
Implementation Of Real-Time Learning On
Homomorphically Encrypted Visual Inputs

by

Emtiaz MD Tafsir Bhuiyan
16301049

Mushfiqur Rahman
20241040

Sudipta Mondal
17301224

Sadman Warech
16301115

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

June 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Emtiaz MD Tafsir Bhuiyan
16301049

Mushfiqur Rahman
20241040

Sudipta Mondal
17301224

Sadman Warech
16301115

i

Approval

The thesis titled “Implementation Of Real-Time Learning On Homomorphically
Encrypted Visual Inputs” submitted by

1. Emtiaz MD Tafsir Bhuiyan (16301049)

2. Mushfiqur Rahman (20241040)

3. Sudipta Mondal (17301224))

4. Sadman Warech (16301115)

Of Spring, 2021 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on June 06, 2021.

Examining Committee:

Supervisor:
(Member) Dr. Muhammad Iqbal Hossain

Assistant Professor
Department of Computer Science and Engineering

BRAC University

Co-Supervisor:
(Member) Dr. Jannatun Noor Mukta

Lecturer
Department of Computer Science and Engineering

BRAC University

ii

Program Coordinator:
(Member) Dr. Md. Golam Rabiul Alam

Associate Professor
Department of Computer Science and Engineering

BRAC University

Head of Department:
(Chair) Sadia Hamid Kazi

Chairperson and Associate Professor
Department of Computer Science and Engineering

BRAC University

iii

skazi@bracu.ac.bd
Signature

Ethics Statement

The thesis is written in strict accordance with research ethics guidelines as well as
BRAC University’s standards and procedures. We have employed data from pri-
mary sources in our thesis. We are ensuring that we’re using references and in-text
citations correctly. We, the four authors, accept full responsibility for the infrac-
tions of the thesis code. We read many websites, YouTube tutorials, and research
papers to solve problems. We also sought the assistance of some of our university’s
professors. Finally, we affirm that we are thankful to all of the people who have
assisted us. Our work complies with the BRAC university’s ethical standards.

iv

Abstract

It’s challenging to provide security for cloud-based services, especially for cloud
processing services, due to the fact that typical encryption techniques do not al-
low for calculation on encrypted data. The formation of Homomorphic Encryption
techniques shows significant possibilities of incorporating encrypted computation on
cloud infrastructures. This enables owners to outsource computation over confiden-
tial data to cloud vendors. Control and synthesis tasks of sensitive systems like
traffic light control, article recommendation for online users and potentially, robot’s
action determination can be delegated to a cloud-based Reinforcement Learning
agent. In this study, we designed two Deep Reinforcement Learning agents that
work on ciphertexts using Homomorphic Encryption. Both agents take encrypted
state images and produce encrypted actions. One learns on plain data but evaluates
on encrypted inputs, while the other one operates fully on encrypted space. The
performance of both agents is compared against plaintext RL agents with identical
parameters. The paper also describes possible architectures for such systems.

Keywords: Homomorphic Encryption; Privacy preserving; Reinforcement Learn-
ing; Deep Q Learning

v

Dedication

This research will be dedicated to our parents. We may not be able to complete our
studies without their aid. We also want to dedicate the study to our friends who
helped us improve. Throughout the year, our supervisor guided us. We’d like to
dedicate it to him as well.

vi

Acknowledgement

All gratitude to the Almighty for allowing us to finish our thesis without any seri-
ous setbacks. First and foremost, we would want to express our gratitude to our
cherished family members, to whom we will be eternally grateful. Furthermore, we
want to express our gratitude to our supervisor, Dr. Muhammad Iqbal Hossain, for
all of his cooperation and consistent guidance. Finally, we would like to extend our
thanks to all of the faculty members and staff for providing us with such a beautiful
learning atmosphere in which we were able to properly develop ourselves as well
as this research. We are currently on the verge of graduating thanks to their kind
assistance and prayers.

vii

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Dedication vi

Acknowledgment vii

Table of Contents viii

List of Tables x

List of Figures xi

Nomenclature xii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Research Objective . 2

2 Background 4
2.1 Related Works . 4
2.2 Methodology Background . 10

2.2.1 Encryption . 10
2.2.2 Homomorphic encryption . 10

2.2.2.1 Partially Homomorphic Encryption (PHE) 11
2.2.2.2 Somewhat Homomorphic Encryption (SWHE) 11
2.2.2.3 Fully Homomorphic Encryption (FHE) 11

2.2.3 Machine Learning . 14
2.2.3.1 Supervised Learning 15
2.2.3.2 Unsupervised Learning 15

2.2.4 Reinforcement Learning . 16
2.2.4.1 Q Learning . 18
2.2.4.2 State-Action-Reward-State-Action (SARSA) 19
2.2.4.3 Deep Reinforcement Learning 20

viii

2.2.5 Neural Network . 20
2.2.6 Convolution Neural Network 21

3 Proposed Method 23
3.1 System Architecture . 23
3.2 Used Algorithms . 25

3.2.1 Deep Q Learning . 26
3.2.2 CNN . 26
3.2.3 CKKS Scheme . 26

3.3 Used Libraries . 27
3.3.1 Microsoft SEAL . 27
3.3.2 TenSEAL . 27
3.3.3 PyTorch . 28
3.3.4 Torchvision . 28
3.3.5 Protocol Buffer . 28
3.3.6 Gym . 29

4 Implementation and Experiment 30
4.1 Environment Description . 30
4.2 Data Preprocessing . 31
4.3 Parameter Selection . 33

4.3.1 CNN Layers . 34
4.3.2 Encryption Parameters . 35

4.4 Data Encryption . 36
4.5 Agent structure . 37

4.5.1 Plain-Encrypted Agent . 39
4.5.2 Pure Encrypted Agent . 39

5 Result Analysis 42
5.1 Cost Analysis . 47
5.2 Performance Analysis . 48

6 Conclusion and Future Works 51
6.1 Conclusion . 51
6.2 Future Works . 51

Bibliography 53

ix

List of Tables

2.1 Comparison Among Different Types of Neural Networks 22

5.1 Description of Pure Encrypted Agents 47
5.2 Description of Pure Encrypted Agents Equivalents 47
5.3 Table of Unit Cost Analysis . 48
5.4 Table of Score achieved by the agents 49

x

List of Figures

2.1 High Level CKKS Procedure . 13
2.2 Simplified Reinforcement Learning Procedure 16
2.3 RL Algorithm Tree . 17
2.4 Q learning Flowchart . 18
2.5 Simple Presentation of Policy Iteration 19

3.1 Plain-Encrypted Architecture . 24
3.2 Pure Encrypted Architecture . 24

4.1 Sample Extracted Raw Image from GUI 31
4.2 Sample Sliced Image After First Stage of Preprocessing 31
4.3 Sample Zoomed Image After Second Stage of Preprocessing 32
4.4 Sample Grayscaled Image After Third Stage of Preprocessing 32
4.5 Sample Resized Image After Fourth Stage of Preprocessing 33
4.6 Sample Transition Data as Image . 33
4.7 Configuration of CNN . 35
4.8 High Level Custom Network of Pure Encrypted Agent 41

5.1 Reference Agent’s Durations Over Episodes 43
5.2 Reference Agent’s Average Most Recent Durations Over Episodes . . 43
5.3 Reference Agent . 43
5.4 PlE Learning Phase Durations Over Episodes 44
5.5 PlE Learning Phase Average Most Recent Durations Over Episodes . 44
5.6 PlE Evaluation Phase Durations Over Episodes 44
5.7 PlE Evaluation Phase Average Most Recent Durations Over Episodes 44
5.8 Plain-Encrypted Agent . 44
5.9 PuE − 1 Durations Over Episodes 45
5.10 PuE − 1 Average Most Recent Durations Over Episodes 45
5.11 PuE − 2 Durations Over Episodes 45
5.12 PuE − 2 Average Most Recent Durations Over Episodes 45
5.13 Pure Encrypted Agents . 45
5.14 PuE − 1 Plain ref Durations Over Episodes 46
5.15 PuE − 1 Plain ref Average Most Recent Durations Over Episode . . 46
5.16 PuE − 2 Plain ref Durations Over Episodes 46
5.17 PuE − 2 Plain ref Average Most Recent Durations Over Episodes . . 46
5.18 PuE plaintext equivalent Agents . 46

xi

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ANN Artificial Neural Network

CKKS Cheon-Kim-Kim-Song

CNN Convolutional Neural Network

DQN Deep Q Network

FHE Fully Homomorphic Encryption

GUI Graphical User Interface

HE Homomorphic Encryption

LWE Learning With Errors

ML Machine Learning

NN Neural Network

PHE Partially Homomorphic Encryption

PIE Plain-Encrypted Agent

PuE Pure Encrypted Agent

RL Reinforcement Learning

RLWE Ring Learning With Errors

RNN Recurrent Neural Network

SWHE Somewhat Homomorphic Encryption

xii

Chapter 1

Introduction

1.1 Problem Statement

Cloud computing infrastructures have paved a new way in modern IT and business
sectors by lending storage and computation power to customers of different levels
and backgrounds on an as-needed basis. Many of the electronic goods in today’s
market, such as Alexa, google lens, and countless IoT systems are using cloud back-
end to improve the quality of customer service. Although it enables people to share
computation and storage resources, it also allows resource owners/vendors to observe
or collect incoming and outgoing data. It raised huge concerns in the world with
regards to protecting user’s privacy. Unlike cloud storage, cloud computing systems
cannot utilize encryption to ensure confidentiality since standard encryption schemes
like AES, DES, and Blowfish, do not support computation over ciphertexts. Hence,
even if end-to-end encryption is adopted, nothing can stop vendors from taking a
peek. Recent trends show that a large portion of the population of the world is
dependent on ML (Machine Learning) based cloud services in one way or another.
People are benefiting from being able to use ML features without having to own
expensive computer hardware. Real-time learning agents are known for excelling
at control and optimization problems. Cloud-based learning agents prove to be a
cheap and feasible solution to many optimization problems as it eliminates resource
constraints. Still, businesses refuse to use third-party cloud platforms to prevent
exposure to sensitive control data. Since private information can be a valuable
commodity in today’s culture, a proper privacy-protecting system is a must-have
feature for cloud-based control services.

Homomorphic encryption, envisioned by Rivest et al [1], which allows a third party
to execute arbitrary functions on ciphertexts without decrypting them, can be con-
sidered as a promising solution for resolving data privacy issues in cloud-hosted ML
services. Users with confidential data can upload only ciphertexts to cloud comput-
ing platforms using HE cryptography, obviating the need to provide any information
regarding the decryption key. Noise growth and evaluation depth is a limiting factor
for HE schemes. A few [2–4] workarounds have been suggested resulting in Fully
Homomorphic Encryption (FHE). However, the computation cost was still beyond
the scope of real-world application. More recent members of FHE schemes like
CKKS [5] allow arithmetic of approximate numbers and it is more computation

1

friendly than most of the schemes. The multiplicative depth of CKKS ciphertexts
depends heavily on encryption parameters where one has to systematically balance
security, accuracy and depth to evaluate any given circuit. Arranging homomorphic
operations to evaluate ML circuits is a challenge where the former requires evalua-
tion circuits to be simple and linear and the latter works on complex functions and
non-linearity. In the case of real-time learning agents, where time constraints carry
significant importance, the window of application is narrower.

1.2 Motivation

Cloud computing is rapidly expanding its scalability in today’s world. Despite its
popularity going upwards, its privacy protection has been a big concern in this sector.
As a result, the transitions towards Machine learning featured cloud computing
are also seen in high numbers. Yet, there is a lack of robustness evident, and we
were motivated to research a detailed review of potential vulnerabilities and the
recent implementation of security measures. Our basic idea came out by the depth
analysis of encryption lacking in the cloud computing architecture. Additionally, we
were inspired by the past events of data breaching & attacks on cloud computing
platforms. A big part of this sector is discouraging third-party cloud computing
platforms because of personal & business end-to-end data protection agreements.
This also motivated us to initiate this research which is a unique approach to create
more trust for the users towards cloud computing platforms. The uniqueness of
our study lies in the homomorphic encryption, which we believe will open up vast
possibilities in the context of cloud-hosted ML services.

1.3 Research Objective

The objective of our research is to work towards a successful implementation of
cloud-hosted real-time deep reinforcement learning agents, which will be injected by
the robust system of homomorphic encryption procedure. To increase the security
features as different encryption methods were not compatible with cloud comput-
ing architecture which was Machine learning driven, we were inspired to conduct
this research. Subsequently, our primary goal is to design an architecture that sup-
ports secure real-time learning by utilizing state-of-the-art cryptographical elements
through analyzing affiliated algorithms thoroughly. In the first step, our plan was to
think about how to solve the stated problem. As a result, the approach we thought
of was a privacy preserving real-time learning agent, which we will attempt to im-
plement at a later stage of the research. Moving on, we will emphasize the perfect
algorithm after a thorough analysis of reinforcement learning methods. Finally, we
will work towards a solution of shaping the learning agent to fit into the scope of
homomorphic cryptography. Additionally, we wish to demonstrate the efficiency of
homomorphic cryptography and find out the most fitted scheme with our model.
So, the core objective of this research is threefold:

2

1. Defining system architectures that support real-time learning.

2. Design learning agents that fit into the defined architectures.

3. In depth comparison of the designed agents against equivalent regular learning
agents.

3

Chapter 2

Background

2.1 Related Works

Encryption has been a good way for keeping confidential data private. Among the
most fundamental disadvantages of this method is that an information system using
encrypted data can only store or receive the data for the user. Some of the really
complicated processes appear to need decrypting the data first. The pioneer of the
RSA encryption scheme Rivest et al. [1] have claimed that privacy homomorphism is
an innovative approach in preserving the confidentiality of sensitive data. They are,
however, restricted in their application since comparisons may not be incorporated
in the list of functions to be employed. Decades have passed since the dawn of the
idea without any significant progression. Until the first homomorphic encryption
scheme that was vented by Gentry et al. in 2009 [2], and since then researchers
have established a number of latest and more effective fully homomorphic schemes.
Gentry proposed a method for assessing circuits on encrypted data that does not
need decryption. Their approach was based on three phases. They mentioned a
bootstrappable system based on ideal grids for public key encryption. Afterwards,
Brakerski proposed a new homomorphic encryption scheme that’s easy to define and
evaluate, but its security is restricted to the worst-case complexity of issues on ideal
lattices. They used Gentry’s [2] standard ”squashing” and ”bootstrapping” methods
to convert it into a completely homomorphic encryption scheme. Their scheme is
based on another researcher’s work, Lyubashevsky’s ring learning with errors infer-
ence. The RLWE assumption reduces worst-case problems on perfect lattices and
helps them to abstract out the lattice interpretation entirely. Brakerski-Gentry [4]
proposed a completely unique procedure to fully homomorphic encryption (FHE)
that greatly enhances efficiency and bases protection on infirm assumptions. A key
mathematical contribution in their work may be a new method of designing leveled,
totally homomorphic encryption schemes (capable of testing arbitrary polynomial-
size circuits of a-priori bounded depth), without Gentry’s bootstrapping technique.
They specifically provided an alternative of FHE systems centered on learning with
inaccuracy (LWE) or Ring LWE (RLWE) issues with 2λ of security against known
attacks. Such as, a leveled FHE scheme which will test depth-L arithmetic cir-
cuits which uses O (λ · L3) per-gate computation, quasilinear within the protection

4

parameter. For an exponential estimation factor in L, security is determined by
RLWE. The bootstrapping method would not be used in this architecture. In other
words, a leveled FHE method that evaluates depth-L arithmetic circuits (made up
of fan-in 2 gates) utilizing O (λ2) per-gate calculation that is irrespective of L.

Very recently, Cheon-Kim et al. [5] proposed a way to create a homomorphic en-
cryption structure for estimated arithmetic. The essential idea is to introduce noise
after large figures that convey a fundamental notion. This noise was previously in-
troduced to the plaintext for security reasons, but it is now thought to be a compo-
nent of error occurring during approximated calculations that is decreased including
the plaintext by resizing. They also suggested a new batching methodology for an
RLWE-based building. They demonstrated that their method could be expanded
to evaluate complex functions like multiplicative inverse, exponential function, lo-
gistic function, and discrete Fourier transform effectively. They also discovered that
accuracy failure while assessment is limited by the level of a circuit and can only
reach one extra bit when compared to unencrypted estimation arithmetic such as
floatingpoint processes. In another research [6], they extended their leveled homo-
morphic encryption structure. They proposed a new strategy to refresh low-level
ciphertexts that supported Gentry’s [4] bootstrapping procedure. They provided an
efficient evaluation technique employing a scaled linear model similar to the modular
reduction procedure. For every cycle, their approach only needs single homomorphic
multiplication, hence the general processing cost rises linearly with the depth of the
decryption circuit. They also demonstrated the way to encrypt packed ciphertexts
using an open-source version of the RLWE construction. Meanwhile, Cheon’s col-
league Y. Song eventually joined in another research [7] where they improved Cheon’s
bootstrapping result. They reduced amortized bootstrapping time per plaintext slot
from 1 second to 0.01 second. They used a sophisticated level-collapsing method-
ology for assessing DFT-like linear transformations on a ciphertext to obtain this
outcome.

Regarding online privacy, Agarwal & Srikant [8] mentioned that the development
of technologies that address privacy issues will be a fruitful route for future data
analysis. Besides, they attempted to develop accurate models without access to
precise information in individual data records. And they had considered the case
of building a decision-tree classifier from training data that has had the values of
individual records tampered with. Although it is not possible to accurately estimate
original values in individual data records, they have proposed a novel reconstruction
procedure to accurately estimate the distribution of original data values. Consid-
ering Machine Learning frameworks, when training a supervised Machine Learning
classifier, many works concentrate on the data protection problem of the Internet of
Things (IoT). The majority of current solutions presume that the classifier’s train-
ing data can be accessed safely from various IoT data providers, says Haque-Hasan
et al. [9] in their research. This paper proposes secure K-NN to guard data pri-
vacy when training a K-Nearest Neighbour (K-NN) classifier with IoT data from
various entities. It employs a cryptosystem referred to as Paillier so as to guard all
participants (i.e., IoT data analyst C and IoT data provider P) Data privacy may
be a concern when C analyzes the IoT data of P. Both participants’ privacy issues
arise and require a trusted third party. It shows that secure K-NN doesn’t need any
trusted third party at the time of interaction. The goal of k-Nearest Neighbor (k-NN)

5

extraction is to locate the k objects closest to the query items. Outlier detection,
clustering, and k-NN categorization are just a few of the data mining methods that
might benefit from it. The privacy-preserving shared k-NN is being developed to
tackle the challenge while maintaining individual secrecy. On physically segmented
data a variety of various confidentiality k-NN mining methods have been developed;
however, they fail to handle the privacy problem when the number of participants
surpasses two. As there are more than two parties, they proposed a set of principles
for dealing with the issue of privacy. The protocols are built with the probability
public-key cryptographic protocol and the interactive cryptosystem in mind as the
essential confidentiality architecture. The security of the protocols is demonstrated
using the Secure Multi-party Computation theory [10]. Author Barni [11] presented
a unique approach with privacy preserving neural network training. He mentioned
that even though there have been many studies related to protecting the privacy
of supervised model learning, limited effort was done to broaden neural network
learning through a privacy protection protocol. Neural networks are well-known
for a number of implementations, including using voice recognition for a strong al-
gorithm.They went into detail about privacy-preserving categorization as well as
modeling with neural networks over horizontally segmented dataset. They consid-
ered a scenario involving two semi-honest but interested parties. They generalize
with procedures for dependable value and stable matrix operating the algorithm
of neural network categorization proposed by Rumelhart et al. [12]. The expanded
algorithm does not guarantee confidentiality in the sense that Goldreich [13] defines,
nevertheless they showed that the disclosed knowledge isn’t tied to a certain entity
and can even be obtained by contrasting data locally, resulting in the final version.

The topic of stable data analysis using a neural network (NN) is being debated.
Secure processing denotes the probability that the NN owner has no knowledge of
the processed data because it is delivered to him in encrypted format. At the same
time, the NN is shielded because its owner will be unable to reveal the information
contained inside it. The type of security considered ensures that the data given
to the network, and also the network weights and activation functions are kept
secret. By properly inputting fake data to any point of the proposed protocol,
extra attention is taken to avoid any disclosure of sensitive information that could
enable a malicious user to gain access to the NN secrets. Compared to earlier
works in this area, the interaction between the user and the NN owner is held to
a minimum, and no multiparty computation protocols are used [14]. As a result
of the growth of distributed computing environments, numerous learning challenges
also have to cope with dispersed data input. To improve learning collaborations,
it is critical to resolve each data holder’s privacy concerns by applying the privacy
preservation concept to original learning algorithms. Chen and Jhong [15] focused
on maintaining privacy in multilayered neural networks, a fundamental learning
paradigm. They introduced a two-party disbursed backpropagation technique that
allows a neural network to be trained without any side having to share her data
with the other. They offered a thorough review of their algorithms’ correctness
and security. Experiments on different real-world data sets are used to validate the
effectiveness of their algorithms.

If consumers encrypt the data they transfer to the cloud, privacy concerns will be
alleviated. The cloud can still execute realistic calculations on the data if the en-

6

cryption strategy is homomorphic, says Lauter-Neherig et al. [16] in their paper
“Can Homomorphic Encryption Be Practical?”. He claims that all fully homomor-
phic encryption algorithms currently known have a fair path to go before they can
be utilized in reality. A variety of meaningful applications in the medical, financial,
and commercial domains only need that the scheme be “somewhat” homomorphic,
according to the author. He claims that the method is very effective and that the ci-
phertexts are relatively short. “With the same degree of security and homomorphic
strength, our unoptimized magma implementation performs admirably even opti-
mized pairing-based schemes”, he says. The thesis of the author has been published
in the open-access journal Cybernetics and Security.

Demonstrating the effectiveness of pre-trained neural networks in practice, Dahl-Yu
et al. [17] addressed a model for large-vocabulary speech recognition that leverages
recent developments in utilizing deep belief networks for phone recognition. They de-
fined a pre-trained deep neural network hidden Markov model (DNN-HMM) hybrid
architecture that trains the DNN to get a distribution over senones (tied triphone
states) as its performance. The deep belief network pre-training algorithm may be
stable and sometimes beneficial thanks to initializing deep neural networks genera-
tively, which will assist in optimization and reduce generalization errors. They de-
scribed the majority of our model’s components, explained the protocol for applying
CDDNN-HMMs to LVSR, and discussed the effects of various modeling choices on
results. Experiments on a challenging business search dataset demonstrate that CD-
DNN-HMMs will significantly outperform the traditional context-dependent Gaus-
sian mixture model (GMM)- HMMs, with an absolute sentence accuracy improve-
ment of 5.8 percent and 9.2 percent (or relative error reduction of 16.0 percent and
23.2 percent) over the CD-GMM-HMMs trained using the minimum phone error
rate (MPE) and maximum-likelihood (ML) criteria, respectively.

Graepel & Lauter [18] addressed the issue with incorporating Homomorphic encryp-
tion scheme with cloud hosted ML services by mentioned that, machine learning
comprises two phases, the training stage and the classification stage, one or both
of which may be exported to the cloud, and an intermediate deterministic verifi-
cation stage to verify and validate the trained model. Besides, encrypting data
before transferring it to the cloud is one way to protect the integrity of data. And
they suggested a confidential protocol for machine learning functions, named ML-
Confidential, based on Homomorphic Encryption. In a paper, Aslett-Holmes et
al. [19] introduced two new predictive machine learning methods designed to train
on completely homomorphic encrypted (FHE) files. The implementation of FHE
schemes following Gentry [2] opens up the possibility of privacy protecting statis-
tical machine learning research and modeling of encrypted data without breaching
security constraints. They proposed customized algorithms for applying extremely
random forests, involving a modern cryptographic stochastic fraction estimator, and
näıve bayes, involving a semi-parametric model for the class decision boundary, and
demonstrating how they can be used to learn and forecast from encrypted results.
They showed that these approaches work competitively on a number of classification
data sets and offer comprehensive knowledge regarding the statistical implications
of these and other FHE strategies. In their article, Xie-Bilenko et al. [20] focused
on a problem–‘how does a customer hire a predictive model owned by a third party
without compromising private information?’ Their goal was to make an assessment

7

using the model without jeopardizing the forecast’s precision or the data’s privacy.
They’ll need to employ neural networks to achieve great accuracy, as they’ve been
demonstrated to beat other learning models in a multitude of activities. To sat-
isfy the privacy conditions, they need to use homomorphic encryption within the
following protocol: the info owner encrypts the info and sends the ciphertexts to
the third party to extract a forecast from a professional model. The model runs on
these ciphertexts and sends back the encrypted forecast. During this protocol, not
only does the info stay confidential, even the values expected are accessible only to
the info owner. Using homomorphic encryption and modifications to the activation
functions and training algorithms of neural networks, they proved that protocol is
feasible and should be feasible. Their approach enables us to create stable cloud-
based neural network prediction services while respecting users’ privacy. Imple-
menting machine learning is a challenge when it involves financial, medical or other
forms of confidential information, not only needs correct estimates but also special
attention to preserving data privacy and protection. Legal and ethical requirements
can prohibit the use of cloud-based machine learning solutions for such tasks. In
their work, Bachrach-Dowlin et al. [21] proposed a way to transform trained neural
networks into CryptoNets, which can be applied to encrypted data. This helps a
cloud provider to transfer their data in an encrypted manner to a cloud server that
hosts the network. The scheme guarantees that the data stays confidential because
the cloud would not have access to the keys used to decrypt it. Additionally, they
have shown that the cloud provider is capable of applying the neural network to
the encrypted data to render encrypted predictions and even return them in en-
crypted form. These encrypted forecasts may be submitted back to the owner of the
hidden key who can decode them. Therefore, the cloud provider does not receive
any knowledge about the raw data nor about the forecast it produced. They have
illustrated CryptoNets on the MNIST optical character recognition tasks. Cryp-
toNets reach 99 percent precision and can make about 59000 predictions every hour
on a single PC. Therefore, they make high throughput, precise, and private predic-
tions. Phong-Aono et al. [22] developed a privacy-preserving deep learning scheme
in which multiple learning participants conduct neural network-based deep learning
over a shared dataset of both without directly exposing the respondents’ local data
to a central server. They re-evaluated the earlier work by Shokri and Shmatikov
(ACM CCS 2015) and point out that local data details could be potentially leaked
to an honest-but-curious server. They then went on to fix the problem by building
an improved system which prevents information leaks to the server and accuracy
is held intact. This system is a gateway between deep learning and cryptography,
where they have employed asynchronous stochastic gradient descent implemented
on neural networks, in collaboration with additively homomorphic encryption.

When implementing machine learning to sensitive data, one has to find a com-
promise between precision, information protection, and computational-complexity.
Recent research merged Homomorphic Encryption and neural networks to render
assumptions while defending against data exposure. However, these approaches are
constrained by the breadth and depth of neural networks that can be used and show
high latency also for comparatively simple networks. In a research, Brutzkus-Elisha
et al. [23] presented two alternatives that overcome these drawbacks. In the first
approach, they proposed more than 10 times improvement in latency and allowed

8

inference on wider networks relative to prior attempts with the same degree of pro-
tection. The increased efficiency is accomplished by innovative approaches to reflect
the data during the computation. In the second approach, they implemented the
strategy of transfer learning to provide private estimation services utilizing deep
networks with a latency of ∼ 0.16 seconds. They also showed the effectiveness of
their approach on many computer-vision’s tasks. Minelli et al. [24] proposed new
FHE architectures inspired by machine learning applications, with a particular fo-
cus on the issue of assessing previously trained cognitive models on encrypted data.
Firstly, they presented a novel FHE scheme that is suited to testing neural networks
on encrypted inputs. Their scheme achieves complexity that is virtually indepen-
dent of the number of layers in the network, while the performance of previously
proposed schemes greatly relies on the topology of the network. Then, they pro-
posed a new technique for achieving circuit privacy for FHE. This helped them to
hide the computation that is conducted on the encrypted data, as is required to
protect proprietary machine learning algorithms. Their mechanism involves very
limited computing overhead while retaining the same protection parameters. To-
gether, these findings reinforce the pillars of effective FHE for machine learning,
and pave the way towards functional privacy-preserving deep learning. Finally, they
proposed and introduced a protocol focused on homomorphic encryption for the
problem of private information retrieval.

Reinforcement learning (RL) is a learning strategy that facilitates state-dependent
learning by input from an environment and allows an action decision for optimizing
a reward without previous awareness of the environment. If these RL techniques
are used for data-centric services operating on cloud storage, major data protec-
tion problems arise because it is necessary to share privacy-related user data for
RL-based services between the users and the cloud computing platform. Keeping
this in mind, Suh et al. [25] designed a privacy preserving reinforcement learning
model that utilizes the SARSA algorithm and FHE. They followed the SARSA al-
gorithm since comparison is trivial in HE schemes and SARSA does not require any
comparison operation unlike the Q learning algorithm. They proposed implement-
ing the learning agent with blocking states, that restricts Q table to be updated
during another ongoing update of the same state. This was done since encrypted
computation consumes a great amount of time. Park-Kim et al. [26] considered
utilizing homomorphic encryption (HE) scheme, which allows cloud storage sys-
tems to execute arithmetic operations without decrypting ciphertexts. Using the
Homomorphic Encryption scheme, users are required to deliver only ciphertexts to
the cloud storage network for using RL-based services. They suggested a privacy-
preserving reinforcement learning (PPRL) system for the cloud computing network.
The suggested architecture utilizes a cryptosystem focused on learning with errors
(LWE) for fully homomorphic encryption (FHE). Performance measurement and
assessment for the proposed PPRL platform was performed in a number of cloud
computing-based intelligent service situations.

Due to massive progression on the topic of homomorphic schemes in application,
Kim Laine and his team at Microsoft [27], introduced a simple encrypted arithmetic
library in their paper that allows simple homomorphic operations and provides an
interface for easy encryptiondecryption over numerous well-established HE schemes
like BFV and CKKS. The paper outlines the key functionality of SEAL 2.3.1, which

9

aims to include a high-level guide to utilizing homomorphic encryption for a large
audience. The library is accessible from http://sealcrypto.org, which is approved
under the MSRLicense Agreement. And in 2015, the first edition of the Simple
Encrypted Arithmetic Library was published. SEAL was released with the specific
purpose of providing a well-engineered and documented homomorphic encryption
library, with no external dependencies, that would be simple to use both by experts
and by non-experts with little or no cryptographic context.

2.2 Methodology Background

2.2.1 Encryption

Encryption is a strong type of security procedure that scrambles the output of any
device, directory, or document in a way that it’s impossible to decrypt without
a decryption key. Businesses may ensure that only permitted users have access
to private data by adopting encryption and exercising dependable encryption key
protection. Even if misplaced, hacked, or obtained without permission, encrypted
data is unreadable and effectively worthless without its key. In a research paper
titled “Different Encryption Algorithms In Cloud” [28], explains the cryptography
classification is mostly referred as: Symmetric and Asymmetric key encryption. In
a symmetric key, the sender only sends one key which is called the secret key to
the recipient. A single key is used for both encryption and decryption. This type
of schemes requires both parties to exchange their secret key following some pre-
defined protocol. Asymmetric schemes have two key components, a public key that
is used to encrypt data and the other is a private key that is used during decryption.
The asymmetric encryption schemes are also referred to as “public key encryption”
techniques. For small mobile devices, the public key cryptography is not very effi-
cient, as it is focused on mathematical functions and needs more computations [29].
Symmetric encryption algorithms are much quicker than asymmetric algorithms,
as consumption needs less computing capacity. But it is robust in terms of secu-
rity since the decryption key or the private key does not need to be sent to other
party/parties.

2.2.2 Homomorphic encryption

The Greek terms homos, which means “same,” and morphe, which means “shape,”
are used to define homomorphism. Homomorphic encryption is a type of encryption
that maintains data security while providing the necessary foundation for perform-
ing computation on it. It enables a third party to execute encrypted data processing
without disclosing the data’s contents. A homomorphic cryptography functions in
the same way as other public encryption systems. It uses a public key to encrypt
data. The unencrypted data is only accessible to the person who possesses the asso-
ciated private key. It differs from other methods of encryption in that it employs an
algebraic framework to allow you or others to do many calculations on the encrypted

10

data. In reality, when the given data is sampled as integer numbers with add and
multiply as operational functions, most homomorphic encryption approaches per-
form better. This enables encrypted data to be edited and analyzed in the same
way that plain data is without the need to decode it. To put it another way, HE
allows to perform computation on encrypted data without knowing or gaining access
to the decoded data’s details. They have the ability to calculate and analyze en-
crypted data in order to generate an encrypted response. In contrast to other stable
computation approaches, homomorphic encryption uses arithmetic circuits rather
than booleans. Homomorphic encryption can be divided into three categories.The
main distinction between them is the number and types of mathematical operations
performed on their ciphertext. The following are the three types of homomorphic
encryption:

• Partially Homomorphic Encryption

• Somewhat Homomorphic Encryption

• Fully Homomorphic Encryption

2.2.2.1 Partially Homomorphic Encryption (PHE)

Any circuit composed of a single form of gate, addition, or multiplication, but never
both, can be evaluated using this method. It does not impose any limitations on
the circuit’s size or depth. This style is ideal for applications that only require the
addition or multiplication of encrypted data. A PHE that allows an unbounded
number of modular multiplications is the RSA cryptosystem.

2.2.2.2 Somewhat Homomorphic Encryption (SWHE)

This type of scheme can test circuits that contain both addition and multiplica-
tion gates, but the depth of arithmetic operation is limited. Leveled Homomorphic
Encryption is a subset of SWHE that can evaluate courses with variable depth.
It requires the parameters to be set before encryption, so the parameters of one’s
selection must be tailored to the circuits they want to evaluate. SWHE can help
with low-degree polynomial evaluations up to a point, but we occasionally need to
evaluate operational sequences in greater depth.

2.2.2.3 Fully Homomorphic Encryption (FHE)

Will et al. mentioned in their article [30] that fully homomorphic encryption (FHE)
is frequently referred to as the “holy grail” of cloud security. While many are aware
of its potential, few are aware of how FHE operates and why, despite its promises,
it is not yet a realistic solution. Fully homomorphic encryption (FHE), however still
in its early phases of research, holds a lot of potential for balancing efficiency and

11

security by helping to keep data safe while permitting access. Fully homomorphic
encryption seeks to allow anybody with exposure to the public encryption keys to
execute functionalities on encrypted data. This approach has significant implications
for improving cloud computing security. The disadvantage of using this form of
encryption is that it sacrifices pace for versatility. Unfortunately, homomorphic
encryption is currently too slow to be effective. It is currently in last place in the
encryption competition. This is partly due to the higher computing overhead of
homomorphic encryption compared to plaintext operations.

Fully Homomorphic Encryption (FHE) schemes can test circuits that include ad-
dition and multiplication gates. Still, unlike Somewhat Homomorphic Encryption
(SWHE), they have an infinite circuit depth, making them ideal for deep learning
applications. Even though many FHE systems have been proposed over the last
decade, putting them into practice has proven to be difficult. FHE is, in reality,
now built on top of SWHE. Thanks to Craig Gentry, who demonstrated in his pa-
per how to make FHE from SWHE using a technique he called bootstrapping. The
mentioned system is a lattice-based cryptosystem which was proposed and devel-
oped by Craig Gentry [2] in 2009. FHE is considered as far more powerful and a
great way to secure the outsourced data in an efficient manner [31]. The proposed
scheme given by Gentry has three important components:

1. A somewhat homomorphic encryption scheme (SWHES)

2. A bootstrappable encryption scheme (BES)

3. A combination of above two components

This scheme has the ability to conduct the homomorphic computation on low grade
polynomials.

An encryption scheme includes the following 3 algorithms:

• KeyGen (...security parameters) → keys:

The Key Generation algorithm takes as input one or more security parameters.
The scheme’s key(s) are then output.

• Encrypt (plaintext, key, randomness) → ciphertext:

A plaintext, a key, and some randomness (encryption must be probabilistic
to be “safe”) are all inputs to the Encryption method. It then outputs the
ciphertext that corresponds (i.e., encrypted data).

• Decrypt (ciphertext, key) → plaintext:

The Decryption algorithm has two inputs: a ciphertext and a key. It returns
the plaintext equivalent.

12

A simple overview of a few well-established FHE schemes is given below:

1. BGV: The Brakerski-Gentry-Vaikuntanathan (BGV) [4] technique is one of
the most efficient homomorphic encryption systems because of allowing exe-
cution of the same operations on many ciphertexts at the same time. In Spite
of it being efficient it is very difficult to use. This strategy is a completely
homomorphic encryption strategy that may be used both with a LWE and
an RLWE instance, however the RLWE instance has outperformed its coun-
terpart. In their work they presented “leveled FHE without bootstrapping”
construction in modular steps. First, they described a plain GLWE-based en-
cryption scheme with no homomorphic operations. Next, they augmented the
plain scheme with variants of the “relinearization” and “dimension reduction”
techniques [32]. Then they laid out full-fledged construction of FHE without
bootstrapping. The name of this scheme usually comes from the last names of
the authors who created it. As in, “BGV” comes from the authors Brakerski,
Gentry, and Vaikuntanathan.

2. BFV: Fan and Vercauteren [33] adapted Brakerski’s [34] scheme from the
LWE setting to the RLWE setting in 2012. They employ relinearization in
the same way that does, but their version is more efficient. They have utilized
modulus switching to make the bootstrapping method easier.

3. CKKS: The Cheon-Kim-Kim-Song (CKKS) [5] scheme is a homomorphic
encryption (HE) scheme which supports approximate computations of real
(complex) numbers.It includes a new rescaling procedure for managing the
magnitude of plaintext, as well as approximate addition and multiplication
of encrypted messages. This procedure reduces the modulus of a ciphertext,
resulting in rounding of the plaintext.

Figure 2.1: High Level CKKS Procedure

The high level CKKS procedure is depicted in fig: 2.1. We can see that a
message m, which is a vector of values on which we want to compute, is first
encoded into a plaintext polynomial p(X) and then encrypted with a public
key. When compared to typical vector computations, CKKS uses polynomials
because they offer a good balance of security and efficiency. After the message
has been encrypted into c, which is a set of polynomials, CKKS offers a number
of operations on it, including addition, multiplication, and rotation. While
addition is relatively simple, multiplication has the distinct property of greatly

13

increasing the amount of noise contained in the ciphertext, as a result, only
a limited number of multiplications are permitted. Permutations on the slots
of a particular ciphertext are known as rotations. If we represent a function
by f as a collection of homomorphic operations, then decrypting c′ = f(c)
with the secret key yields p′ = f(p). As a result, once we’ve decoded it, we’ll
receive m = f(m). This offers us a high-level understanding of how CKKS
works. Moreover, authors tried to present a method for efficient approximate
computation on HE. The main idea was to treat an encryption noise as part
of error occurring during approximate computations. They introduced a new
batching technique for packing much information in a single ciphertext, so
they could achieve practical performance advantage by parallelism. Another
benefit of their scheme is the rescaling procedure, which enables us to preserve
the precision of the message after approximate computation. Furthermore, it
reduces the size of ciphertext significantly so the scheme can be a reasonable
solution for computation over large integers.

While working with untrustworthy environments, such as public clouds or external
parties, data remains protected and private if HE technique is employed. The data
is kept encrypted at all times, reducing the chances of important information being
compromised. The balance between data usefulness and data privacy is no longer
an issue. To protect the privacy of data, there is no need to disguise or remove
any elements. Without jeopardizing privacy, any feature can be used in an analysis.
Quantum attacks are resistant to fully homomorphic encryption systems. Despite
fully homomorphic encryption being useful in many scenarios there are some limi-
tations of this encryption scheme. Fully homomorphic encryption is still commer-
cially unfeasible for computationally intensive applications due to slow calculation
performance or accuracy issues. The research community agrees that completely
homomorphic encryption research has a long way to go, but it is already helpful
in conjunction with other privacyenhancing technologies such as secure multiparty
computation. However, in its current state, completely homomorphic encryption
can handle use cases that aren’t computationally costly, such as prediction using a
pre-trained model. FHE has two recognized drawbacks at the moment. Firstly, the
lack of multi-user support. Assume that a lot of people on the same system decide
to put their personal data secure from the operator. An option is for the operator to
have a unique database for every user, which would be encrypted with the person’s
public key. If the database was large and there were a large number of people, this
would eventually become impossible. The second drawback is, large computational
overhead. Currently, all fully homomorphic encryption systems have a significant
computational expense. While this cost is exponential in size, it looks substantially
constant, which considerably increases runtime and renders homomorphic calcula-
tion of complicated systems impossible.

2.2.3 Machine Learning

Machine learning is indeed a crucial part of the rapidly expanding subject of data
science. Models are designed to generate classifications or forecasts using inferential

14

statistics, revealing critical insight in data analysis applications. Following that,
these findings drive verdicts within systems and enterprises, with the goal of influ-
encing key economic benchmarks. The machine learning capabilities depend on the
dataset in studies. Machine learning doesn’t hamper productivity or bothers the
users. It just acts as a data centric approach which learns from more and more
scenarios and evolves. There are mainly 3 types of machine learning:

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

2.2.3.1 Supervised Learning

Data on both input and output are provided in supervised learning. The algorithm
uses the information to predict and compares the forecast to the expected result
when using supervised learning. If wrong, the algorithm will somehow change to
make better future predictions. One needs to train the machine in supervised learn-
ing with well-labeled data. It means that the correct answer to specific data has
already been tagged. The learning in the presence of a supervisor or professor can
be compared. An algorithm for supervised learning is derived from labeled training
data and helps to predict results for unpredictable data. A learning model requires
time and the technical expertise of a highly qualified team of data scientists to de-
velop, scale, deploy and also accurately monitor the performance. In addition, data
scientists need to reconstruct models to ensure that the data is valid until their data
changes.

2.2.3.2 Unsupervised Learning

Unsupervised learning is a machine learning methodology in which the model is not
monitored. Rather, we need to provide the model the ability to find information by
itself. It primarily encompasses information that has not been labeled. Unsuper-
vised algorithms automatically learn patterns of data or groupings. Unsupervised
learning is excellent when we need to find patterns in a set of uncategorized data.
Unsupervised models can also be classified as clustering or association tools.

The two subsets of ML, Supervised and Unsupervised, are heavily data-centric.
One requires the labeling of training inputs while the other performs well on large
chunks of data. Unlike these, the third subset, Reinforcement Learning, relies on an
environment rather than a dataset. RL agents are able to optimize themselves by
taking feedbacks from the environment assigned to them. Thus, real-time learning
can be implemented using RL. So, we have discussed about Reinforcement Learning
thoroughly in the next section.

15

2.2.4 Reinforcement Learning

Reinforcement learning is an approach for machine learning, which focuses on how
artificial entities might conduct themselves in a particular situation. Reinforcement
Learning is a deep learning methodology which enables a percentage of total reward
to be optimized. This learning approach teaches us how to achieve a complex goal or
optimize a particular dimension over a long period. In his blog, Huang [35] describes
that to assess their previous conduct, an RL agent earns a late compensation in the
future stage. A typical RL configuration comprises only two components: the agent
as well as the environment. The environment refers to the item on which the agent
is functioning, whereas the agent symbolizes the RL algorithm. The environment
communicates a state to the agent, which the agent responds to depending on the
knowledge it has. The world then sends the agent a pair of following state and
incentive messages. The agent will update its data using the prize given by the
environment to assess its previous activity. The loop will continue until the envi-
ronment communicates a terminal status which will finish the episode. Figure 2.2
depicts the pattern that most RL algorithms follow.

Figure 2.2: Simplified Reinforcement Learning Procedure

Let us discuss some of the terminology used in the field of RL.

1. Agent: The learner and decision-maker are known as the agent.

2. Environment (e): The Agent’s environment is where it discovers and deter-
mines what steps to take.

3. Action (A): A selection of acts that the agent will carry out.

4. State (S): The Agent’s current state in the environment is its state.

5. Reward (R): The prize is an immediate response from the environment that
evaluates the previous behavior.

6. Policy(π): The Agent’s policy is how it decides what to do next based on the
current situation.

7. Value Function (V): The value function is used to convert states to numbers.
The longterm benefit earned by starting from a certain state and implementing
a given policy is represented by a state’s value.

16

8. Q-value (Q): Q-value is close to value, except that it needs an additional
parameter, the current operation, a. The phrase ”Q policy” refers to both the
long-term recovery of the current condition and policy execution.

Figure 2.3: RL Algorithm Tree

A Reinforcement Learning algorithm is implemented in three ways:

1. Model-Based: In this training process, we need to build a virtual model for
every environment. In this particular environment, the agent learns how to
work. ModelBased RL draws on previous experience in developing an inner
transition model as well as current environmental conditions. Suitable action
in this world-model is then selected through searching or planning. On the
other hand, model-free RL utilizes the experience to master one or two simple
quantities (state/action values or policies) directly but without evaluating or
using a world-model to achieve the same good conduct. A State’s worth,
given a policy, should be measured by its future utility, starting with the
state. Model-free approaches are statistically less successful than model-based
approaches because information from the environment is mixed with past, and
presumably wrong, estimations or ideas about state values instead of being
utilized openly.

2. Policy-Based: Agent tries to develop a policy in a policy-based RL system
that guides it to achieve the most reward in the future by performing actions
in each state. The contrast between Off-policy and On-policy techniques is
that with the former, you don’t have to adhere to any precise policy; in fact,
your agent might act arbitrarily, and off-policy techniques can still identify
the best policy. On-policy procedures, in contrast, are reliant on the policy in
question. As in the context of off-policy QLearning, it will determine the best
strategy regardless of the policy utilized throughout exploration.

17

3. Value-Based: In a value-based reinforcement learning strategy, users should
maximize the value function V. In this way, the agent expects the current
states to return maximum value for adopting a certain policy for a long time.

The following are some of the most critical features of reinforcement learning.

• There is no supervisor, merely a number or an incentive signal.

• Making decisions in a certain order.

• In reinforcement complications, time is crucial.

• Feedback is never given immediately and is always delayed.

• The actions of the agent determine the following data they collect.

Reinforcement learning algorithms

In reinforcement learning, there are three well known algorithms

• Q Learning

• SARSA

• Deep Q Learning

2.2.4.1 Q Learning

Q learning is a value-based reinforcement learning agent for guiding an agent’s de-
cision. The action-value function Q-learning Q(s, a): how well in a particular state
to pull an action. An action a given state assigns a scalar value. In figure: 2.4, the
algorithm is well represented. The optimal Q-value, denoted as Q*, is as follows:

Figure 2.4: Q learning Flowchart

Q∗(s, a) = Es′ [r + λamaxQ
∗ (s′, a′) | s, a]

18

The target is to increase the Q-value as much as possible. Two value update ap-
proaches are nearly related to Q-learning before digging into the approach to maxi-
mize Q-value.

Policy Iteration

The feedback circle between policy evaluation and policy improvement is known as
policy iteration. The greedy policy produced from one of the most recent policy

Figure 2.5: Simple Presentation of Policy Iteration

upgrades is used to compute the value function V for policy assessment. Policy
enhancement, on the other hand, updates the policy to include the best route V
for each state. The Bellman Equation serves as the foundation for the updated
equations. It iterates until convergence is reached.

Value Iteration

There is only one component in Value Iteration. It modifies the value parameter V
using the Ideal Bellman Formula.

v∗(s) =amaxE [Rt+1 + v∗ (St+1) | St = s, At = a]

= amax

∑
s′,r

p (s′, r | s, a) [r + γv∗ (s′)]

2.2.4.2 State-Action-Reward-State-Action (SARSA)

SARSA is quite similar to Q-learning. Q-learning is a value-based algorithm, whereas
SARSA is a policy-based algorithm. It means that SARSA, instead of the greedy
policy, learns the Qvalue on the basis of current policy’s operation. Zhao et al., [36]
in their research, have mentioned that SARSA, a type of on-policy reinforcement
learning approach, is combined with deep learning to tackle the video game control
difficulties. Moreover, they calculate the stateaction value with a deep convolutional
neural network and modify it through SARSA learning. In addition, experience re-
play is used to adapt the learning method to scalable machine learning challenges.

19

2.2.4.3 Deep Reinforcement Learning

While Q-learning seems to be a suitable technique, it has one major flaw: it isn’t
particularly generic. Q-learning is similar to dynamic programming in that it is a
double array of updated integers. This shows that it has no idea what actions to un-
dertake in states which the Q-learning Agent has not seen before. An optimal policy
or policy function can be simulated with a neural network which allows neural net-
works to connect values and status pairs to Q values. We can train a neural network
on samples from the state or action domain to learn to predict how important those
are compared to our goal in reinforcement learning, instead of using a lookup table to
record, map and update all possible states and their values, which is impractical for
rather significant problems. An example of deep Reinforcement learning in practice
is the Deep Q Network (DQN), first developed by DeepMind [37]. For estimating
the Q-value function, DQN uses one or multiple neural networks. The Network
input is current, and the Q-value for each action is the corresponding output.

There are also two other techniques for DQN training:

1. Experience Replay: In a typical RL scenario, training samples are strongly
interrelated and lower data-efficient, resulting in more substantial network
convergence. An experience replay is a way of solving the sample distribution
problem. In principle, sample transitions are saved, and the knowledge is then
randomly chosen from the “transition pool.”

2. Separate Target Network: The architecture of the Q network target is
identical to that of the value calculator. Each C step is reset to another
network. The fluctuation is, therefore, less severe and, therefore, more stable.

2.2.5 Neural Network

Neural networks are a set of algorithms that recognize patterns and are based on
the human brain. They use a kind of machine perception to perceive sensory data,
marking or clustering raw data. All real-world data, including images, sound, text,
and time series, must be transformed into numerical patterns stored in vectors. Neu-
ral networks assist us in clustering and classifying data. “Stacked neural networks”
or networks of many layers, are referred to as “deep learning”. Nodes are the unit
elements of any given layer. A node is simply a location where computation occurs,
loosely modeled after a neuron in the human brain, which fires when it receives
enough stimuli. A node combines data input with a set of coefficients, or weights,
that either amplify or dampen the information, thus assigning importance to in-
puts concerning the task the algorithm is attempting to learn. The sum of these
input-weight products is then passed through a node’s so-called activation function,
determining whether and how far the signal can advance through the network to
influence the ultimate result, such as a classification act. The neuron has been “ac-
tivated” if the signals pass through. A node layer collects neuron-like switches that
turn on and off as data passes through the network. Starting with an initial input
layer that receives the data, each layer’s output is also the subsequent layer’s input.

20

Considering the structure of NN, deep learning networks differ from one hidden
level neural networks in the depth or number of node layers through which data
should be transferred in a multi-stage pattern matching technique. External neural
networks with only a single input and output layer or at most one hidden unit
in between were the earliest perceptrons. Learning with three or more layers is
referred to as deep learning. It’s a well-defined word that refers to several hidden
layers. Deep-learning networks can process heavy, high-dimensional data sets with
billions of variables going through nonlinear functions, thereby allowing them to
take highdimensional sets of data essentially. Digesting and grouping the world’s
unfiltered, unlabeled media, discovering patterns and abnormalities in data that no
human has ever arranged in a relational database or given a name to, is among
the issues that deep learning thrives at. Unlike other conventional machine-learning
algorithms, deep-learning networks extract features automatically without the need
for human interaction. When learning features from unmarked data every node level
in a deep system tries to decrease the gap between the network’s estimations and
the probability dispersion of the input data by continually recreating the input from
which it pulls its observations. In a logistical or SoftMax classifier, the output layer
of deep-learning networks provides a probability to a certain result or mark. It is
referred to as prediction, but only in the widest perspective.

The way humans communicate with the environment is changing with Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN) and Artificial Neural
Networks (ANN) as well as other forms of deep learning neural networks. Such neural
networks are indeed the heart of the deep learning revolution, driving applications
including crewless aircraft, selfdriving automobiles and language recognition. One
of the prevalent types of deep neural, CNN is briefly described in the next section
since it plays a significant role in our work.

2.2.6 Convolution Neural Network

The name CNN comes from the inclusion of one or several convolution layers in
a deep learning architecture. CNN building blocks are the filters, known also as
the kernels. Each convolution layer consists of several kernels. The kernel amount
usually depends on the diversity and complexity of input data and output-space.
Each kernel builds a certain feature map from the input data during optimization.
These feature maps only extract the data that is relevant for its successor nodes.
The convolution procedure is used to eliminate irrelevant features utilizing seed from
the input. Although convolutional neural networks have been designed to handle
problems with visual data, sequence inputs also function well. The advantages of
CNN architecture is given below:

• CNN captures the spatial features of an image. The layout and relationships of
pixels in a picture are called spatial characteristics. They help us to recognize
an object precisely, and its location and connection with other items.

• Without identifying them, CNN recognizes the filters instantly. Such filters
help to identify from input data the main essential and suitable attributes.

21

Comparison among different types of Neural Networks
ANN RNN CNN

Data
Tabular

data
sequence data

(Time series, Text, Audio)
Image Data

Recurrent
connections

No Yes No

Parameter
sharing

No Yes Yes

Spatial
relationship

No No Yes

Vanishing &
Exploding Gradients

Yes Yes Yes

Table 2.1: Comparison Among Different Types of Neural Networks

• CNN also uses the definition of parameter sharing. A feature map is created
by applying a single filter to various sections of an input.

The basic difference between CNN and other types of NN architectures are presented
in table 2.1.

22

Chapter 3

Proposed Method

We aim to implement a model that will allow users to employ cloud-hosted real-
time deep reinforcement learning agents without jeopardizing sensitive information
using homomorphic encryption techniques as its backbone. This chapter focuses
on the groundwork on which we built our model on. Section 3.1 describes the
overall system architecture and illuminates the flow of data. The architecture is
designed keeping preservation of privacy as its core focus while also keeping network
overhead in mind. Then we further elaborate on the algorithms chosen with which
the model is implemented along with the reasons behind our choice in Section 3.2.
The algorithms are used to implement distinct components of the model while the
system architecture represents the model as a whole. In Section 3.3, the details
about the libraries used are provided, also mentioning what purpose each of them
accomplishes and how they work in our model.

3.1 System Architecture

We have come up with not only one but two unique architectures. While both
fulfills our goal, each of them provides their own functionalities to be incorporated
in different scenarios. The first one follows the principle of learning on plaintext
and evaluating on ciphertext in real-time (described in fig: 3.1) and the second one
follows encrypted real-time learning (described in fig: 3.2) which operates purely on
encrypted data, image objects in our case. From here on we will refer to the first
architecture using Plain-Encrypted architecture and the second one using the term
Pure Encrypted. Learning agents suitable to perform in both architectures will be
discussed in Chapter 4.

The flow of data for each of these systems along with necessary details is provided
below

Plain-Encrypted: According to this model, the cloud platform runs a simulated
version of users’ environment or an identical environment on their own. A plaintext
agent will utilize the hosted environment for learning while a single or multiple en-

23

Figure 3.1: Plain-Encrypted Architecture

Figure 3.2: Pure Encrypted Architecture

crypted counterparts of that agent will perform evaluation on ciphertexts sent from
the users’ domain. The encrypted counterpart performs the same set of arithmetic
as the plain one but it is tailored for encrypted operations. Before an evaluation, the
encrypted counterpart will fetch the most updated parameters of the plain learning
agent to use as its own and deliver encrypted outputs. If the cloud platform is
able to run an identical environment, no feedback from the user’s system will be
necessary. The dataflow for this architecture is as follows

• The user sends plain state data to their own encryption-decryption module to
convert into ciphertext using their public key.

• The encrypted state is sent to the cloud platform and the cloud queues the
data to be used in the encrypted evaluation.

• The encrypted counterpart fetches the most recent parameters of the plain
learning agent and updates its own.

• The generated encrypted output using updated parameters is sent back to
users’ domain where it is fed back to the encryption decryption module.

• The module decrypts the output using users secret key, extracts the most
suitable action then feeds it to the environment.

This architecture is befitting for environments where the goal is similar across all
users. For example- traffic light automation, control for industrial robots, commer-
cial chat-bots etc. This feature allows this architecture to be a multi-user system

24

since only one instance of learning environment is necessary to satisfy the needs
of any number of customers. It is also efficient in a sense that the plain learning
agent can keep on optimizing even when none of the users are requiring the cloud
platform’s services.

Pure Encrypted: This model is pretty simple and straightforward in terms of
components in comparison to the previous one. It consists of only one agent that
is responsible for both learning and evaluation. However, the network overhead is a
bit larger since it relies on the reward given from the user’s environment to calculate
expected value in order to optimize itself. This models’ dataflow is given-

1. The user sends plain state data to their own encryption-decryption module to
convert into ciphertext using their public key.

2. The encrypted state is sent to the cloud platform and the cloud queues the
data to be used in the encrypted learning and evaluation.

3. Encrypted output is generated according to the agent’s policy and is sent back
to users’ domain where it is fed back to the encryption-decryption module.

4. The module decrypts the output using users secret key, extracts the most
suitable action then feeds it to the environment.

Additionally, the necessary values for optimization are also sent to the cloud platform
but it can be done while sending the inputs for the next evaluation, hence this
step is absent in the figure. The Pure-Encrypted architecture is appropriate for
environments where the user’s preference plays a significant role in determining
preferred actions. For examplerecommending news articles, targeted ads, personal
electronic assistant, personalized chatbots. These environments require learning
from scratch as simulated training or training in advance will not bring equal value
across all users.

3.2 Used Algorithms

There are a handful of algorithms from which we had to choose from that would
work as the base of our models when it comes to implementing them. Our general
goal is to design a model that would combine real-time learning abilities that come
with reinforcement learning and privacy preserving computation using homomorphic
encryption. Both of these concepts come with a few well-established algorithms. A
methodical analysis of these algorithms was imperative to determine the specific
algorithms which best suit the problem at hand. This section describes our chosen
algorithms and also illustrates the criteria on which these choices were made.

25

3.2.1 Deep Q Learning

As we discussed earlier in Section 2.2.5, SARSA and Q-learning both are table or
functionoriented algorithms that work well with a finite set of states and actions.
But when it comes to continuous state space, these algorithms struggle in terms
of memory or function complexity. Deep reinforcement learning eliminates this
problem by using neural networks to work as a value function. Since we wish to
work with visual inputs i.e., images as states, our state space is also a continuous
one, therefore, SARSA or Q-learning would not be an optimal choice. Deep Q
learning on the other hand, promises to deliver what we ask for. Thus, we have
decided to employ a deep Q network to act as our learning agent. The concern for
inherent error was eliminated with a plaintext version of the agent as the results
were satisfactory.

3.2.2 CNN

Since deep Q network utilizes neural networks to compute action values, the ap-
propriate type of neural network had to be determined. Different types of neural
networks excel at different types of inputs. Among all the types, ANN and CNN are
known and widely used for processing images and fits our objective. However, since
we wish to work with homomorphic computation which is heavy and time consum-
ing, limiting the number of computations reduces the time taken for each step by
a great margin and is one of our top priorities to make the model more practical.
The convolution property of CNN helps to reduce the number of network nodes
without compromising effectiveness. Therefore, Convolutional Neural Network was
the go-to network to work as the engine of our deep Q learning agent. ANN on the
other hand, would be too heavy computationally in this context, threatening the
practicality of our designed models by making them too time consuming.

3.2.3 CKKS Scheme

The CKKS scheme, formerly known as HEAAN, designed by Cheon et al. [5] is
one of the most recent members of Homomorphic Cryptography. Unlike previous
encryption schemes like BGV and BFV, CKKS is an approximate homomorphic
encryption scheme, meaning it performs approximate arithmetic on encrypted vec-
tors making it much faster than its predecessors yet less precise. The precision of
decrypted vectors depends heavily on the encryption parameters (poly-modulus de-
gree and coefficient modulus). With appropriate parameters, the loss of precision
becomes negligible. This scheme also allows homomorphic operations on floating
point numbers using a rescaling factor unlike many other schemes which only work
on integers. The functionality for vector rotation enables this scheme to be incor-
porated in many applications including CNN. Since we opted to use CNN as our
learning agent, CKKS proves to be the best candidate for this scenario. It also
provides flexibility in input pre-processing for supporting floating point numbers,
along with faster operations which aids our cause. The version of CKKS that we

26

adopted for our model is levelled-fullyhomomorphic as we did not need the boot-
strapping mechanism. Simple relinearization and rescaling operations proved to be
enough for our implementation. However, a bootstrapping function is available for
CKKS [6] and can be included if required but time constraints should be taken into
consideration as CKKS bootstrapping also requires heavy computation.

3.3 Used Libraries

Here we will describe the tools and libraries that we utilized for implementing the
overall system. The function of each tool in our system is also discussed in their
relative sections.

3.3.1 Microsoft SEAL

Several schemes have been developed for homomorphic encryption, but those were
hard for normal software developers to use because their usage needed understanding
of critical mathematics. Then there is Microsoft seal coming up with a convenient
and very simple API which has state-of-the-art execution. Cloud operators need
decrypted access to customer data to do direct computation in any kind of traditional
cloud storage. Whereas, in Microsoft SEAL, the cloud operators don’t need any
unencrypted access to customer data which maintains the integrity of customer
data and it stays secure and not exposed to anyone but the customer because all
the computations are done in encrypted data.

In our research, all the cryptographical procedures are handled by Microsoft SEAL
in the backend. The library itself is built on C++ and has a built-in wrapper for
C# representations. SEAL takes encryption parameters defined by the user and
generates necessary keys to conduct homomorphic operations based on the chosen
HE scheme. Currently the library supports BFV and CKKS schemes.

3.3.2 TenSEAL

TenSEAL is an open-source library that can be readily incorporated into common
machine learning frameworks for privacy-preserving machine learning utilizing ho-
momorphic encryption. It takes care of all the difficulties that come with implement-
ing tensor operations on encrypted files. TenSEAL is based on Microsoft SEAL’s
implementation of numerous HE schemes. Clients can use one of the supported
frontend languages (C++ or Python) to work with plain or encrypted tensors. The
encryption context, simple tensors, and encrypted tensors are the three main com-
ponents of the core API.

In our work, TenSEAL serves as an interface between the python compiler and
C++ compiler on which the SEAL library runs on. It provides the compatibility

27

we need to work with HE schemes that are mostly implemented in cpp with robust
ML frameworks present in python. The TenSEAL library also comes with a sim-
ple convolution procedure on HE ciphertexts that proved to be helpful during this
research.

3.3.3 PyTorch

PyTorch is one of the most popular machine learning modules which is based on
the Torch library. PyTorch has a python interface with a C++ backend. It is able
to utilize a system’s GPU along with CPU to accelerate the heavy computations
needed for ML operations. PyTorch has some major features like having an easy
interface, auto gradients, and computational graphs. It offers an API which is easy
to use and runs on python. This library is pythonic in nature, and it works well
with the Python data science stack. As a result, it will take advantage of all of the
python environment’s resources and features. PyTorch also offers a few dynamic
computational graphs. The three levels of abstraction in PyTorch are well-known,
which are Tensor, variable and module. The advantages of PyTorch makes it a very
reliable and useful platform for deep learning. Debugging and understanding the
code is very easy and it also includes many loss functions. Many well-defined and
widely used NN layer functions are present in PyTorch.

We chose to use PyTorch because it provides sufficient room for customization unlike
many deep learning frameworks. As we are working with irregular data types i.e.
ciphertexts, custom layer design was one of the core requirements.

3.3.4 Torchvision

Torchvision is a PyTorch library that helps you easily use pre-configured models
in computer vision applications. This is especially useful when inferencing with a
simple pre-trained model and finding the similar target objects, which were present
in the pre-training dataset. However, when using a dataset which is customized, the
model frequently needs to be retrained and modified for such more advanced use
cases.

While it is true that what we are working with subtly falls within the scope of
computer vision, our objective is much simpler in that context. Hence, we did not
require the advanced functionalities of Torchvision. It is used only to perform some
preprocessing steps on the standard input images.

3.3.5 Protocol Buffer

Protocol Buffers is a cross-platform library for serializing structured data that is
free and open source. It can be used to create programs that interact with one
another over a network or to store data. A description interface language describes

28

the structure of certain data, and the source code to generate or parse a byte stream
that represents the structured data of that description. Protocol Buffers were created
with effectiveness and convenience in mind. It was created with the goal of being
smaller and faster than XML. Protocol Buffers are widely utilized at Google for
preserving and sharing various kinds of organized data.

Protocol Buffer is able to serialize the rather large and complicated structure of the
HE ciphertexts and encryption contexts (many different keys altogether) produced
by the SEAL library. In our model, the library is used as a gateway by successfully
transforming encrypted objects into raw bytes that are transferable over a network.

3.3.6 Gym

Gym is simply a set of tools for testing and evaluating reinforcement learning algo-
rithms. It makes no preconceptions about the architecture of any agent and works
with a number computing framework. An example is TensorFlow or Theano. The
gym collection contains test scenarios that may be used to put reinforcement learning
methods to the test. Because these contexts share an interface, generic algorithms
may be written.

We have employed the Gym module to test the designed agents. Gym also provides
a GUI for user observation that we use to extract visual inputs for our agents. The
comparisons are done by running the equivalent regular learning agents on the same
testing environment as our encrypted agents.

29

Chapter 4

Implementation and Experiment

Previously, we have described the groundwork for our model. This section illustrates
implementing the overall model and the agents working on it. To demonstrate our
model, we opted to use a simple environment which fits our system criteria. The
cart-pole environment provided by the gym library is both simple and provides a
visual window for human observation which we can use to extract visual states
through screenshots. The screenshot images are modified for efficiency’s sake and
then encrypted with the CKKS scheme using proper encryption parameters. These
encrypted images act as states for our learning agents. As we have described two
architectures in the previous section, Plain-Encrypted and Pure Encrypted, two
distinct agents were designed, each suitable for its own architecture. Although the
Plain-Encrypted architecture defines two seemingly separate agents, plain-learning
agent and its encrypted counterpart, both are in fact, components of a single one
which utilizes both components to achieve a single goal.

4.1 Environment Description

The classic control problem of pole-balancing represented by the name Cart-Pole
environment by the gym library was chosen because of its simplicity as we wish
to only observe the learning capabilities of our agent. Experiments with different
parameters had to be done in order to find the optimal configuration. A complex
environment with a complex action sequence would only make the agent too time
consuming to experiment with. Here are the details about the environment-

• Description: An unactuated joint connects a pole to a cart that runs along
a frictionless track. A force of +1 or -1 is applied to the cart to regulate
the machine. The idea is to keep the pendulum from falling over. The pole
appears upright and the cart appears in the middle of the screen at the start
of each episode. When the pole is more than 15 degrees from vertical or the
cart goes more than 2.4 units away from the center, the episode terminates.

• State: The library provides the cart’s position and angle of the pole as numer-

30

ical state values.But in our implementation, we are going to use the screenshots
taken from the GUI. A sample screenshot is shown in fig: 4.1.

• Action: A force of +1 or -1 on the cart meaning the cart can only go leftward
or rightward. Hence, the length of our actionspace is 2.

• Reward: At each time step the virtual environment provides a reward of 1 if
the pole remains upright, otherwise 0.

• Goal: Maximize the total reward collected meaning keep the pole upright for
as long as possible while staying inside the defined range.

4.2 Data Preprocessing

We perform some necessary preprocessing on these images to make them manageable
for our model without trading off most of the information needed to understand
the current environment state. The images are modified to reduce feature size
leading to a minimum. number of computations over a single state. The standard
unadulterated image size is 3 × 400 × 600, meaning the feature size is 720000, which
is a lot.

Figure 4.1: Sample Extracted Raw Image from GUI

Figure 4.2: Sample Sliced Image After First Stage of Preprocessing

From fig: 4.1, we can see the actual cart and pole objects consist of a very small
portion of the entire image state. Since the cart can only move left or right, a
lot of the upper and lower area of the image is redundant as these regions remain
unchanged regardless of the environment’s state. So, we omit these regions out of
the image through slicing (fig: 4.2), reducing the feature size to 3 × 120 × 600 =
216000. After doing so, we are still left with a relatively large feature size, so we
zoom in on our object of interest by cutting off excess regions from the carts left

31

Figure 4.3: Sample Zoomed Image After Second Stage of Preprocessing

and right. At first, we get the carts location from the environment and then use
that information to zoom on the objects (fig: 4.3). This operation brings the feature
size to 3 × 120 × 120 = 43200. Although this operation omits some information
about the object’s displacement, this is a necessary trade off we had to take. At
this stage the image contains 3 channels, red, green and blue. We perform channel
reduction on the image by applying torchvision’s grayscale filter on it (fig: 4.4),
turning the image into 1 × 120 × 120. Furthermore, we resize the image down
to 1 × 30 × 30 by reducing the image resolution (fig: 4.5). Following all of these
operations, we managed to significantly reduce the feature size from 720000 to 900.
We could not perform further reduction operations without losing any more valu-
able information. The resized image at hand represents the object’s current state
but we wished our learning agent to capitalize on the transitions rather than the
current state itself. Let St be the graphic condition of the environment at any time
step t, then the transitions are represented by ∆St = St − St−1, These transitions
(∆S1,∆S2,∆S3.....∆St) will function as the input for our agent. A sample state
transition is shown in fig: 4.6.

Figure 4.4: Sample Grayscaled Image After Third Stage of Preprocessing

32

Figure 4.5: Sample Resized Image After Fourth Stage of Preprocessing

Figure 4.6: Sample Transition Data as Image

4.3 Parameter Selection

Selecting proper parameter was not an easy task since our model has to show decent
learning rate, be efficient enough to be employed in a real-time learning scenario and
ensures data security. Most challenging aspect was to find a proper balance that
satisfies all of those requirements. The encryption parameter directly depends on
the level of operation performed on the ciphertext. And the operation level is defined
by the Neural Network parameters. The deeper the level, the costlier it is. Higher
number of operations on an encrypted vector threatens the vector to be unusable
by increasing the noise threshold beyond tolerance. In case that happens, the data
will need to be bootstrapped, making it even slower. On the other hand, insufficient
number of operations will not allow the model to learn and optimize itself efficiently,
taking longer time to reach convergence. We have tried out several combinations
and observed their performance. We have tested learning rate by using chosen
parameters on plaintext learning model and measured time taken by using those on
encrypted model.

33

4.3.1 CNN Layers

The depth of layers in a CNN model tends to increase with the number of features
i.e. pixels in a standard input image. Layer’s depth helps feature extraction and
classifying the input images. In contrast, a high number of layers makes the model
sluggish because of the high amount of computation. In our case, this is even more
severe as we are working with encrypted computation which is hundred times slower
than regular plaintext computation. So we opted to use a simple layer structure
consisting of a convolution layer and two fully connected linear layers with an un-
orthodox activation function in between each of the layers. The activation functions
in a neural network is what makes it non-linear which is needed by the learning
algorithm. Homomorphic functions however, work better with linearity. The CKKS
scheme in particular, achieves homomorphism over polynomial rings and can evalu-
ate only polynomial functions with relatively small degrees. The popular activation
functions like sigmoid and rectified linear are not polynomial functions, thus com-
puting these functions over ciphertext is not possible as of yet.

Sigmoid : z → 1/(1 + exp(−z))
Rectified Linear: z → max(0, z)

There are several comparison functions proposed in recent papers [5] [6] for homo-
morphic schemes, but these are too expensive to employ on a large scale, for example-
evaluating the rectified linear function or the max-pooling operation on a network
with hundreds of values. Assuming more efficient comparison schemes emerge in the
future, integrating these operations on a network may become feasible.

According to the solution of Xie et al. [20] we opted to use a low degree polynomial
to approximate an activation function, or rather a variation of it adopted by Dowlin
et al. [21] in their work, that is the square activation function.

Square Activation: z → z × z

The square activation is the lowest degree polynomial which does not increase our
multiplicative depth by too much and also achieves some level of non-linearity.

The description of the network is provided below

• Convolution Layer: Takes 30 × 30 image as input. Has 4 kernels of size 7
× 7, with strides of 3. The output size is therefore, 4 × 8 × 8.

• Square Activation: Performs Z → Z × Z operation on the convolution
layer’s output. The output size remains unchanged.

• Reshape: Flattens the square activation layer’s output by reshaping it. Input
size is 4 × 8 × 8 and the output size is 256.

• Fully Connected Layer: Fully connects 256 input nodes with 64 output
nodes. The output size of this layer is therefore 64.

34

• Square Activation: Performs Z → Z × Z operation on the previous fully
connected linear layer’s output. The output size remains unchanged.

• Fully Connected Layer: Fully connects 64 input nodes with 2 output nodes.
The output size of this layer is the size of our actionspace which is 2.

Fig: 4.7 represents the configuration of the derived neural network

Figure 4.7: Configuration of CNN

4.3.2 Encryption Parameters

Every homomorphic encryption scheme has its own set of parameters, and the CKKS
scheme is no exception to that. The encryption parameters for the CKKS scheme are
N,QL+1 and k, where N represents the polynomial modulus degree, QL+1 represents
a series of coefficient modulus and kstands for the scaling factor.

Polynomial modulus degree: This parameter directly affects

• Number of coefficients present in plaintext polynomials.

• Size of sample ciphertext - Computational efficiency (bigger is worse).

• Level of security (bigger is better).

Scaling factor: Encoding a vector of real numbers into a plaintext polynomial is the
first stage in the CKKS technique. The encoding precision for the binary sequence
of the value is defined by the scaling factor. Conceptually, we’re addressing binary
precision as shown below:

Floating-point representation

1.01011 = 101011︸ ︷︷ ︸
significand

∗ 2−5︸︷︷︸
scaling factor (base exponent)

Coefficient modulus: This parameter is not a single number; it is in fact a series
of prime numbers ([q0, q1, q2, q3....qL, qL+1] where L is the multiplicative depth).

35

The coefficient modulus influence

• Size of sample. ciphertext

• Number of encrypted multiplications supported.

• Level of security (bigger is worse).

Fortunately, we do not have to define the prime numbers ourselves. The SEAL
library generates the prime numbers itself from given bit sizes. So, to set this
parameter, we just have to provide a list of bit sizes. Each of the coefficient modulus
can have a length of 60 bits at most and be congruent to 1 modulo 2*poly modulus
degree.

The convolution function for encrypted images provided by the TenSeal library
performs 2 multiplication operations on ciphertexts (more discussion in the next
section). Additional 4 multiplication operations are done by the other network
layers. Each square activation and linear linear performs exactly 1 multiplication.
The multiplicative depth in this context is therefore, 6 meaning we need a total of
L+ 2 or 8 coefficient moduli. The other parameter components have to be chosen
carefully as they are dependent on one another given the security level. For our
application we chose to achieve 128-bit security. According to CKKS performance
test [38], 128-bit security can be achieved with a polynomial modulus degree of 2
2y : y ≥ 12 with an upper bound for

∑L+1
i=0 (logQi) corresponding to each value of y.

Here
∑L+1

i=0 (logQi) simply represents the total sum of coefficient modulus bit sizes.
We need to use a higher polynomial modulus degree if the upper bound is surpassed
in order to keep the same level of security. As we discussed earlier, polynomial
degree directly affects computational efficiency, we generally want to choose the
lowest possible value of y. However, choosing a relatively low value of y means we
cannot use relatively higher coefficient modulus bit sizes. And for the CKKS scheme
in TenSeal, all the bit sizes except the first and the last one has to be equal with our
scale factor k. This means we are trading off precision with computation time. Lower
precision results in inaccurate computations which is a severe issue since most of the
values we are working with are between 0 and 1. It also threatens the learning rate
of our agent. Since the precision carries significant importance, we wanted to ensure
at least 20-bit precision. This gives us the minimum polynomial modulus degree of
213 = 8192 with a maximum bit scale of 26 bits, keeping 5 bits for integers. Hence,
the first and last value of coefficient modulus is 26 + 5 = 31bits. The associated keys
and ciphertexts (using our sample input) generated using these parameters occupy
sizes of 810.06 KB (for all of the keys) and 465.83 KB respectively.

4.4 Data Encryption

Before we move on to encrypting images, the convolution function for ciphertext
needs to be illustrated first. The convolution operation on ciphertext does not fol-
low the same procedure as regular convolution. TenSeals encrypted convolution

36

operation adopts the technique of Johnson et al. [39], representing the convolution
function as a single matrix multiplication operation. This methodology necessitates
encrypted matrix-plain vector multiplication, which they accomplished by conduct-
ing element-wise matrix transpose multiplication with a duplicate plain vector. Fi-
nally, the result is rotated and accumulated into a single vector. The entire operation
requires the input image to be represented in a one-dimensional vector rather than
a four-dimensional tensor used in regular convolution. This transformation cannot
be done easily in encrypted state, it has to be done as a pre-processing step before
the data is encrypted. Unfortunately, this also limits the number of convolution
operations supported on a ciphertext. Multiple convolutions would require the ci-
phertext to be deciphered, reshaped and transformed again with parameters of the
next convolution. The transformation function initially maps the pixel values that
overlap the kernel matrices with each stride and stacks them together resulting in
a bigger matrix with repeated pixels. Then that matrix is translated into a column
using vertical scan. This requires the kernel shape and stride to be known by the
encryption module. The function generates a window size that tells the convolu-
tion function how to map each input value to its corresponding kernel value. After
transforming the image into a single column, it is treated as a regular vector and is
encrypted using the context generated from the parameters discussed in the previous
section.

4.5 Agent structure

As we have discussed earlier, we have two distinct system architectures both fulfilling
our objective yet specializing in different scenarios. Intuitively, it is obvious that a
single agent design will not be sufficient in serving both systems equally. Therefore,
we needed to design two separate agents to satisfy system constraints. Despite being
separate, both agents have a lot of similarities in terms of general structure and a
few components, they also work using similar principles. The general structure
of both agents follows the framework of Minh et al. [37] as they contain a TargetQ
network and an experience replay. They also consist of one or several policy networks
that serve as the policy function. The experience replay is implemented with a
transition memory of 10000 units. Each transition Tt =< st, at, rt, st+1 > where s,
a,r represents state, action and reward respectively and t stands for timestep. At
each timestep current state st , current action at , reward obtained from performing
said action rt , observed effect of the action performed or next state St+1 are packed
in a transition unit Tt and pushed into the memory.

Consider the function Rt =
∞∑

t=t0

(
γt−t0 × rt

)
Where Rt represents the discounted cumulative reward, γ is the discount factor.
The purpose of training the policy net is to maximize Rt for any given input state
st . We’ll use the fact that, for some policy, every Q function obeys the Bellman
equation as our training update law.

37

Q(s, a) = r + γQ (s′, π (s′)) [s′&π represents the next state & policy function]

To calculate temporal difference error δ, we can use

δ = Q(s, a)−
(
r + γ ×max

a
Q (s′, a)

)
Using δ, we can calculate the Huber Loss function L, where

L(δ) =

{
1

2
δ2 if |δ| ≤ 1, else |δ| − 1

2

}

We can then use L(δ) to optimize our policy network’s weights and biases. We are
utilizing the Root Mean Squared Propagation algorithm for our optimizer, which is
an unreleased iterative optimization approach introduced by Geoff Hinton in Module
6 of his Coursera Lesson. The RMSProp optimization works especially well with
mini-batch learning of neural networks.

The target network estimates the value of maxaQ (s′, a) by taking a mini-batch B of
states sampled uniformly random from the transition memory such a way that for
any s ∈ SB, si 6= terminationstateis worth noting that the target network’s weights
and biases are equal to the weights and biases of an old version of the constantly
optimizing policy network. Basically, we’re replacing the target network’s parameter
on a fixed interval C. This breaks the correlation of the target function and policy
function.

Learning Parameters:

Batch size |B| = experiment variable [32 ≤ |B| ≤ 128]

Target update interval C = 20

Learning Rate α = 0.01

Discount factor γ = 0.99

Random action probability ε :

Starting value ε0= 0.99

Lower Limit εf= 0.05

Decay rate ∆ε= 200

At any step t, the current threshold of ε,

εt = εf + (ε0 − εf)× e−t/∆ε

The discussion above is true for both of the agents. However, each has its own unique
internal structure to adapt with encrypted data according to the requirements of
the architecture they were designed for.

38

4.5.1 Plain-Encrypted Agent

This agent contains two policy networks, a plaintext policy network and a ciphertext
policy network. Both networks represent the same policy function since before
determining the policy for a ciphertext input, the parameters of the plaintext policy
network are copied into the ciphertext policy network. The optimizer uses the loss
calculated from the plaintext policy network’s output and updates its weights and
biases. Because both policy networks are being synchronized in seemingly real-time
there is no need to optimize the weights and biases of the ciphertext policy network.
Hence, the transition memory only holds the plaintext transition units generated
from the replicated environment, so there is no need for a second target network.
The plaintext policy network is defined as the learning agent in our Plain-Encrypted
model and the ciphertext policy network is defined as the encrypted counterpart.

Algorithm 1 Learning module

1: St<-get transition from clone env
2: st<-preprocess st
3: ω− sample random number in range 0-1
4: if ω less than Et then
5: at <-random action from action space
6: else:
7: at<-Qpp (st) , Qpp is the plaintext policy function

8: rt, st+1<-feed at to clone env then record reward and next tran-
sition

9: st+1<-preprocess st+1

10: store transition unit Tt =< st, at, rt, st+1 > into memory D
11: B<-sample |B| transitions from D randomly
12: yB<rB + γ ×maxaQt (s

′
B, aB) , Qt is the target function

13: perform optimizer step on L (Qpp (sB, aB)− yB) =0

Algorithm 2 Evaluation module

1: ŝt<-receive and deserialize user’s encrypted transition
2: set param (Qcp)<-param (Qpp) , Qcp is the ciphertext policy func-

tion
3: ât<-Qcp (ŝt)

4: serialize and return ât

For our experiment, we have incorporated a phase-switching mechanism that runs
the agent in plaintext phase and ciphertext phase with a predefined interval. In our
case, for every 50 episodes of the plaintext optimization phase, there are 10 episodes
of the encrypted evaluation phase.

4.5.2 Pure Encrypted Agent

The Pure-Encrypted agent has only one policy network for representing its policy
function as this agent works only on ciphertext, there is no need for a separate

39

plaintext policy network. One of the most challenging tasks of encrypted learning
is generating the gradients needed for optimization. Not only does it add a load of
computation time but also some of the functions needed for generating gradients are
not supported by current homomorphic schemes. Moreover, the generated gradients
would also be ciphertexts as doing any plaintext-ciphertext operation results in a
ciphertext.

Consider E as the encryption function

m⊕ E(m) ≡ E(2m)[⊕ represents encrypted add function]
m⊗ E(m) ≡ E (m2) [⊗ represents encrypted mult function]

This means either the optimizer function needs to be designed for encrypted gra-
dients, meaning the weights and biases would also be encrypted, or the generated
gradients needs to be sent to the user for decryption and returned to the agent so
that the original optimizer can work on plaintext weights and biases. Of course, the
model could work with encrypted weights and biases, except plaintext-ciphertext
operations are much faster than ciphertext-ciphertext operations and add very little
noise compared to any ciphertext-ciphertext operations. This means, the weights
and biases must be bootstrapped every now and then to limit noise level to make
it not exceed the tolerable threshold. All of this would make the model too slow
to work with. The second option is not viable either as decrypting hundreds of
gradients at each time step puts a burden on the user’s machine.

Instead, we opted to follow an alternative route. Using pytorch, we designed the
layers to generate the plaintext gradient function by generating a dummy plaintext
output as well as our actual encrypted output. The dummy plaintext output is
generated by forward passing a closecorrelated plaintext input through an identical
plaintext function using the same sets of parameters. The strength of correlation
between the plaintext input and actual encrypted input is proportional with the
model’s learning efficiency and inversely proportional with data security. In our
case, we are using a rather loose correlation, the computed mean of actual input
transition’s pixel values. A plaintext input with the same dimension of actual input
is created using only the mean value. The close-correlated input and the actual
encrypted input pass through their respective functions. The dummy output gen-
erated by plaintext functions as well as the actual encrypted output are sent to the
user’s machine. The user decrypts the encrypted output values then replaces the
dummy output values with the actual ones. The user computes overall loss and then
sends it to the agent to perform the backward operation based on the overall loss.
Fig: 4.8 illustrates the network with our designed custom layer. Both the policy and
target network hold this internal structure and performs the same kind of operation.
The mean values, encrypted states, actions, rewards and encrypted next states are
pushed into the replay memory for optimization’s sake. The learning function of this
agent is exactly the same as the learning function of Plain-Encrypted agent provided
in Algorithm: 1 without input collection and preprocessing since that part is han-
dled in the user’s domain. Another exception is, before computing individual loss,
the data needs to be sent to the user then the overall loss needs to be retrieved from
the user’s domain. This procedure is not the most efficient as the user still needs to
decrypt twice the batch size of unit outputs, one for the batch output of Qp (ŝB, aB),

another for the batch output of Qt

(
ŝ′B, aB

)
. Also, there is added network overhead

40

Figure 4.8: High Level Custom Network of Pure Encrypted Agent

to consider. But considering the other options, this approach was much simpler and
faster compared to them. We will observe how effective our alternate approach is in
Chapter 5. This agent does not require a separate evaluation function.

41

Chapter 5

Result Analysis

In this section we are going to discuss and analyze our findings. We have trained
several agents using our methods and details about a few of them along with their
learning graph will be presented to compare with equivalent plaintext versions of
those agents. But first, we need to define a few terms and attributes that are present
in the figure titles.

PlE → short for Plain-Encrypted agent

PuE → short for Pure Encrypted agent

−d→ means the figure shows the individual episode durations in terms of time steps

−a→ means the figure shows the average time steps in the last 20 episodes

−l→ means the figure is of the learning module (only for PlE)

−e→ means the figure is of the evaluation module (only for PlE)

For reference, we have trained a demo plaintext agent with the exact same general
structure and learning functions as our designed agents. The agent is trained for
500 episodes following below parameters.

|B| = 128

C = 20

α = 0.01

γ = 0.99

ε0 = 0.99

εf = 0.05

∆ε = 200

42

Figure 5.1: Reference Agent’s Durations Over Episodes

Figure 5.2: Reference Agent’s Average Most Recent Durations Over Episodes

Figure 5.3: Reference Agent

Figure: 5.1 & 5.2 represents the learning graph of the reference agent. Within
500 episodes, the agent managed to get a maximum episode duration of 172-time
steps with a maximum episode duration averaged across the most recent 20 episodes
of 52.45-time steps. It is worth noting that our selected environment has a lower
bound of 10-time steps for any given action sequence in an episode, which means
an untrained model can achieve an average episode duration of 10 to 13-time steps.
The reference agent takes about 8.5 minutes to complete 500 episodes.

In total, we are going to present observations of 3 trained agents, one of them being
a PlainEncrypted PlE agent and the other two are Pure-Encrypted PuE agents.
The two PuE agents are trained using different batch sizes. The first one used a
batch size of 128, and the second one’s batch size was 32. This was done to observe
the effect of batch size on learning rate and computation cost in terms of time
taken. Because for training, our agents have to evaluate |B| number of states on
both policy and target functions to calculate the loss and optimize, so at each step
the agent has to evaluate 2×|B| states. This is a big concern since unit evaluation
time of encrypted data is around 1000 times more than unit evaluation time of
plaintext data. Therefore, the batch size |B| influences the training time heavily
when it comes to learning on encrypted data. The Plain-Encrypted agent did not
require to be trained on different batch sizes, since the added computation time for
plaintext learning due to |B| is negligible compared to encrypted learning. All the
other parameters of all agents are the same as the reference agent.

Figure: 5.4 - 5.7 demonstrates the performance of our Plain-Encrypted agent. The
agent elapsed a total of 666 episodes, from which 536 episodes were spent on plain-

43

Figure 5.4: PlE Learning Phase Durations Over Episodes

Figure 5.5: PlE Learning Phase Average Most Recent Durations Over Episodes

Figure 5.6: PlE Evaluation Phase Durations Over Episodes

Figure 5.7: PlE Evaluation Phase Average Most Recent Durations Over Episodes

Figure 5.8: Plain-Encrypted Agent

44

Figure 5.9: PuE − 1 Durations Over Episodes

Figure 5.10: PuE − 1 Average Most Recent Durations Over Episodes

Figure 5.11: PuE − 2 Durations Over Episodes

Figure 5.12: PuE − 2 Average Most Recent Durations Over Episodes

Figure 5.13: Pure Encrypted Agents

45

Figure 5.14: PuE − 1 Plain ref Durations Over Episodes

Figure 5.15: PuE − 1 Plain ref Average Most Recent Durations Over Episode

Figure 5.16: PuE − 2 Plain ref Durations Over Episodes

Figure 5.17: PuE − 2 Plain ref Average Most Recent Durations Over Episodes

Figure 5.18: PuE plaintext equivalent Agents

46

Agent: 1 PuE Agent: 2 PuE
Operates on ciphertexts Operates on ciphertexts
With a batch size of 128 With a batch size of 32
Trained for 110 episodes Trained for 180 episodes

Table 5.1: Description of Pure Encrypted Agents

Agent: 1 Plain ref Agent: 2 Plain ref
Operates on plaintexts Operates on plaintexts

With a batch size of 128 With a batch size of 32
Trained for 110 episodes Trained for 180 episodes

Table 5.2: Description of Pure Encrypted Agents Equivalents

text learning and 130 episodes on ciphertext evaluation. Figure: 5.4 describes the
distribution of individual episode durations across the learning episodes and figure:
5.5 represents the graph of average episode durations. Figure: 5.6 & 5.7 describes
the evaluation episodes in the same way. Due to our phase switching mechanism, the
evaluation graphs are plotted for 10 episodes after every 50 learning episodes. So,
in the evaluation’s graphs, the weights and biases are updated in every 10 episodes.
We are using the term evaluation because the random action probability is set to 0
whenever the agent is in this phase.

For our PuE agents, we have trained 2 different plaintext agents to properly visualize
the effectiveness of encrypted learning. The plaintext agents are trained for the same
number of episodes as the PuE agents with the same sets of parameters. Let us
define the Pure-Encrypted agents in table 5.1. And let’s also define their plaintext
equivalents (termed as plain ref) in table 5.2. The learning graphs of both PuE
agents are given in figure: 5.9 - 5.12. The learning graphs of the plaintext equivalents
of both PuE agents are given in figure: 5.14 - 5.17.

5.1 Cost Analysis

Before we proceed to analyze the time cost of each agent, we need to measure the
unit time costs relevant to our network structure and selected encryption parameters
discussed in section 4.3.2. The unit time cost is necessary to properly understand
and estimate computation cost of any agent with known learning parameters. Our
findings are presented in table: 5.3.

The Plain-Encrypted agent that we trained for 536 episodes and evaluated on ci-
phertexts for 130 episodes took in total of approximately 9 minutes to complete
its learning phase and around 4 hours for completing all the encrypted evaluations.
Each 10-episode evaluation phase takes an average of 18 minutes to complete. The
amount of time taken depends directly on the duration achieved on an episode.
Hence, it can be said that implicitly, the time cost depends on the agent’s perfor-
mance.

47

Unit cost analysis
(Averaged across 100 iterations)

Sample image encryption time 0.012158 seconds
Sample output decrytion time 0.000553 seconds
Sample encrypted image evaluation time 2.513748 seconds
Unit time for encrypted learning step 2.536583 seconds
Sample plaintext image evaluation time 0.003124 seconds
Encrypted-Plaintext evaluation time ratio 804.51633
Encryption context serialization time 0.016804 seconds
Encryption context serialization time without sk 2.134047 seconds
Sample encrypted image serialization time 0.015135 seconds

Table 5.3: Table of Unit Cost Analysis

In the case of the Pure Encrypted agents, Agent: 1 with a batch size of 128, took
171 hours to complete 110 episodes and Agent: 2 having a batch size of 32, took 50
hours to complete 180 episodes. This is where the difference of batch sizes becomes
apparent. The first agent had to evaluate 1+128+128 (1 current state on policy, 128
batch states on policy, 128 batch next state on target) encrypted images on each
optimization step where the second agent had to evaluate 1+32+32 ciphertexts. The
agents completed a total of 1987 and 3280 steps respectively. If all of those steps
were optimization steps, according to our unit cost test, the agents would’ve taken-

1987× (1 + 128 + 128)× 2.536583 = 1295328.94sec ≡ 460 hours [for Agent 1]
3280× (1 + 32 + 32)× 2.536583 = 540799.5sec ≡ 150 hours [for Agent 2]

But not all steps are optimization steps. The agents do not start optimization until
their transition memory holds |B| or more transition units. Additionally, there is the
random action factor to consider. If an action is chosen randomly, no optimization
takes place within that time step. This is why our agent took 171 hours and 50
hours respectively instead of 460 hours and 150 hours.

5.2 Performance Analysis

The biggest factor regarding performance when it comes to encrypted arithmetic
is precision. Precision defines the upper bound of prediction accuracy. We have
conducted precision tests on encrypted data by forward passing numerous plaintext
sample images and their ciphertexts produced by our encryption parameter through
the policy and target function, then measured the absolute error.

Using Algorithm 1 with n=100, we computed the absolute error of ciphertext com-
putation on our circuit ea = 0.006. This interprets as, we are only going get false
output if | ai − aj |≤ 10−2 for any ai ∈ A, aj ∈ A where A is the predicted action
value set. In our case, |A| = 2 which makes the predicted action values less likely to
be within that margin of error. This proves one of our agents, the Plain-Encrypted
agent, to function as effectively as any plaintext version of the model. In fact, from
figure: 5.4 & 5.6 we can see in an encrypted evaluation phase, the agent managed

48

Algorithm 3 Precision Test

1: S<-sample n states from state-space < s1, s2, s3 . . . sn >
2: Ŝ<-encrypt each element of S into new vector ŝi = Encrypt (si)
3: A<-compute plaintext values on function Q(S)
4: Â<-compute encrypted values on homomorphic function Q̂(ŝ)
5: Ad Decrypt Â

6: ea<-compute average absolute error
∣∣A−Ad |

Agents Max score
Max Average

score
Agent: 1 (PuE) 48 26.25

Agent: 1 plain ref 54 23.6
Agent: 2 (PuE) 87 26.25

Agent: 2 plain ref 114 34.65

Table 5.4: Table of Score achieved by the agents

to achieve a score of 1159 which even the plaintext learning module could not get.
The absolute maximum the plaintext module could get was a score of 482. Then
encrypted module managed to get a maximum of 115.95 average score in the most
recent 20 episodes, according to figure: 5.7. It can also be seen that the graph was
still climbing when our iterations stopped.

Because of being computationally expensive, we could not conduct experiments with
total learning episodes higher than 180, when it came to the Pure Encrypted agents.
As discussed in the cost analysis section, completing 180 episodes with a batch size
of 32, the agent took about 2 days. The first agent that we defined earlier, with
batch size of 128, could not even complete more than 110 episodes over a span of
1 week. This gravely affects the performance of the agents as we cannot compare
it with the first reference plaintext agent. From figure: 5.2, we can see that the
plaintext reference agent only starts to show noticeable improvement around the
200-episode mark. That is why we needed to train equivalent plaintext agents for
comparison. Table 5.4 presents necessary information extracted from figures: 5.9 -
5.17.

From the start we can see the overall performance of encrypted learning agents is
not up to the level of plaintext learning agents. This was expected since we are
generating gradients using close-correlated inputs. But judging from the graphs in
figure 5.10 & 5.12, we can surely say that these agents were improving from their
initial condition i.e., learning. Therefore, our alternative approach did prove to
be fruitful. The first PuE agent even managed to get a higher avg score than its
plaintext equivalent. The difference in batch size impacts the learning rate of these
agents. As we can see in figures 5.10 & 5.12, both agents got the same average
maximum score of 26.25, but Agent: 2 got to that mark around the end of its
iterations at exactly 180th episode where Agent: 1 passed that mark around 95th

episode.

Comparing the figures: 10 with 15, and 12 with 17, we can see the encrypted learn-

49

ing agents show similar learning patterns with their respective equivalent plaintext
agents. The encrypted agents are getting the patterns with a few delayed episodes,
for example- the Agent: 1 plain ref achieves a local maxima between episodes 20
to 60 (figure: 5.15) whereas Agent: 1 achieves the same feat between episodes 60
to 110. This means Agent: 1 may achieve convergence with a greater number of
episode iterations compared to Agent: 1 plain ref. The same can be said for Agent:
2 and its equivalent Agent: 2 plain ref.

All of the analysis was conducted using a machine having a Core i7-7700 x64 CPU
with a speed of 3.60 GHz and an Nvidia GeForce GT 710 GPU.

50

Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this thesis, we have developed two deep reinforcement learning agents that work
on encrypted data using CKKS encryption scheme to generate ciphertexts. Both
agents acquire states as encrypted images from the user’s environment and generate
encrypted action values. At first, we developed system architectures to facilitate
learning in real-time where encryption standards are set by the user. Furthermore,
we have designed learning agents to match prescribed architectures. In addition
to that, we have conducted a thorough comparison of the designed agents with
conventional regular learners. Considering the unit evaluation time according to
our analysis, the first agent of our design can cope with a constant exchange of state
and action given the proper hardware configuration, and can be shaped into certain
real life scenarios. The second agent which learns on ciphertexts, can be used where
heavy interaction is not required, for example- optimizing a song recommendation
system in a streaming service. In addition to that, an inclusion of both agents can be
visualized where the ultimate goal is defined by the first agent and user’s preferences
are handled by the second agent. If we take the trend of computational power into
consideration, adopting FHE schemes in a feasible ML driven cloud service is not
far into the future.

6.2 Future Works

Of course, the system that we described in our paper including the agents them-
selves are not the most efficient, and there is still room for improvement. The
homomorphic cryptography itself has not seen much progression until recently and
it is still being explored. We can be positive that in the near future we will see
newer and more efficient schemes or a rework of the existing ones that will allow
more arithmetic operations, not being limited to only addition and multiplication.
Given the advancement, encrypted backpropagation can be both possible and feasi-
ble. This will guarantee the increasing performance of our encrypted learning agent.

51

Nevertheless, this research was conducted to implement and observe the overall per-
formance of a basic secure real-time learning agent. In the future, we would like
to use the framework from this research to build a learning agent that attempts to
solve a real-life problem.

52

Bibliography

[1] R. L. Rivest, L. Adleman, M. L. Dertouzos, et al., “On data banks and privacy
homomorphisms,” Foundations of secure computation, vol. 4, no. 11, pp. 169–
180, 1978.

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings
of the forty-first annual ACM symposium on Theory of computing, pp. 169–178,
2009.

[3] J.-S. Coron, D. Naccache, and M. Tibouchi, “Public key compression and mod-
ulus switching for fully homomorphic encryption over the integers,” in An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 446–464, Springer, 2012.

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomor-
phic encryption without bootstrapping,” ACM Transactions on Computation
Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[5] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers,” in International Conference on the Theory
and Application of Cryptology and Information Security, pp. 409–437, Springer,
2017.

[6] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for approx-
imate homomorphic encryption,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pp. 360–384, Springer,
2018.

[7] H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for approximate
homomorphic encryption,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 34–54, Springer, 2019.

[8] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in Proceedings
of the 2000 ACM SIGMOD international conference on Management of data,
pp. 439–450, 2000.

[9] R. U. Haque, A. Hasan, Q. Jiang, and Q. Qu, “Privacy-preserving k-nearest
neighbors training over blockchain-based encrypted health data,” Electronics,
vol. 9, no. 12, p. 2096, 2020.

53

[10] Y. Qi and M. J. Atallah, “Efficient privacy-preserving k-nearest neighbor
search,” in 2008 The 28th International Conference on Distributed Comput-
ing Systems, pp. 311–319, IEEE, 2008.

[11] M. Barni, C. Orlandi, and A. Piva, “A privacy-preserving protocol for neural-
network-based computation,” in Proceedings of the 8th workshop on Multimedia
and security, pp. 146–151, 2006.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal repre-
sentations by error propagation,” tech. rep., California Univ San Diego La Jolla
Inst for Cognitive Science, 1985.

[13] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,
or a completeness theorem for protocols with honest majority,” in Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and
Silvio Micali, pp. 307–328, 2019.

[14] C. Orlandi, A. Piva, and M. Barni, “Oblivious neural network computing via ho-
momorphic encryption,” EURASIP Journal on Information Security, vol. 2007,
pp. 1–11, 2007.

[15] T. Chen and S. Zhong, “Privacy-preserving backpropagation neural network
learning,” IEEE Transactions on Neural Networks, vol. 20, no. 10, pp. 1554–
1564, 2009.

[16] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic encryption
be practical?,” in Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, pp. 113–124, 2011.

[17] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition,” IEEE Transactions
on audio, speech, and language processing, vol. 20, no. 1, pp. 30–42, 2011.

[18] T. Graepel, K. Lauter, and M. Naehrig, “Ml confidential: Machine learning
on encrypted data,” in International Conference on Information Security and
Cryptology, pp. 1–21, Springer, 2012.

[19] L. J. Aslett, P. M. Esperança, and C. C. Holmes, “Encrypted statistical machine
learning: new privacy preserving methods,” arXiv preprint arXiv:1508.06845,
2015.

[20] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and
M. Naehrig, “Crypto-nets: Neural networks over encrypted data,” arXiv
preprint arXiv:1412.6181, 2014.

[21] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Werns-
ing, “Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy,” in International Conference on Machine Learning,
pp. 201–210, PMLR, 2016.

[22] Y. Aono, T. Hayashi, L. Wang, S. Moriai, et al., “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE Transactions on In-
formation Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

54

[23] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency privacy preserv-
ing inference,” in International Conference on Machine Learning, pp. 812–821,
PMLR, 2019.

[24] M. Minelli, Fully homomorphic encryption for machine learning. PhD thesis,
PSL Research University, 2018.

[25] J. Suh and T. Tanaka, “Sarsa (0) reinforcement learning over fully homomorphic
encryption,” arXiv preprint arXiv:2002.00506, 2020.

[26] J. Park, D. S. Kim, and H. Lim, “Privacy-preserving reinforcement learning
using homomorphic encryption in cloud computing infrastructures,” IEEE Ac-
cess, vol. 8, pp. 203564–203579, 2020.

[27] K. Laine, “Simple encrypted arithmetic library 2.3.
1,” Microsoft Research https://www. microsoft. com/en-
us/research/uploads/prod/2017/11/sealmanual-2-3-1. pdf, 2017.

[28] A. Narang and D. Gupta, “Different encryption algorithms in cloud,” Interna-
tional Journal of Engineering, Science and Mathematics, vol. 7, no. 4, pp. 429–
432, 2018.

[29] N. Ruangchaijatupon and P. Krishnamurthy, “Encryption and power consump-
tion in wireless lans-n,”,” in The Third IEEE workshop on wireless LANS,
pp. 148–152, 2001.

[30] M. A. Will and R. K. Ko, “Secure fpga as a service—towards se-
cure data processing by physicalizing the cloud,” in 2017 IEEE Trust-
com/BigDataSE/ICESS, pp. 449–455, IEEE, 2017.

[31] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A. Reuter, and
M. Strand, “A guide to fully homomorphic encryption.” Cryptology ePrint
Archive, Report 2015/1192, 2015. https://eprint.iacr.org/2015/1192.

[32] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption
from (standard) lwe,” SIAM Journal on Computing, vol. 43, no. 2, pp. 831–871,
2014.

[33] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryp-
tion.,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[34] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from
ring-lwe and security for key dependent messages,” in Annual cryptology con-
ference, pp. 505–524, Springer, 2011.

[35] S. Huang, “Introduction to various reinforcement learning algorithms. part i
(q-learning, sarsa, dqn, ddpg),” Towards Data Science, Towards Data Science,
vol. 12, 2018.

[36] D. Zhao, H. Wang, K. Shao, and Y. Zhu, “Deep reinforcement learning with
experience replay based on sarsa,” in 2016 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pp. 1–6, IEEE, 2016.

55

https://eprint.iacr.org/2015/1192

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-
level control through deep reinforcement learning,” nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[38] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “ngraph-he2: A
high-throughput framework for neural network inference on encrypted data,”
in Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, pp. 45–56, 2019.

[39] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding recur-
rent networks,” arXiv preprint arXiv:1506.02078, 2015.

56

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Problem Statement
	Motivation
	Research Objective

	Background
	Related Works
	Methodology Background
	Encryption
	Homomorphic encryption
	Partially Homomorphic Encryption (PHE)
	Somewhat Homomorphic Encryption (SWHE)
	Fully Homomorphic Encryption (FHE)

	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Reinforcement Learning
	Q Learning
	State-Action-Reward-State-Action (SARSA)
	Deep Reinforcement Learning

	Neural Network
	Convolution Neural Network

	Proposed Method
	 System Architecture
	 Used Algorithms
	Deep Q Learning
	CNN
	CKKS Scheme

	Used Libraries
	Microsoft SEAL
	TenSEAL
	PyTorch
	Torchvision
	Protocol Buffer
	Gym

	Implementation and Experiment
	Environment Description
	 Data Preprocessing
	Parameter Selection
	CNN Layers
	Encryption Parameters

	Data Encryption
	Agent structure
	Plain-Encrypted Agent
	Pure Encrypted Agent

	Result Analysis
	Cost Analysis
	Performance Analysis

	Conclusion and Future Works
	Conclusion
	Future Works

	Bibliography

