.01497 (2015). arXiv:
1506.01497. url: http://arxiv.org/abs/1506.01497.

[20] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: Computer Vision –
ECCV 2016. Ed. by Bastian Leibe et al. Cham: Springer International Pub-
lishing, 2016, pp. 21–37. isbn: 978-3-319-46448-0.

[21] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detec-
tion”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.

[22] Jedrzej Świeżewski. “YOLO Algorithm and YOLO Object Detection: An In-
troduction”. In: Applison (2020). url: https://appsilon.com/object-detection-
yolo-algorithm/.

54

https://doi.org/10.1109/TPAMI.2017.2699184
https://arxiv.org/abs/1503.01640
http://arxiv.org/abs/1503.01640
http://arxiv.org/abs/1503.01640
https://doi.org/10.1109/ICCV.2015.203
https://doi.org/10.1186/s13640-016-0138-1
https://doi.org/https://doi.org/10.1016/B978-0-12-813894-6.00010-7
https://doi.org/https://doi.org/10.1016/B978-0-12-813894-6.00010-7
https://www.sciencedirect.com/science/article/pii/B9780128138946000107
https://www.sciencedirect.com/science/article/pii/B9780128138946000107
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.11591/eei.v9i4.1837
https://doi.org/10.1109/ICACCS.2017.8014612
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1109/CVPR.2016.91
https://appsilon.com/object-detection-yolo-algorithm/
https://appsilon.com/object-detection-yolo-algorithm/

[23] Rachna Verma. “A Review of Object Detection and Tracking Methods”. In:
International Journal of Advance Engineering and Research Development 4
(Oct. 2017), pp. 569–578.

[24] Mukesh Tiwari and Rakesh Singhai. “A Review of Detection and Tracking of
Object from Image and Video Sequences”. In: Int. J. Comput. Intell. Res 13.5
(2017), pp. 745–765.

[25] Zahra Soleimanitaleb, Mohammad Ali Keyvanrad, and Ali Jafari. “Object
Tracking Methods:A Review”. In: 2019 9th International Conference on Com-
puter and Knowledge Engineering (ICCKE). 2019, pp. 282–288. doi: 10.1109/
ICCKE48569.2019.8964761.

[26] Muzammil Abdulrahman et al. “Gabor wavelet transform based facial expres-
sion recognition using PCA and LBP”. In: 2014 22nd Signal Processing and
Communications Applications Conference (SIU). 2014, pp. 2265–2268. doi:
10.1109/SIU.2014.6830717.

[27] Qiang Wang et al. “Fast online object tracking and segmentation: A unifying
approach”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019, pp. 1328–1338.

[28] Meihui Li et al. “A Bottom-Up and Top-Down Integration Framework for
Online Object Tracking”. In: IEEE Transactions on Multimedia 23 (2020),
pp. 105–119.

[29] Chad Aeschliman, Johnny Park, and Avinash C Kak. “A Probabilistic Frame-
work for Joint Segmentation and Tracking”. In: 2010 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition. IEEE. 2010,
pp. 1371–1378.

[30] Qiang Li et al. “Kalman Filter and Its Application”. In: 2015 8th International
Conference on Intelligent Networks and Intelligent Systems (ICINIS). 2015,
pp. 74–77. doi: 10.1109/ICINIS.2015.35.

[31] Georges Oppenheim, Anne Philippe, and Jean Rigal. “The Particle Filters
and their Applications”. In: Chemometrics and Intelligent Laboratory Systems
(Mar. 2008), pp. 87–93. doi: 10.1016/j.chemolab.2007.09.010.

[32] Erika M. Ramos-Michel and Vitaly Kober. “Correlation Filters for Detection
and Localization of Objects in Degraded Images”. In: Progress in Pattern
Recognition, Image Analysis and Applications. Ed. by José Francisco Mart́ınez-
Trinidad, Jesús Ariel Carrasco Ochoa, and Josef Kittler. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 455–463. isbn: 978-3-540-46557-7.

[33] Virginio Cantoni and Elio Mattia. “Hough Transform”. In: Encyclopedia of
Systems Biology. Ed. by Werner Dubitzky et al. New York, NY: Springer New
York, 2013, pp. 917–918. isbn: 978-1-4419-9863-7. doi: 10.1007/978-1-4419-
9863-7 1310. url: https://doi.org/10.1007/978-1-4419-9863-7 1310.

[34] Priyanka Mukhopadhyay and Bidyut B Chaudhuri. “A survey of Hough Trans-
form”. In: Pattern Recognition 48.3 (2015), pp. 993–1010.

[35] Jiri Matas, Charles Galambos, and Josef Kittler. “Robust Detection of Lines
using the Progressive Probabilistic Hough Transform”. In: Computer vision
and image understanding 78.1 (2000), pp. 119–137.

55

https://doi.org/10.1109/ICCKE48569.2019.8964761
https://doi.org/10.1109/ICCKE48569.2019.8964761
https://doi.org/10.1109/SIU.2014.6830717
https://doi.org/10.1109/ICINIS.2015.35
https://doi.org/10.1016/j.chemolab.2007.09.010
https://doi.org/10.1007/978-1-4419-9863-7_1310
https://doi.org/10.1007/978-1-4419-9863-7_1310
https://doi.org/10.1007/978-1-4419-9863-7_1310

[36] Ketanpreet Kaur and Monika Sachdeva. “Fog computing in IOT: An Overview
of New Opportunities”. In: Proceedings of ICETIT 2019 (2020), pp. 59–68.

[37] Flavio Bonomi et al. “Fog Computing and Its Role in the Internet of Things”.
In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing. MCC ’12. Helsinki, Finland: Association for Computing Machin-
ery, 2012, 13–16. isbn: 9781450315197. doi: 10.1145/2342509.2342513. url:
https://doi.org/10.1145/2342509.2342513.

[38] Mostafa Ghobaei-Arani, Alireza Souri, and Ali Rahmanian. “Resource Man-
agement Approaches in Fog Computing: a Comprehensive Review”. In: Jour-
nal of Grid Computing 18 (Mar. 2020). doi: 10.1007/s10723-019-09491-1.

[39] Md Sipon Miah, Michael Schukat, and Enda Barrett. “An enhanced sum rate
in the cluster based cognitive radio relay network using the sequential ap-
proach for the future Internet of Things”. In: Human-centric Computing and
Information Sciences 8 (Dec. 2018). doi: 10.1186/s13673-018-0139-4.

[40] Hany F. Atlam, Robert J. Walters, and Gary B. Wills. “Fog Computing and
the Internet of Things: A Review”. In: Big Data and Cognitive Computing 2.2
(2018). issn: 2504-2289. doi: 10.3390/bdcc2020010. url: https://www.mdpi.
com/2504-2289/2/2/10.

[41] Ashish Ranjan, Varun Nagesh Jolly Behera, and Motahar Reza. “OCR Using
Computer Vision and Machine Learning”. In: Machine Learning Algorithms
for Industrial Applications. Ed. by Santosh Kumar Das et al. Cham: Springer
International Publishing, 2021, pp. 83–105. doi: 10.1007/978-3-030-50641-4 6.
url: https://doi.org/10.1007/978-3-030-50641-4 6.

[42] Ashim Ghosh et al. “Automatic License Plate Recognition (ALPR) for Bangladeshi
Vehicles”. In: Global Journals Inc. (USA) 11 (Dec. 2011), pp. 69–73.

[43] Raiyan Abdul Baten, Zunaid Omair, and Urmita Sikder. “Bangla license plate
reader for metropolitan cities of Bangladesh using template matching”. In:
8th International Conference on Electrical and Computer Engineering. 2014,
pp. 776–779. doi: 10.1109/ICECE.2014.7026925.

[44] Md. Rokibul Haque et al. “Line Segmentation and Orientation Algorithm for
Automatic Bengali License Plate Localization and Recognition”. In: Interna-
tional Journal of Computer Applications 154 (2016), pp. 21–28.

[45] M M Shaifur Rahman et al. “Bangla License Plate Recognition Using Convo-
lutional Neural Networks (CNN)”. In: 2019 22nd International Conference on
Computer and Information Technology (ICCIT). 2019, pp. 1–6. doi: 10.1109/
ICCIT48885.2019.9038597.

[46] Prashengit Dhar et al. “A System Design for License Plate Recognition by Us-
ing Edge Detection and Convolution Neural Network”. In: 2018 International
Conference on Computer, Communication, Chemical, Material and Electronic
Engineering (IC4ME2). 2018, pp. 1–4. doi: 10.1109/IC4ME2.2018.8465630.

[47] Cemil Oz and Fikret Ercal. “A Practical License Plate Recognition System
for Real-Time Environments”. In: Computational Intelligence and Bioinspired
Systems. Ed. by Joan Cabestany, Alberto Prieto, and Francisco Sandoval.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 881–888. isbn: 978-
3-540-32106-4.

56

https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1186/s13673-018-0139-4
https://doi.org/10.3390/bdcc2020010
https://www.mdpi.com/2504-2289/2/2/10
https://www.mdpi.com/2504-2289/2/2/10
https://doi.org/10.1007/978-3-030-50641-4_6
https://doi.org/10.1007/978-3-030-50641-4_6
https://doi.org/10.1109/ICECE.2014.7026925
https://doi.org/10.1109/ICCIT48885.2019.9038597
https://doi.org/10.1109/ICCIT48885.2019.9038597
https://doi.org/10.1109/IC4ME2.2018.8465630

[48] Qingwu Li et al. “Road Vehicle Monitoring System Based on Intelligent Visual
Internet of Things”. In: Journal of Sensors 2015 (July 2015). doi: 10.1155/
2015/720308.

[49] I. Pavlidis, V. Morellas, and N. Papanikolopoulos. “A vehicle occupant count-
ing system based on near-infrared phenomenology and fuzzy neural classifica-
tion”. In: IEEE Transactions on Intelligent Transportation Systems 1.2 (2000),
pp. 72–85. doi: 10.1109/TITS.2000.880964.

[50] Ying Wen et al. “An Algorithm for License Plate Recognition Applied to In-
telligent Transportation System”. In: IEEE Transactions on Intelligent Trans-
portation Systems 12.3 (2011), pp. 830–845. doi: 10.1109/TITS.2011.2114346.

[51] Cheng-Hung Lin, Yong-Sin Lin, and Wei-Chen Liu. “An efficient license plate
recognition system using convolution neural networks”. In: 2018 IEEE Inter-
national Conference on Applied System Invention (ICASI). 2018, pp. 224–227.
doi: 10.1109/ICASI.2018.8394573.

[52] Rashedul Islam, Md. Rafiqul Islam, and Kamrul Talukder. “An efficient method
for extraction and recognition of bangla characters from vehicle license plates”.
In: Multimedia Tools and Applications 79 (July 2020). doi: 10.1007/s11042-
020-08629-8.

[53] Nazmus Saif et al. “Automatic License Plate Recognition System for Bangla
License Plates using Convolutional Neural Network”. In: Dec. 2019. doi: 10.
1109/TENCON.2019.8929280.

[54] Md. Zainal Abedin et al. “License plate recognition system based on contour
properties and deep learning model”. In: 2017 IEEE Region 10 Humanitarian
Technology Conference (R10-HTC). 2017, pp. 590–593. doi: 10.1109/R10-
HTC.2017.8289029.

[55] Hong-Hyun Kim et al. “Multi-task convolutional neural network system for
license plate recognition”. In: International Journal of Control, Automation
and Systems 15.6 (2017), pp. 2942–2949.

[56] Saeed Rastegar et al. “An intelligent control system using an efficient License
Plate Location and Recognition Approach”. In: International Journal of Image
Processing (IJIP) Volume (3) 3.5 (2009), pp. 252–264.

[57] Francisco Assis da Silva et al. “ALPRs-A new approach for license plate recog-
nition using the SIFT algorithm”. In: arXiv preprint arXiv:1303.1667 (2013).

[58] Faed Ahmed Arnob et al. “An Intelligent Traffic System for Detecting Lane
Based Rule Violation”. In: 2019 International Conference on Advances in the
Emerging Computing Technologies (AECT). 2020, pp. 1–6. doi: 10 . 1109 /
AECT47998.2020.9194163.

[59] Md Fuad et al. “A Novel Traffic System for Detecting Lane-Based Rule Viola-
tion”. In: Annals of Emerging Technologies in Computing (AETiC) 4.3 (2020),
pp. 29–41.

[60] M. A. Joarder et al. “Bangla automatic number plate recognition system using
artificial neural network”. In: 2012.

57

https://doi.org/10.1155/2015/720308
https://doi.org/10.1155/2015/720308
https://doi.org/10.1109/TITS.2000.880964
https://doi.org/10.1109/TITS.2011.2114346
https://doi.org/10.1109/ICASI.2018.8394573
https://doi.org/10.1007/s11042-020-08629-8
https://doi.org/10.1007/s11042-020-08629-8
https://doi.org/10.1109/TENCON.2019.8929280
https://doi.org/10.1109/TENCON.2019.8929280
https://doi.org/10.1109/R10-HTC.2017.8289029
https://doi.org/10.1109/R10-HTC.2017.8289029
https://doi.org/10.1109/AECT47998.2020.9194163
https://doi.org/10.1109/AECT47998.2020.9194163

	Declaration
	Approval
	Ethics Statement
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Thoughts behind the Traffic Management System
	Problem Statement
	Motivation
	Research Aims and Objectives

	Algorithmic Analysis
	Computer Vision
	Image Classification
	Semantic Segmentation
	Image Enhancement
	Object Detection
	Object Tracking

	Hough Transform
	Edge Detection
	The Hough Space
	Alternative Line Representation
	Line Detection

	Fog Computing
	Background Overview
	Architecture of Fog Computing

	Optical Character Recognition

	Literature Review
	Previous Researches
	Our Improvements

	Proposed System with Architecture
	Working Procedure
	Published Works

	Primary Dataset Formation & Implementation
	Data Collection
	Data Preprocessing & Augmentation
	Data Training

	Performance Evaluation
	mAP
	Confusion Matrix
	Precision
	Recall
	Overall Comparison

	Conclusion
	Conclusion
	Limitations
	Future Works

	Bibliography

