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Abstract

Biomedical image classification and segmentation are quite important tasks for med-
ical diagnosis. Many Deep Neural Networks (U-Net, V-Net, etc) have been used in
recent years to segment biomedical images. For classification of biomedical images
or 3D data (X-Ray, CT scan, MRI), ResNet, DenseNet, Xception, Inception, etc.
have been in use for automatic disease diagnosis. But all of these networks are
trained end-to-end and they do not accumulate anatomical information that is re-
quired to interpret similar data in the same way Radiologists do. A new research
direction would be to make the network aware of key anatomical locations and their
relative positions while generating predictions. We investigated the roles that Active
Learning can play in the development and deployment of Deep Learning enabled di-
agnostic applications and focus on techniques that will retain significant input from
a human end-user. In order to practically understand the drawbacks of existing ap-
proaches using different networks, we benchmarked the MICCAI BraTS 2019 dataset
on different Neural Networks. To overcome the drawbacks of existing approaches
of different networks we have incorporated an uncertainty-based Active Learning
Training Schedule to segment biomedical images. Through this approach, we have
achieved a much better performance than the traditional end-to-end approaches on
Deep Neural Networks for biomedical image segmentation.

Keywords: Active Learning; Deep Learning; Uncertainty Metric; Biomedical Im-
age Segmentation
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Chapter 1

Introduction

1.1 Introduction

Biomedical images like MRI, X-ray, CT Scan are widely used to determine a pa-
tient’s diseases by providing a broader look into the internal organs of the human
body. Segmenting such an image is the main concern in Biomedical Image Pro-
cessing and it is also considered as the first step of analysis procedures|1], [3]. The
segmented images are partitioned into multiple regions based on the interest. In
practical life, these images are manually checked by professionals and are used to
provide treatment. So, automating these services provides an improvement in diag-
nostic confidence and accuracy[33].

From biomedical images, it is difficult to identify something due to noise and modality-
specific artifacts. It requires experts having prior knowledge to provide a decision.
As a result, this does not directly work from one clinical model to others due to
domain gap[25] and requires constant data annotation by the annotators. Due to
improvement in computer hardware and computer vision different Deep Learning
models have been implemented which can achieve same accuracy as a human ob-
server. However, the use of these Deep Learning models is limited because of complex
datasets, unique challenges and trust issues in the trained models.

Budd et al. [36] identified three key challenges when developing Deep Learning based
application for medical image analysis in a clinical setting which are, Lack of Train-
ing Data, Improving the Final Percentage and Interpreting the Predictions. Trans-
parency and Interpretability though will be our biggest concern while we discuss
more about semantic segmentation of the medical images. Existing deep learning
models primarily concentrate on the development of predictive models for a specific
task and demonstrate the state-of-the-art-performance for that task.

We would focus on medical image segmentation techniques where humans will play
the roles of end-users and also explore their roles in Deep Learning (DL) enabled
systems. This concept leads us to the introduction of ‘Active Learning based Train-
ing Schedule’. That is we will move away from the traditional end-to-end approach
and develop an efficient, robust and optimized Active Learning based Technique
that will result in a higher true accuracy level than the existing models.



We have divided our tasks into three separate parts. Firstly, to grasp the concepts
of both existing and Active Learning based approaches. Secondly, to reproduce
the current benchmark-results of the existing models. Finally, to implement our
proposed Active Learning based Training Schedule to solve the drawbacks of the
existing models for biomedical image segmentation. We would mainly work on
MICCAI BraTS 2019 dataset to conduct our research works.



1.2 Problem Statement

Over the years due to improvements in computer hardware and Deep Learning (DL)
algorithms, these techniques have been providing very good accuracy. Despite hav-
ing good accuracy, these techniques are still less used in medical image segmentation
as we are still not sure how well this predictive model will perform in real-life sce-
narios. As we are talking about patients, accuracy matters a lot over here. These
DL methods have achieved state of the art performance but if we consider safety
measurement, even the silliest mistake can lead to a catastrophic disaster. Accord-
ing to Budd et al. [36] these DL methods are considered as ‘Black Box’ because
end users have a very limited way of interacting with the models. In most cases,
we feed the network with data and after doing calculations the network provides
an output. Budd et al. [36] also mentioned that in Biomedical image segmentation
transparency is important. To make a clinical decision it needs to be verified from
different sources to minimize the error near to zero. But existing DL methods do
not provide such features like human interaction. In order to rely on the network,
we must allow users to weigh automated predictions. Furthermore, current networks
do not have any idea where to look specifically in the image. As a result, models
iterate over the pixels and try to identify a pattern to make a decision based on it
and which is not efficient to predict the correct outcome and in addition to that lot
of computational power is wasted as well. To overcome these problems we need to
introduce Active Learning which will allow us to provide more interaction with the
network.



1.3 Research Objectives

The main goal of our research will be to improve the traditional Deep Learning (DL)
based techniques by introducing the concept of user-end input or oracle intervention
in the network which is known as ‘Active Learning’. To elaborate, we want to
see through the ‘Black Box’ in DL. As of now, only the network input has been
the only means of communicating with the networks and the rest was left on the
network thinking the network itself will somehow (which has been the ‘Black Box’)
provide output with higher accuracy and perfection. However, in practice, it is not
always possible for a network to be that perfect and any error even if the slightest in
medical image segmentation can question the whole diagnosis process. As a solution
to it, we proposed user end input along with the traditional input to the network
as an Active Learning based Training Schedule approach. For this purpose, we
would like to introduce uncertainty as our metric that will help us to determine
which particular data to work on while the model is being trained. We strongly
believe that the intervention from the user during the training procedure will help
the network shape towards a legitimate output. Moreover, the directed supervision
will also result in higher confidence output.
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Chapter 2

Literature Review and Relevant
Work

2.1 Deep Convolutional Neural Networks

Deep Learning (DL) techniques such as Convolutional Neural Network (CNN) and
variants of this are in consideration as the cutting edge techniques to date for seman-
tic image segmentation and have been applied to the processing of medical images.
Long et al. [10] provided a fully convolutional network which will label pixel-wise
consisting of Convolution, ReLLU, Pooling, and Fully Connected Layer. Primarily for
detecting an object from images, it is necessary to classify the appropriate regions
and apply CNN to them. One of their proposal to calculate pixel-wise output is de-
convolving the output of activation maps. Another proposal of theirs was to make a
combination of shallow layers output with the output of the network which will help
in extracting the in-depth details of the multidimensional medical images. But, to
incorporate Machine Learning(ML) in medical images, some constraints are there
due to incompleteness and shortage of labeled datasets. The low number of labeled
datasets leads to having an overfitting issue. Despite the high performance of CNN
based methods on medical images, the constraints of training with a low number
of labeled datasets are still there [2][17]. To achieve exact localization Ronneberger
et al.[12] proposed an architecture including a contracting path that will capture
context and an expanding path which have symmetry. The architecture is known as
U-Net. With the emergence of SegNet which is an encoder-decoder based segmen-
tation network, to classify pixel-wise, low-resolution encoder feature can be mapped
to full input resolution feature maps [19][11]. Taghanaki et al.[39] mentioned that
SegNet has a new approach in the way of upsampling lower resolution input fea-
ture maps with the help of its decoder. This network has been built with multiple
convolutional layers having batch normalization, with an activation function ReLLU
and later on max-pooling which doesn’t overlap and subsampling. Such architecture
has provided the network an upper hand in classifying images at a pixel level while
preserving very finite details about the localization of modality within the medical
images. This type of structure has enabled the network to classify images at pixel
level saving the finite details about localization of modality into medical images.
When training is done from scratch, precise initialization of weight can improve gra-
dient vanishing issue [26]. Here, the weight of the kernel has been initialized with
the help of sampling from a distribution known as the normal distribution. Milletari



et al.[16] proposed a network which is derived from U-Net and known as V-Net that
brought in the inclusion of convolutions in contracting path to extract and detect
feature more accurately. Unlike U-Net which is applicable for 2D data, this network
can work on 3D data. Convolution window along with size of kernel and stride has
been taken into great consideration which allows the network to have a much wider
map for segmentation. The main aim of all the tasks related to biomedical image
segmentation was to have a result that can be used in a clinical setting. But the
continuous limitations in this field is the complexity of the biomedical images and
their modality. Alongside this, maintaining the clinical precision for 4D, 5D images
become more difficult with these end to end segmentation models. A good num-
ber of encoder-decoder based networks has been altered by making them deeper or
shallower or by including more attention blocks than required for semantic segmen-
tation purpose [32][35] and quite a few of them performed much better than many
cutting edge networks for segmentation. But, all of these networks didn’t include
any intervention of user by being end to end based networks.



2.2 U-Net

Ronneberger et al. [12] proposed an architecture including a contracting path that
will capture context and an expanding path which have symmetry to achieve exact
localization. They also added a skip connection which resulted in enhanced accu-
racy. Moreover, they also addressed the problem of vanishing gradients. This model
is known as the U-Net which has played a significant role in biomedical image seg-
mentation and included the concept of deconvolution introduced by Zeiler et al. [9]
and is built upon the elegant architecture of Fully Convolutional Network.
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Figure 2.1: An illustration of the U-Net [12] architecture.

Hesamian et al. [37] mentioned the benefit U-Net received from skip connections
between different stages of the network and brought about some changes to deal
with the trade-off between localization and the use of context. More pooling lay-
ers are required to handle patches of large size which results in the reduction of
localization accuracy. Alongside this, Hesamian et al. [37] accentuated more on the
shortcut connections of U-Net between the layers of same resolution in analysis path
to expansion path, and for this reason, these connections provide necessary high-
resolution features to the deconvolution layers. It is highly recognized in biomedical
image segmentation and many other networks have been built on this architecture.
[13], [29], [31]



2.3 Active Learning

Lack of annotated training data has been one of the challenges for supervised Deep
Learning techniques as they depend on large and properly distributed and accurately
annotated data points. Even though more medical image datasets are becoming
available, the time, cost and effort which is needed to annotate such datasets re-
main quite effortful. To address this issue, Active Learning has emerged. As Budd
et al. [36] mentioned, Active Learning (AL) tries to find this optimal subset L*
given a current model f’(x|L’), where L’ is an intermediate annotated dataset, and
an unannotated dataset U. Active Learning methods try to find out the most in-
formative data points X to train a model assuming that both the model and the
un-annotated dataset will evolve with the course of time instead of selecting a fixed
subset once for training. Budd et al. [36] also mentioned that, as soon as new
annotations would be acquired, the AL framework will have to use the new data to
bring an improvement to the model. This can be done by retraining the entire model
using the annotated data L’ which are available. Apart from retraining, fine-tuning
can also be done using the annotated data-points X to improve the model.
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Figure 2.2: Overview of Active Learning frameworks [36]

2.3.1 Interpretability and Refinement

For the development of the Active Learning(AL) framework, the informativeness
of the data needs to be measured for proper segmentation of biomedical images.
According to Budd et al. [36], hand-based heuristics are used for AL methods to
enhance the informativeness of the data. This enhanced informativeness will be an
increasing factor for the detection of minute regions of the modalities in biomed-
ical images. Budd et al. [36] argue that more information can be gained with
increased uncertainty of prediction by making the ground truth for that sample
a part of the dataset. A prominent strategy to find the most ‘valuable’ areas is
to use uncertainty sampling, with the active learner querying the most uncertain
areas for directed training. Budd et al. [36] mentioned entropy as the most pop-
ular approach for uncertainty measurement as it generalizes well as an uncertainty
measure. Konyushkova et al. [38] came up with an AL-based approach that uses
entropy as uncertainty metrics for the estimation of a pixel that will be annotated
next This entropy-based uncertainty metric is the calculation of pixel-wise entropy
based on each pixel probability which is a result of binary classification. For each
pixel probability, the whole probability distribution needs to be taken into account.
The purpose of the whole uncertainty-based AL framework is to correct the probable
error of each pixel which is indeed the goal of semantic segmentation. Finally, the
overall uncertainty of each training sample is computed as the mean uncertainty of



its pixels. According to Yang et al. [28], at the end of each stage of Active learning-
based training, data with the highest entropy that is uncertainties are extracted
and those are decided to be the next batch of data to be trained. In the traditional
training approach, we blindly fit the data into the model vesting the whole training
responsibility upon the ‘Black Box’ which restricts us from the human-based heuris-
tic refinement causing the whole deep learning-based modality detection a clinical
drawback.

2.3.2 Uncertainty

Informativeness measure is mainly calculating uncertainty. It has been said that we
can have more information from a more uncertain prediction than a somewhat less
certain prediction than the previous one. For this case, we need to include ground
truth for those samples in the training set.

There are multiple ways to calculate uncertainty from many ML/DL models.

Least Confident : In this way, the sum of the lowest class probability is cal-
culated. It is known that those who have more certain predictions, highly likely
there will have higher pixel-wise class probabilities. This approach has got a ma-
jor drawback which is discarding the information of the rest of the label distribution.

Margin Sampling : This approach [4] solves the lacking of Least Confident as it
takes the first and second most probable labels under consideration and computes
the difference between them. The more the difference the more confident the model
is.

Entropy : If we consider Binary Classification, this approach is as same as Least
Confident and Margin Sampling. But for Multi-Class problems, Entropy acts as a
quite good approach as an uncertainty measure.

Complimentary Sampling : Wang et al. [18] provided another approach in which
two types of selections are done. Firstly, sets of uncertain samples are selected to
be labeled by oracles. Secondly, sets of higher certain samples are pseudo-labeled
before getting included in the labeled dataset.

Bayesian CNN : Gal et al. [24] proposed that Bayesian CNN performs much

better than deterministic CNNs in this arena of Active Learning. In this approach,
multiple types of queries are incorporated.

10



2.4 Challenges of Training Deep Learning Models

2.4.1 Overfitting

Overfitting occurs when captured patterns and regularities by a model in the training
set are unusually more accurate with a comparison to the unprocessed instances of
the problem [14]. If the size of the dataset is small, overfitting occurs. By bringing
an increment in the size of the dataset, it is assumed that the issue will be solved [27].
For example, data augmentation has been proved to be an effective way of handling
overfitting issue [23]. Alongside this, we can get rid of overfitting by dropping sets
of neurons during the training [8]. A modified approach of dropping neurons is
dropping connections which also solves this issue [6].

2.4.2 Training Time

Achieving a training time that is less than usual and to have a convergence quickly
have been in the study in many cases. By applying pooling layers dimensionality
of the parameters can be reduced and which will eventually solve this issue [22].
Recently proposed pooling based solutions use convolution with stride [7] which
makes the network less heavy than usual. Batch normalization performs better to
bring an improvement of achieving quicker convergence [13], [15], [21] as it does
not hamper performance like pooling and down-sampling which may let us loosing
necessary information.

2.4.3 Gradient Vanishing

Deeper networks usually perform better despite their struggles of exploding or com-
pletely vanishing of the propagated signal which is known as gradient [26]. To be
more specific, it is quite difficult to backpropagate the final loss to shallow layers.
3D models suffer from this issue quite often. By scaling up intermediate hidden
layers’ output using deconvolution and passing it to a softmax to get the prediction
can solve this issue. Scaled up the output of immediate hidden layers with the help
of deconvolution operation and using this output as an input for activation func-
tion Softmax can solve this issue. Combining auxiliary loss with original loss of the
hidden layer can strengthen the gradient [22], [29], [34]. If we cautiously initialize
weight while doing scratch training, it can bring an improvement to solve this issue
of training [26].

11



2.5 Challenges of Training Deep Learning Models
in Clinical Setting

Budd et al. [36] mentioned about three key challenges of medical image analysis in
the clinical setting:

2.5.1 Lack of Training Data

Regular supervised Deep Learning techniques mostly depends on adequately large
datasets that are accurately annotated. But, there are not adequate datasets for
Medical Images and annotating them is quite time and cost consuming. It requires
great effort too.

2.5.2 The Final Percent

Even though Deep Learning techniques have achieved the best possible performance
till date for Biomedical Image Classification and Segmentation, in critical conditions
any deviation or misinterpretation can lead to destruction. If we want to achieve
a credible result, we need to incorporate interactive interpretation by including an
oracle in the loop.

2.5.3 Transparency and Interpretability

Most of the Deep Learning models are considered as the ‘Black Box’ as we can hardly
have the scope of understanding the underlying mechanisms of decision mechanism of
a particular model. To rely on the result, we need to have the scope of understanding
the decision-making process, or no matter how good a model provides an output,
we will have a hard time relying on that.

12



2.6 Metrics for Evaluating Segmentation Models

Evaluation of the segmentation model is performed using different metrics. Some
are,

2.6.1 Pixel Accuracy

It denotes the ratio of pixels properly classified, divided by the total number of
pixels. Pixel accuracy can be defined as,

K
PA _ Zi:o Pii
K K
D im0 2o j=0Pij

K = foreground classes and background
pi; = number of pixels of class ¢ predicted as belonging to class j

2.6.2 Mean Pixel Accuracy

It is an enhancement of Pixel Accuracy. Here the ratio of correct pixels is calculated
in a per class manner. After that, it is averaged over the total number of classes.

K i
MPA = gy 2ilo wF

K
Zj:o Dij

2.6.3 Intersection over Union (IoU)

At first, the area of intersection between the predicted segmentation map and ground
truth is calculated. Then, the area of union between the predicted segmentation map
and ground truth is calculated. Finally, the area of intersection is divided by the
area of union. It ranges between 0 and 1.

ANB
IoU = J(A, B) = :AUB}

A = Ground truth, B= Predicted segmentation maps

2.6.4 Mean-1IoU

It is calculated by taking the average Intersection over Union (IoU) of all classes.
This metric is mostly used for reporting the performance of modern segmentation
algorithms.

2.6.5 Precision / Recall / F1 Score

These metrics are used to evaluate the accuracy of many image segmentation models.
We can define Precision and Recall both for each class and aggregate level.

Brecia TP TP
=_——— Recall = ———
FesIon = e TP + FN
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TP = True Positive, FP = False Positive, FN = False Negative

Another metric, F'1 Score is a combination of Precision and Recall. It is the harmonic
mean of them.

Precision - Recall

F1- =2.
Seore Precision + Recall

2.6.6 Dice Coefficient

The Dice coefficient, or Sgrensen—Dice coefficient, is a common metric for pixel
segmentation as it can also be modified to act as a loss function. We can multiply
the overlapped area of two images by 2 and then need to divide it by the value of
the total number of pixels from both images.

This original formula of Sgrensen was applicable for discrete data. It was later
modified to be applied for Boolean data and then it became identical to F1 Score.

2TP
Dice = =F1
¢ T 9TP 4+ FP + FN
Dice Coefficient can be defined as vector operations too.
_ 2|a - b|
Dice = ————
al? + b?
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Chapter 3

Dataset Handling, Implementation
and Research Methodology

3.1 Dataset

We acquired the dataset from a challenge entitled ‘Multimodal Brain Tumor Seg-
mentation Challenge 2019 (BraTS 2019)’ organized by Medical Image Computing
and Computer-Assisted Intervention (MICCAI) Society. Apart from serving the
purpose of this competition, this is also available for usage of research [5] [20] [30].

To build this dataset, MRI tumor scans from multiple test centers were collected
as per the standard clinical conditions. Dataset is formatted as NIfT1I files (.nii.gz)
and categorized as T1, T2, Flair and T1Ce volumes. Many kinds of equipment
and scanners were used to collect samples from many different test centers to have
diverse dataset. The dataset was pre-segmented manually by the contributors by
one to four raters, following the same annotation protocol, and their annotations
were approved by experienced neuro-radiologists [30]. The total number of volumes
in this dataset is 285. Among these 285, 210 volumes are High Grade Glioma (HGG)
and 75 volumes are Low Grade Glioma (LGG). Each of the volumes has 155 slices.
Each of the volumes of data has a shape of (240, 240, 4) and each of the ground
truth has a shape of (240, 240, 1).
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Figure 3.1: Dataset
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Figure 3.2: From Top To Bottom : T1, T2, Flair, T1Ce, Ground Truth
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3.2 Dataset Handling

3.2.1 Reshaping

For U-Net we did reshaping instead of resizing because while resizing it changes
the data whereas reshaping keeps the data intact, for better accuracy following the
cutting edge approach for biomedical image segmentation.

Initially, the dimension of data was (240, 240, 4) and the dimension of ground truth
was (240, 240, 1). Later we reshaped the data to (192, 192, 4) and ground truth to
(192, 192, 1).

3.2.2 Splitting

To split the data we used train_test_split library from sklearn in the following pa-
rameters -

[ 1 from sklearn.model selection import train_test split
X_train, X test, Y_train, Y _test = train_test split(data, gt, test size=0.28, random_state=42)
X_train, X_wval, Y_train, Y_val = train_test_split(X_train, ¥_train, test_size=8.25,random_state=42)

[ 1 print(Y_train.shape)
print(Y_val.shape)
print(X_train.shape)
print(X_test.shape)
print(X_val.shape)

> (21ge, 192, 192, 1)
(720, 192, 192, 1)
(2168, 192, 192, 4)
(728, 192, 192, 4)
(728, 192, 192, 4)

Figure 3.3: Dataset Splitting

After splitting the data into Training and Validation, we passed Y _train and Y _val
to ‘to_categorical” function. This function does the job of conversion of a class vec-
tor to a binary class matrix. We just passed the class vector Y_train and Y _val to
this function and didn’t pass the total number of classes and data type. And so,
the total number of classes will have a value of none and it would consider as the
largest number in Y_train and Y_val. Alongside this, it will consider the data type
as default float32.

After that, this function will return a binary matrix representation of the input
where the axis of the classes will be placed last.
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3.3 Implementation of U-Net

Following the architecture of U-Net [12] we implemented the model based on our
dataset. We have added the following adjustments to the model -

We implemented encoder-decoder layer for the U-Net and also added skip
connections.

We have added an additional dropout layer to avoid over-fitting after the
convolution layers.

We have also included ReLLU as an activation function for every layer except
for the output layer to introduce non-linearity.

Input Shape = (192,192 4)

Conv2D: 64 X 3, Stride: 2 X 2, activation: relu

Conv2D: 128 X 3, Stride: 2 X 2, activation: relu

Encoder Dropout(0.2)

Conv2D: 256 X 3, Stride: 2 X 2, activation: relu

Conv2D: 512 X 3, Stride: 2 X 2, activation: relu

Conv2D: 1024 X 3, Stride: 2 X 2, activation: relu

Encoder Dropout(0.2)

Conv2DTranspose: 1024 X 3, Stride: 2 X 2, activation: relu
Conv2DTranspose: 512 X 3, Stride: 2 X 2, activation: relu
Decoder Dropout(0.2)

Conv2DTranspose: 256 X 3, Stride: 2 X 2, activation: relu
Conv2DTranspose: 128 X 3, Stride: 2 X 2, activation: relu
Conv2D: 64 X 3, Stride: 2 X 2, activation: relu

Decoder Dropout(0.2)

output = Conv2D: 4 X 1, activation: softmax
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After building the model, we compiled the data using our dice coefficient method.
Then we fit the model on the training data keeping the batch size 32. Once the
number of given epochs are completed, our model would be trained completely and
will be available to predict on our test data. For prediction, we developed our
prediction method which takes actual data and ground truth as parameters. As test
data is split into slices and prediction is generated on each slice which has a shape
of [192,92/4]. We compress the predicted mask to a single channel using the argmax
function of NumPy library. As ours is a segmentation task and so to determine
the accuracy of the segmented mask, we have used dice coefficient as a metric for
determining the loss by passing on the segmented mask and ground truth of each
slice to our dice coefficient method as parameters which was initially used for the
training purpose. Alongside this, we also converted the number of classes of the
ground truth to 4 from 3 to be similar to that of the segmentation mask. Finally,
we print the segmentation masks compressed in a single channel along with slices of
actual data and test data.
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Model summary of U-Net based on our adjustments:

input: | (None, 192, 192, 4)
input: InputLayer
output: | (None, 192, 192, 4)
input: (None, 192, 192, 4)
blockl_convl: Conv2D
output: | (None, 192, 192, 64)
input: | (None, 192, 192, 64)
block1_conv2: Conv2D
output: | (None, 192, 192, 64)

l

block1_batch_norm: BatchNormalization

input:

(None, 192, 192, 64)

output:

(None, 192, 192, 64)

e

input:

(None, 192, 192, 64)

blockl_pool: MaxPooling2D

output:

(None, 96, 96, 64)

I

input: | (None, 96, 96, 64)
block2_convl: Conv2D
output: | (None, 96, 96, 128)
input: | (None, 96, 96, 128)
block2_conv2: Conv2D
output: | (None, 96, 96, 128)

!

input:

(None, 96, 96, 128)

block2_batch_norm: BatchNormalization

output:

(None, 96, 96, 128)

/

input: | (None, 96, 96, 128)
block2_pool: MaxPooling2D
output: | (None, 48, 48, 128)
input: | (None, 48, 48, 128)
encoder_dropout_1: Dropout
output: | (None, 48, 48, 128)
input: | (None, 48, 48, 128)
block3_convl: Conv2D
output: | (None, 48, 48, 256)
input: | (None, 48, 48, 256)
block3_conv2: Conv2D
output: | (None, 48, 48, 256)

/

input:

(None, 48, 48, 256)

block3_batch_norm: BatchNormalization
output:

(None, 48, 48, 256)

/

input:

(None, 48, 48, 256)

block3_pool: MaxPooling2D

output:

(None, 24, 24, 256)

input: | (None, 24, 24, 256)
block4_convl: Conv2D

output: | (None, 24, 24, 512)

input: | (None, 24, 24, 512)
block4_conv2: Conv2D

output: | (None, 24, 24, 512)

I

Figure 3.4: U-Net Model Summary Part I
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!

input:

(None, 24, 24, 512)

block4_batch_norm: BatchNormalization

output:

(None, 24, 24, 512)

o

block4_pool: MaxPooling2D

input: | (None, 24, 24, 512)

output: | (None, 12, 12, 512)

block5_convl: Conv2D

(None, 12, 12, 512)
(None, 12, 12, 1024)

input:

output:

up_pooll: Conv2DTranspose

input:

(None, 12, 12, 1024)

output:

(None, 24, 24, 1024)

N

merged_block1: Concatenate

input: | [(None, 24, 24,

512), (None, 24, 24, 1024)]

output:

(None, 24, 24, 1536)

\

mput:

(None, 24, 24, 1536)

decod_blockl_convl: Conv2D

output:

(None, 24, 24, 512)

\

input:

(None, 24, 24, 512)

up_pool2: Conv2DTranspose

output:

(None, 48, 48, 512)

|

Input:

[(None, 48, 48, 256), (None, 48, 48, 512)]

merged_block2: Concatenate
output:

(None, 48, 48, 768)

|

input: | (None, 48, 48, 768)
decod_block2_convl: Conv2D
output: | (None, 48, 48, 256)
input: | (None, 48, 48, 256)
decoder_dropout_1: Dropout
output: | (None, 48, 48, 256)
input: | (None, 48, 48, 256)

up_pool3: Conv2DTranspose

output: | (None, 96, 96, 256)

input:

[(None, 96, 96, 128), (None, 96, 96, 256)]

merged_block3: Concatenate

output:

(None, 96, 96, 384)

input:

(None, 96, 96, 384)

decod_block3_convl: Conv2D

output:

(None, 96, 96, 128)

\

input:

(None, 96, 96, 128)

up_poold: Conv2DTranspose
output:

(None, 192, 192, 128)

~

input: | [(None, 192, 192, 64), (None, 192, 192, 128)]
merged_block4: Concatenate
output: (None, 192, 192, 192)
input: | (None, 192, 192, 192)
decod_block4_convl: Conv2D
output: [ (None, 192, 192, 64)
input: | (None, 192, 192, 64)
pre_output: Conv2D
output: | (None, 192, 192, 64)
input: | (None, 192, 192, 64)
output: Conv2D
output: | (None, 192, 192, 4)

Figure 3.5: U-Net Model Summary Part I1
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for i in range(len(X_test)):
temp = X_test[i].reshape([-1,192,192,4])
Y_pre = np.argmax(model.predict((temp)),axis=-1)
#Y_pre = model.predict((Y_pre))
np.unique(Y_pre)
print("Input :", X_test[i].shape)
print("Output Pre:", Y_pre.shape)
Y_pre=Y_pre.reshape(-1,192,192,1)

Figure 3.6: U-Net Code Snippet Part I

print('X_test '+ str(i))
plt.imshow(X_test[i,:,:,2])
plt.show()

print('Predicted '+ str(i))
plt.imshow(Y_pre[o,:,:,0])
plt.show()

print('Actual "+ str(i))
plt.imshow(Y_test[i,:,:,0])
plt.show()

Figure 3.7: U-Net Code Snippet Part 11

Y_temp = Y_test[i].reshape([-1,192,192,1])
Y_test_encod = to_categorical(Y_temp,num_classes = 4)

print("Y Test Encode: ™ , Y_test_encod.shape)

score = model.evaluate(temp,Y_test_encod,verbose=0)

print(model.metrics_names)

print(score)

", dice_coef_value(np.array(model.predict((temp)))
, np.array(Y_test_encod)))

print("Dice Value:

Figure 3.8: U-Net Code Snippet Part III
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3.4 Implementation of Active Learning on U-Net

To implement Active Learning, firstly, we introduced two new methods. One is for
calculating Shannon Entropy and the other one is for Batch Processing the dataset.
We started with 200 data and provided 60 data at the beginning and left out the
other 140 data. After that, we would perform prediction on the remaining datasets
and would calculate the Shannon Entropy to find out the highest values. These val-
ues signify that the model performed worst on these datasets. Upon receiving the
highest entropy values, we identified them and fit the model with these data. This
will ensure that our model gets to train again with its worst Shannon Entropy values
which result in a better prediction on the next iteration. Following this approach,
after each iteration, the model gets to be trained with its worst performed data as
well as ensuring that the model sees all the data which differs from traditional ap-
proaches where users do not have any control over the data. This approach is often
known as ‘Black Box’. Undoubtedly, through our proposed approach, we received a
result which had better accuracy and prediction.

First of all, we fixed 200 datasets for Active Learning based Training Schedule but
unlike the traditional end-to-end approach, we did not fit the whole dataset at once.
To initiate the model, we started with 60 datasets and compiled the model as well as
performed the first model .fit() function to start the training. To note on this point,
the model was being fitted on the model we compiled earlier. Here Adam Optimizer
was used and the learning rate was 1 x e=5. Moreover, we used the Accuracy metric
of the Keras library and for the loss, we manually defined the dice coefficient loss.

def dice_loss2(y_true, y _pred, epsilon=le-6):

intersection = K.sum(K.abs(y_true * y pred) , axis = [-2, -3])

dice = (2. * intersection + epsilon) / (K.sum(K.square(y_true) ,
axis = [-2, -3]) + K.sum(K.square(y_pred) , axis = [-2, -3]) + epsilon)

loss = -K.sum(K.log(dice), axis = -1)

return loss

Figure 3.9: Code Snippet of Dice Coefficient Loss

model.compile(optimizer=Adam(lr=1e-5),loss=dice_loss2,metrics=["acc"])

history = model.fit(X_train,Y_train,validation_data=(X_val,Y_val),batch_size=4,epochs=2,shuffle=True)

WARNING:tensorflow:From C:\Anaconda3\envs\thesis\lib\site-packages\keras\backend\tensorflow_backend.py:422: The name tf.global_
variables is deprecated. Please use tf.compat.vl.global_variables instead.

Train on 2808 samples, validate on 782 samples
Epoch 1/2

2808/2808 [ ] - 388s 138ms/step - loss: 14.5489 - acc: ©.9208 - val_loss: 21.5913 - val_acc: ©.966
5

Epoch 2/2

2808/2808 [ ] - 388s 135ms/step - loss: 7.53@3 - acc: ©.9747 - val_loss: 17.2845 - val_acc: ©.9670

Figure 3.10: Code snippet of Initial Model Fit
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Furthermore, after the initial fit, we passed the remaining dataset under batch pro-
cessing where Shannon Entropy was being calculated. Here we reshaped the dataset
again to [-1,192,192,4] and the ground truth to [-1,192,192,1] as we were taking an
individual slice from each data (volume).

def batch_process(X_train , Y_train):
list2 = load_list(path2)
sum_entropy = []
if(len(global_index)==0):
for i in range (len(list2)):
data,gt = load_data_test(path2, 1list2[i])
entropy = shanon_method(data, gt)
sum_entropy.append(entropy)
print("Entropy: " , entropy)

else:
for i in range (len(global_index)):
for j in (list2):
if global_index[i] == j:
print(global_index[i])
print(3j)
list2.pop(list2.index(3))

5

for i in range (len(list2)):
print("i " , i)
print("LIST 2 :" , list2[i])
data,gt = load_data_test(path2, 1list2[i])
entropy = shanon_method(data, gt)
sum_entropy.append(entropy)
print("Entropy: " , entropy)

X = sum_entropy.copy()

x.sort()

index_shanon = []

for i in range (len(sum_entropy)-1 , len(sum_entropy) - 21, -1):
print(i)
index_shanon.append(sum_entropy.index(x[i]))

new_list = []

for i in range (len(index_shanon)):
new_list.append(list2[index_shanon[i]])
global_index.append(list2[index_shanon[i]])

print(new_list)

X_train
Y_train

[]
[1

X_train,Y_train = load_datal(path2, new_list)

train[:,30:120,30:222,30:222, :].reshape([-1,192,192,4])

X_train = X_tr
= Y_train[:,30:120,30:222,30:222].reshape([-1,192,192,1])

Y_train

Y_train[np.where(Y_train==4)]=3

Figure 3.11: Code snippet of Batch Processing Method Part I
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n

print("Reshape X:
print("Reshape Y:

, X_train.shape)
, Y_train.shape)

"

X_train , Y_train = X_train, Y_train
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train,
test_size=0.20,shuffle = False)

Y_train = to_categorical(Y_train)

Y_val = to_categorical(Y_val)

X_train = (X_train-np.mean(X_train))/np.max(X_train)
X_val = (X_val-np.mean(X_val))/np.max(X_val)

print("Cat X: " , X_train.shape)
print("cat Y: " , Y_train.shape)

return X_train , Y_train, X_val, Y_val

Figure 3.12: Code snippet of Batch Processing Method Part 11

Moreover, before calculating the entropy, the prediction was done over the training
data by model.predict() and we called the argmax values over axis = -1. In addition

to that, the predicted slice was then encoded by calling ‘to_categorical’ method of
Keras where, number of classes were 4 [to_categorical(Y _temp,num classes = 4)].
Shanon Entropy was calculated with the following formula: shanon_entropy =
> (predictions x log(predictions + €) + (1 — predictions) x log(1 — predictions + €)).
Here € is 1 x e7'2,

def shanon_method(X_test, Y_test):
entropy = @

X_test = X_test[:,30:128,30:222,38:222,:].reshape([-1,192,192,4])
Y_test = Y_test[:,30:120,30:222,38:222].reshape([-1,192,192,1])

print({X_test.shape)
print(Y_test.shape)

shanon_list = []
for i in range(len(X_test)):
temp = X_test[i].reshape([-1,192,192,4])
¥_pre = np.argmax(model.predict((temp)),axis=-1)
np.unique(Y_pre)
¥_pre=Y_pre.reshape(-1,192,192,1)
¥_temp = Y_test[i].reshape([-1,192,192,1])
¥_test_encod = to_categorical(Y_temp,num_classes = 4)
predictions = model.predict(temp)
shannon = -np.sum{ predictions®*np.log2(predictions + 6.00eeoee8888l ) + (l-predictions)
*np.log2(1-predictions + ©.008000800001))

entropy = entropy + (shannon)

return entropy

Figure 3.13: Code snippet of Shanon Entropy Method

Upon receiving the entropy value we stored them in a list and this process was
continued for the rest of the data. After calculating the values of Entropy, our
next task was to sort the highest values and map them with the original dataset.
Moreover, after successful identification of targeted data which have the highest-
ranked entropy at that particular iteration, the batch process method returned the
targeted data. Later, the model was trained on the received dataset. Therefore, this
process was continued seven times to train all of our data.
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X_train , Y_train , X_val, Y_val = batch_process(X_train , Y_train)
ENTropy T SI63T57Z5055 17 5YTE

i 23

LIST 2 : BraTS19_CBICA_AYG_1

(19, 155, 24@, 240, 4) (19, 155, 240, 249)
(1710, 192, 192, 4)

(1710, 192, 192, 1)

Entropy: 18487.297371024815

i 24

LIST 2 : BraTS19_CBICA_AYI_1

(19, 155, 240, 240, 4) (19, 155, 240, 248)
(1710, 192, 192, 4)

(1710, 192, 192, 1)

Entropy: 8735.378111296028

i 25

LIST 2 : BraTS19_CBICA_AYW_1

(19, 155, 240, 240, 4) (19, 155, 240, 248)
(1710, 192, 192, 4)

(1710, 192, 192, 1)

Entropy: 447.7300837821402

Figure 3.14: Code snippet of Batch Processing and calculating Shannon Entropy

3.5 Activation Function, Optimization Algorithm
and Loss Function

While building the U-Net model, we tried to use different activation functions such
as Sigmoid, Softmax, ReLU for our model to avoid the outputs which are linear
as function and a one-degree polynomial. For our segmentation tasks, ReLU per-
formed the best as it diminishes the problem of gradient vanishing which we noticed
while comparing by using other activation functions. Alongside this, ReLLU does not
require computing any exponential terms which lets us having faster computation.
However, in the last layer of our model which is the output layer, Softmax was used
as our activation function.

As it is required for us to predict whether our biomedical images contain any modal-
ity or not, the probability of positive and negative results should sum up to make
the total probability one. Due to this reason, we used Softmax so that we can have
a result which sums up to 1. This approach provided us a much better result.

We also have tried many Optimizers such as Stochastic Gradient Descent (SGD),
RMSprop but Adam Optimizer which is based on stochastic gradient descent per-
formed the best. As we have used a complex dataset and our model had a too high
number of parameters, Adam Optimizer served our purpose most efficiently because
of being computationally efficient and consuming less memory.

Dice coefficient is a common metric for pixel segmentation as it can also be modified
to act as a loss function. We have used this metric and modified this to use it as a
loss function. This is how we calculated the loss function :

intersection = Z predicted x ground_truth

(2 x (intersection + €))
S (predicted® + ground_truth?)

loss = — Z log(dice)

Here, ground_truth = Ground truth class, predicted = Predicted class

dice =
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Chapter 4

Result Analysis

4.1 U-Net Without Active Learning on BraT$S

Dataset
model loss
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Figure 4.1: U-Net Without Active Learning
U-Net has always been a benchmark model for medical image analysis, especially
for 2D data. But in our approach, we have used this Deep Learning model on our

complex 3D data by making the necessary pre-processing of the dataset and struc-
turing of the model. If we look at the first graph of Figure 4.1 titled ‘model loss’
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we can have a better interpretation of how well the model has been trained on our
dataset. In the graph, we notice a downfall in the line representing the loss for the
training. This denotes that as epoch is passing by, the training loss based on the
dice coefficient is reducing. A gradual fall is noticed from the second epoch to the
twelfth epoch. During the nineteenth epoch, the loss is almost within the range
1-1.5. The reducing loss value signifies the effective training of the model on our
dataset.

Furthermore, if we focus on the second graph of Figure 4.1 titled ‘model score’ we
can see an epoch vs accuracy plot which emphasizes how well the training accuracy
has been during the training epochs. As the epoch keeps on increasing the graph
also moves towards an upward slope suggesting a higher model accuracy. If we fur-
ther increase the number of epochs, we might notice our model to overfit which is
never desired.

If we then take our segmentation masks into consideration, we can focus on the
prediction accuracy of the U-Net model. As ours is a segmentation problem, each
mask that is being printed is a superposition of four individual masks which signifies
four different regions of tumor prevalent in our dataset. For this purpose, we have a
parameter named ‘Dice Value” which consists of four values each of which represents
the accuracy of the model in determining a particular tumor region for each mask
among the four superimposed masks. The different color of the detected modalities
in the printed segmentation mask represents the density or structure of a particular
tumor region. From the masks predicted we see it’s close enough to its actual slice
and the value of the prediction loss also provides enough evidence to this cause that
the model has predicted what it should to a good extent. Though there are instances
where the model could not predict what it should in a slice but all the parameters and
metrics such as the loss, accuracy and dice value have been consistent accordingly.
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4.2 U-Net With Active Learning on BraTS Dataset
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For Active Learning based Training Schedule approach, we have trained the dataset
with our proposed workflow where the model was trained seven times and for each
iteration, there were two epochs. Firstly, to initiate the model we fitted with sixty
data and it provided a dice coefficient loss of 7.53 after two epochs (Figure 4.3). This
is before implementing Active Learning. After implementing Active Learning based
Training Schedule approach, this result drastically improved and Shannon Entropy
got reduced too.

From the graphs, it can be seen that after the starting of Active Learning, the loss
was 6.3318 (Figure 4.4 : State 01). As we moved further to the next state of Active
Learning the model got improved and provided a loss of 5.6243 and an accuracy of
0.9832, validation loss and accuracy were 14.0989 and 96.78% respectively (Figure
4.5 : State 02). Moreover, as the training continued further the model generated
a better result. Finally, the loss reduced from 4.9414 (Figure 4.6 : State 03) to
2.8850 (Figure 4.10 : State 07). The accuracy resulted at 99.09% with a validation
accuracy of 98.33% after the completion of Active Learning (Figure 4.10 : State 07).

If we look at the predicted segmented values the results are marginally better than
the Vanilla U-Net or in other words U-Net without Active Learning. Not only the
accuracy got increased but also the Shannon Entropy got decreased drastically. It
is also visible that the output of Active Learning developed a very high accurate
predicted mask along with higher dice coefficient values. In the segmented predicted
masks, we generated four dice values as our dataset is consists of four masks. Each
value represents the dice coefficient value of individual masks. As a result, the pre-
dicted masks and the ground truth values are intersecting with a high region which
is producing a better prediction.
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4.3.1 Shannon Entropy

4.3 Comparison and Result Analysis

BraTS19_ | BraTS19_ | BraTS19_ | BraTS19_
Dataset CBICA CBICA TCIA06 CBICA
_ATF 1 _AVV_1 2471 _AXM 1
Active
Learning | 1153.6475 | 959.5673 | 815.5281 | 906.5152
01
Active
Learning | 1882.6569 | 859.7159 | 1122.1333 | 1402.2199
02
Active
Learning | 1602.2217 | 3053.8707 | 1071.1515 | 1240.2884
03
Active
Learning | 3866.1529 | 1372.6612 | 2633.9089 | 1936.5166
04
Active
Learning | 1329.2917 | 859.7159 | 1621.6286 | 1736.4798
05
Active
Learning | 1477.9235 | 401.3045 | 1312.9021 | 782.9043
06
Active
Learning | 616.80335 | 301.9062 | 687.4751 | 829.1513
07

Table 4.1: Entropy

Shannon entropy is an uncertainty metric for implementing active learning in our
proposed approach. We have calculated the Shannon entropy of all the 200 3D data
we had. For the convenience of understanding how this entropy is playing the role
of an uncertainty metric, we have highlighted the entropy values of some particular
data in table 4.1. The table generalizes the relation between the active learning
batches and the corresponding value of some particular data in those batches. For
the data BraTS19_CBICA_ATF1 in the initial active learning batch step the value
of entropy was 1153.6475 and as the active learning batch step kept on increasing
the value of entropy was gradually on the decreasing side. By the end of the seventh
active learning batch step the value of entropy was dropped to 616.80335 which is
the lowest for that particular data. This signifies that the uncertainty of the data
is decreasing.
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4.3.2 Active Learning Results after each Iteration

Active
Learning | Loss | Val Loss | Acc | Val_Acc
State
01 6.3318 | 19.6168 | 98.40 | 96.93

02 5.6243 | 14.0989 | 98.32 | 96.78

03 4.9414 | 11.1316 | 98.29 | 98.03

04 5.1510 | 11.3842 | 98.56 | 96.01

05 3.7509 | 16.4653 | 98.79 | 95.80

06 2.9289 | 16.9809 | 98.60 | 98.16

07 2.8850 | 6.8227 |99.09 | 98.33

Table 4.2: Active Learning Results After Each Iteration

While implementing Active Learning the loss after each iteration kept on decreasing
which can be seen from Table 4.2. Not only the loss is decreasing but the accuracy
is also on the increasing note. The most evident change that we observed after im-
plementing U-Net is that both the training and prediction accuracy have drastically
increased. Traditional U-Net implementation took around 17 epochs to attain an
acceptable accuracy for the model whereas after implementing our Active Learning
based Training Schedule model, it is attaining similar or more accuracy within two
epochs.
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4.3.3 Comparison with Model Loss and Model Accuracy

model loss model loss

—— tmain 18 { — train — )
val val ; e
: 16

]

14

10

dice coef loss

dice coef loss
-] -]

[

— i “o—
00 25 S0 75 100 125 180 175 0.0 02 04 06 08 10
epoch epoch
model score Model Accuracy
g9gq— WP - 09917 — train /
v — 0990 4 val
ose 0989
oy
g 094 0988 1
g v
& 3 0987 {
[T
092
g 0.986
090 0.985
0.984
0.88 — -
: : . . : . . . 0983
0.0 25 5.0 75 0o 125 150 175 00 02 04 0.6 08 10
epoch epoch

Figure 4.12: Comparison

It is not only limited to the training accuracy as we can see the segmentation masks
that have been predicted after Active Learning being implemented is much better
predicted than that of the traditional vanilla U-Net prediction. This can be verified
from Figure 4.11 where we can see much better predicted mask have been plotted
than that of U-Net in terms of dice coefficient loss and accuracy. The prediction ac-
curacy value of each mask of all four masks being predicted shows the enhancement
in different tumor region prediction. Besides, the model has been consistent in terms
of loss and accuracy with respect to the predicted and actual slices. Thus, our pur-
pose of introducing a new Active Learning based Training Schedule for Biomedical
Image segmentation is being served.
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Chapter 5

Conclusion

5.1 Conclusion

We have tried to improve the traditional Deep Learning (DL) based techniques by
introducing Active Learning(AL) which can be implemented in several phases of the
Deep Learning pipeline during annotation, during training, or during inference. We
have implemented an Active Learning based Training Schedule approach and ended
up achieving a much better performance than the traditional end-to-end approaches
on U-Net for segmenting Brain Tumor of MICCAI BraTS 2019 dataset. Apart from
achieving a higher prediction accuracy, we can see the segmentation masks that
have been predicted after implementing Active Learning is much better predicted
than that of the traditional vanilla U-Net prediction. Besides, the model has been
consistent in terms of loss and accuracy with respect to the predicted and actual
slices. We are hoping to come up with new methodologies that combine the strengths
of Active Learning and Human-in-the-loop (HITL) for the development of Deep
Learning based applications that can be used in clinical practice.

5.2 Challenges

As we have worked with large 3D MRI data of Brain Tumors which were around
7GB of biomedical data and so high configuration computing devices (RAM, CPU,
GPU etc.) were required. Due to hardware limitations, we couldn’t train the whole
dataset at once. Apart from that, for a long time, we faced an error called ‘Re-
sourceExhaustedError’. This error was also raised due to hardware limitations. We
couldn’t solve this issue even with the help of Google Colab too as Colab itself has
its limitations. After that, we took an approach of training the data by taking an
‘on the go’ training approach which eventually solved our issue and so we could
finish our research work in due time.
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5.3 Future Work Plan

In our research, we have only used one model (U-Net). In the future, we intend to
try out other different models DoubleU-Net, UNet++ which are other variants of
U-Net to incorporate our approach. We are hoping to have significant improvement
in performance from these models if we implement Active Learning on them.

Apart from this, we want to improvise the concept of Human-in-the-loop (HITL)

to a great extent by including more supervised human intervention in the Active
Learning framework.
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